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Abstract

Natural language processing tools have become frequently used in social sciences

such as economics, political science, and sociology. Many publications apply topic mod-

eling to elicit latent topics in text corpora and their development over time. Here, most

publications rely on visual inspections and draw inference on changes, structural breaks,

and developments over time. We suggest using univariate time series econometrics to

introduce more quantitative rigor that can strengthen the analyses. In particular, we

discuss the econometric topics of non-stationarity as well as structural breaks. This

paper serves as a comprehensive practitioners guide to provide researchers in the social

and life sciences as well as the humanities with concise advice on how to implement

econometric time series methods to thoroughly investigate topic prevalences over time.

We provide coding advice for the statistical software R throughout the paper. The

application of the discussed tools to a sample dataset completes the analysis.
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1 Introduction

Topic modeling is a computational method that transforms qualitative text into quanti-

tative data that can be measured with a plethora of statistical methods. By that, it has

become an invaluable tool for systematically investigating large amounts of text data

and its contents. The foundations were laid by Blei et al. (2003) when they developed

the Latent Dirichlet Allocation algorithm to structure text data into unspecified, latent

topics. Since then, many refinements, variations, and extensions have been developed

to capture a variety of underlying data-generating processes properly (See Vayansky &

Kumar, 2020, for a review).

All the described tools are not new or innovative but quite established econometric

methods that have been known for years, if not decades. Furthermore, macroeconomics,

the economics subfield in which time series analysis played an essential role, shifted

towards other methods and dismissed traditional univariate time series econometrics.

Nevertheless, these techniques still need to be realized in many academic disciplines

outside economics. Furthermore, work by Laureate et al. (2023) finds that researchers

using topic models for investigations of social media texts do not use them in the

best way. While the present paper does not address the application of topic models

directly, it indirectly explains how advanced time series methods can be used with topic

probabilities computed based on topic modeling.

Topic modeling has become an essential tool in social and life sciences, and there

already exists many practitioners’ guides for the use of topic models per se (see, e.g.,

Karl et al., 2015; Fu et al., 2021; Isoaho et al., 2021) or the appropriate number of topics

to choose, which has to be defined exogenously (see, e.g., Greene et al., 2014; Weston

et al., 2023).1 Nevertheless, many developments over time continue to be measured

solely by visual inspection and interpretation of time series. It applies particularly

strongly to research in the digital humanities that often encompasses extensive periods

in which the analyzed text documents had been published (for example, Wehrheim,

1Note that these are examples and, by far, not exhaustive.
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2019, 2020; Küsters & Garrido, 2020; Küsters, 2023). One recent example that tries to

change this is the work by Schmal (2023). He first elicits latent topics using a structural

topic model (Roberts et al., 2019) and extracts the expected probabilities for each topic

and each paper. In the second step, he categorizes the topics and aggregates the topic

probabilities by category and year to conduct time series analytics. The present paper

ties in with this work and wants to provide the curious reader a manual to follow the

steps of Schmal (2023) when conducting time series econometrics. There already exists

work aiming at providing non-economists with practical advice on how to study time

series econometrically (see, e.g., Jebb & Tay, 2017). Closest to this paper is the work

by Zeileis et al. (2003), who describe how to detect structural breaks in time series using

the R software package. The present paper comprehensively describes non-stationarity

and how to detect it. Furthermore, the specific link between time series econometrics

and topic modeling remains a research desiderat.

In general, the present paper will introduce practitioners in social science research

to these methods. It may also be helpful for students who want to enhance their essays

or theses with quantitative rigor. This paper cannot be exhaustive but serves as an

invitation to read further and dig deeper to foster more thorough quantitative research

in the social sciences and digital humanities. Throughout the paper, we provide im-

mediate coding suggestions using the statistical software R, published and maintained

under an open-source license and freely available. Throughout the paper, we refer

several times to econometrics textbooks and encourage the reader to consult these

resources when conducting their own research.2

As an illustration, we investigate the time series for the evolution of Google searches

for “topic modeling” from January 2004 until January 2024.3 Figure 1 displays the

time series as a line plot. Visual inspection displayed high interest and high fluctu-

ation until 2010. Since then, there seems to have been a steady upward trend that

2If one wants to use econometric tools more broadly in R, among others, Kleiber and Zeileis (2008)
provide a textbook covering that.

