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Abstract. Explaining the origin of supermassive black holes via a primordial origin is severely
challenged by the tight spectral distortion constraints on the amplitude of the primordial
perturbations. Following the first calculation of how the µ constraints are modified by non-
Gaussianity in a companion paper, we here make the first robust constraints on primordial
black hole formation under large non-Gaussianity. Even the infinite fNL limit is insufficiently
non-Gaussian but much higher-order non-Gaussianity of the form R = R5

G may allow the
formation of any mass primordial black hole without conflicting with distortion constraints.
We caution that such extreme models face other challenges.
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1 Introduction

Supermassive black holes (SMBHs) are observed in the centres of virtually all galaxies where
good observations have been made, even at high redshift. Explaining the origin of these
SMBHs remains a challenge by all proposed methods, such as the direct collapse of large gas
clouds, runaway mergers, or massive accretion onto the first star remnants. Given that it
is hard to find an astrophysical origin, many have speculated they could have a primordial
origin. See [1] for a recent review.

However, explaining SMBHs via a primordial black hole (PBH) seed is also challenging,
primarily because of tight cosmic µ-distortion constraints which limit the allowed amplitude
of the primordial power spectrum on scales larger than about 10 parsec, which includes
the length scales relevant for SMBH formation if they are primordial. Assuming the initial
density perturbations are Gaussian distributed the formation of even just one PBH with
initial mass ≳ 104M⊙ is completely excluded by the µ-distortion constraints. We note that
the possibility of a PBH seed with mass around 103M⊙ has also been considered and this
is safe from spectral distortion constraints [2, 3, 4], but one then still has to explain how
accretion is sufficient for them to reach a much greater mass, already at high redshift.

The two primary routes (other than massive amounts of accretion) to evade the µ-
distortion constraints are either to invoke a PBH formation mechanism different from the
standard mechanism of a direct collapse of large amplitude perturbations after horizon entry
(for recent PBH reviews see [5, 6, 7, 8]) or to invoke large non-Gaussianity [9, 10, 11, 12].
In this paper we focus on non-Gaussianity, which is expected to help because PBHs are
necessarily very rare objects which form deep in the tail of the probability density function
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(pdf), whilst spectral distortions are primarily generated by the most likely perturbations
around the peak of the pdf. Therefore, it may be possible to reduce the average amplitude
of the perturbations whilst adding large positive skewness to enhance the tail to generate
PBHs. However, the assumption that the µ constraints won’t also tighten has never been
tested with an actual calculation – with only the appendix of [13] making (an approximate)
estimate of the impact of non-Gaussianity on the µ-distortions1.

Because only a significant amount of non-Gaussianity is expected to successfully evade
the µ-distortion constraints, see e.g. [9, 10, 11, 12], one should not expect the µ constraints to
remain unchanged relative to the Gaussian µ constraints. In our companion paper – Sharma
et al [24] – we have made the first accurate calculation of the sky-averaged µ-distortion
subject to local non-Gaussianity, assuming that this non-Gaussianity is confined to the small
scales that are relevant for PBH generation. This calculation covers any possible value of f̃NL.
Here, we see how those constraints combine with PBH constraints to test whether SMBHs
could have a primordial origin.

In this paper we show that local non-Gaussianity with primordial curvature perturba-
tions obeying R = RG + 3fNL(R2

G − ⟨R2
G⟩)/5 is insufficient to change the bound on the

allowed PBH mass in any significant way, even in the infinite fNL limit, and that much
higher-order non-Gaussianity is needed to evade spectral distortion constraints.

Electron-positron annihilation takes place while the horizon mass is around 106M⊙.
The consequent reduction in the equation of state has been invoked in [25, 26] as a means
to explain a peak in PBH production at this mass scale. However, [27] argue the impact of
neutrino free streaming could negate the pressure reduction meaning that PBH production
would not be enhanced. In either case, the reduction in pressure is much less significant
than during the QCD transition, and even the QCD transition only leads to a reduction in
the required power spectrum amplitude to generate a given PBH fraction by of order 10%,
compared to the value in a purely radiation dominated universe [28, 29, 30, 27].

The plan of our paper is as follows: In Section 2 we introduce some formalism and
show the constraints on the PBH and µ distortions for Gaussian fluctuations. In Section 3
and Section 4 we extend the results to non-Gaussian fluctuations, starting with perturbative
values of (local) f̃NL and then going to non-perturbative non-Gaussianity, including extreme
forms of non-Gaussianity consisting of Gaussian perturbations raised to a large integer power.
We discuss possible issues with invoking large non-Gaussianity as a means to evade the
distortion constraints near the start of Section 4. We conclude in Section 5 and derive the
relation between the PBH collapse fraction and the power spectrum amplitude for extreme
forms of non-Gaussianity in Appendix A.

2 Gaussian fluctuations: formalism and bounds on PBH abundance

In this section, we first present the constraints on the PBH abundance in the SMBH range
as well as the best possible PBH constraint which consists of 1 PBH in our cosmological
horizon. We present Press-Schechter theory as a means to convert these constraints onto an
amplitude of the primordial power spectrum. We also discuss the modelling uncertainties in
our results.

1We note that several references have considered the impact of non-Gaussianity on spatial variations of the
µ-distortion [14, 15, 16, 17, 18, 19, 20, 21, 22, 23], but not on the global value. Combining these measurements
may help to break the degeneracy between the variance and non-Gaussianity of the primordial perturbations.

– 2 –



2.1 Observational PBH constraints

There are a huge number of constraints on the fraction of dark matter which can consist of
PBHs, parameterised by the dimensionless ratio fPBH. For the supermassive black hole mass
range, key constraints include X-ray and CMB distortion constraints from BH accretion2

and dynamical halo friction, see [5] for a review and references therein. Constraints are
mass dependent and also depend on the PBH mass function but for a monochromatic (or
narrow) mass spectrum are typically around fPBH ≲ 10−4 [31, 32, 33]. The constraints do not
significantly change unless considering a very broad mass spectrum which would correspond
to a very broad power spectrum and is not of great interest when attempting to evade
distortion constraints.

