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Abstract. The k-QSAT problem is a quantum analog of the famous k-SAT constraint
satisfaction problem. We must determine the zero energy ground states of a Hamiltonian ofN
qubits consisting of a sum ofM random k-local rank-one projectors. It is known that product
states of zero energy exist with high probability if and only if the underlying factor graph has
a clause-covering dimer configuration. This means that the threshold of the PRODSAT phase
is a purely geometric quantity equal to the dimer covering threshold. We revisit and fully
prove this result through a combination of complex analysis and algebraic methods based on
Buchberger’s algorithm for complex polynomial equations with random coefficients. We also
discuss numerical experiments investigating the presence of entanglement in the PRODSAT
phase in the sense that product states do not span the whole zero energy ground state space.

1. Introduction

The quantum version of the k-satisfiability problem (k-QSAT) was introduced by Bravyi
[1] as a natural quantum analog of the classical k-SAT constraint satisfaction problem which
has been a focal point in classical computer science ever since it was recognized to be NP-
complete by Cook and Levin [2], [3]. In classical k-SAT one must determine the satisfiability
of a logical formula in conjunctive normal form. Boolean variables px1, . . . , xNq P t0, 1u

N must
simultaneously satisfy M constraints in the form of disjunctions of k literals, χm1 _¨ ¨ ¨_χmk

where pm1,m2, . . . ,mkq P t1, . . . , Nu
k and χmi

P txmi
,␣xmi

u. We label the constraints as
m P t1, . . . ,Mu and by a slight abuse of notation identify m ” pm1, . . . ,mkq. A k-SAT
formula is a conjunction of disjunctions F “ ^M

m“1p_
k
i“1χmi

q. The satisfiability of F may be
formulated as the study of the set of zero energy assignments for the classical Hamiltonian
function

hF px1, . . . , xNq “

M
ÿ

m“1

p1´ 1pχm1 _ ¨ ¨ ¨ _ χmk
qq(1)

In the quantum analog k-QSAT, the Boolean variables are replaced by N quantum bits (or
qubits) labelled t1, . . . , Nu in a collective pure state vector |Ψy belonging to the Hilbert space
C2

1 b ¨ ¨ ¨ b C2
N .1 The state of the qubits must simultaneously satisfy a set of M quantum

constraints labelled by m P t1, . . . ,Mu. Each constraint ensures that |Ψy is in the kernel of
the projector

Πm “ |Φ
m
yxΦm

| b IN´k(2)

where |Φmy P C2
m1
b ¨ ¨ ¨ b C2

mk
is a pure state vector of the Hilbert space of the k qubits

pm1, . . . ,mkq involved in the constraint m. The matrix IN´k is the 2N´k ˆ 2N´k identity
matrix acting trivially on the remaining N ´ k qubits not involved in the constraint m. A

joonhyung.lee, nicolas.macris, jean.ravelomanana, perrine.vantalon@epfl.ch.
1We note that in this quantum model the degrees of freedom are distinguishable and hence labelled.
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k-QSAT “formula” F is defined by the collection of projectors tΠm,m ” pm1, . . . ,mkqu. In
k-QSAT, the Hamiltonian is given by the 2N ˆ 2N matrix

HF “

M
ÿ

m“1

Πm.(3)

We say that F is satisfiable if the Hamiltonian has zero energy eigenstates, in other words if
kerpHF q (also called kernel or ground state space) contains a non-trivial vector.

This Hamiltonian represents a natural quantum generalization of the classical cost function
(1). First note that each classical disjunction excludes one among 2k assignments of its k
Boolean variables. Analogously each projector (2) excludes one direction in the 2k dimen-
sional Hilbert space of k qubits. Furthermore, it is not difficult to see that when |Φmy’s are
tensor products of computational basis vectors of C2, the matrix Hamiltonian (3) reduces
to a diagonal matrix (in the computational basis) with diagonal given by values of (1) for
all possible 2N assignments. Of course this is not so anymore when |Φmy is an arbitrary
state of C2

m1
b ¨ ¨ ¨ b C2

mk
, be it a tensor product or entangled state. Finally it is well known

that k-SAT is NP-complete for k ě 3. The analogous statement for k-QSAT is that it is
QMA-complete for k ě 3 (see [1], [4] for a discussion).

In this paper we look at the average case analysis of k-QSAT. In this formulation the
Hamiltonian is taken at random from a set of instances and the problem is to determine the
typical behavior of the kernel space. This is perfectly analogous to the random k-SAT problem
which studies the typical behavior of the space of zero cost assignments of a random formula.
To formulate the problem more precisely we must define an ensemble of random Hamiltonians
(or formulas). This is best done in the language of random factor graphs and is beneficial
because it turns out that important typical properties are determined by typical geometric
properties of these factor graphs. A factor graph is a bipartite graph with labelled “variable
nodes” t1, . . . , Nu(associated to qubits or Boolean variables) and labelled “constraint nodes”
t1, . . . ,Mu (associated to projectors or disjunctions). For each constraint node m we pick
a k-tuple of variable nodes pm1, . . . ,mkq uniformly at random among all

`

N
k

˘

possible ones,

and draw edges pm,m1q, . . . , pm,mkq. This ensemble of random graphs is denoted Gk
N,M .

There is a further level of randomness. In the classical problem once a graph from Gk
N,M

is chosen, the variables in each disjunction are negated/non-negated with probability one-
half (this information is usually encoded in the graph as a dashed/undashed edge). In the
quantum problem, once a graph is choosen from Gk

N,M , one samples the state |Φmy uniformly
at random in the (complex) Hilbert space of k qubits (this time this information is not
encoded in the graph structure). In practice |Φmy is sampled by generating a 2k-dimensional
complex Gaussian vector with i.i.d CN p0, 1q components and then is normalized to make it
a unit norm.2

The parameter α “M{N is called the constraint density of the ensemble. There is a large
literature on the phase diagram of random k-SAT in the thermodynamic limit N,M Ñ `8

with M{N Ñ α fixed. Structural and algorithmic phase transitions, as well as their interplay,
are largely determined, although many questions remain unanswered (we refer to [5]–[7] for
more information). For random k-QSAT the current state of knowledge is more rudimentary
and is summarized in figure 1.

2CN p0, 1q means that real and imaginary parts are independent and distributed as N p0, 1{2q.
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Figure 1. Phase diagram of QSAT from [8]. In the red region the problem is
UNSAT and it is SAT in the green and blue regions. Furthermore it is PRODSAT
in the green region and ENTSAT in the blue region (no satisfying product states
but satisfying entangled states). The only line which is known to be exact is the one
delimiting the green region: we have αdcpk “ 3q « 0.92 and for k ě 4 this threshold
monotonically approaches 1 from below. The two lines delimiting the red and blue
regions give respectively upper and lower bounds on the SAT-UNSAT threshold.
The proof techniques of these bounds are adpated from corresponding proofs in the
classical problem.

The quantum phase diagram is richer than its classical counterpart already at the level of
structural phase transitions, and almost nothing is known about algorithmic phase transi-
tions. One may distinguish between PRODSAT, ENTSAT, and UNSAT phases. The UNSAT
phase is simply the one where no zero energy eigenstates exist with high probability (w.h.p.).
The SAT phase on the contrary is the one where zero energy eigenstates exist w.h.p. It can
be decomposed into a PRODSAT phase for which there exist zero energy eigenstates which
are fully factorized into a tensor product of single qubit states, and an ENTSAT phase where
the zero energy eigenstates cannot be fully factorized into single qubit states (of course one
could also envision more refined decompositions of the ENTSAT phase corresponding to par-
tial “non-single-qubit” factorizations). It is rigorously known that for k “ 2 the ENTSAT
phase does not exist and that a sharp PRODSAT-UNSAT phase transition takes place with
threshold αc “ 1{2 [9]. This is really a geometric transition, closely tied to the sudden prolif-
eration of closed loops in the random factor graphs at this critical density. For k ě 3 we only
have loose upper and lower bounds for the various thresholds. In particular the existence of
an ENTSAT phase is only proven for k ě 7 and what happens for 3 ď k ď 6 is unclear.

In a series of very interesting papers [9], [10], it is shown that PRODSAT states exist if and
only if the factor graph has a constraint-covering dimer configuration. A constraint-covering
dimer configuration is a set of edges where all constraints are covered and no two edges meet
at a constraint or at a variable node (but some variable nodes may not be covered). This
is again a purely geometrical characterization of the PRODSAT phase. Using previous work

3



on random graph theory [11], [12], this characterization allows to identify the maximum
constraint density for which PRODSAT states exist w.h.p., as αPRODSAT “ αdcpkq, where
αdcpkq is the threshold corresponding to the existence of dimer coverings (in thermodynamic
limit). However there remains the algorithmic question: can one efficiently find PRODSAT
states and with what complexity? This question has been partly answered by looking at a
purely geometric leaf-removal based algorithm which determines PRODSAT states in linear
time OpNq for α ă αlrpkq ă αdcpkq. It has remained unanswered for αlrpkq ă α ă αdcpkq.

In this paper we concentrate on the PRODSAT phase and make the above picture fully
rigorous.

Theorem 1.1 (Main Theorem). Take a factor graph from the ensemble Gk
N,M . Given this

graph take a set of M projectors tΠm,m “ pm1, . . . ,mkqu uniformly at random. This defines
a random formula or equivalently a Hamiltonian HF in (3). Let PF be the probability with
respect to this ensemble of random Hamiltonians. We have

lim
N,MÑ`8

PF

`

D |Ψy “ |φ1y b ¨ ¨ ¨ b |φNy P pC2
q

bN : HF |Ψy “ 0
˘

“

#

1, α ă αdcpkq

0, α ą αdcpkq

where the limit is such that M{N Ñ α fixed.

Remark 1.2. It is known [11], [12] that the dimer covering threshold of the factor graph
ensemble satisfies limN,MÑ`8 PGk

N,M

`

D a dimer covering
˘

“ 1 for α ă αdcpkq and 0 for α ą

αdcpkq.