3The dataset is available on Zenodo, see Schmal (2024).
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Data received from Google Trends for the phrase “topic modeling” on January 2024 using the URL
https://trends.google.de/trends/explore?date=all&q=topic%20modeling&hl=de. Data for
search requests worldwide. Note that Google Trends computes interest in a search term relative to the
date with the highest interest, coded as 100. Based on that, interest for all other dates is computed
relative to the highest number. Raw numbers are not available from Google.

Figure 1: Evolution of Google searches for ‘topic modeling’ over time

has only been interrupted in more recent years, namely between mid-2020 and early

2022. Since then, it has stabilized at a high level and decreased again in recent months.

In the following sections, I will discuss mainly two critical quantitative analyses of

time series data. First, in Section 2, I will elaborate on the question of stationarity or

non-stationarity within a time series. It is an essential tool for detecting various trends

in a time series. Secondly, in Section 3, I will address the question of the presence of

a structural break within observations, which is often only solved by visual inspection.

Applying statistical tools can overcome this. Furthermore, the endogenous search for

such structural changes will be explained. Section 4 briefly concludes.
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2 Stationarity

2.1 Statistical foundations

Stationarity, or non-stationarity, is a core concept for understanding time series data.

The former implies that the distribution of the outcome variable does not depend

on time. Put differently, stationarity requires a constant mean and variance for the

outcome variable across time. In addition, the covariance between two outcome obser-

vations must depend only on its temporal distance (i.e., three years), but not which

three years. Again, in different terms, stationarity implies a reversion to the mean

on the one hand and no growth in terms of fluctuations over time (Hill et al., 2008).

Spoken in applied terms, stationarity within a time series implies that the effect of a

shock fades out over time. If it triggers a persistent change, for example, due to a

change in preferences of the individuals, this should be reflected by non-stationarity

within the data.

Non-stationarity implies that at least one of the three stated criteria is violated.

In general, there exist three types of non-stationarity (see, e.g., Hill et al., 2008), and

for computed topic prevalences, one should understand what kind of non-stationarity

could be present. We speak of a ‘random walk’ if an outcome in period t depends on

the outcome in a previous period t − x as, in this case, there is no mean reversion of

a clear dependence of today’s values on past values. Note that a random walk alone

is stochastic and does not require a precise movement in one direction (i.e., upward or

downward).

In addition, such a movement could be captured by a drift and/or a deterministic

trend. Without getting into too much detail, a drift implies a fixed term added in

every time series period. For example, we start in t0 with value y0 = 1. In t1, we

have y1 = y0 + 0.5 + ϵ1, where y0 = 1, epsilon1 is the random error term, and 0.5 is

the additive drift. In our example, we get y1 = 1.5 + ϵ1. Accordingly, in y2, we have

y2 = 2 + ϵ1 + ϵ2. Thus, the drift of 0.5 slowly accumulates into one fixed direction

(upwards in our case as 0.5 > 0). The error term ϵt varies over time and may be
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negative or positive. An additional deterministic trend, however, is understood to be

time-dependent. In this case, we do not add (for example) 0.5 in each period but 0.5t,

which implies an added term of 0.5 in t1, but 2 in t4 – instead of 0.5 in t4 in case of a

drift.

2.2 Non-stationarity in topic modeling

Before elaborating further on (non-)stationarity and how to test for it, we should briefly

think about the ‘1 − p’ problem when studying probabilities (see, e.g., Schmal et al.,

2023; Schmal, 2023). Topic probabilities, by construction, add up to one in any case.

Thus, for a set of N topics within a topic model, a growth in topic ti necessarily implies

a decrease in
∑N

j ̸=i tj ∀j ∈ {1, ..., N}. Due to that fact, non-stationarity, particularly

in the mean, is likely to be an issue one should address when applying topic models.

Because if one topic (non-stationary) grows over time, other topics are likely to shrink

and vice versa.

Measuring and discussing the non-stationarity of computed topic probabilities over

time is not just a technical exercise, but a meaningful endeavor. In topic modeling, ab-

solute values are often the focus of discussion due to the open question of which cut-off

values should be considered appropriate when discussing topic prevalences. However,

it is a priori unclear what absolute level particular expected probabilities should reach

to be considered important, specific, or relevant. This is where non-stationary changes

over time come in. They measure relative differences, regardless of the absolute proba-

bility level of a certain topic. This approach is immune to the problem of arbitrariness

in the choice of discrete absolute cut-off values, making it a more nuanced and impactful

method for investigating topic dynamics.

