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Two-photon interference is an interest-
ing quantum phenomenon that is usu-
ally captured in two distinct types of ex-
periments, namely the Hanbury-Brown-
Twiss (HBT) experiment and the Hong-
Ou-Mandel (HOM) experiment. While
the HBT experiment was carried out much
earlier in 1956, with classical light, the
demonstration of the HOM effect came
much later in 1987. Unlike the former, the
latter has been argued to be a purely quan-
tum effect. A generalized formulation of
two-particle interference is presented here.
The HOM and the HBT effects emerge
as special cases in the general analysis.
A realizable two-particle interference ex-
periment, which is intermediate between
the two effects, is proposed and analyzed.
Thus two-particle interference is shown to
be a single phenomenon with various pos-
sible implementations, including the HBT
and HOM setups.

1 Introduction

Numerous fascinating phenomena, such as pho-
ton bunching and anti-bunching, were seen with
the development of lasers and quantum optics
[1]. Whether they are photons or neutral atoms,
identical bosons in quantum optics have been re-
vealing an increasing number of fascinating as-
pects of quantum mechanics [2]. Two-photon in-
terference is a phenomenon which is at the heart
of quantum optics [3]. Two experiments which
beautifully unveil two-particle interference, are
the Hanbury-Brown-Twiss (HBT) experiment [2]
and the Hong-Ou-Mandel (HOM) experiment [4].

The Hanbury Brown-Twiss effect
The HBT effect was discovered much before
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Figure 1: A schematic diagram for the Hanbury Brown-
Twiss experiment. Independent particles from sources A
and B travel and arrive at the two detectors at x1 and
x2.

the HOM effect, in classical radio waves. Later
in 1956 it was demonstrated in classical light
[5]. In the HBT experiment two particles emerge
from two spatially separated sources A and B,
and travel to separate, movable detectors at posi-
tions x1 and x2 (see Fig. 1). Individual detectors
do not show any interesting effect, as expected.
However, if one correlates the intensity of the two
detectors, it shows an interference as function of
the separation of the two detectors. This means
that given one photon has landed at particular
position, there are positions on which the other
photon would never land. This is quite an unex-
pected behavior for independent photons.

The phenomenon can be understood easily us-
ing classical waves. However, its applicability
and meaning in quantum domain was widely de-
bated and misunderstood [6]. People visualized
that in order to show interference, the two pho-
tons, coming from independent sources, would
need to “know” where to land! Now the HBT
effect in the quantum domain is well understood
[7, 8]. There is a crucial difference between the
classical and quantum HBT effect. For classi-
cal waves, the HBT interference visibility can be
at the most 1/2. However, in the quantum case
the visibility can ideally be 1. The HBT effect
has now been demonstrated using ultrcold atoms
[9, 10, 11] and also with electrons [12].
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The Hong-Ou-Mandel effect
We briefly introduce the HOM experiment

which was first reported in 1987 [13]. Two identi-
cal particles emerge from two spatially separated
sources A and B (see Fig. 2). The two parti-
cles are split by the 50-50 beam-splitter BS, and
reach the fixed detectors D1, D2. Since the two
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Figure 2: A schematic diagram for the Hong-Ou-Mandel
experiment. Independent particles from sources A and
B meet at the beam-splitter BS, and then arrive at the
detectors D1 and D2.

photons are independent, one would expect that
half the time the two would land up in differ-
ent detectors. However, it is observed that if the
sources are tuned in such a way that the two pho-
tons arrive at the beam splitter at the same time,
the two photons always go together to the same
detector! In other words, the coincident count of
detectors D1 and D2 shows a dip, and goes to
zero in the ideal case. This is the famous “HOM
dip.” The HOM effect has been demonstrated for
completely independent photons [14].

In the way that the two effects have been de-
scribed above, and also in the way they came
about historically, the two are quite distinct.
While HBT effect was originally seen in classical
waves, the HOM effect is believed to be com-
pletely quantum. Since at the quantum level
both the effects are rooted in the indistinguisha-
bility of identical particles, one might wonder if
there is a deeper common origin of both. That
is the issue we address in this investigation,
and demonstrate that indeed there is a single
two-particle interference phenomenon underlying
both.