The abundance in PBHs today compared to the DM density (fPBH) is related to the
fraction of the universe in PBHs at formation (β) via the simple relation (for a monochromatic
mass spectrum)

fPBH ≡ ρPBH

ρDM

∣∣∣∣
today

≃ 2.4β

(
Meq

M

)1/2

, (2.1)

whereMeq ≃ 2.7×1017M⊙ is the horizon mass at radiation-matter equality and the numerical
factor arises because fPBH is measured relative to dark matter and the ratio of DM at equality
is ρtot/ρDM = 2(1 + Ωbaryon/ΩDM) ≃ 2.4 [34]. This relation assumes the PBH mass will be
constant after formation, whilst in reality accretion is expected to be significant for SMBHs,
but it is very hard to estimate since it is a non-linear process [1].

Assuming that SMBHs do have a primordial origin, the minimum value of β required
to seed all SMBHs has not been quantified to the best of our knowledge, but the value is
clearly going to be significantly smaller than the corresponding value of fSMBH today related
to β using Eq. (2.1), given that 1) quasars demonstrate that at least some SMBH accrete
significantly and 2) SMBHs come in a large range of masses meaning that if they originated
from a narrow PBH mass function then the heaviest SMBHs today gained most of their mass
via accretion. Given these uncertainties, we often show constraints on fPBH = 10−5 (by
mapping back to a primordial value of the collapse fraction β without including accretion)
which is chosen as a value consistent with observational upper bounds on the PBH abundance
yet still greater than the value which would be required to seed all SMBHs.

Constraints on the µ-distortion are often reported as a function of (inverse comoving)
scale k whilst those on PBHs as a function of mass, which we equate to the horizon mass at
horizon entry (MH) of k using3

MPBH = MH ≃ 17
( g

10.75

)−1/6
(

k

106Mpc−1

)−2

M⊙, (2.2)

where g is the number of relativistic degrees of freedom which we approximate as equal to
10.75 for the rest of this paper since we are interested in PBH formation at temperatures
well below the QCD scale.

2not to be confused with the distortion constraints on PBH formation studied in this paper.
3We note this is quite crude since in reality, a spread of PBH masses will form and that there is not even an

agreement on the relation between the peak PBH mass value and the horizon mass [35, 36, 37], with estimates
ranging by about a factor of 5 in either direction, see e.g. [38]. This uncertainty is important but outside the
scope of this paper.
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Using Press-Schechter theory, the collapse fraction of the universe at PBH formation is
given by

β ≡ ρPBH

ρtot

∣∣∣
formation

=

∫ ∞

δc

P (δ)dδ ≃
∫ ∞

Rc

P (R)dR, (2.3)

where P is the probability density function (not to be confused with the power spectrum),
δ is the density contrast and R is the curvature perturbation. The values δc and Rc are
PBH collapse thresholds that can be estimated from simulations, see [39] for a review and
references therein. Going to the final expression in Eq. (2.3) is expected to be a reasonable
approximation in the case of a narrowly peaked power spectrum, such as we study here [40,
41] (but see [42]).

To be concrete, we assume a Dirac delta-function power spectrum

PR(k) = Ak∗δ(k − k∗), (2.4)

with variance normalised to satisfy

A = σ2 =

∫ ∞

0

dk

k
PR(k). (2.5)

We note that a delta function spike is of course unphysical, but it serves a useful
purpose as the narrowest spike possible in principle, it simplifies analytical calculations,
and it is the power spectrum shape which can generate the heaviest possible PBHs while
remaining consistent with µ distortion constraints. Ref. [38] showed that both the required
power spectrum amplitude and PBH mass function do not significantly vary when considering
a fairly narrow lognormal mass function. In general, broad power spectrum peaks lead to
broader constraints from µ-distortions and hence restrict the formation of heavier PBHs more
tightly, even though the amplitude required to form PBHs is slightly reduced.

Assuming Gaussian perturbations the pdf can be easily integrated to find

β ≃ 1

2
ErfC

(
Rc√
2A

)
(2.6)

where ErfC is the complementary error function. There have been many numerical and
analytic calculations of the values of the collapse thresholds (for a discussion of how the
collapse threshold depends on the density profile and how this is related to the power spectrum
shape see e.g. [43, 44, 45, 46]) and for definiteness we take Rc = 0.67 in agreement with [47].
More accurate techniques exist for calculating the PBH abundance, but we have checked
that for this choice of Rc the power spectrum amplitude required to generate a given value
of fPBH (or equivalently β) matches the values derived in [38] to good accuracy but with far
less computational cost.

However, even if the curvature perturbations are precisely Gaussian the non-linear re-
lation between the curvature perturbation and δ leads to a minimum possible level of non-
Gaussianity in the density contrast (and compaction function, which is often used to study
PBH formation). The impact of this non-linear relation is substantial and it results in the
constraint on the power spectrum being a factor of 2.0 larger (weaker) than it would be if the
linear relation was used (independently of the value of β) [48, 49, 38], and we take this factor
into account in the constraints we show relating fPBH to the power spectrum amplitude by
modifying Eq. (2.6) to

β ≃ 1

2
ErfC

(
Rc√
A

)
(2.7)
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We assume this multiplicative factor applies in the same way when the curvature perturba-
tions are intrinsically non-Gaussian, as done by [10].

Assuming Gaussian perturbations, the constraint on the power spectrum amplitude is
only logarithmically sensitive to β, and hence the amplitude required to form only 1 PBH
inside the current cosmological horizon is not much smaller than the current constraint from
the non-detection of PBHs. The constraint to have zero PBHs of scale k today measured in
terms of the β parameter is [50] (see also [51, 9] where this is called the incredulity limit)

β < β1−PBH(k) ≃ 1.2× 10−11(kMpc)3, (2.8)

where β1−PBH denotes the PBH fraction at formation corresponding to a single PBH in
today’s cosmological horizon.