2.3 Testing for non-stationarity

Statisticians have developed plenty of testing methods for stationarity. I want to discuss

two established methods applicable to many cases of suspected stationarity in topic
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prevalence, but we encourage the readers to extend their knowledge. We begin with

the Augmented Dickey-Fuller (ADF) test (Dickey & Fuller, 1979; Said & Dickey, 1984)

that poses as a null hypothesis the presence of a so-called ‘unit root,’ which points

to the non-stationarity of the time series. The alternative hypothesis is the absence

of a unit root or else stationarity. The other test method discussed later on is the

KPSS test.4 Before moving on, one has to be aware of the particular testing procedure

of the ADF test. As the null hypothesis captures non-stationarity, failure to reject

it implies that one cannot rule out the presence of a unit root, but it is not clear

evidence that one exists (see on this issue also Verbeek, 2008). The ADF test is a

generalization of the original testing procedure by Dickey and Fuller (1979) and allows

for three specifications, namely non-stationarity without drift or trend, which implies

a random walk, non-stationarity with drift, and non-stationarity with both drift and

trend. To do so in R, we can use the aTSA package developed by Debin Qiu.5

library(aTSA)

ts <- data$value

aTSA::adf.test(ts)

The command is relatively parsimonious and provides many results that need further

interpretation. In addition to the three types, it also offers test statistics and (ad-

justed) p-values for several lag lengths. Lag implies an autoregressive process, i.e., the

dependence of an outcome value y in period t on past values t−x. The lag defines this

x further. Statistical information criteria, rules of thumb, or theoretical reasoning can

determine the optimal lag length.

Eventually, one has to decide which lag level to use in the ADF test. Here, the re-

searcher must again determine which data-generating process underlies their particular

data. One common rule of thumb is the rule by Schwert (1989). He suggests to version

for the choice of the lag length, namely lS4 and lS12, where lS4 = ⌊
(
4
(

T
100

) 1
4

)
⌋ and

lS12 = ⌊
(
12

(
T
100

) 1
4

)
⌋. One can see that only the factor differs for the two options. ⌊ ⌋

symbol a floor function, i.e., one has to choose the lowest integer value of a computed

4Please be aware that there exist further testing procedures, among others, the test by Phillips and
Perron (1988), the one by Ng and Perron (2001), as well as the Elliot-Rothenberg-Stock Test (Elliott
et al., 1996).

5See https://cran.r-project.org/package=aTSA for details.
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result. Say we have l = 4.3, then ⌊4.3⌋ = 4 holds. Newey and West (1994) suggest in

their optimal lag length computation l = ⌊
(
4
(

T
100

) 2
9

)
⌋ as first step. One can already

see that this has to be similar to lS4 as the exponential terms 1
4
≈ 2

9
are similar. Figure

2 demonstrates graphically for T ∈ [0, 500] observations that, indeed lS4 ≈ lNW , while

lS12 is much higher.

Figure 2: Optimal lag length by optimality criterion and length of the time series

While the aTSA package for the ADF test leaves it to the researcher to determine,

the test procedure for the KPSS test comes with a pre-selection of the optimal lag

length, which might be another indicator for the researcher which lag to choose for the

ADF test. The KPSS test – an abbreviation for its developers Kwiatkowski, Phillips,

Schmidt, and Shin – is another test for non-stationarity in a time series (Kwiatkowski

et al., 1992). Compared to the ADF test, its primary difference and advantage are

that it poses stationarity as the null hypothesis and the existence of a unit root, i.e.,

non-stationarity, as the alternative hypothesis. It is easy to compute with aTSA:

ts <- data$value

aTSA::kpss.test(ts, lag.short = TRUE)

The lag.short option is set to TRUE by default and refers to the formula proposed by

Schwert (1989). Hence, if the researcher wants to rely on that specification, they can

ignore the second part of the previously presented command. As before, in the ADF
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test, the KPSS test provides us with three different types of non-stationarity that are

investigated: Neither drift nor trend, only a drift, or both drift and trend. Ideally,

the ADF and the KPSS test lead to similar, if not equivalent, results regarding the

presence of a unit root. However, as always with real-life data, its characteristics often

tend to be more opaque than econometric simulations in a controlled environment.