2 Generalized n-port interferometer
The connection between the HBT and HOM ex-
periments can be understood by drawing an anal-
ogy with the connection between a single parti-
cle two-slit interference and the Mach-Zehnder
interferometer [15]. The two-slit interference and

the Mach-Zehnder interference are essentially the
same. The only difference is that while in the
Mach-Zehnder interferometer, a beam is split
into two distinct beams, in the two-slit interfer-
ence experiment the beam emerging from one slit
eventually spreads over an infinite number of po-
sitions on the screen. We believe something sim-
ilar happens in the HOM and HBT experiments.
Particles from one source are split into two dis-
tinct beams by the beam-splitter in the HOM
experiment. On the other hand, particle emerg-
ing from a single source in the HBT experiment,
spread over a continous set of positions when they
reach the screen.
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Figure 3: Schematic diagram for a generalized n-port
two-particle interference experiment. Independent par-
ticles from sources A and B are split into n common
channels by the path-splitter, and then arrive at detec-
tors D1 to Dn.

In order to understand two-particle interfer-
ence, we assume a general scenario where there
are two sources and a particle from a particular
source is split into n channels. The same happens
with the particle coming from the other source.
The channels are the same for both the parti-
cles (see Fig. 3). The two particles coming to
different channels may pick up different phases.
Particle emnating from source A has a state |ψA⟩,
and that from source B, a state |ψB⟩, such that
the combined two particle state before entering
the path-splitter is

|Ψ0⟩ = 1√
2(|ψA⟩1|ψB⟩2 + |ψA⟩2|ψB⟩1), (1)

where the subscripts on the kets denote the par-
ticle label. Now each particle gets split into an
equal superposition of n output channels. Each
channel j ends up at unique detector |Dj⟩. Thus
the effect of the path-splitter on the two initial
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states is given by

UPS|ψA⟩ = 1√
n

n∑
i=1

eiθi |Di⟩

UPS|ψB⟩ = 1√
n

n∑
j=1

eiϕj |Dj⟩, (2)

where θk, ϕk are the phases picked up by the par-
ticles in arriving in channel k, from source A and
B, respectively.

The final two-particle state at the detectors is
then given by

|Ψf ⟩ = UPS
1√
2(|ψA⟩1|ψB⟩2 + |ψA⟩2|ψB⟩1),

= 1
n

√
2

n∑
i=1

eiθi |Di⟩1

n∑
j=1

eiϕj |Dj⟩2

+ 1
n

√
2

n∑
j=1

eiθj |Dj⟩2

n∑
i=1

eiϕi |Di⟩1. (3)

There are two kinds of terms in the product of
the two sums. One are the diagonal terms involv-
ing just one channel, and the other are the ”cross
terms” involving two channels. Latter ones po-
tentially give rise to interference. The final state
then has the following form

|Ψf ⟩ =
√

2
n

n∑
i=1

ei(θi+ϕi)|Di⟩1|Di⟩2

+ 1
n

√
2

∑
j ̸=i

(ei(θi+ϕj) + ei(θj+ϕi))|Di⟩1|Dj⟩2.

(4)

In order to proceed any further we need some
information on n and the various phases θi, ϕk.

2.1 General n: A simple case
For an arbitrary value of n, let us assume that
all phases for the particle coming from source A
are zero, i.e., θi = 0 for i = 1, . . . , n. For particle
coming from source B, ϕi = 0 for odd i, and
ϕi = π for even i. Now it is easy to see that the
phase factor in the cross-term

ei(θi+ϕj) + ei(θj+ϕi) =


2 (i, j both odd or

both even)
0 (in i, j one is

even, one odd)
(5)

So the terms where one among i, j is even, and
the other odd, disappear. This represents de-
structive interference. The detection results can
be summarized as follows.
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Figure 4: Probability of coincident count of detector 1
with various detectors, in units of 2/n2. The probability
of coincident count with even number detectors is zero.
They constitute the dark fringes of the interference pat-
tern.

1. Probability of both particles landing at i’th
detector = |1⟨Di|2⟨Di|Ψf ⟩|2 = 2

n2

2. Probability of particles landing at both odd
or both even detectors = |1⟨Di|2⟨Dj |Ψf ⟩|2 =
4
n2 . Such terms represent the bright fringes,
with two two-particle amplitudes adding up.

3. Probability of one particle landing
at odd and one at even detector
= |1⟨Di|2⟨Dj |Ψf ⟩|2 = 0. Such terms
represent the dark fringes, with two
two-particle amplitudes destroying each
other.