To give an order of magnitude estimate, forming 1 PBH with mass 106M⊙ corresponds
to β1−PBH ≃ 10−22 (and fPBH ≃ 10−16) which is over 10 orders of magnitude tighter than the
corresponding observational constraint on β, but the corresponding constraint on the power
spectrum amplitude is only tighter by a factor of 2.3. Note that the 1-PBH limit corresponds
to a constant number density and hence corresponds to value of fPBH that depends on MPBH.

2.2 Gaussian power spectrum constraints

Assuming the curvature perturbations are Gaussian but including the impact of the non-
linear transformation between R and the density perturbation δρ [48, 49] we plot the PBH
constraints for several values of fPBH and the single PBH Eq. (2.8) limit, assuming a Dirac-
delta function peak, in Fig. 1.

For the µ constraint, we use the accurate numerical techniques described in e.g. [52,
53] and summarized in our companion paper [24] to calculate the power spectrum amplitude
which saturates the COBE-FIRAS µ-type distortion constraint. We use the updated value of
µ < 4.7× 10−5 of Bianchini and Fabbian [21], which is a factor 2 tighter than the constraint
originally reported by the COBE collaboration [54] and slightly tighter than the TRIS result
[55].

The maximum PBH mass which can be generated by a peaked power spectrum and
without overproducing spectral distortions is determined by the large k value where the PBH
and µ-distortion constraints meet for any given power spectrum peak, and the corresponding
horizon mass Eq. (2.2) gives an approximate estimate of the PBH mass which would form
on this scale. One can see from Fig. 1 that there is no significant change in the value
of k (or MPBH) even when going from fPBH = 1 to generating just a single PBH in our
entire observable universe. This is partly because β is exponentially sensitive to the power
spectrum amplitude, and partly because the µ constraint varies sharply with k in the tail of
the constraint. For the latter reason, the intersection is also not very sensitive to changes
in the µ constraint. Broader power spectra lead to broader µ constraints and hence a lower
possible maximum mass, see e.g. [38, 52].

3 Beyond Gaussian fluctuations

In this section, we show how to extend the calculation of the constraints to non-Gaussian
curvature perturbations, but we first start by highlighting some of the challenges which non-
Gaussian models face when being used as a means to generate PBHs.

One issue with PBHs formed from non-Gaussian perturbations is that they will form
in clusters, and there are observational constraints on such clustering which may rule out
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Figure 1: Constraints on the power spectrum amplitude assuming Gaussian curvature per-
turbations and a Dirac delta power spectrum. The upper x-axis shows the horizon mass in
solar mass units (which is approximately the PBH mass) corresponding to each k∗ value.

evading µ-distortion constraints for supermassive PBH generation via large non-Gaussianity,
although the constraint will depend on the shape and amplitude of non-Gaussianity [56, 57,
58]. There are also tight limits on any non-Gaussian correlation between PBH-forming scales
and CMB scales via the constraint on photon-DM isocurvature perturbations [59, 60, 61].
These constraints are very tight when most of the DM is in PBHs but weaken significantly
when fPBH ≪ 1, and such small values are expected for the supermassive mass range. The
scale corresponding to SMBH formation is only around 3 orders of magnitude smaller than
CMB scales, so the standard assumption that these scales are uncoupled (even if the PBH
scales are much more non-Gaussian) is not obviously true. Nonetheless, we here assume the
usual CMB scales are sufficiently decorrelated from the large non-Gaussianity present on the
PBH forming scales that this is not a problem, in which case the non-Gaussianity constraint
from anisotropic µ-distortions via µ−T correlations would also not apply [14, 15, 17, 18, 19,
20, 21, 22, 23]. In effect, we are assuming that f̃NL is scale-invariant over the small range
of scales relevant for the large amplitude peak responsible for forming PBHs, but that its
value varies strongly between the peak and the usual larger CMB scales. The clustering and
isocurvature constraints will be irrelevant in the limit of very few PBHs (because this makes
clustering impossible) but may be important when a primordial seed for all or most SMBHs
is being considered.

When considering very non-Gaussian tails to the pdf we should consider the impact of
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type II perturbations (those with δ significantly larger than δc whose formation has recently
been simulated [62]), which have been claimed to form separate universes rather than PBHs
though [63] argues against this. For (approximately) Gaussian perturbations the type II
perturbations are exponentially suppressed compared to the usual type I perturbations which
form PBHs and are hence irrelevant, but if the tails are sufficiently flat then they may become
relevant [11].

3.1 Local non-Gaussianity: Perturbative and non-perturbative limits

Primordial non-Gaussianity of the local type, which arises when deviations from Gaussian-
ity are local in real space, is usually characterised by a Taylor expansion of the comoving
curvature perturbation about its mean

R(x⃗) = RG(x⃗) + f̃NL

(
RG(x⃗)

2 − ⟨RG(x⃗)⟩2
)
+ g̃NLRG(x⃗)

3 + · · · , (3.1)

where f̃NL ≡ 3fNL/5 and g̃NL ≡ 9gNL/25 are non-linearity parameters quantifying the mag-
nitude of non-Gaussianity. We denote the variance of curvature as A ≡ ⟨R2⟩ and that of the
underlying Gaussian field as AG ≡ ⟨R2

G⟩.
Perturbative non-Gaussianity means that the linear term dominates, i.e. |f̃NL|A1/2

G ≪ 1,
and |g̃NL|AG ≪ 1. Since in this limit A and AG are almost equal, these conditions are
equivalent to |f̃NL|A1/2 ≪ 1, and |g̃NL|A ≪ 1. Non-perturbative non-Gaussianity implies the
contrary, with either the f̃NL, g̃NL, or even higher-order terms dominating to the extent that
the power spectrum is completely dominated by this non-linear term.

In most of this paper, we assume that g̃NL is negligible and focus on the non-Gaussianity
arising from f̃NL. We focus on f̃NL > 0 because this corresponds to positive skewness which
boosts PBH production, but we note that unlike the extremely asymmetric response of PBH
constraints to the sign of the non-Gaussianity [64, 65, 66], the µ constraints depend primarily
on the magnitude of f̃NL [24]. We discuss g̃NL in Section 4.3 and Appendix A and extend
the expansion of Eq. (3.1) to higher orders in Section 4.4.