The proof draws on ideas already present in [9]. In section 2 we first reformulate the
problem on the 2-core of the factor graph and explain the main strategy of proof. For the
direct statement we combine two arguments: one is purely analytical (section 3) based on
the implicit function theorem for functions of multiple complex variables, and the second is
purely algebraic (section 4) based on Buchbergers’s algorithm for solving algebraic polynomial
equations. In the process we remark that the Buchberger algorithm can be used to provide
w.h.p PRODSAT solutions for αlrpkq ă α ă αdcpkq. As we will see randomness plays an
important role in the analysis. The generic complexity of the algorithm is doubly exponential
and it is an open problem to determine what is the real algorithmic complexity of finding
these solutions in this range of densities. The proof of the converse statement for α ą αdcpkq
is presented in section 5.

The nature of entanglement in this problem (beyond its mere existence for k ě 7) is
a largely open question. We make a few numerical observations for formulas with N “ M
finite and such that dimer coverings exist. These formulas have a finite number of PRODSAT
states w.h.p., however our observations suggest that for a fraction of the formulas these states
do not span the whole kernel space of the Hamiltonian. Therefore there exists a subspace of
the kernel space which only contains entangled states. These observations are presented in
section 6.

For the remaining of this paper we say that an event E happens w.h.p. if limN,MÑ`8 P
`

Eq “
1 where the limit is such that M{N Ñ α and P is with respect to an ensemble that depends
on the context. For example in Theorem 1.1 the ensemble corresponds to the random Hamil-
tonians (random factor graphs and projectors) whereas in remark 1.2 it simply corresponds
to random factor graphs.

4



2. Strategy of analysis and main results

We proceed with a two-stage process. First, given a graph from Gk
N,M we simplify the

constraint satisfaction problem to a problem where the numbers of constraints (or projectors)
and qubits are equal. Second, this residual constraint satisfaction problem is reformulated
as the study of solutions of a set of polynomial equations in complex variables.

2.1. First step: α ă αlrpkq. This step is accomplished using the leaf removal process,
a Markov process in the space of factor graphs. Given an initial graph G P Gk

N,M one
iteratively removes degree-one variable nodes together with its attached constraint node, until
the residual graph has minimal variable-node degree at least two (the process then stops).
This residual graph is called the core (equivalently, 2-core or hypercore). The theoretical
analysis of this Markov process is well known and reviewed in Appendix A. Lemma A.1
defines a threshold αlrpkq such that for α ă αlrpkq the core is empty w.h.p. and for α ą αlrpkq
the core is not empty w.h.p.. Let us denote by G1 the residual graph and assume it contains
M 1 ďM constraint nodes and N 1 ď N variable nodes.

Given any product state |Ψ 1y P pC2qbN 1

for the qubits of the core (assuming it is non-empty),
we construct a state

|Ψy “ |Ψ 1
y b

ź

iPGzG1

|φiy(4)

where |φiy are single qubit states iteratively constructed thanks to Bravyi’s transfer matrix by
reversing the leaf removal steps. If m is a previously deleted constraint node along with the
deleted variable node mi where pm1, . . . ,mi´1,mi`1, . . . ,mkq are the remaining neighboring
variable nodes, the transfer matrix is a linear map T : pC2qbk´1 Ñ C2 such that

|χmi
y :“ T

`

|χm1y b ¨ ¨ ¨ b |χmi´1
y b |χmi`1

y b ¨ ¨ ¨ b |χmk
y
˘

(5)

and the constraint (2) is satisfied,

xΦm
|χm1y b ¨ ¨ ¨ b |χmk

y “ 0(6)

for any single qubit states |χm1y, . . . , |χmi´1
y, |χmi`1

y, . . . , |χmk
y. That such a linear map

T exists and can be constructed explicitly is reviewed in Appendix A. Because we take a
product state for |Ψ 1y we can apply this transfer matrix to the qubits involved in the last
constraint removed and get the qubit state of the last variable node removed. We can then
iterate this process following the reversed steps of leaf removal until all qubits are assigned a
state thereby obtaining |Ψy.

When the core G1 is empty, this construction yields a PRODSAT zero energy state simply
by starting with an arbitrary tensor product of the k´1 qubits connected to the last removed
leaf with its attached constraint. Thus we have the intermediate result

Lemma 2.1. For α ă αlrpkq there exist PRODSAT zero energy states w.h.p.. Furthermore
their construction has time-complexity bounded by OpNq.

2.2. Second step: αlrpkq ă α ă αdcpkq. From now on we assume the core G1 is non-empty.
In order to prove Theorem 1.1 we must solve a constraint satisfaction problem on this residual
graph. More precisely we must show that there exists |Ψ 1y of product form such that for all
m P G1

|Φm
yxΦm

| b IN 1´k|Ψ
1
y “ 0(7)

5



Let us relabel the variable and constraint nodes of G1 as t1, . . . , N 1u “ rN 1s and t1, . . . ,M 1u “

rM 1s. Without loss of generality we can use the parametrizations

|Ψ 1
y “

|0y ` z1|1y

1` |z1|2
b ¨ ¨ ¨ b

|0y ` zN 1 |1y

1` |zN 1 |2
(8)

and 3

|Φm
y “

ÿ

pi1,...,ikqPt0,1uk

ϕm
i1...ik

|i1ym1 b ¨ ¨ ¨ b |ikymk
(9)

where z1, . . . , zN 1 and ϕm
i1...ik

are complex numbers and
ř

pi1,...,ikqPt0,1uk
|ϕm

i1...ik
|2 “ 1. It is not

difficult to see that the constraints (7) then become
ÿ

pi1,...,ikqPt0,1uk

ϕm
i1...ik

zi1m1
. . . zikmk

“ 0, m P rM 1
s(10)

Note that the normalization constraint for the coefficients ϕm
i1...ik

can be dropped as we can
always multiply each equation by an arbitrary real positive number. Hence the problem is
reduced to solving a set of polynomial equations in the ring Crz1, . . . , zN 1s.

An important idea introduced in [10] is that the existence of solutions for the system (10)
is controlled by the presence of constraint-covering dimer configurations of the factor graph
(as defined in the introduction).

Proposition 2.2. Let G1 have a constraint-covering dimer configuration. Then the system
(10) has a solution for almost all choices of complex coefficients tϕm

i1...ik
,m P rM 1s, pi1 . . . ikq P

t0, 1uku.

In [10] the starting point is the observation that Proposition 2.2 is easy to check if the pro-
jector |ΦmyxΦm| “ |φm1yxφm1 |b ¨ ¨ ¨b |φmkyxφmk | has product form, i.e., ϕm

i1...ik
“ φm1

i1
. . . φmk

ik

because it suffices then to solve φm˚

0 ` zm˚
φm˚

1 “ 0, where m˚ is the unique variable node
belonging to the dimer that covers clause m. This equation has a solution for almost all
φm˚

0 , φm˚

1 P C. Then this result is extended to non-product states through a perturbative ar-
gument combined with abstract algebraic geometry theorems. The proof is non-constructive.

Here we will proceed differently with a constructive proof. We first note that when tϕm
0...0 “

0,m P rM 1su the polynomial equations have the trivial solution z1 “ ¨ ¨ ¨ “ zN 1 “ 0. In section
3 we show through complex analysis arguments that one can construct (with probability one)
a unique solution for tϕm

0...0 ‰ 0,m P rM 1su P U a small enough open neighborhood (depending
on the instance) of the origin in CM 1

. It is also possible to give an explicit series expansion
formula for the solution. Then, in section 4 we extend the existence of this solution (again
with probability one) through an analysis of Buchberger’s algorithm for solving polynomial
equations in the ring Crz1, . . . , zN 1s.

In section 5 we show a converse statement.

Proposition 2.3. Let G1 have no clause-covering dimer configuration. Then for almost all
choices of complex coefficients tϕm

i1...ik
,m P rM 1s, pi1 . . . ikq P t0, 1u

ku the system of equations
(10) has no solution.

Putting together Propositions 2.2 and 2.3 we obtain Theorem 1.1.

3Here |i1ym1 “ |0ym1 , |1ym1 are the computational basis states of the space C2
m1

of qubit m1, and similarly

for the other qubits m2, . . . ,mk involved in m.
6



Proof of Theorem 1.1. Take an instance of a factor graph G P Gk
N,M . Note that the instance

has a dimer covering if and only if the residual core G1 also has a dimer covering. This is
in fact so at each intermediate step of leaf removal, because constraint nodes that are not
removed remain degree k, and thus their dimer is left untouched. As a result for α ă αdc

w.h.p. the core G1 has a dimer covering, and Proposition 2.2 implies that w.h.p. there exist
tensor product states 8 with zero energy. Conversely for α ą αdc the graph G1 w.h.p. has no
dimer covering and Proposition 2.3 implies that w.h.p. there are no such product states of
zero energy. □

3. Analytical perturbative argument

In this section we prove that when all the constant terms tϕm
0,...,0,m P rM 1su are small

enough, the system of equations (10) (restricted to the core G1) has a solution. Recall that
when ϕm

0,...,0 “ 0 for all m P rM 1s this is obvious as z “ pz1, . . . , zN 1q “ p0, . . . , 0q is a trivial
solution. We will show that this trivial solution can be extended to a solution when not all
tϕm

0,...,0,m P rM 1su are 0 but small enough:

Proposition 3.1. Suppose that G1 admits a clause-covering dimer configuration. Then there
exists ϵ ą 0 such that if

ˇ

ˇϕm
0,...,0

ˇ

ˇ ă ϵ for all m P rM 1s then there exists a solution pz˚
1 , . . . , z

˚
N 1q

to the system (10) and a corresponding tensor product state |Ψ 1y satisfying (7). Note that ϵ
depends on G1 and tϕm

i1...ik
,m P rM 1s, pii, . . . , ikq P t0, 1u

kzp0, . . . , 0qu.