If one plots the probability of a coincident count
of a particular detector with various detectors,
one would get an interference pattern, with al-
ternate detectors showing zero coincident count
(see Fig. 4). This general analysis can be used
to study various real two-particle interference ex-
periments. We do that in the ensuing analysis.

2.2 n = 2: The HOM Experiment

In the preceding analysis if we put n = 2, it
can exactly describe the HOM experiment. In
Fig. 2 if we assume that the lower surface of the
mirror is half-silvered, then the photons coming
from source A reach the detectors D1, D2 without
any phase change. However, the photons coming
from source B pick up a phase of π in reaching
D2. The analysis for a general n can then be
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applied here directly. We notice that there are
cross terms involving only one even and one odd
detector. Consequently in the coincident counts
there will be only one dark fringe, and no bright
fringe. That is precisely what is seen in the HOM
experiment. The coincident count between the
two detectors goes to zero.

2.3 n = 4: An Extended HOM Experiment
In the HOM experiment, a particle from a par-
ticle source, is split by the beam-splitter into a
superposition of two parts, one reaching D1 and
the other reaching D2. Let us visualize an ex-
tended version of this experiment where the par-
ticles coming from both the sources are split into
a superposition of four parts each. A realizable
setup which implements this scheme is shown in
Fig. 5. The combination of three beam-splitters

D1
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D4

Source A 

Source B 

Figure 5: Schematic diagram for a 4-port two-particle
interference experiment. Independent particles from
sources A and B are split into 4 common channels by
a combination of 3 beam-splitters, and then arrive at
detectors D1, D2, D3, D4.
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Figure 6: Schematic diagram for an alternate 4-port two-
particle interference experiment. Independent particles
from sources A and B are split into 4 common channels
by a combination of 4 beam-splitters, and then arrive at
detectors D1, D2, D3, D4.

plays the role of a 4-port path-splitter. The effect

of the path-splitter on the particles coming from
source A and B, can be described as

UPS|ψA⟩ = 1
2(|D1⟩ + |D2⟩ + |D3⟩ + |D4⟩)

UPS|ψB⟩ = 1
2(|D1⟩ − |D2⟩ + |D3⟩ − |D4⟩).(6)

Now if the initial state before the two particles
enter the path-splitter is given by (1), the final
state at the four detectors turns out to be

|Ψf ⟩ = UPS
1√
2(|ψA⟩1|ψB⟩2 + |ψA⟩2|ψB⟩1),

=
√

2
4

(
|D1⟩1|D1⟩2 + |D1⟩1|D3⟩2 + |D2⟩1|D2⟩2

+|D2⟩1|D4⟩2 + |D3⟩1|D3⟩2 + |D3⟩1|D1⟩2

+|D4⟩1|D4⟩2 + |D4⟩1|D2⟩2
)
. (7)

Notice that the terms |D1⟩1|D3⟩2 and |D3⟩1|D1⟩2
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Figure 7: Probability of coincident count of detector 1
with all four detectors, in units of 1/8.

both contribute to the same coincident count,
i.e., between detector 1 and 3. In the HOM ex-
periment, the probability of both the particles
landing at a particular detector is 1/2, so the to-
tal probability of both particles landing at D1
or at D2 add up to 1. That is because there is
no other possibility. However, in our extended
4-port HOM experiment, the probability of both
particles landing at a particular detector is not
1/4, rather it is 1/8. So the total probability of
both the particles landing up at the same detec-
tor doesn’t add up to 1. That is becuase there
are other possibilities, e.g., of one particle going
to D1 and the other to D3

If one plots the probability of a coincident
count of (say) D1 with various detectors, one
would get an interference pattern, with two dark
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fringes (see Fig. 7). One would notice that al-
though this case is an extension of the HOM ex-
periment, the result has some similarity with the
HBT experiment where one obtains an interfer-
ence by doing coincident counts at detectors at
varying positions. A 4-port interferometer can
also be set up using an alternare arrangement
(see Fig. 6), but the analysis is identical to what
has been presented here.