3.2 Perturbative non-Gaussianity constraints

Here we show constraints both in the truly perturbative limit of f̃NL

√
A ≪ 1 and the bor-

derline case of perturbativity (f̃NL

√
A = 1) where the perturbative treatment is no longer

really valid, but we include this to give an estimate of the maximum possible impact of
‘perturbative’ non-Gaussianity.

Using the fact that ⟨R4
G⟩ = 3⟨R2

G⟩2 = 3A2
G, Eq. (3.1) shows that the total variance is

given by
A ≡ ⟨R2⟩ = AG + 2f̃2

NLA
2
G. (3.2)

The spectral distortion for an arbitrary value of f̃NL for a spectrum centred at the scale
k∗ is given by

µ = µG + µχ2 = AGWµ(k∗) + f̃2
NLA

2
GW

(NG2)
µ (k∗) . (3.3)

More details are given in paper I, including the definitions of Wµ and W
(NG2)
µ and useful

fitting functions [24]. We can then compute the variance A which saturates the observational
µ constraint for each chosen value of f̃2

NLAG or f̃2
NLA.

The technique for determining the PBH constraints with arbitrary values of f̃NL is
detailed in paper [66] and explained for certain limiting cases in Appendix A. Following
those techniques we first work in terms of the variance AG of the Gaussian perturbations,
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since the relevant formulas for fPBH are defined in terms of that variable [66]4. We then
convert this result into a total variance A using Eq. (3.2) and the fact we want to set f̃NL by
the condition

f̃2
NLA = κ , (3.4)

for a given value of κ, which quantifies the relative non-Gaussian contribution to the total
variance. In the next figure, we display our results for κ = 0.01 and κ = 15. Plugging this
value of f̃NL into Eq. (3.2) we find the variance to be related to the variance of the Gaussian
perturbations by

A =
AG

2

(
1 +

√
1 + 8κ

)
. (3.5)

Hence for f̃2
NLA = 0.01 the variance only varies from the amplitude of the Gaussian power

spectrum at the percent level, but for the borderline perturbative case of f̃2
NLA = 1 we

have A = 2AG, corresponding to equal contributions from the Gaussian and χ2 parts of the
curvature perturbation.

Figure 2 shows how the distortion and PBH constraints change for both of these limits,
where we have varied f̃NL as a function of k∗ (the position of the peak) such that it always
takes the value consistent with the value of κ shown. The first thing to notice from the figure
is that the µ constraints remain much stronger than the PBH constraints over most of the
scales where distortion constraints exist. To determine the maximum mass PBH which can be
generated consistently with the µ-distortion constraint one should determine the intersection
of the appropriate PBH and µ-constraint lines (solid with solid for Gaussian, dotted with
dotted for f̃2

NLA = 1, etc). For Gaussian perturbations, the maximum mass is ∼ 104M⊙
which is very similar to the maximum mass possible with f̃2

NLA = 1, but one would have
overestimated the mass by a factor of 2 if one compared the correct PBH constraint to the
Gaussian µ constraint.

4 Non-perturbative non-Gaussianity

Having seen that even the maximum possible “perturbative” non-Gaussianity is insufficient
to substantially weaken the PBH constraints, in this section we study the limit of completely
non-perturbative non-Gaussianity. We first focus on the more commonly considered case
of chi-squared non-Gaussianity for which we make a detailed calculation. We then sketch
the even more extreme case of Gaussian cubed statistics and beyond. Before making these
calculations, we outline some general issues with large non-Gaussianity and also comment
that in practice the non-Gaussian perturbations act like a linear “background” perturbation
in any finite volume, meaning that the Gaussian (linear) term will not be completely absent
in practise [68, 69, 70, 71]. But it’s still useful to consider this completely non-Gaussian limit
as an extreme scenario.

4.1 Distortions in the limit of local χ2 non-Gaussianity

In this section we focus on a pure chi-squared non-Gaussianity, meaning that we can absorb
f̃NL into the power spectrum amplitude and write

R(x⃗) = R2
G(x⃗)− ⟨R2

G⟩. (4.1)

4We note that modern techniques to determine the PBH abundance subject to non-Gaussianity have found
the impact of finite f̃NL is significantly reduced compared to the calculation of [66], see e.g. [41, 67], but this
would not change our main conclusions.

5Note that in paper 1 [24] we instead plot results for fixed values of f̃2
NL AG.
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Figure 2: The µ and PBH constraints for Gaussian perturbations (solid), perturbative
non-Gaussianity with f̃2

NLA = 0.01 (dashed) and the limit with the maximum possible per-
turbative non-Gaussianity (dotted). Coincidentally, the PBH constraint with fPBH = 10−5

and f̃2
NLA = 1 (dashed black) is almost identical to the constraint with 1 PBH inside today’s

horizon and f̃2
NLA = 0.01 (dotted green). When including non-Gaussianity we note that only

the Gaussian part of the power spectrum has a Dirac delta-function power spectrum.

Provided that the Gaussian power spectrum has a delta-function peak, one can determine
the analytic shape and amplitude of the chi-squared power spectrum to be (as explained in
paper 1 [24])

PR2
G
(k) ≡ k3

2π2
PR2

G
(k) = A2

G

k2

k2∗
H(2k∗ − k) = AG2

1

2

k2

k2∗
H(2k∗ − k) , (4.2)

where H is the Heaviside function. The variance of this power spectrum is given by

AG2 =

∫ ∞

0
PR2

G
d ln k = 2A2

G, (4.3)

in agreement with the large f̃NL limit of Eq. (3.2).
The µ-distortion can then be computed using techniques described in Section 3.2 and

paper I. The constraints from this power spectrum variance are shown in Fig. 3. Notice that
the µ constraint is normally similar to the Gaussian case, with the difference being primarily
towards the tails where the constraints tighten, due to the shape of the power spectrum
varying between the Gaussian and χ2 cases. The χ2 peak of Eq. (4.2) is asymmetric and
broader to the left of the peak, which explains why the difference in the constraints becomes
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μ: Gaussian
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Figure 3: The µ-distortion and PBH constraints on the variance for Gaussian (solid) and
χ-squared (dashed) statistics.

significant for k ≳ 104Mpc−1 where it is mostly the left-hand tail of the power spectrum
peak which generates a µ-distortion. The PBH constraint tightens as expected (for all PBH
masses), demonstrating that PBH formation is for a large mass range more sensitive to non-
Gaussianity than the µ constraints. However, the maximum mass PBH possible (i.e. the
intersection of the µ and PBH constraints) does not change very significantly (it increases
by a factor of a few), because of the broader µ-distortion constraint in the χ2 case.