That said, we turn towards our time series example using the Google Trends statis-

tics for search requests for ‘topic modeling.’

2.4 The ‘Google Trends’ Example

Visually investigating the time series shown in Figure 1, after a phase of intense fluc-

tuation until late 2009, a clear upward trend becomes visible. Hence, topic modeling

seems to have gained interest a couple of years after the computational foundations

had been laid. It is reasonable since new methods need time to be disseminated across

researchers, especially across different academic disciplines that are often more or less

isolated from each other, so new methods are not established at the same time or speed.

However, the upward trend between 2010 and 2020 hints at a unit root with drift as

the increase appears to have a somewhat linear functional form.

Thus, we compute both the ADF and the KPSS test for our sample. In R, we

call our dataset received from Google Trends ‘data,’ and the percentage points we call

‘values.’6

ts <- data$value

aTSA::adf.test(ts, nlag = 5)

Augmented Dickey-Fuller Test

alternative: stationary

Type 1: no drift no trend

lag ADF p.value

[1,] 0 -2.09207 0.0378

[2,] 1 -1.11267 0.2811

6The whole code is available on GitHub, including the data used. The curious researcher can follow
every step and reproduce every plot of this paper.
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[3,] 2 -0.45610 0.5126

[4,] 3 -0.17046 0.5948

[5,] 4 0.00362 0.6449

Type 2: with drift, no trend

lag ADF p.value

[1,] 0 -4.23 0.0100

[2,] 1 -2.77 0.0678

[3,] 2 -1.96 0.3415

[4,] 3 -1.69 0.4509

[5,] 4 -1.54 0.5074

Type 3: with drift and trend

lag ADF p.value

[1,] 0 -9.98 0.0100

[2,] 1 -6.87 0.0100

[3,] 2 -4.89 0.0100

[4,] 3 -4.25 0.0100

[5,] 4 -3.88 0.0153

Note: in fact, p.value = 0.01 means p.value <= 0.01

The output of the ADF test looks like this. Note that nlag = 5 specifies the number

of lag specifications, including zero lags. Thus, the present test provides test statistics

and the related p values for l ∈ [0, 4]. We study up to four lags as lS4 and lNW suggest

l∗ = 4 for T = 241, the number of periods we have in our dataset, see also the red

dashed line in Figure 2 shown beforehand.

One can see that we cannot reject non-stationarity assuming neither drift nor trend

nor non-stationarity assuming a drift on the 5% level for all lag specifications except

for l = 0. In fact, there is strong evidence for a unit root except for a specification

with both drift and trend. Here, we reject the null of non-stationarity for every lag

specification. Put differently; if we expected both drift and a deterministic trend, the

actual data is stationary relative to this expectation. Put differently, if we expect in

some unrelated case a jump in the data by 100% but only observe 20%, we might

consider the change as ‘flat.’ However, if we expect only an increase of 15%, the
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observed 20% is, indeed, a notable increase.

Hence, the ADF test is strong evidence for non-stationarity with a drift. Let us see

what the KPSS test suggests:

ts <- data$value

aTSA::kpss.test(ts, lag.short = TRUE)

KPSS Unit Root Test

alternative: nonstationary

Type 1: no drift no trend

lag stat p.value

3 2.45 0.0171

Type 2: with drift, no trend

lag stat p.value

3 2.7 0.01

Type 1: with drift and trend

lag stat p.value

3 0.452 0.01

Note: p.value = 0.01 means p.value <= 0.01, p.value = 0.10 means p.value >= 0.10

The output of the KPSS test is much shorter as it only considers one lag specification,

namely three lags. It is due to the set-up of the kpss.test() command of the aTSA

package in R. The author, Debin Qiu, specifies the optimal lag length as l = ⌊
(
3
√
T

13

)
⌋

other than suggested by Kwiatkowski et al. (1992). As one can draw from the dark

green line shown in Figure 2 above, the aTSA specification tends towards a shorter lag

length. Unfortunately, the kpss.test() does not allow a manual correction of the lag

length to be used in the testing procedure.

Turning towards the findings of the KPSS test for our Google Trends sample, we

can reject the null hypothesis of stationarity for all three types of non-stationarity on

the 5% significance level. Hence, the KPSS test suggests even non-stationarity with

both a drift and a trend. As stated beforehand, empirical data always comes with its

specific foibles. Therefore, it is typical that ADF and KPSS tests may yield somewhat

different results. However, the present analysis is strong evidence that (a) the time
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series is not stationary and (b) that non-stationarity with a drift seems to be present.