Before proving Proposition 3.1 we make a reduction of the system (10) to a square system.
For z “ pz1, . . . , zN 1q P CN 1

and m P rM 1s let

fm
pzq “

ÿ

i1...ikPt0,1uk

ϕm
0...0“0

ϕm
i1...ik

zi1m1
. . . zikmk

,(11)

These functions are simply the polynomials in (10) without the constant terms and p0, . . . , 0q
is a common zero. The existence of the dimer covering (assumed in Proposition 3.1) guar-
antees that there is one variable node m‹ in the neighborhood of constraint m that matches
it (i.e, pm‹,mq is a dimer). We reduce the system (11) of M 1 equations and N 1 variables to
a square system of M 1 equations and M 1 variables by assigning z “ 0 for all the variable
nodes that are not in the dimer covering. The polynomials of the reduced system will be
denoted as fm

sqr. Note that fm
sqr might contain fewer than k variables for some m (this happens

when m has neighboring variables not covered by the chosen dimer covering). The following
relabelling of complex variables turns out to be useful: given the labelling t1, . . . ,M 1u of
constraint nodes we relabel the complex variables associated to nodes in the dimer covering
by

␣

z1‹
, . . . , zM 1

‹

(

. Finally we define the multivariate complex map

Fsqr : CM 1

Ñ CM 1

(12)

z “ pz1‹
, . . . , zM 1

‹
q ÞÑ pf 1

sqrpzq, . . . , f
M 1

sqr pzqq(13)

where z “ pz1‹
, . . . , zM 1

‹
q is the set composed only of variables in the dimer covering. The

Jacobian matrix of Fsqr is the M 1 ˆM 1 matrix

JFsqr :“

ˆ

Bfm
sqr

Bzj‹

˙

mPrM 1s,jPrM 1s

.(14)

7



A crucial remark is the following: with probability one ϕm
i1...ik

‰ 0, thus for any m P rM 1s

there are monomials in fm
sqr containing the variable zm‹

; in particular it is guaranteed that a
linear monomial of the form ϕm

0...010...0zm‹
is always present. Thus, with probability one, all

the diagonal elements of the Jacobian
Bfm

sqr

Bzm‹
are polynomials with a constant term ϕm

0...010...0

and in particular,

Bfm
sqr

Bzm‹

ˇ

ˇ

ˇ

ˇ

ˇ

z“0

“ ϕm
0...010...0 ‰ 0.(15)

Lemma 3.2. G1 has a dimer covering if and only if JFsqrp0q is a full rank matrix with
det JFsqrp0q ‰ 0.

Proof. Consider the Jacobian matrix at z “ 0. A row m P rM 1s always contains at most
k non-vanishing elements among ϕm

10...0, ϕ
m
010...0, . . . , ϕ

m
0...01 corresponding to the neighboring

nodes belonging to some dimer covering.
We first prove the direct statement. Suppose G1 has a dimer covering. Then as remarked

above, with probability one each row contains at least one non-vanishing element and espe-
cially one on the main diagonal. We run Gaussian elimination on JFsqr p0q with the elements
on the main diagonal as the pivot to obtain the matrix in row echelon form. At each step of
the algorithm we linearly combine rows, and the new terms we get on the diagonal can only
be polynomial functions of the ϕ’s. Since these polynomials are holomorphic multivariate
functions (of the ϕ’s) they have zero locus of measure zero [13]. Eventually we get an upper
triangular matrix with non-zero terms on the main diagonal. This proves that JFsqr p0q is full
row-rank, and since it is a square matrix det JFsqr p0q ‰ 0.

For the converse statement we must show that if JFsqr p0q is full row-rank, then we can
associate to each row m P rM 1s a column jm P rM 1s such that the matrix element pm, jmq
is non-zero and jm ‰ jm1 for m ‰ m1. The injective mapping m ÞÑ jm provides the dimer
covering. Assume that no such injective mapping exists. Then, as we go down the rows, at
a certain point, say for the sm-th row, we cannot come up with j

sm such that j
sm ‰ jm for

all m ă sm. This means all non-zero elements of the sm-th row belong among the previously
chosen columns tjm|m ă smu. Therefore the sm-th row is a vector in the span of the previous
rows tm ă smu. This contradicts the full row-rank assumption. □

In the rest of this section we use results from multivariate complex analysis reviewed in
Appendix B.

Lemma 3.3. Suppose det JFsqrp0q ‰ 0. Then there exist ϵ ą 0 such that 0 is the only zero
of the map Fsqr in the open ball Bp0, ϵq. In other words 0 is an isolated zero of the map Fsqr.

Proof. By construction Fsqrp0q “ 0. Since each polynomial fm
sqr is an holomorphic multivari-

ate function we can use Theorem B.6 to directly deduce the existence of Bp0, ϵq Ă CM 1

such
that Fsqr is biholomorphic in Bp0, ϵq. In particular Fsqr|Bp0,ϵq is a bijection from Bp0, ϵq to
FsqrpBp0, ϵqq so 0 is the only solution of Fsqrpzq “ 0 in Bp0, ϵq. This means 0 is an isolated
zero. □

We now turn to the proof of the main result of this section:

Proof of Proposition 3.1. Since the graph has a dimer covering, Lemma 3.2 implies that
det JFsqrp0q is nonzero. So by Lemma 3.3, 0 is an isolated zero in the open ball Bp0, ϵq.

8



Choose 0 ă ϵ1 ă ϵ so that 0 is the only zero of Fsqr in the closure of Bp0, ϵ1q. Proposition B.3
then states that we can find φ ą 0 small enough such that the system of equations

fm
sqrpzq ` ϕm

0...0 “ 0, m P rM 1
s(16)

has simple zeros for almost all values of the constant terms in the set t|ϕm
0...0| ă φ,m P rM 1su.

Moreover because 0 itself is a simple zero of the Fsqr (i.e., it is isolated and det JFsqrp0q ‰ 0)
we deduce from Proposition B.5 that the solution of equations (16) is unique for small enough
constant terms. This implies the existence of a solution pz˚

1 , . . . , z
˚
N 1q for the full system (10)

for small enough constant terms. The solution we have constructed here consists of z˚
j “ 0 if

j does not belongs to the dimer covering (recall the reduction step above) and z˚
j the unique

solution of (16) if j belongs to the dimer covering. We note that while this solution for (16)
is unique (for small enough constant terms) it is not unique for (10). Indeed we could have
done a similar construction by setting the zj variables of nodes j not in the dimer covering
to non-zero values. □

4. Algebraic non-perturbative argument

In the previous section, we proved Lemma 3.1 stating that if there exists a dimer covering
of the interaction graph, then instances with small constant terms have a PRODSAT solution
w.h.p.. To extend this result to all possible instances, we will use Buchberger algorithm and
Gröbner basis. These are powerful tools to solve systems of complex multivariate polynomial
equations and hence also give a method to directly find the zeros of the system (10) of
constraints. For the description of Buchberger algorithm, we refer to Appendix C and [14].

Definition 4.1. A polynomial is called generic if it is a polynomial of the form Eq. 10
such that the coefficients of each monomial are taken uniformly at random on the unit sphere

pC2q
bk
.

In Appendix C, we review the following corollary of Hilbert’s Nullstellensatz.

Corollary 4.2. A set of polynomials in an algebraically closed field has no common zeros if
and only if the reduced Gröbner basis is t1u.

Proposition 4.3. Let F “ pf1, f2, . . . , fmq be a set of generic polynomial equations in
KrX0, . . . , Xns that has a common solution, then for any given a P K, Fa :“ pf1`a, f2, . . . , fmq
also have a common solution with probability 1 with respect to the distribution of the con-
stituent coefficients of F .

Proof. If F “ pf1, . . . , fmq have a common zero then by Corollary 4.2, there exists a Gröbner
basis not reduced to 1 for F . We want to show that Fa “ pf1 ` a, f2, . . . , fmq will also have
a Gröbner basis that is not reduced to 1, and therefore admitting a common solution. This
will be achieved by convincing ourselves that the Buchberger’s algorithm applied on F and
Fa produce the same steps in the sense that the monomials involved in each step for F and
for Fa are identical with probability 1. Let us analyze each step of Buchberger’s algorithm.

Computation of the S-polynomial. When we compute Si,j in F and Sa
i,j in Fa (see step 6

in Algorithm 2), the two lists of monomials in Si,j and Sa
i,j will be the same with probability

1. Indeed, it could happen that the coefficients of the monomials in Sa
i,j vanish but this puts

algebraic constraint on the constituent coefficients of F . With respect to the distribution of
the constituent coefficients, the constraint is satisfied with probability 0.

9



Reduction through multivariate division algorithm 2. We should also check that in the steps
6 to 8 of Algorithm 2, the monomials produced starting from F and those produced starting
from Fa will be the same with probability 1. The only way that at some steps the monomials
differ is that the coefficients of the monomials produced by Fa vanish. As previously, this
puts an algebraic constraint on the constituent coefficients of F that would be satisfied with
vanishing probability.

We note that the number of steps in the algorithm is finite and therefore the number of
algebraic constraints that stem from the application of Buchberger’s algorithm to Fa is finite.
Thus such algebraic constraints make up a set of measure 0 of coefficients for F . □

To illustrate this proof, we detail the steps of Buchberger’s algorithm using an example of
2-QSAT on 3 variables.

f1 “ a0 ` a1z1 ` a2z2 ` a12z1z2

f2 “ b0 ` b2z2 ` b3z3 ` b23z2z3

f3 “ c0 ` c1z1 ` b3z3 ` c13z1z3.

Example 4.4 (Computation of the S-polynomial).

LCMpf1, f2q “ a12b23z1z2z3

Spf1, f2q “ b23z3 ¨ f1 ´ a12z1 ¨ f2

“ ´a12b0z1 ` a0b23z3 ´ a12b2z1z2 ` pa1b23 ´ a12b3qz1z3 ` a2b23z2z3

LCMpf1 ` a, f2q “ a12b23z1z2z3

Spf1 ` a, f2q “ b23z3 ¨ pf1 ` aq ´ a12z1 ¨ f2

“ ´a12b0z1 ` pa0 ` aqb23z3 ´ a12b2z1z2 ` pa1b23 ´ a12b3qz1z3 ` a2b23z2z3

In this example, we must avoid the event a ` a0 “ 0 which would delete the monomial z3.
This event has probability 0.