4.2 General values of f̃NL

In this section we collate the perturbative and non-perturbative results for any value of
f̃NL > 0, summarising some of the key information shown in Figs. 2 and 3 in another way.

In Fig. 4, we plot the ratio of the variances leading to the same value of µ or fPBH,
first, for the chi-squared case compared to the Gaussian case (solid lines), and second, for the
f̃2
NLA = 1 case compared to the Gaussian case (dashed lines). We recall that the condition
f̃2
NLA = 1 roughly sets the boundary between the perturbative and non-perturbative non-
Gaussianity regime. For µ-distortions, the ratio is independent of the observed value of µ
because µ depends linearly on the variance, and the ratio is close to unity except towards the
tails in k where the µ constraints weaken. In contrast, the ratio of the PBH constraints is
always significantly less than one and is (mildly) dependent on the assumed constraint on the
PBH fraction. The fact that the lines for a pure χ2 non-Gaussianity are always significantly
below the equivalent lines for the perturbative limit non-Gaussianity demonstrates that it is
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Figure 4: The ratio of the variance, comparing the constraints of the variance of either a pure
χ2 perturbation to Gaussian (solid lines) or ‘perturbative’ non-Gaussianity with f̃2

NLA = 1
compared to the Gaussian variance (dashed lines, all following the same colours). Note
that the ratio for the µ constraint is independent of the value of µ. In contrast, the PBH
constraints do depend on the assumed value of fPBH but are only mildly dependent on k∗.

only in the extremely non-Gaussian regime that the PBH constraints change by more than
a factor of a few.

4.3 Distortions from large Gaussian cubed non-Gaussianity

Since even the non-perturbative limit of χ2 non-Gaussianity is insufficiently non-Gaussian to
make supermassive PBH formation compatible with the µ-constraint, there is a substantial
literature on more extreme forms of non-Gaussianity, e.g. [72, 9, 10, 12]. The obvious next
step is Gaussian cubed statistics,

R = R3
G, (4.4)

corresponding to infinitely large g̃NL.

An analytic estimate of the variance required for PBH formation follows from the tech-
niques in [66]. Using the fact that ⟨R6

G⟩ = 5 × 3⟨R2
G⟩3 = 15A3

G, we see that in the limit
of g̃NL completely dominating, and as derived in Appendix A, the variance is related to the
collapse fraction βG3 by

AG3 = 15A3
G =

15

8

R2
c

InvErfC3(2βG3)
. (4.5)
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Figure 5: The fPBH constraints computed with non-perturbative Gaussian cubed pertur-
bations (dashed lines), with the corresponding Gaussian constraints (solid) shown for com-
parison. The Gaussian and χ2 (dot-dashed) µ-constraints are also plotted for comparison
purposes.

We show the corresponding constraints in Fig. 5. Unfortunately, we are unable to deter-
mine the variance corresponding to the µ constraint with Gaussian cubed non-Gaussianity,
but expect it to be comparable in amplitude to the Gaussian and χ2 constraints, which are
comparable to each other over a large range of k. This shows that even cubic non-Gaussianity
is at best borderline sufficiently non-Gaussian to allow the generation of even a single PBH
inside the observable universe. The largest possible PBH looks likely to be only a factor of a
few larger than for the Gaussian and χ2 cases for fPBH = 10−5, but could potentially be two
orders of magnitude larger for the extreme (and rather academic) limit of 1 PBH inside our
universe. However, what is clear is that even in this case fPBH must be too small to explain
the origin of all SMBHs.

4.4 Higher-order non-Gaussianity

Since even the infinite limits of f̃NL and g̃NL are insufficiently non-Gaussianity to allow PBH
formation with very large masses, we here consider a general curvature perturbation of the
form

R = Rn
G − ⟨Rn

G⟩. (4.6)
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but we caution that such extreme forms are not well motivated and that even if a model
can be found6, having all terms with smaller n set to zero is expected to require substantial
fine-tuning [68, 69, 70, 71]. For positive integer n we can estimate the values of the power
spectrum, bispectrum and trispectrum in terms of the variance of the Gaussian perturbation
(AG) to be

PR ∼ An
G, BR ∼ A

3n/2
G for even n, TR ∼ A2n

G for any n, (4.7)

whilst the bispectrum would be zero for odd n. In any case, the largest contribution to these
spectra is always the power spectrum whilst the non-Gaussian contributions are suppressed

by a factor of σG = A
1/2
G to a positive power, which must always be much less than unity in

order to avoid over producing PBHs. Hence, the tightest constraints on the amplitude of the
variance coming from the µ distortion in the k range of primary interest, which corresponds to
10Mpc−1 ≲ k ≲ 104Mpc−1 is expected to be similar for any value of n. We have explicitly
shown this to be true for the cases of n = 1 and n = 2. The tails to small and large k
differ because the shape of the power spectrum peak is a function of n, but unfortunately for
n > 2 the convolution integrals which should be computed in order to determine the power
spectrum shape are too complicated to solve.