In turn, it implies persistent growth of interest in topic modeling.

3 Structural breaks

3.1 Statistical foundations

Structural breaks are often not a sidenote but at the core of social science research.

Much research discusses changes in response to surprising elections, the financial crisis,

military interventions, or the COVID-19 pandemic. Thus, it is often a goal of plotting a

time series to spot such a break. It can be visually supported by added vertical lines at

a suspected point in time and, in addition, added horizontal lines that capture pre- and

post-event averages of the variable of interest. These visual tools can already nudge a

reader into seeing a change where not necessarily one exists in statistical terms.

To provide more substantial evidence for a suspected shock or break, one can apply

the Chow (1960) test. Essentially, the test splits a dataset into two at a point chosen

by the researcher. Then, it computes two separate regressions and compares whether

the regression parameters significantly differ. If so, the null hypothesis of no break can

be rejected in favor of the alternative hypothesis that a structural break exists.

In R, the Chow test can be executed with the sctest() command, part of the

strucchange package (Zeileis et al., 2002). Here, within the brackets, one first defines

the regression, which is in the given example just the outcome variable on the left

that is regressed on the time variable, here ‘year.’ type specifies that a Chow test

shall be used as there exist more than just this method to detect structural breaks.

Lastly, point defines the data point, e.g., in time, where or when the suspected shock

happened.

library(strucchange)

strucchange::sctest(outcome ~ year, type = "Chow", point = x, data = data)

It can be done with a quite parsimonious model, in which an outcome variable is

regressed on a time variable. However, it can also be applied more broadly to more

sophisticated specifications.
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3.2 Detecting endogenous break points

Up to now, we have only spoken about a known exogenous event, for which we would

like to evaluate whether this shock is reflected in our chosen outcome variable. An

alternative approach is the search for ‘endogenous breaks’ as Enders (2010) calls it.

Here, one searches iteratively for a break without suspecting a specific date. To do

that, one splits the used dataset into two subsets at every point in time and computes

whether significant differences between the two regression models can be detected at

this cut-off point. Theoretically, this can be done with a simple loop that iterates for a

range of numbers through the breakpoint specifier in the above command. In reality,

this comes with the challenge that the F-statistic used to detect a significant break

is distorted as it incorrectly leads to too many rejections of the null of ‘no break.’

Fortunately, we can address this again with the strucchange package in R.

Enders (2010) emphasizes that due to a decrease in statistical power, one should

always have at least 10% of all observations in each regression. Put differently, one

should, at most, perform a 90/10 split. Of course, it is more of a rule of thumb.

What matters is that the model parameters can be estimated with sufficient reliability.

Depending on the frequency and the nature of the individual dataset, it might allow

for a more extreme ratio or require a more conservative split as an upper threshold. In

general, more even splits are preferable so that outliers unrelated to structural breaks

do not distort the regressions and, by that, the results of the Chow test. It also implies

that researchers should pay attention to the choice of their data sample in the sense

that there should exist enough observations before and after a suspected shock one

wants to study in some way.

However, let us turn again towards the search for an endogenous break point. As

said, we can, unfortunately, not just loop through the mentioned sctest() command.

However, Zeileis et al. (2002) did great work with strucchange and provided respective

tools to detect breakpoints. Assume a dataset with 100 observations. We need the lower

and upper ten as minimum samples in this case. Therefore, we can iterate from obs

#11 - #90 as shown below:
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result <- strucchange::Fstats(reg, from = 11, to = 90, data = data)

strucchange::sctest(result)

strucchange::plot(result)

strucchange::sctest(result)

strucchange::boundary(result, alpha = 0.05)

strucchange::boundary(result, alpha = 0.05, aveF = TRUE)

Note that the regression model can be replaced by an element that stores it, i.e., you

can set reg <- data$outcome ~ data$year and insert only reg into the commands

above. Storing the results of the Fstats() command can be helpful for the subsequent

commands. Now, what are we doing in command 2 and 3? The sctest command that

processes the previous Fstats() computes an F test statistic and a corresponding p-

value7 that tests whether there exists a structural break within the range of potential

breakpoints that have been entered into the command previously (here 11-89).