2.4 n → ∞: The HBT Experiment

Next we investigate if the general n-port interfer-
ometer can capture the HBT experiment. In an
HBT experiment two particles emerge from two
sources A and B, localized at positions x = ±x0,
respectively. The particles travel along the y-
axis and are finally detected at a continuous set
of positions x1 and x2 by two movable detectors
(see Fig. 1). Essentially a particle emerging from
a source is split into a continuous set of infinite
number of channels which end up at a continuous
set of detector positions. The n-channel path-
splitting described by (2) should then be modified
to take into account the continuous detector po-
sitions. In order to normalize the probability in
this continuous case, a position dependent prob-
ability should be assigned to each channel, which
is essentially |ψ(x)|2dx, ψ(x) being the wavefunc-
tion of the particle in the detection plane. The
phases picked up by the channels are naturally
position dependent. The path-splitting can then
be summarized as

UPS|ψA⟩ =
∫
ψ(x)eiθx |x⟩dx

UPS|ψB⟩ =
∫
ψ(x)eiϕx |x⟩dx, (8)

where θx, ϕx are the phases picked up by the par-
ticles coming from sources A and B, respectively,
when they reach a position x in the detection
plane. Here it has been assumed that ψ(x) is ap-
proximately the same for both the particles since
L ≫ 2x0 (see Fig. 1). If λ represents the real or
de Broglie wavelength of a particle, and it trav-
els a distance L along y-axis to reach the detec-
tor position x, the phases acquired are given by
θx = 2πx0x/λL and ϕx = −2πx0x/λL [8]. We
do not specify the form of ψ(x) here - typically
it is a Gaussian envelope. The final two-particle

state can then be written as

|Ψf ⟩ = UPS
1√
2(|ψA⟩1|ψB⟩2 + |ψA⟩2|ψB⟩1),

= 1√
2

∫
ψ(x)eiθx |x⟩1dx

∫
ψ(x′)eiϕx′ |x′⟩2dx

′

+ 1√
2

∫
ψ(x)eiθx |x⟩2dx

∫
ψ(x′)eiϕx′ |x′⟩1dx

′.

(9)

The probability amplitude of detecting one par-
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Figure 8: Probability density (unnormalized) of coinci-
dent detection at positions x1 and x2, against the detec-
tor separation x1 −x2 (in the units of the fringe width).
Here x1 is fixed at 0 and x2 is varied.

ticle at x1 and the other at x2 is then given by

Ψf (x1, x2) = ψ(x1)ψ(x2)√
2

[
e
i2πx0(x1−x2)

λL

+e
−i2πx0(x1−x2)

λL

]
=

√
2ψ(x1)ψ(x2) cos

(
2πx0(x1−x2)

λL

)
.

(10)

The probability density of a coincident detection
at positions x1, x2 is then given by

P (x1, x2) = |ψ(x1)ψ(x2)|2
[
1+cos

(
4πx0(x1−x2)

λL

) ]
(11)

In expression (11) it is easy to see that there are
values of detector separation x1 − x2 for which
probability is zero. Those are the dark fringes,
and they are separated by λL/2x0. That is es-
sentially the HBT effect. The probability den-
sity of a coincident detection is plotted in Fig. 8,
choosing ψ(x) to be a Gaussian function.
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3 Discussion and Conclusion
In the preceding section we formulated a general
n-port two-particle interferometer. It produces a
generalized two-particle interference with n de-
tectors. For n = 2 it reduces to the HOM ex-
periment. For n = 4 it represents an extended
HOM experiment. This extended HOM experi-
ment can be realized without much difficulty. In
the limit n → ∞ when the fixed detectors are
replaced by two movable detectors in continu-
ous space, the generalized interferometer reduces
to the HBT experiment. Interestingly a multi-
port two-particle interferometer has very recently
been realized, in a somewhat different context
[16].

Our study reveals that two-particle interfer-
ence is a single common phenomena, with HOM
and HBT experiments being its two specific
cases, among many possible ones. An earlier re-
sult showed that a common duality relation ex-
ists, between the interference visibility and par-
ticle distnguishability, for both HOM and HBT
effects, indicating a common origin for both [15].
This duality relation was experimentally con-
firmed too [17]. The present work demonstrates
the equivalence of the HBT and HOM effects
in a more rigorous manner. It was earlier be-
lieved that the HOM effect is a purely quantum
effect whereas the HBT effect is possible for clas-
sical waves too, although with a maximum vis-
ibility 1/2. However, it has now been demon-
strated that the HOM effect can also be realized
with classical states [18, 19]. So the final mes-
sage is that the two-particle interference should
be viewed as a single phenomenon with a variety
of potential implementations, such as the HOM
and HBT configurations.
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