The PBH constraints for the extreme cases of n = 4 and n = 5 are shown in Fig. 6.
This is based on calculations presented in Appendix A. For n = 4 the maximum PBH mass
increases substantially compared to the more Gaussian cases, with M ≳ 107M⊙ becoming
realisable assuming fPBH = 10−5. For even smaller values of fPBH, it becomes possible to
generate some PBHs of any mass. For n = 5 the µ constraint becomes weaker than the PBH
constraint even for fPBH > 10−5.

4.5 Literature comparison

Here we compare our results to some other literature which studied the possibility of using
large non-Gaussianity to evade the µ constraints. Our results for the PBH constraints are
most similar to those of Unal et al [10], who considered the infinite limits of f̃NL and g̃NL

and also included the non-linear relation between the curvature perturbation and density
perturbation. Our constraint curves are very similar, with the main difference arising because
they use a collapse threshold of 0.5, making their constraints on the power spectrum tighter
than ours by a factor of (0.5/0.67)2 ≃ 0.56. Note from Appendix A that the constraint on
the variance is proportional to R2

c even in the case of highly non-Gaussian fluctuations.
Nakama et al. [72, 9] and Hooper et al. [12] include a study of the following phenomeno-

logical parametrisation of the pdf

P (R) =
1

2
√
2σ̃Γ(1 + 1/p)

e−(|R|/(2σ̃))p , (4.8)

which has been normalised to satisfy
∫∞
−∞ P (R)dR = 1, where the variance of the curvature

perturbation R is given by

σ2 ≡
∫ ∞

−∞
R2P (R)dR =

2Γ(1 + 3/p)

3Γ(1 + 1/p)
σ̃2. (4.9)

Note that for p = 2 the perturbations are Gaussian and σ = σ̃, as expected. For p < 2
the tail is flattened but the derivative of P (R) is discontinuous at R = 0, making this pdf

6for a concrete model with n = 2 see [73].
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Figure 6: The fPBH constraints computed with non-perturbative Gaussian to the power 4
(dashed) or power 5 (dotted) perturbations, with the corresponding Gaussian (solid) values
shown for comparison. The Gaussian and χ2 (dot-dashed) µ constraints are also plotted for
comparison purposes.

unphysical. The case with p = 1 has the same tail to large R > 0 as the χ2 distribution but
is not equivalent (with Eq. (4.8) being symmetric, unlike the χ2 distribution). Smaller values
of p correspond to flatter tails and hence an enhanced PBH abundance. The advantage of
this parameterization of the curvature perturbation is that it is straightforward to calculate
the PBH abundance using Press-Schechter theory, within the limitation that one needs to use
approximate methods for determining the PBH abundance using the curvature perturbation
directly.

Taking results from Appendix A, from Eq. (A.2) and Eq. (A.3) one can find a rela-
tion between the extreme non-Gaussian curvature perturbation of Eq. (4.6) and the pdf of
Eq. (4.8). With odd n the tail of the pdf goes like 2/n which hence corresponds to p = 2/n
in the tail of Eq. (4.8). For even n there is no such simple relation in general, but one can
see from Eq. (A.7) that n = 2 corresponds to having the same pdf tail as p = 1. The pdfs
are not equivalent except in the large R tails, but this is the part of the pdf which is relevant
for PBH formation.

Based on our result that a Gaussian cubed (n = 3) perturbation is not sufficiently non-
Gaussian to generate primordial SMBHs whilst evading the µ constraint, while Gaussian
to the fifth power is sufficiently non-Gaussian suggests that one requires p to be less than
somewhere in the range 2/5 − 2/3. This agrees with the result of Nakama et al. [9], who
suggest the threshold is around p = 0.5. Compared to them, on the one hand, we use a
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µ constraint a factor of 2 tighter, but on the other hand, we include the unavoidable non-
Gaussianity caused by the non-linear relation between the curvature perturbation and density
contrast, which weakens the PBH constraint on the variance by a factor of 2. Thus our results
should indeed be similar.

Hooper et al. [12] suggest a similar constraint on p and propose a curvaton model with a
non-quadratic potential as a means to generate a sufficiently non-Gaussian perturbation in-
cluding a kinetic coupling to the inflaton to generate the required peak in the power spectrum,
but do not find a concrete model which works.

The case of pure χ2 statistics Section 4.1 leads to the exponential tail corresponding
to p = 1. This behaviour in the tail of the pdf has been motivated by numerous authors
studying stochastic inflationary effects, e.g. generated during ultra-slow-roll inflation [74, 75,
76, 77, 78, 11]. Our results show that these exponential tails are insufficiently non-Gaussian
to generate primordial SMBHs whilst evading the µ constraints. The observation that χ2

statistics reduce the required power spectrum variance by an order of magnitude (see Fig. 3)
is consistent with the stochastic inflation analysis of [79]. From Fig. 1 one can infer that one
needs a reduction in the variance by about 3 orders of magnitude to generate PBHs of any
mass and in this paper, we have argued that this inference will remain approximately true
even when the distortion constraint is recalculated to include the impact of non-Gaussianity.
Of course, the fact that the pdfs only agree in the tail means the required variance to generate
a given abundance of PBHs will not be exactly the same if the pdf is not exactly the same
everywhere, but we have checked that the difference between the pure χ2 and p = 1 pdfs is
of order 10%, which is insignificant compared to the orders of magnitude gap between the
PBH and distortion constraints as shown in Fig. 3.

5 Conclusions

As is well known, the tight constraint on cosmic µ-distortions rules out the formation of
supermassive PBHs, assuming Gaussian perturbations. Given that the origin of SMBHs
remains a mystery, and that they are even observed at high redshift, numerous efforts have
been made to invoke sufficiently extreme forms of non-Gaussianity in order to evade the µ-
constraints and allow the formation of PBHs with any mass [72, 9, 10, 13, 12]. However, none
of these papers have recalculated the µ-distortion constraint which means their conclusions
may not be correct.