Example 4.5 (Reduction through multivariate division algorithm). Spf1, f2q (resp. Spf1 `
a, f2q) is successively reducible by f2, f3 and f1 (resp. f2, f3 and f1 ` a). Set A “ pa1b23 ´
a12b3q{c13. We have

p1 “ Spf1, f2q ´ a2 ¨ f2

“ ´a2b0 ´ a12b0z1 ´ a2b2z2 ` pa0b23 ´ a2b3qz3 ´ a12b2z1z2 ` pa1b23 ´ a12b3qz1z3

p2 “ Spf1, f2q ´ a2 ¨ f2 ´
a1b23 ´ a12b3

c13
¨ f3 “ Spf1, f2q ´ a2 ¨ f2 ´ A ¨ f3

“ ´pa2b0 ` c0Aq ´ pa12b0 ` c1Aqz1 ´ a2b2z2 ` pa0b23 ´ a2b3 ´ b3Aqz3 ´ a12b2z1z2

p3 “ Spf1, f2q ´ a2 ¨ f2 ´ A ¨ f3 ` b2 ¨ f1

“ pa0b2 ´ a2b0 ´ c0Aq ` pa1b2 ´ a12b0 ´ c1Aqz1 ` pa0b23 ´ a2b3 ´ b3Aqz3

10



pa1 “ Spf1 ` a, f2q ´ a2 ¨ f2

“ ´a2b0 ´ a12b0z1 ´ a2b2z2 ` ppa0 ` aqb23 ´ a2b3qz3 ´ a12b2z1z2 ` pa1b23 ´ a12b3qz1z3

pα2 “ Spf1 ` a, f2q ´ a2 ¨ f2 ´ A ¨ f3

“ ´pa2b0 ` c0Aq ´ pa12b0 ` c1Aqz1 ´ a2b2z2 ` ppa0 ` aqb23 ´ a2b3 ´ b3Aqz3 ´ a12b2z1z2

pa3 “ Spf1 ` a, f2q ´ a2 ¨ f2 ´ A ¨ f3 ` b2 ¨ pf1 ` aq

“ ppa0 ` aqb2 ´ a2b0 ´ c0Aq ` pa1b2 ´ a12b0 ´ c1Aqz1 ` ppa0 ` aqb23 ´ a2b3 ´ b3Aqz3

The algebraic constraints in this example are a2b3 ´ pa0 ` aqb23 “ 0 at step 1, pa2b3 ´ b3Aq ´
pa0` aqb23 “ 0 at step 2 and 3 and pa2b0` c0Aq ´ pa0` aqb2 “ 0 at step 3. These occur with
probability 0.

The proof of Theorem 1.1 follows then directly from Propositions 3.1, 4.3. Thus we have
proved that if there exists a dimer covering then there exists a PRODSAT solution w.h.p..

5. Converse Statement

We prove Proposition 2.3. The proof relies on Hall’s marriage theorem [15] stated below
and on the Macaulay resultant of a system of polynomials [16]. For a system of homogeneous
polynomial equations of the same number of equations and variables with coefficients in an
algebraically closed field (here Cq, the Macaulay resultant is a polynomial of the coefficients
which vanishes if and only if the system of equations has a common non-zero solution. For
more details on the resultant and its property we refer to [17, Chap 3. §2].

Theorem 5.1 (Hall’s marriage theorem). For a bipartite graph pV,Eq “ pA Y B,Eq, the
following conditions are equivalent.

‚ There is a perfect matching of A into B.
‚ For each S Ď A, the inequality |S| ď |NpSq| holds where NpSq denotes the neighboring
nodes of S in B.

Remark 5.2. A perfect matching ‘of A into B’ is a dimer configuration which covers all
nodes in A (but not necessarily all nodes of B) such that no two edges have common nodes.

Proof of Proposition 2.3. We apply Theorem 5.1 to the factor graph G1 with A “ rM 1s the
set of constraint nodes and B “ rN 1s the set of variable nodes. Thus there exists a constraint-
covering dimer configuration if and only if for any subset S Ď rM 1s the number of variables
appearing in those constraints satisfies |S| ď |NpSq|. Taking the contrapositive, if G1 has no
constraint-covering dimer configuration, there must exist a subset S Ă rM 1s with |NpSq| ă
|S|. One can find a subset S 1 Ď S with |S 1| “ |NpSq| ` 1 constraints which contains all the
variables of NpSq. This set S 1 corresponds to a system of |NpSq|`1 polynomial equations of
the form 10 with |NpSq| variables. Now we show that this overdetermined system of equations
does not admit a solution which implies that the full system cannot admit a solution.

Take the polynomials corresponding to S 1, with variables relabeled as z1, . . . , z|NpSq|, and
make them homogeneous by introducing an additional variable z0, as follows

zk0
ÿ

pi1,...,ikqPt0,1uk

ϕm
i1...ik

ˆ

zm1

z0

˙i1

. . .

ˆ

zmk

z0

˙ik

, m P S 1(17)

Suppose now that the system of original equations has a common solution pz˚
1 , . . . , z

˚
|NpSq|

q.

Then the system of homogeneous equations also has a common solution pz0 “ 1, z˚
1 , . . . , z

˚
|NpSq|

q

11



and this solution is not the zero solution (since z0 “ 1). Therefore the Macaulay resultant
of the homogeneous system must vanish. However this resultant itself is a polynomial in
the variables tϕm

m1,...,mk
,m P S 1u and is an holomorphic function. The zero locus of an holo-

morphic function has measure 0 [13] and therefore the Macaulay resultant does not vanish
with probability 1. Hence with probability 1 the system of equations cannot have a common
solution. □

6. Simulations

In this section, we investigate two issues in order to better understand the nature of the
PRODSAT phase and its possible transition towards the ENTSAT phase. For k ě 8 it is
established that the ENTSAT phase exists but this is still open for lower k. The discussion
in this section applies to any k but we run simulations for k “ 3, as they are too costly in
practice for higher values.

6.1. Dimer coverings and dimension of solution space. Theorem 1.1 establishes a
precise connection between the presence of a dimer covering and the existence of a PRODSAT
solution. It is therefore of interest to further investigate if the structure of the interaction
graph can provide insights about the dimension of the solution space of HF .

We first gather a few observations about dim kerHF . There are two sources of randomness
in k-QSAT: the interaction graph and the choice of the projectors. For a fixed interaction
graph, let us consider the corresponding Hamiltonian where the coefficients of the projectors
are to be thought as indeterminates. The 2N ˆ 2N Hamiltonian matrix HF (3) is sparse
when it is represented in the computational basis since the projectors are k-local. Then
the determinants of the s ˆ s submatrices are polynomials in the indeterminates. Two
situations may arise. These polynomials may be equal to a trivially ‘null polynomial’ or to
a bona fide non-trivial polynomial. Let S be the largest s such that there exists an s ˆ s
submatrix MHF

whose determinant is a non-trivial polynomial. Over the choices of the
random projectors, the determinant of MHF

will vanish on a set of measure 0. Thus the rank
of HF will take the value S with probability 1. Therefore, for any fixed interaction graph, we
have dim kerHF “ 2N´S with probability 1 over the choices of the random projectors.4 Note
also that by the definition of S, for any given instance of the random projectors, rankHF ď S
necessarily so that 2N ´ S ď dim kerHF .

We would like to compute the ‘generic’ value of dim kerHF which is 2N´S. This is not easy
in general. Nevertheless, by the above remarks, it is certainly upper bounded by dim kerHF

for separable projectors (i.e., |Φmy is a product state). This is interesting because it is easier
to compute dim kerHF for separable projectors, at least for a few simple graphs. It is not
clear a priori when this upper bound is an equality because separable projectors form a set
of measure zero in the space of all projectors, but numerical simulations suggest that this is
so for the graphs reviewed. Figure 2 and Table 6.1 show a set of graphs and corresponding
recurrence relations for dim kerHF (denoted rm) and also for the number of dimer coverings
(denoted dm).

These intriguing relations unfortunately do not seem to clearly demonstrate a general link
between the number of dimer coverings and the dimension of the null space. Within this
limited set of graphs, for a given graph type, we observe either rm ě dm or rm ď dm for all
m. We have not found a universal relation between rm and dm beyond these inequalities.

4This is nothing other than the content of the geometrization theorem [9].
12



(c)

(e)(d)(a) (b)

Figure 2. Different patterns for k “ 3,m “ 4. (a) Sunflower (b) Loose chain
(c) Strong chain (d) Loose cycle (e) Strong cycle. For the strong chain and
the strong cycle, each qubit is connected to k clauses, except for the boundary
qubits. The sunflower is constructed around one central qubit.

Dimension of the kernel Dimer covering

Graph Initial values rm Initial values dm
Sunflower: r1 “ 7 3rm´1 ` 3m´1 d1 “ 3 2m´1

pm ` 2q

Loose chain* r1 “ 7, r2 “ 24 4rm´1 ´ 2rm´2 d1 “ 3, d2 “ 8 3dm´1 ´ dm´2

Loose cycle* r2 “ 12, r3 “ 40 4rm´1 ´ 2rm´2 d2 “ 3, d3 “ 18 3dm´1 ´ dm´2

Strong chain** r1 “ 7, r2 “ 12 rm´1 ` rm´2 ` 1 d1 “ 3, d2 “ 7, d3 “ 14 2dm´1 ´ dm´3 ` 1
Strong cycle** r4 “ 8, r5 “ 12 rm´1 ` rm´2 ´ 1 d4 “ 9, d5 “ 13, d6 “ 20 2dm´1 ´ dm´3

Table 1. Recurrence relations for patterns in Fig. 2 with k “ 3 and m the
number of clauses. Regarding the dimension of the null space: : the recurrence
relation is proved in [18] for all projectors (including non-separable ones); ˚ the
two recurrence relations are proved in Appendix D for separable projectors -
numerical simulations give the dimension of the null space equal to this upper
bound; ˚˚ are deduced by numerical simulation.

For example, we have rm “ dm ´ 1 in the case of the strong cycle and rm “ dm `m ` 3 in
the case of the strong chain.