To determine where the structural break lies, one can compute boundary values for

the F statistic that show thresholds for certain confidence intervals. For example, the

command strucchange::boundary(result, alpha = 0.05) computes the critical F

value that must be exceeded for a structural break with 95% confidence. The boundary

command allows for two threshold specifications, the ‘supremum F’ (the default speci-

fication of the R command, which, therefore, does not need to be separately specified)

and the ‘average F’ condition (see for the statistical background Andrews & Ploberger,

1994), which is enforced by aveF = TRUE in R. For the former, more conservative cri-

terion, it matters whether the highest F value for the presence of a structural break

becomes too large not to reject the null hypothesis of no break. For the latter, the

criterion is based on the average F statistic, which, by definition, also includes smaller

F values, lowering the threshold’s overall size. This, in turn, may lead to more detected

structural breaks.

A crucial caveat for practitioners is not to fall prey to hindsight bias: The breakpoint

7Less relevant to know but highly important for the underlying statistics: This p-value has been
adjusted for the multiple hypothesis tests conducted in this method as suggested by Hansen (1997).
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measures are computed based on an ex-post analysis and based on the time window

the researcher provides. Therefore, one must not infer from such a computation from

which point in time onward a structural break occurs. It is wrong hindsight bias to

claim to know when – considering later developments – a structural break occurred for

the first time, falsely considering data points that did not exist yet when the alleged

break happened.

3.3 The ‘Google Trends’ Example

Returning to the evolution of searches for ‘topic modeling’ using Google’s search engine,

running a test for a structural break based on the comparison of two separate regressions

does not make sense for breakpoints until 2010 as the high level of fluctuations would

inevitably lead to approximately to an insignificant coefficient for time no matter which

date one would use. In contrast, there would be a significant positive estimator for the

second regression, which always leads to the mechanical detection of a structural break.

This artifact serves as a valuable illustration that statistical analyses are an important

complement to more qualitative approaches, but certainly not a replacement.

Ignoring the years 2004 until 2010, it is easy to spot visual breaks between mid-

2020 and the end of 2022, where one can observe a u-shaped pattern that interrupts

the steady increase in searches for ‘topic modeling.’ Thus, it would be reasonable to

identify a structural break in 2020 – the COVID-19 pandemic easily comes to mind as

it affected researcher productivity (Deryugina et al., 2021) and productivity in general

(Fischer et al., 2022). The term itself is technical and, therefore, unlikely to be driven

by non-scientific search requests.

One should use, at most, a 90/10 sample split. As we have 241 observations, we

only run Chow tests up to observation #216, which corresponds to December 2021.

For illustration purposes, Figure 3 plots the same data with the same scaling of the

y-axis as shown in Figure 1 but only for the period January 2018 - January 2024. One

can already see that the ‘shock’ observed in Figure 1 seems less pronounced now. It
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Figure 3: Evolution of Google searches for ‘topic modeling’ over time since 2018

is only due to a rescaling of the x-axis that emphasizes a significant point, which is

statistics 101 knowledge, but often overlooked: Scaling matters. The often arbitrary

choice of axis scaling is a strong argument for statistical testing for structural breaks.

The grey shaded area in Figure 3 marks the time range for which we endogenously

search for structural breaks. As said beforehand, December 2021 marks the end of

this time frame, as we need sufficient observations after every hypothetical break. We

begin with January 2020, as shortly afterwards, the first major decrease in searches for

‘topic modeling’ occurred, as discussed beforehand.
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The upper panel displays the F statistics for the Chow testing procedure for endogenous breaks. The
horizontal dashed lines represent the threshold values for which, with 95% probability (α = 0.05),
a structural break exists. The red line displays the more conservative supremum criterium, and the
blue line the average criterion as defined by Andrews and Ploberger (1994). The vertical dashed lines
display the dates at which the structural breaks happen according to the statistical criteria. The lower
panel depicts Figure 1 again, but with added dashed lines for the statistically computed structural
breaks as shown in the upper panel for the narrower time frame, which is marked with a grey shade
in the lower panel.