In our companion paper [24] we have made the first full calculation of the µ-distortion
subject to local non-Gaussianity parameterised by f̃NL, and in this paper we have made the
first comparison between the corresponding PBH and µ-constraints, showing how the respec-
tive constraints change when dropping the assumption of Gaussian perturbations. We note
that many previous papers have considered the correlation of T and µ-distortion perturba-
tions as a means to constrain non-Gaussianity on small scales, but they have not calculated
the averaged background value of µ [14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and we also assume
that the large non-Gaussianity does not correlate to CMB scales.

Because PBH formation takes place deep in the tail of the pdf, the formation rate is
highly sensitive to non-Gaussianity and the required power spectrum amplitude can change
significantly (by more than an order unity correction) even for perturbative levels of non-
Gaussianity, whilst the µ constraints are primarily sensitive to the peak of the pdf and hence
do not change significantly. However, towards the large k tail of the range of scales which
distortions can constrain the µ constraint tightens significantly, reducing the maximum mass
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with which any PBH can form. Hence – in the interesting limit of highly non-Gaussian
perturbations – it is incorrect to neglect the change (the strengthening) of the µ-distortion
constraint.

For a pure χ2 non-Gaussianity we are able to perform a full calculation of both the µ
and PBH constraints and find that the maximum mass with which PBHs can be generated
remains comparable to the case of Gaussian perturbations, no matter which value of fPBH

is desired. Our tentative results for a Gaussian cubed perturbation show that such statistics
may be close to sufficiently non-Gaussian to generate a tiny fraction of supermassive PBHs
of any mass, but at a level insufficient to explain the origin of all SMBHs.

Unfortunately, the techniques we have developed to determine the µ distortion con-
straint for χ-squared non-Gaussianity cannot easily be extended to more extreme forms
of non-Gaussianity so we cannot definitively determine which more extreme form of non-
Gaussianity might allow primordial SMBH production of any mass. However, one can see
from Figs. 3 and 4 that the tightest constraint on the variance of the perturbations due to
the µ distortion, which applies over a large range of scales corresponding to the mass range
105M⊙ ≲ M ≲ 1011M⊙, barely changes. We explain the reasons carefully in our companion
paper and expect this result to remain true for more extreme forms of non-Gaussianity. Us-
ing results developed in the appendix, we extend the calculation of the PBH constraints to
Gaussian to higher powers than squared and conclude from Fig. 6 that a Gaussian pertur-
bation raised to the fifth power would in principle be sufficiently non-Gaussian to allow the
formation of a significant fraction of PBHs of any mass without conflicting with the distortion
constraints.

We caution that even if a working model with large non-Gaussianity can be found which
evades the µ-distortion constraints, and if an actual inflationary model to generate can be
constructed, the other challenges described near the start of Section 4 remain. In addition,
there are potentially tighter but less well-understood and model-dependent constraints com-
ing from dark matter substructure, including ultracompact minihaloes, on a more limited
range of scales, see e.g. [80, 81, 82, 47, 83, 84, 85] and a constraint from BBN [86].

Throughout this paper, we have assumed PBHs form via the direct collapse of large am-
plitude density perturbations shortly after horizon entry. Alternative formation mechanisms
exist (for examples generating supermassive PBHs see e.g. [87, 88]) and the calculation of
the µ constraint would have to be redone for each scenario. However, PBH formation in all
these cases takes place later than horizon entry (meaning on subhorizon scales relevant for
CMB distortions and still on a scale comparable to the PBH which forms), so one should not
- in general - expect these cases to easily evade the tight CMB spectral distortion constraints
which apply during PBH formation.
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A Calculating the PBH abundance with extreme non-Gaussianity

We here summarise the calculation which determines the power spectrum amplitude as a
function of β (or fPBH) for non-Gaussian perturbations. We follow [66] and refer the reader
to that paper for the calculation with finite values of f̃NL or g̃NL. We here focus on the
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simpler cases of the extreme non-Gaussian limit of Section 4.4

R ≡ h(RG) = Rn
G − ⟨Rn

G⟩, (A.1)

for positive integer n. To the best of our knowledge we extend this calculation to n = 4 and
n = 5 for the first time. These correspond to the infinite limits of hNL and iNL respectively
[89]. We reiterate that large non-Gaussianity needs to be treated with caution, see Section 3.

The crucial idea is to transform from the non-Gaussian (NG) probability density func-
tion (PDF) to a Gaussian PDF using the following transformation

PNGdR =
∑
i

∣∣∣∣dh−1
i (R)

dR

∣∣∣∣PG(h
−1)dR, (A.2)

where PG has a Gaussian distribution. The sum is over all solutions of the equation h(RG) =
R. For even values of n there are always two identical solutions with R > Rc and for odd n
there is always one solution.

We start by considering odd n, which is the simpler case since in this case ⟨Rn
G⟩ = 0.

Therefore, h−1(R) = R1/n and changing variables to

y ≡ h−1(R)

σG
=

R1/n

σG
, yc =

R1/n
c

σG
, (A.3)

one can use Press-Schechter theory to find

βGn =
1

2
ErfC

(
yc√
2

)
. (A.4)

We invert this to find

AG = σ2
G =

R2/n
c

2InvErfC2(2βGn)
, (A.5)

where InvErfC in the inverse of the complementary error function and hence the variance
(for odd n) satisfies

(n− 1)!!An
G =

(n− 1)!!

2n
R2

c

InvErfCn(2βGn)
. (A.6)

For even n the subtraction of the ⟨Rn
G⟩ term means we cannot derive a general expres-

sion, but we here derive the solution for n = 2 and 4, starting with the case of pure χ2

non-Gaussianity, for which ⟨R2
G⟩ = σ2

G. We here have h−1 = ±
√

R+ σ2
G and hence using

the variables

y =
±
√

R+ σ2
G

σG
, yc =

±
√

Rc + σ2
G

σG
, (A.7)

one finds

βG2 = ErfC

(
|yc|√
2

)
, ⇒ |yc| =

√
2 InvErfC (βG2) , (A.8)

which we can rearrange to find the variance is

AG2 = 2σ4
G =

2R2
c(

2 InvErfC2 (βG2)− 1
)2 . (A.9)
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Finally, for n = 4, and using ⟨R4
G⟩ = 3σ4

G, we have h
−1 = ±

(
R+ 3σ4

G

)1/4
, and changing

to the same variables as before,

y =
±
√
R+ 3σ4

G

σG
, yc =

±
√

Rc + 3σ4
G

σG
, (A.10)

one finds

βG4 = ErfC

(
|yc|√
2

)
, ⇒ |yc| =

√
2InvErfC (βG4) , (A.11)

which we can rearrange (using ⟨R8
G⟩ = 7!!σ8

G) to find the variance is

AG4 = 96A4
G =

96R2
c(

4 InvErfC4 (βG4)− 3
)2 . (A.12)
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[61] Raphaël van Laak and Sam Young. “Primordial black hole isocurvature modes from
non-Gaussianity”. In: (Mar. 2023). arXiv: 2303.05248 [astro-ph.CO].