For k “ 2, the only satisfiable graphs are the tree and the cycle (it is easy to check that two
intersecting cycles are not satisfiable [9]). In that case, it is known that there is a gap between
dim kerHF “ N ` 1 of a tree and dim kerHF “ 2 of a cycle. However this linear growth of
the gap does not seem to persist for k “ 3. Indeed, in solving the recurrence relations, we
observe that the dimension of the null space for all patterns grows exponentially in m (this
exponential growth just follows from the order 2 relations).

6.2. PRODSAT basis. We now wish to discuss how much entanglement is present in the
PRODSAT phase by comparing the dimension of the space generated by the product solutions
with that of the full solution space.

A k-QSAT instance is PRODSAT if it is satisfied by a product state. However, this does not
imply that all the solutions to the problem are product states. Indeed, the (normalized) sum
of two different product states is still a solution to the problem and is likely to be entangled.
For a given instance of random k-QSAT, the space generated by all the PRODSAT solutions
is referred to as the PRODSAT space. A basis of the full solution space, kerHF , is said to be
a fully PRODSAT basis, if all the vectors of the basis are product states. Let dim PRODSAT
denote the dimension of the PRODSAT space.

An interesting question is the following: Is it true that the kernel space admits a fully
PRODSAT basis? While we do not directly study an ENTSAT phase in this paper, this
question is clearly motivated by the harder issue of how a PRODSAT phase potentially
disappears in favor of an ENTSAT phase.
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Here we address this question in the following restricted setting of finite sizes with N “M
and k “ 3. Note that although M{N “ 1, we are dealing here with finite size, so there exist
instances with dimer coverings which are therefore PRODSAT. In particular, for M “ N “

5, 6 it is known that all graphs have dimer coverings.
Even in the restricted setting N “M and k “ 3, it is not easy to compare dim PRODSAT

and dim kerHF , and here this is done only for moderate sizes up to N “ M “ 11. In-
deed, to obtain dim kerHF we use exact diagonalization to count the zero eigenvalues of the
Hamiltonian which costs roughly Op23Nq operations. At the same time, the computation of
the PRODSAT solutions can be achieved through Buchberger’s algorithm which requires a
substantial runtime even for moderate sizes. Instead, we will rely on the BKK theorem (6.2)
to obtain only the number of PRODSAT solutions of Eq. 10. Before stating the theorem,
we need to recall the following:

Definition 6.1. The Newton polytope of a polynomial f “
ř

αPΓ cαx
α, Γ Ă Zn is the polytope

formed by the convex hull of the set of all α P Γ . For polytopes P1, . . . , Pn, the Mixed Volume
MVnpP1, . . . , Pnq is the coefficient of the monomial λ1 . . . λn in the polynomial fpλ1, . . . , λnq “

V olnpλ1P1 ` ¨ ¨ ¨ ` λnPnq where the ` represents the Minkowski sum. Figure 3 is an example
of these definitions. For a k-QSAT instance, we denote by MV the mixed volume of the
polytopes associated with the polynomials in Eq. 10.

λ 2
2

2λ1λ2

λ1λ2

λ1 λ2

λ 2
1λ1

2λ2

p0, 0q p1, 0q

p0, 1q p1, 1q

p0, 0q p1, 0q

p0, 2qA

BD

C

E

FG

P1 P2 λ1P1 ` λ2P2

Figure 3. Example of Mixed Volume Computation. The Newton polytope
P1 of the polynomial f1 “ Axy ` Bx ` Cy ` D is the square with vertices
tp1, 1q, p1, 0q, p0, 1q, p0, 0qu. For f2 “ Ey2`Fx`G, it is a triangle with vertices
tp0, 2q, p1, 0q, p0, 0qu. The decomposition of V olnpλ1P1`λ2P2q “ λ2

1`3λ1λ2`λ
2
2

is represented on the figure. Then the mixed volume is 3.

Theorem 6.2 (BKK theorem [19]). Let f1, . . . , fn be Laurent polynomials over C,

(18) fi “
ÿ

αPΓi

cαx
α cα P C, Γi Ă Zk

with finitely many common zeroes in pC˚qn. Let Pi be the Newton polytope of fi. Then
the number of common zeroes of the fi in pC˚qn is upper bounded by the mixed volume
MVnpP1, . . . , Pnq. For generic choices of coefficients in fi’s, the number of common solutions
equals MVnpP1, . . . , Pnq.
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dim Ker(H) > 0, MV = 0
dim Ker(H) = 0 
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Number of qubits

0.0

0.2

0.4

0.6

0.8

1.0
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dim Ker(H)  dim (PRODSAT space)
dim Ker(H) = dim (PRODSAT space)
dim Ker(H) >  dim (PRODSAT space)
ENTSAT
UNSAT

Figure 4. Comparison among dim kerHF , dim PRODSAT and MV . On the
left, dim kerHF and MV are compared. On the right, we reinterpret the
results in terms of PRODSAT space, UNSAT, and ENTSAT instances. For
blue and green, we use dim PRODSAT ď MV . Red and purple follow from
the definition of the phases. Orange results are joined with blue since we
always have dim kerHF ě dim PRODSAT. For N “ 5, 6 all the instances with
M “ N are computed (resp. 252 and 38500). For 7 ď N ď 10, 5000 instances
are sampled uniformly. For N “ 11, only 500 instances are used.

Remark 6.3. For a given set of equations of the form 10, the corresponding mixed volume
does not depend on the coefficients of projectors, but only on the monomials. Hence, for
k-QSAT, the mixed volume only depends on the interaction graph. Regarding the complexity
of computing the mixed volumes of polytopes, it is at least #P-hard [20].

Since the product states obtained by substituting the tziu solutions of Eq. 10 in Eq. 8
could be linearly dependent, the mixed volume only gives an upper bound on dim PRODSAT,

(19) dim PRODSAT ďMV.

When we can compute the tziu with Buchberger’s algorithm, we can check whether this
inequality is tight or not by looking for linear dependencies between PRODSAT solutions.
Three situations can arise:
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‚ MV ă dim kerHF . Then dim PRODSAT ď MV ă dim kerHF so the basis is not
fully PRODSAT.

‚ MV “ dim kerHF . Then dim PRODSAT ďMV “ dim kerHF so we cannot conclude
if the basis is fully PRODSAT or not.

‚ MV ą dim kerHF . Then dim PRODSAT ď dim kerHF ă MV so there must be
linear dependencies among PRODSAT solutions. We cannot conclude if the basis is
fully PRODSAT or not.

Figure 4 shows the percentage of instances for which these scenarios occur for M “ N
between 5 and 11. For increasing N , we observe an increase in the proportion of instances
with MV “ dim kerHF , which is somewhat unexpected (blue region). In particular, up
to N ď 9, we can check that dim PRODSAT “ dim kerHF so the basis is indeed fully
PRODSAT. Unfortunately, it is difficult to assess if this is still true for N “ 10, 11 but the
trend in the figure suggests this might be so. This finding may seem rather surprising as
one might have expected that the trend of the share of the green region increasing, observed
for N “ 5, 6, 7, would continue with fully PRODSAT basis becoming rarer. We also find
that for N ě 7, there appear a small fraction of instances for which dim kerHF ą 0 and
MV “ 0. This corresponds to the existence of ENTSAT instances. For N ě 9, there
also appear a fraction of UNSAT instances. These results may point towards a picture of
coexisting fractions of fully PRODSAT and non-fully PRODSAT instances in the large size
limit N,M Ñ `8, M{N “ 1 for a random ensemble of instances conditioned on the existence
of dimer coverings.

Appendix A. Leaf Removal Process (LR)

In this appendix, we give the proof of Lemma 2.1 for completeness. The proof is algorithmic
and based on two ingredients, namely a leaf removal process on factor graphs and Bravyi’s
transfer matrix.

We begin with a brief review of the leaf removal (LR) process on a factor graph. We first
delete isolated (degree-zero) vertices. Next, we choose a unary (degree-one) variable v1 at
random and delete it along with its sole neighbor a P Bv1. By doing so, we also remove the
other k´ 1 edges of a connected to v2, . . . , vk P Ba. Such removal possibly makes some or all
of v2, . . . , vk isolated or unary variables. Delete the isolated variables once again and then
start again at an unary variable to delete further on as described before. We iterate this
process until we cannot find any more isolated or unary variables. The process concludes
with a subgraph where each variable is connected to at least two checks while all the checks
are still connected to k variables. This (possibly empty) subgraph is referred to as the 2-core
of the hypergraph G (equivalently, core or hypercore).

The study of the 2-core was done in [21] where the existence of a threshold αlrpkq is proven,
below which the 2-core is empty and above which it is not empty w.h.p.. More precisely, let
Gk

N,p“α{Nk´1 be the underlying k-uniform hypergraph where each
`

n
k

˘

possible edges appear

with probability p, we have the following lemma:

Lemma A.1. [21, Theorem 1] Define

αlrpkq “ min
xą0

pk ´ 1q!x

p1´ e´xq
k´1

.

(1) For any α ă αlr, G
k
N,p“α{Nk´1 has no non-empty 2-core w.h.p.
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(2) For α ą αlr, Gk
N,p“α{Nk´1 has a 2-core of size βpαqN ` opNq w.h.p., with βpαq “

1´ e´x ´ e´xx, where x is the greatest solution of

α “
pk ´ 1q!x

p1´ e´xq
k´1

.

We note that the construction of Gk
N,p“α{Nk´1 is a bit different from Gk

N,M but the two

random hypergraph models are mutually contiguous meaning that any events that happen
w.h.p. in Gk

N,p“α{Nk´1 also happen w.h.p. in Gk
N,M and vice versa.

The second ingredient needed is Bravyi’s transfer matrix [1]. As described above, we
remove certain vertices and edges according to LR. An inherent reason for removing them is
that the removed constraints should be easily satisfied by the removed variables. We show
how to implement this idea here (see [1] for k “ 2).