Figure 4: F statistics for endogenous breakpoints

As sketched in the theoretical part of this chapter, we iteratively compute the F

statistics for a structural break using the Fstats() command. Figure 4 presents these

values using a dark red line. In addition, we have computed the boundary F value

for both the average and the supremum criterion using separate specifications of the
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strucchange::boundary() command for a 95% confidence interval. This can be easily

varied to a 90 or 99% interval if necessary. For the ‘average’ criterion, we observe for

the dates from September 2021 onward that the F-statistic of the corresponding Chow

test exceeds the minimum boundary. For the more conservative supremum criterium,

the same holds for November and December 2021. For all earlier months since January

2020, the Chow test has not been able to reject the null of no break. But as stated

beforehand, one must not confuse the first time the F statistic exceeds the boundary

as evidence for a structural break at that point.

So, let us go one step further and search for actual breakpoints or else confidence

intervals in which breakpoints are most likely. The F statistic in the upper panel of

Figure 4 already hints at two areas:8 Late 2020 and from late 2021 onward again.

It is backed by the visual inspection of the lower panel in Figure 4. In both cases,

we observe a major downward shift. To look for the breakpoints, we can apply the

powerful breakpoints() command of the strucchange package:

break_p <- breakpoints(value ~ 1, h = 5, data = reduced_data)

confint(break_p)

Confidence intervals for breakpoints of optimal 4-segment partition:

Call:

confint.breakpointsfull(object = break_p)

Breakpoints at observation number:

2.5 % breakpoints 97.5 %

1 7 10 12

2 23 24 25

3 40 42 47

The output is shortened as we want to focus on discrete breakpoints. As we look at

the pure timeline, we regress the prevalence of our search term “topic modeling” only

on a constant (1). As segment size, we set h=5, because we use a reduced dataset

that only starts in January 2020 and lasts until January 2024. This time frame covers

49 months, i.e., 10% of it relates to ≈5 months. The size of the segment is, again, a

rule of thumb and should be considered in the context of the respective dataset. With

8Note that this is not evidence per se but is suggestive evidence where to look in more detail.
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the second command confint(), we can compute actual breakpoints, including a 95%

confidence interval. The breakpoints at #10, #24, and #42 correspond to October

2020, December 2021, and June 2023. The first two dates are perfectly in line with the

boundaries computed beforehand. The last date is too close to the ending of the time

series and was, therefore, not considered in the computations shown in Figure 4.

A closer visual inspection of the overall timeline in the lower panel of Figure 4

reveals that a linear regression for the data points between late 2020 and late 2021

must have a negative slope. In contrast, the observations from 2022 on do not show a

clear trend and suggest a relatively flat fitted line. It is in clear contrast to the steady

growth trend since 2015. We can only speculate about the reason. More important

is the insight that the Chow test for structural breaks has pointed out where the

structural break has happened and that the likely COVID-19 shock in 2020 was just a

setback but no structural break. The skeptical reader might respond that they would

have seen the difference and there is nothing to debate. However, while one may argue

about the visual shape of a line plot as shown in Figure 1 shown beforehand, statistical

tests are not subject to a verbal discussion on how to interpret a shape. The overall

shape might not have suggested a break in the long-standing upward trend of search

requests for ‘topic modeling.’

4 Conclusion

This parsimonious practitioner’s guide attempts to provide practical tips to researchers

in the social sciences who work with topic models and compute expected topic preva-

lences. Two critical issues of time series are discussed: Non-stationarity and structural

breaks. Both are of stellar importance in the applied work of social scientists as lots of

research discusses either change over time or major disruptions. This paper can only

touch upon the depths of the underlying econometrics and shall serve as an encour-

agement to engage further with time series econometrics. Three textbooks are cited,
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namely the work by Enders (2010), Hill et al. (2008), and Verbeek (2008). The author’s

subjective criteria have selected them, as I find these three textbooks particularly help-

ful. However, many alternatives exist, and it is up to the reader to choose which book

to read.

Overall, this paper shall pave the way to more econometric rigor in studying topic

models. In particular, it shall help overcome the reliance on only visual inspections.

This guide shows that the coding effort in R is relatively low as the presented packages

already provide the reader with ready-to-use results. Computing the suggested optimal

lag length is also quite simple, as one only needs to insert the particular length T of

their time series into the presented rules of thumb. Hence, applying this small time

series toolkit should hopefully be straightforward.

Data availability

• The dataset based on Google Trends data is publicly available on Zenodo: https:

//doi.org/10.5281/zenodo.11047057

• Code files available on GitHub: https://github.com/schmalwb/topic_model_

time_series. [note that the Python code is based on an R wrapper. Therefore,

R needs to be installed. Detailed explanations provided in the code file]
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