[62] Koichiro Uehara et al. “Numerical simulation of type II primordial black hole forma-
tion”. In: (Jan. 2024). arXiv: 2401.06329 [gr-qc].

[63] Michael Kopp, Stefan Hofmann, and Jochen Weller. “Separate Universes Do Not Con-
strain Primordial Black Hole Formation”. In: Phys. Rev. D 83 (2011), p. 124025. doi:
10.1103/PhysRevD.83.124025. arXiv: 1012.4369 [astro-ph.CO].

[64] Pedro Pina Avelino. “Primordial black hole constraints on non-gaussian inflation mod-
els”. In: Phys. Rev. D 72 (2005), p. 124004. doi: 10.1103/PhysRevD.72.124004.
arXiv: astro-ph/0510052.

[65] David H. Lyth. “The hybrid inflation waterfall and the primordial curvature pertur-
bation”. In: JCAP 05 (2012), p. 022. doi: 10.1088/1475-7516/2012/05/022. arXiv:
1201.4312 [astro-ph.CO].

– 22 –

https://doi.org/10.1086/307071
https://arxiv.org/abs/2309.02366
https://arxiv.org/abs/2309.02366
https://arxiv.org/abs/2310.08527
https://doi.org/10.1086/178173
https://arxiv.org/abs/astro-ph/9605054
https://doi.org/10.1086/592134
https://arxiv.org/abs/0807.4750
https://arxiv.org/abs/0807.4750
https://doi.org/10.1103/PhysRevD.104.023526
https://arxiv.org/abs/2103.13692
https://doi.org/10.1103/PhysRevLett.129.191302
https://doi.org/10.1103/PhysRevLett.129.191302
https://arxiv.org/abs/2208.01683
https://arxiv.org/abs/2304.08153
https://doi.org/10.1103/PhysRevD.91.123534
https://arxiv.org/abs/1502.01124
https://doi.org/10.1088/1475-7516/2015/04/034
https://doi.org/10.1088/1475-7516/2015/04/034
https://arxiv.org/abs/1503.01505
https://arxiv.org/abs/2303.05248
https://arxiv.org/abs/2401.06329
https://doi.org/10.1103/PhysRevD.83.124025
https://arxiv.org/abs/1012.4369
https://doi.org/10.1103/PhysRevD.72.124004
https://arxiv.org/abs/astro-ph/0510052
https://doi.org/10.1088/1475-7516/2012/05/022
https://arxiv.org/abs/1201.4312


[66] Christian T. Byrnes, Edmund J. Copeland, and Anne M. Green. “Primordial black holes
as a tool for constraining non-Gaussianity”. In: Phys. Rev. D 86 (2012), p. 043512. doi:
10.1103/PhysRevD.86.043512. arXiv: 1206.4188 [astro-ph.CO].

[67] Giacomo Ferrante et al. “Primordial non-Gaussianity up to all orders: Theoretical as-
pects and implications for primordial black hole models”. In: Phys. Rev. D 107.4 (2023),
p. 043520. doi: 10.1103/PhysRevD.107.043520. arXiv: 2211.01728 [astro-ph.CO].

[68] Lotfi Boubekeur and David. H. Lyth. “Detecting a small perturbation through its non-
Gaussianity”. In: Phys. Rev. D 73 (2006), p. 021301. doi: 10.1103/PhysRevD.73.
021301. arXiv: astro-ph/0504046.

[69] Elliot Nelson and Sarah Shandera. “Statistical Naturalness and non-Gaussianity in
a Finite Universe”. In: Phys. Rev. Lett. 110.13 (2013), p. 131301. doi: 10 . 1103 /

PhysRevLett.110.131301. arXiv: 1212.4550 [astro-ph.CO].

[70] Sami Nurmi, Christian T. Byrnes, and Gianmassimo Tasinato. “A non-Gaussian land-
scape”. In: JCAP 06 (2013), p. 004. doi: 10.1088/1475-7516/2013/06/004. arXiv:
1301.3128 [astro-ph.CO].

[71] Sam Young and Christian T. Byrnes. “Long-short wavelength mode coupling tightens
primordial black hole constraints”. In: Phys. Rev. D 91.8 (2015), p. 083521. doi: 10.
1103/PhysRevD.91.083521. arXiv: 1411.4620 [astro-ph.CO].

[72] Tomohiro Nakama, Teruaki Suyama, and Jun’ichi Yokoyama. “Supermassive black
holes formed by direct collapse of inflationary perturbations”. In: Phys. Rev. D 94.10
(2016), p. 103522. doi: 10.1103/PhysRevD.94.103522. arXiv: 1609.02245 [gr-qc].

[73] Andrew D. Gow, Tays Miranda, and Sami Nurmi. “Primordial black holes from a
curvaton scenario with strongly non-Gaussian perturbations”. In: JCAP 11 (2023),
p. 006. doi: 10.1088/1475-7516/2023/11/006. arXiv: 2307.03078 [astro-ph.CO].

[74] Chris Pattison et al. “Quantum diffusion during inflation and primordial black holes”.
In: JCAP 10 (2017), p. 046. doi: 10.1088/1475-7516/2017/10/046. arXiv: 1707.
00537 [hep-th].
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