Lemma A.2. [1, for k “ 2] For all projectors |ΦmyxΦm| and any selected variable node
mi involved in constraint m ” tm1, . . . ,mku, we can construct a transfer matrix T of size
2ˆ 2k´1 such for that given any product state |χm1y b ¨ ¨ ¨ b |χmi´1

y b |χmi`1
y ¨ ¨ ¨ b |χmk

y, the
constraint is satisfied

xΦm
|χm1y b ¨ ¨ ¨ b |χmk

y “ 0

for
|χmi

y9T |χm1y b ¨ ¨ ¨ b |χmi´1
y b |χmi`1

y b . . . |χmk
y

The proportionality sign indicates that the state still has to be normalized resulting in a non-
linear relation.

Proof. For the ease of notations, without loss of generality, let mk be the selected variable
node. For the construction of the transfer matrix it is convenient to select the variable mk

of constraint m. The input state now being |χm1y b ¨ ¨ ¨ b |χmk´1
y. Set |χmj

y “ αj|0y ` βj|1y.
In order to satisfy the constraint, we want

(20) xΦ| pα1|0y ` β1|1yq b . . .b pαk|0y ` βk|1yq “ 0.

We expand this relation over the computational basis states |i1, . . . , iky, ij P t0, 1u. Defining

γj :“

#

αj if ij “ 0

βj if ij “ 1

we can express (20) as follows
(21)

αk

»

–

ÿ

i1,...,ik´1Pt0,1u

γ1 ¨ ¨ ¨ γk´1xΦ|i1 ¨ ¨ ¨ ik´10y

fi

fl` βk

»

–

ÿ

i1,...,ik´1Pt0,1u

γ1 ¨ ¨ ¨ γk´1xΦ|i1 ¨ ¨ ¨ ik´11y

fi

fl “ 0.

Therefore αk and βk can be found from the linear operation

(22)

„

αk

βk

ȷ

9

„

xΦ|0 ¨ ¨ ¨ 01y ¨ ¨ ¨ xΦ|1 ¨ ¨ ¨ 11y
´xΦ|0 ¨ ¨ ¨ 00y ¨ ¨ ¨ ´xΦ|1 ¨ ¨ ¨ 10y

ȷˆ„

α1

β1

ȷ

b ¨ ¨ ¨ b

„

αk´1

βk´1

ȷ˙

,

and the resulting state can be normalized afterwards. The transfer matrix T has size 2ˆ2k´1

and is given by

(23) T “

„

xΦ|0 ¨ ¨ ¨ 01y ¨ ¨ ¨ xΦ|1 ¨ ¨ ¨ 11y
´xΦ|0 ¨ ¨ ¨ 00y ¨ ¨ ¨ ´xΦ|1 ¨ ¨ ¨ 10y

ȷ
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where the first (resp. second) row contains all 2k´1 ‘binary sequences’ of the form |i1, . . . , ik´1, 1y
(resp. |i1, . . . , ik´1, 0y). □

We are now ready to explain the Algorithm (given in Table 1) behind the proof of 2.1.
Let D be the set of pairs tv, avu of variables v of degree one removed in LR together with its
unique adjacent clause av. We order D chronologically, i.e., we let

D “ ttv1, av1u , tv2, av2u , . . . , tvL, avLuu

where vi is the i-th removed degree-one variables. For α ă αlrpkq, LR ends w.h.p. with an
empty 2-core and Algorithm 1 is a ‘reconstruction procedure’ which yields a product state
solution |Ψy. Without loss of generality, we can assume that the initial graph G is connected,
i.e., G has no isolated variable nodes (as we can always assign an arbitrary qubit state to
isolated variable nodes if they are present). In a nutshell, starting from the last deleted
check node, Algorithm 1 recursively assigns values to the set of variables connected to a
clause using the transfer matrix T of Lemma A.2. We use the notation, T av for the matrix
T corresponding to the projector |ΦavyxΦav | associated to clause av. We note that when a
variable node w connected to av is already revealed in step 3 of the algorithm, we only reveal
the edge connecting w and av.

Algorithm 1: Reconstruction Algorithm

Input: The ordered set D
Output: A product state |Ψy “ |χ1y b ¨ ¨ ¨ b |χNy P CbN

1 begin
2 for i=N to 1 do
3 Reveal all k variables connected to avi ;
4 for each variable w ‰ vi do
5 if w is not assigned any qubit then
6 Assign an arbitrary qubit |χwy to w ;

7 else
8 Set |χwy to be the qubit corresponding to w ;

9 Set |χviy “ T avi ¨
śb

w‰vi
|χwy;

Proof of Lemma 2.1. By Lemma A.1, for α ă αlrpkq the LR ends with an empty core w.h.p. so
the set D contains all of the constraints nodes. This ensures that the outputted product state
|Ψy of Algorithm 1 has the correct length N , i.e., every variable has been assigned a qubit.
Moreover, Lemma A.2 ensures that at each step of the algorithm, the projector |ΦmyxΦm|

is satisfied. While at the beginning of Algorithm 1 all the variables connected to the last
constraint node in D have not been assigned any value yet, as the algorithm runs we need to
make sure that the variable v connected to the check av has no qubits states attached to it
yet (otherwise we would almost certainly get a contradiction when using the transfer matrix).
This is indeed the case as shown in Claim A.3 below. Thus |Ψy is a valid PRODSAT solution
of the k-QSAT instance. Finally, as M “ αN and there are at most k variables that are not
assigned values for steps 3 to 8 of Algorithm 1, the complexity of Algorithm 1 is OpNq. □

Claim A.3. For tv, avu P D, the variable v is assigned a qubit only when the check av is
revealed.
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Proof. Suppose LR ends at a time T ě 0 and suppose in the reconstruction Algorithm 1, we
reveal av at some time 0 ď t ď T . Hence, during the LR, v has degree one at time T´t. Now,
assume that v would already be assigned a qubit state at time t. So, v must be connected to
another clause b which was already revealed before av (during reconstruction), say at a time
s ă t. Thus, b must have been removed in LR at time T ´ s ą T ´ t. Therefore, at time
T ´ t, v is connected to both av and b and has degree at least 2, a contradiction. □

Remark A.4. For α ě αlrpkq, LR ends with a non-empty core. As explained in the main text,
if there is a zero energy product state |Ψ 1y on the core, we can apply a reconstruction procedure
similar to Algorithm 1 to recover the full product state |Ψy. Steps 5 and 6 of Algorithm 1
must be adapted so that when w belongs to the core then |χwy is assigned the corresponding
factor in |Ψ 1y and the for loop in step 2 will run for a number L ă N steps as the set D does
not contains all the constraints. This process can be used for αlrpkq ď α ă αdcpkq.

Appendix B. Multivariate complex analysis results

To prove Proposition 3.1 we rely on results from complex analysis of multivariate functions.
Before stating these results we need to define isolated and simple zeros of mappings f : Cn Ñ

Cn.

Definition B.1. A vector a is an isolated zero if it is the only solution of fpzq “ 0 in some
small enough neighborhood of a.

For example the map f1pz1, z2q “ z21pz2 ´ 1q, f2pz1, z2q “ z22pz1 ´ 3q has two isolated zeros
pz1, z2q “ p0, 0q, pz1, z2q “ p3, 1q. On the other hand the mapping f1pz1, z2q “ z21 ` z22 ,
f2pz1, z2q “ z1 ` iz2 has a family of zeros pz1, z2q “ pµ, iµq for any µ P C, and none of these
are isolated.

Definition B.2. A zero a is simple if it is isolated and if Jacobian satisfies det Jf paq ‰ 0.

For the first example above one checks that det Jf pz1, z2q “ 4z1z2pz1 ´ 3qpz2 ´ 1q ´ z21z
2
2 .

Thus p0, 0q is not simple and p3, 1q is simple. For the second example the zeros are not isolated
and thus they are not simple. At the same time, the determinant of Jacobian vanishes. This
is not a coincidence as one can show that a necessary condition to have det Jf paq ‰ 0 is that
a is isolated. This follows from the local inverse theorem B.6 below. This means that in the
definition of a simple zero we can in fact drop the condition of being isolated.

Proposition B.3. [22, Proposition 2.1] Suppose that the mapping z ÞÑ fpzq is holomorphic
in a domain D Ă Cn. Suppose the closure of a neighborhood Ua Ă D of a zero a of the
mapping does not contain other zeros (so a is isolated). Then there exists φ ą 0 such that
for almost all ζ P Bp0, φq (w.r.t Lebesgue measure), the mapping z ÞÑ fpzq ´ ζ has only
simple zeros in Ua. The number of simple zeros depends neither on ζ nor on the choice of
the neighborhood Ua.

Definition B.4. The multiplicity of the zero a in the multivariate mapping z ÞÑ fpzq is
defined as the number of zeros in Ua of the perturbed mapping z ÞÑ fpzq ´ ζ.

Proposition B.5. [22, Proposition 2.2] The multiplicity of a simple zero is equal to 1.

Applying Propositions B.3, B.5 to the mapping f1pz1, z2q “ z21pz2´1q, f2pz1, z2q “ z22pz1´3q
we see that the simple zero p3, 1q has multiplicity one since the perturbed mapping develops
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“one branch” of simple zeros pz1, z2q « p1`
ζ1
9
, 3` ζ2q, whereas p0, 0q has higher multiplicity

as many branches of simple zeros pz1, z2q « p˘iζ
1{2
1 ,˘ i?

3
ζ
1{2
2 q appear.

In our application we need to show that 0 is an isolated zero of Fsqr. For this we rely on
the following local inverse theorem:

Theorem B.6. [23, Theorem 5.5] Consider an holomorphic map f : U Ă Cn ÞÑ fpUq Ă Cn.
Suppose a P U . Then f is biholomorphic in some small enough neighborhood of a if and
only if det Jf paq ‰ 0. (Biholomorphic means that the map f : U ÞÑ fpUq is a bijection and
its inverse f´1 : fpUq ÞÑ U is also holomorphic.)

Appendix C. Definition and Properties of the Buchberger algorithm

To describe the Buchberger algorithm, we need to define operations on multivariate poly-
nomials. We start with a multivariate polynomial division.

C.1. Multivariate Division Algorithm. Let f be a multivariate polynomials
in KrX1, . . . , Xns. We can write f “

ř

α aαx
α with α “ pα1, . . . , αnq in Zn

ě0 where αi denotes
the exponent of the ith variable such that xα is the monomial xα “ Xα1

1 . . . Xαn
n and the

coefficients aα are in K.
For univariate polynomials in X, the common ordering of the monomials is the degree

ordering,

(24) ¨ ¨ ¨ ą Xn
ą Xn´1

ą ¨ ¨ ¨ ą X ą 1.

This notion can be extended to multivariate monomials.

Definition C.1 ([14]). A monomial ordering ą on KrX1, . . . , Xns is a relation ą on the set
of monomial xα, α P Zn

ě0 satisfying

(1) ą is a total ordering on Zn
ě0

(2) If α ą β then for all γ P Zn
ě0, α ` γ ą β ` γ.

(3) ą is a well-ordering on Zn
ě0. This means that every nonempty subset of Zn

ě0 has a
smallest element under ą.

We also need some additional definitions to describe the multivariate division.

Definition C.2. Let f, g be two multivariate polynomials in KrX1, . . . , Xns and ă be a
monomial ordering on KrX1, . . . , Xns.

‚ The multidegree of f is multidegpfq “ maxpα P Zn
ě0|aα ‰ 0q (the maximum is taken

with respect to ă).
‚ The leading coefficient of f is LCpfq “ amultidegpfq P K.

‚ The leading monomial of f is LMpfq “ xmultidegpfq.
‚ The leading term of f is LT pfq “ LCpfq ¨ LMpfq.
‚ The least common multiple of the leading terms of f and g is denoted LCMpf, gq and

LCMpf, gq “ amultidegpfqbmultidegpgqx
γ

with γi “ maxpmultidegpfqi,multidegpgqiq.
‚ The S-polynomial of f and g is

Spf, gq “
LCMpf, gq

LT pfq
¨ f ´

LCMpf, gq

LT pgq
¨ g.
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Theorem C.3 (Multivariate Division Algorithm 2 in KrX1, . . . , Xns [14]). Let ą be a mono-
mial ordering on Zn

ě0, and let F “ pf1, . . . , fsq be an ordered s-tuple of polynomials in
KrX1, . . . , Xns. Then every p P KrX1, . . . , Xns can be written as

(25) p “ q1f1 ` ¨ ¨ ¨ ` qsfs ` r

where qi, r P KrX1, . . . , Xns, and either r “ 0 or r is a linear combination, with coefficients
in K, of monomials, none of which is divisible by any of LT pf1q, . . . , LT pfsq. We call r a
remainder of p on division by F . Furthermore, if qifi ‰ 0, then

multidegpfq ě multidegpqifiq.

Algorithm 2 makes it possible to compute such decomposition.

The r and qi polynomials depend on the ordering of the pfiq and on the monomial or-
dering. They are not uniquely characterized with the condition that r is not divisible by
LT pf1q, . . . , LT pfsq

Algorithm 2: Multivariate Division Algorithm

Input: f1, . . . , fs, p P KrX1, . . . , Xns

Output: q1, . . . , qs, r P KrX1, . . . , Xns

1 begin
2 q1 Ð 0, . . . , qs Ð 0, r Ð 0;
3 while p ‰ 0 do
4 division occurred is false; Ź p` f1q1 ` ¨ ¨ ¨ ` fsqs ` r is a loop invariant
5 while i ă s and not division occurred do
6 if LT pfiq divides LT ppq then
7 qi Ð qi ` LT ppq{LT pfiq;
8 pÐ p´ LT ppq{LT pfiq ¨ fi; Ź Remove the leading monomial

division occurred is true;

9 if not division occurred then
10 r Ð r ` LT ppq;
11 pÐ p´ LT ppq;

Example C.4 (Multivariate Division). Let’s divide p “ xy2` 1 by pf1 “ xy` 1, f2 “ y` 1q
using lexicographic ordering with x ą y.

(1) LT ppq “ xy2 which is divisible by LT pf1q “ xy. Then q1 is updated to q1 “ y and p
is updated to p “ xy2 ` 1´ xy2 ´ y “ ´y ` 1.

(2) LT ppq “ ´y which is only divisible by LT pf2q “ y. Then q2 is updated to q2 “ ´1
and p is updated to p “ ´y ` 1` y ` 1 “ 2.

(3) LT ppq “ 2 which is neither divisible by LT pf1q nor LT pf2q so r is updated to r “ 2
and f “ 0. The algorithm ends with q1 “ y, q2 “ 1, r “ 2.

If the division is performed by changing the order of the polynomial pf1 “ y`1, f2 “ xy`1q,
it gives another reminder:

(1) LT ppq “ xy2 which is divisible by LT pf1q “ y. Then q1 is updated to q1 “ xy and p
is updated to p “ xy2 ` 1´ xy2 ´ xy “ ´xy ` 1.
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(2) LT ppq “ ´xy which is divisible by LT pf1q. Then q1 is updated to q1 “ xy ´ x and p
is updated to p “ ´xy ` 1` xy ` x “ x` 1.

(3) LT ppq “ x which is neither divisible by LT pf1q nor LT pf2q so r is updated to r “ x`1
and f “ 0. The algorithm ends with q1 “ xy ´ x, q2 “ 0, r “ x` 1.

C.2. Gröbner basis and Buchberger Algorithm. An ideal I of a ring R is an additive
subgroup of the ring such that for all x P I, r P R, we have rx P I. The smallest ideal
generated by a set S of elements in R is denoted as xSy “ trx|r P R and x P Su. S is called
a basis of xSy.

Definition C.5 (Gröbner basis). Given an ideal I of KrX1, . . . , Xns, ă a monomial ordering
for KrX1, . . . , Xns and a finite subset G Ă I, we say G is a Gröbner basis for the ordering
ă if

xLT pGqy “ xLT pIqy.

Here xLT pGqy means the ideal generated by the leading terms of the polynomials in G.

Corollary C.6. For a fixed monomial order, every ideal I has a Gröbner basis. Furthermore,
any Gröbner basis is a generating set of I.

Gröbner bases have nice properties. Running the multivariate division algorithm with a
Gröbner basis will not change the remainder regardless of the chosen order of the polynomials
in the basis. Indeed, if the Buchberger outputs two different remainders r and r1 for the
division of a polynomial f with a Gröbner basis G “ tg1, . . . , gsu, then there exist g, g1 Pă

G ą such that f “ g ` r “ g1 ` r1. Thus r ´ r1 “ g1 ´ g Pă G ą so LT pr ´ r1q Pă

LT pg1q, . . . , LT pgsq ą by the definition of a Gröbner basis but from Theorem C.3 neither r
nor r1 has monomials divisible by any of the LT pg1q, . . . , LT pgsq. This implies that r “ r1.

The Buchberger algorithm (3) returns a Gröbner basis.

Algorithm 3: Buchberger Algorithm [14]

Input: F “ pf1, . . . , fsq
Output: A Gröbner basis G

1 begin
2 GÐ F ;
3 repeat
4 G1 Ð G;
5 for each pair gi, gj P G with i ‰ j do
6 Si,j Ð Spgi, gjq;
7 r ÐMultivariate Division Algorithm pG,Si,jq;
8 if r ‰ 0 then
9 GÐ GY tru;

10 until G “ G1;

Example C.7. Let us construct the Gröbner basis for the two polynomials of Example C.4,
pf1 “ xy ` 1, f2 “ y ` 1q with lexicographic ordering.

(1) Spf1, f2q “ xy` x´ xy´ 1 “ x´ 1 whose leading term is divisible neither by LT pf1q
nor LT pf2q. So, f3 “ x´ 1 can be added to the basis.
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(2) Spf1, f3q “ xy ` 1´ xy ` y “ y ` 1 “ f2. The remainder of the division is 0.
(3) Spf2, f3q “ xy ` x ´ xy ` y “ x ´ y “ f1 ` f3. The remainder of the division is 0.

All pairs have been examined and the algorithm ends.

One can verify that running the algorithm with pf1, f2, f3q yields the same remainder regard-
less of the order of the polynomials.

Buchberger algorithm generates numerous intermediate polynomials with total degrees
that can be pretty large. The basis output by Buchberger algorithm can be simplified.

Definition C.8 (Reduced Gröbner basis [14]). For an ideal I Ď KrX1, . . . , Xns, a finite
subset G Ă I is a reduced Gröbner basis of I for the order ă if

- LCpgq “ 1 for all g P G,
- for all g P G no monomials of g lie in xLT pGztguqy.

Theorem C.9 ([14]). Let I ‰ t0u be a polynomial ideal. Then, for a given monomial
ordering, I has a reduced Gröbner basis and the reduced Gröbner basis is unique.

Example C.10. pf2, f3q is the reduced basis for pf1, f2, f3q.

We can construct a reduced Gröbner basis for a non-zero ideal by applying Buchberger
algorithm. Then by adjusting the constants of the obtained basis G to make all the leading
coefficients equal to 1 and removing any g with LT pgq P xLT pGztguqy from G, we can obtain
the reduced basis because for any removed g, the resulting set Gztgu is also a Gröbner basis.

Even using a reduced Gröbner basis, Buchberger algorithm takes a huge amount of storage.
The degree of the polynomials in the reduced Gröbner basis is bounded by 2pd2{2 ` dq2

n´2

[24] where d is the total degree of the pfiq for example d “ k for k-QSAT. Today Faugere’s
algorithms are the fastest algorithms to compute Gröbner basis F4, F5. They use the
same principle as Buchberger algorithm but use linear algebra to evaluate several pairs of
polynomials and apply additional criteria to avoid evaluating S-polynomials that will reduce
to 0.

C.3. Hilbert’s Nullstellensatz. Thanks to Hilbert’s Nullstellensatz, Buchberger algorithm
can determine if a system of complex multivariate polynomial equations admits a common
zero. Let us recall that an ideal I is a maximal ideal of a ring R if there are no other ideals
contained between I and R, i.e. for any ideal J such that I Ĺ J, J “ R .

Theorem C.11 (Hilbert’s Nullstellensatz (Zeros Theorem)). Let K be an algebraically closed
field. Then every maximal ideal in the polynomial ring KrX1, . . . , Xns has the form pX1 ´

a1, . . . , Xn ´ anq for some a1, . . . , an P K.

Corollary C.12. As a consequence, a family of polynomials in KrX1, . . . , Xns with no com-
mon zeros generates the unit ideal.

Proof. Let I be an ideal generated by f1, . . . fm P KrX1, . . . , Xns with no common zeros.
If I is contained in a maximal ideal M “ pX1 ´ a1, . . . , Xn ´ anq by Theorem C.11, then
pa1, . . . , anq P Kn is a common root of elements of I, in contradiction with the hypothesis.
Since I does not lie in any maximal ideal, it must be KrX1, . . . , Xns. □

Remark C.13. Conversely, any family of polynomials f1, . . . fm in KrX1, . . . , Xns that gen-
erates the unit ideal has no common zeros. Indeed if xf1, . . . fmy “ KrX1, . . . , Xns there exist
g1, . . . , gm P KrX1, . . . , Xns such that g1f1 ` ¨ ¨ ¨ ` gmfm “ 1. If f1, . . . fm have a common
zero, it contradicts the equality.
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Corollary C.14. A set of polynomials in an algebraically closed field has no common zeros
if and only if the reduced Gröbner basis is t1u.

Proof. A set of polynomials has no common zeros if and only if it generates the unit ideal
and 1 belongs to an ideal if and only if 1 belongs to the Gröbner basis of the ideal for any
monomial ordering (because LT p1q “ 1) and thus belongs to the reduced Gröbner basis. □

From Corollary C.14, the Gröbner basis output by Buchberger algorithm on input f1, . . . , fm
is reduced to t1u if and only if f1, . . . , fm do not have a common zero.

Appendix D. Evaluating the dimension of the kernel

In Table 6.1, we give recurrence relations for dim kerHF with a specific interaction graph.
Here we give the proof of the recurrence relations for the loose chain and the cycle (when the
projectors are separable) which are not found in the literature to the best of our knowledge.
These recurrences in Lemmas D.1 and D.2 yield upper bounds since we prove them only for
separable projectors. However, we observe with numerical tests that they coincide with the
‘generic’ values.

Lemma D.1. For an instance of k-QSAT with m separable projectors, the dimension of the
kernel space for the loose chain interaction graphs, satisfies the recurrence relation

(26) rm “ 2k´1rm´1 ´ 2k´2rm´2.

The initial conditions are r1 “ 7, r2 “ 24.

The initial conditions for m “ 1, 2 are found by considering a special case of the d-nosegay
described in [18] where d “ p0, . . . , 0q for m “ 1 and d “ p1, 0, . . . , 0q for m “ 2. The proof
of the recurrence relation is based on the arguments similar to those in [18, Lemma 5].

Proof. If the projectors are separable, then we can find a basis of the Hilbert space to decom-
pose the two projectors at the ends of the chain as |αmyb |0y

bk´1 and the interior projectors
as |β0

my b |β
1
my b |0y

bk´2 where |αmy and |βi
my, i P t0, 1u are the states of the qubits that

appear in two clauses.
We can construct a basis for the solution space of the form

(27) |by “
â

i

|biy b |vby

where |biy is the state of a unary qubit (a qubit whose vertex is unary) and |vby is the state
of the remaining qubits. The solutions are constructed by satisfying the clauses from one
end to the other of the loose chain.

The first clause, at the beginning of the chain, can be satisfied if one of its k ´ 1 unary
qubits has a state equal to |1y. In this situation, there are 2k´1 ´ 1 possible ways to satisfy
the first clause. The remaining degree-two qubit is left unassigned. What remains to satisfy
is a loose chain with m´ 1 clauses. The subspace satisfying the new pattern is of dimension
rm´1.

If the states of all the unary qubits of the first clause are set to |0ybk´1, then the last
qubit is constrained to satisfy the clause. The Schmidt decomposition of |vby gives |vby “
|q1y b |v1y ` |q2y b |v2y. Since |q1y is orthogonal to |q2y and xq1|α1y “ 0 “ xq2|α1y (because
the first clause is satisfied), |vby is separable and |q1y “ |q2y “ |α

K
1 y. To extend this partial

assignment to a full solution, we can apply the same method recursively for the interior
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clauses where there are only k ´ 2 unary qubits. For the last exterior clause, the degree 2
qubit is fixed so the dimension is 2k´1 ´ 1. This gives in total

(28) rm “ p2
k´1

´ 1qrm´1 ` p2
k´2

´ 1q
m´2
ÿ

i“2

ri ` 2k´1
´ 1.

To obtain the announced relation (32), a few algebraic manipulations are necessary. Ap-
plying the last result to rm´1, we obtain

rm´1 ´ p2
k´1

´ 1qrm´2 “ p2
k´2

´ 1q
m´3
ÿ

i“2

ri ` 2k´1
´ 1(29)

and combining with (28), we find

rm “ p2
k´1

´ 1qrm´1 ` p2
k´2

´ 1qrm´2 ` rm´1 ´ p2
k´1

´ 1qrm´2

“ 2k´1rm´1 ` p2
k´2

´ 2k´1
qrm´2

“ 2k´1rm´1 ´ 2k´2rm´2.(30)

□

Lemma D.2. For an instance of k-QSAT with m separable projectors, the dimension of the
kernel space for the loose cycle interaction graphs, satisfies the recurrence relation

(31) sm “ 2k´1sm´1 ´ 2k´2sm´2.

The initial conditions are s2 “ 12, s3 “ 40.

It is more convenient to use the notation sm (instead of rm used in Table 6.1) because the
proof will use the previous lemma. We also need the following lemma.

Lemma D.3. For an instance of QSAT with m ` 1 separable projectors whose interaction
graph is a 2-qubit chain starting with a k-qubit clause and k ě 2, the dimension of the kernel
space satisfies the recurrence relation

(32) tm “ p2
k´1

´ 1qm` 2k
´ 1.

Here m is the number of 2-qubit clauses.

Proof. Recall that the dimension of the kernel space for a chain of m 2-qubit clauses is m`2
[9]. The qubits of the first clause are labeled from 1 to k starting with the qubit both in the
chain and in the k-qubit clause. We can find a basis of the Hilbert space where the projector
of the first clause can be decomposed into |ϕy b |0ybk´2 where |ϕy is a state of the first two
qubits. We can construct a basis for the solution space of the form

(33) |by “
k
â

i“3

|biy b |vby

where |biy is the state of qubit qi and |vby is the state of the remaining qubits. If any of
the |biy are |1y, the first clause is satisfied. What remains to satisfy is a 2-qubit chain of
m clauses. The unassigned qubit q2 accounts for 2 degrees of freedom. There are 2k´2 ´ 1
possibilities to satisfy the first clause this way. If the qubits q2, . . . , qk are assigned to |0ybk´2,
then it remains to satisfy a 2-qubit chain of m ` 1 clauses. Summing all contributions we
find

(34) tm “ 2p2k´2
´ 1qpm` 2q ` pm` 3q “ p2k´1

´ 1qm` 2k
´ 1.
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□

Proof of Lemma D.2. We start by looking at the interaction graphs that are loose chains
composed of m clauses of k-qubit and ending with p 2-qubit clauses. Let us denote rm,p the
dimension of the kernel space of the instances with these interaction graphs. We can show
the following recurrence relation over m

(35) rm,p “ 2k´1rm´1,p ´ 2k´2rm´2,p

with the same argument of the proof of Lemma D.1 and with the initialization given by
rm,0 “ m` 2 (chain only composed of 2-qubit clauses) and rm,1 “ tm from Lemma D.3.

Regarding the loose cycle, we remark that fixing the value of a unary qubit in a clause c
breaks the cycle into a loose chain with m´1 clauses if this assignment satisfies c. There are
2k´2 ´ 1 ways to satisfy a clause with unary qubits. If, after assigning a value to all unary
qubits in c, the clause is still unsatisfied, the resulting interaction graph is a loose cycle with
one 2-qubit clause. We can repeat the procedure and assign unary qubits of the next clause
c`1 in the cycle. If clause c`1 is satisfied, the new interaction graph is a loose chain ending
with one 2-qubit clause. If c ` 1 is unsatisfied, the cycle graph now contains two 2-qubit
clauses. We can iterate this procedure. At step 1 ď p ď m, if the clause c` p is satisfied, the
cycle is broken into a loose chain ending with p´ 1 2-qubit clauses and if the clause c` p is
unsatisfied the new interaction graph is a loose cycle with p 2-qubit clauses.

After m steps, if all unary qubits are assigned and do not satisfy any of the clauses, the
interaction graph is a cycle composed of only 2-qubit clauses, and the dimension of the kernel
space for this graph is 2 [9]. Summing all contributions gives

(36) sm “ p2
k´2

´ 1q
m´1
ÿ

i“0

ri,m´1´i ` 2.

With some algebraic manipulations, we can obtain the desired relation, i.e,

sm “ p2
k´2

´ 1q
m´1
ÿ

i“2

ri,m´1´i ` p2
k´2

´ 1qpr0,m´1 ` r1,m´2q ` 2

“ p2k´2
´ 1q

m´1
ÿ

i“2

`

2k´1ri´1,m´1´i ´ 2k´2ri´2,m´1´i

˘

` p2k´2
´ 1qpr0,m´1 ` r1,m´2q ` 2(37)

“ 2k´1sm´1 ´ 2k´2sm´2 ` p2
k´2

´ 1qpr0,m´1 ` r1,m´2 ´ 2k´1r0,m´2q ´ 2k´1
` 2(38)

“ 2k´1sm´1 ´ 2k´2sm´2.(39)

Equation (37) is obtained by applying (35) to each ri,m´1´i. In (38), we bring out sm´1 and
sm´2. Finally, we replace in (38) r0,m´1, r0,m´2 and r1,m´2 by their algebraic expressions to
obtain (39). □
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