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Abstract:

Machine learning algorithms emerge as a promising approach in energy fields,

but its practical is hindered by data barriers, stemming from high collection costs and

privacy concerns. This study introduces a novel federated learning (FL) framework
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based on XGBoost models, enabling safe collaborative modeling with accessible yet

concealed data from multiple parties. Hyperparameter tuning of the models is

achieved through Bayesian Optimization. To ascertain the merits of the proposed

FL-XGBoost method, a comparative analysis is conducted between separate and

centralized models to address a classical binary classification problem in geoenergy

sector. The results reveal that the proposed FL framework strikes an optimal balance

between privacy and accuracy. FL models demonstrate superior accuracy and

generalization capabilities compared to separate models, particularly for participants

with limited data or low correlation features and offers significant privacy benefits

compared to centralized model. The aggregated optimization approach within the FL

agreement proves effective in tuning hyperparameters. This study opens new avenues

for assessing unconventional reservoirs through collaborative and privacy-preserving

FL techniques.

Keywords: Data privacy and security; Federated learning; Geoenergy; Bayesian

Optimization; Production estimation.
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1 Introduction

Geoenergy, a term encompassing the diverse array of energy resources derived

from the Earth, plays a pivotal role in powering our modern society. This includes

both renewable and non-renewable resources, ranging from fossil fuels, such as coal,

oil, and natural gas, to sustainable energy, such as geothermal energy and hydrogen

energy [1, 2]. Faced with the dual pressures of increasing energy demand and climate

change, the focus of scientists has been gradually shifting from traditional geoenergy

to renewable geoenergy in recent decades. But a rapid and radical withdrawal from

fossil fuels appears infeasible if aims to sustain economic growth and meet growing

energy demand [3, 4]. Moreover, by-products and derivatives of fossil fuels also have

been not replaced in a short period. [5, 6]. Undoubtedly, the demand for oil and gas

remains substantial, as predicted by British Petroleum [7].

As one of the important geoenergy resources, unconventional reservoir resources

gradually garnered much attention [8]. It is defined as accumulations where gas

phases are tightly bound to the rock fabric by strong capillary forces [9, 10].

Prediction and evaluation of estimated potential productivity (EPP) for gas wells is a

fundamental task, offering valuable insights for decision-makers in the early stages of

unconventional resource exploration [11-13]. Due to varied geological characteristics,

construction conditions, and operation techniques, the EPP of the wells located in

similar or even the same area differs greatly from each other [14]. Traditionally, these

studies are generally carried out through complex mathematical calculations and

physical modeling. As the starting point for productivity prediction of horizontal wells,

analytical formulas based on Darcy's percolation law were initially proposed by

Merkulov and Borisov [15]. Subsequent studies developed more accurate
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formulations for productivity estimation, with the main improvements lying in the

utilization of advanced mathematical-physical methods and numerous experiments for

investigating the impacts of geological features, and the physical characteristics of gas

[16-20]. Based on the above-mentioned methods, the exploration potential of the gas

wells in unconventional resources can be estimated accurately. However, these

traditional models also face various challenges, such as high calculation costs,

historical fitting difficulties, poor generative ability, low prediction efficiency, and

high result uncertainty [21-24].

Machine learning (ML) is an application of artificial intelligence (AI) that

provides systems the ability to automatically learn and improve from experience

without being explicitly programmed [25, 26]. In recent years, the advent of AI has

propelled the widespread adoption of this method in geoenergy fields [27]. It was

demonstrated in the current literature that ML models can almost perfectly reflect the

complex mechanisms and correlations between variables and predicted goals [28].

Additionally, it exhibits stronger predictive capacity, higher calculation efficiency, and

better generalization ability, compared with conventional EPP methods [29]. Deep

Neural Networks (DNN) [14, 30, 31], Random Forests (RF) [32, 33], eXtreme

Gradient Boosting (XGBoost) [21, 34, 35], Support Vector Machines (SVM) [34,

36-38], and other classical ML models are frequently employed to predict the

productivity of oil-gas wells with excellent accuracy [39-43]. Unfortunately, the

practical implementation of ML algorithms is impeded by two prominent challenges:

privacy protection and data collection. Firstly, the privacy of data has become an

unavoidable concern for data administrators, as they are no longer permitted to access

data without the user’s permission after the General Data Protection Regulations

published by the European Union in 2018 [44]. Under this agreement, users possess

absolute ownership of their data [45, 46]. Secondly, collecting real-world data is



5

laborious and expensive [49], particularly in the energy fields, where the average cost

of a gas well or wind turbine can reach hundreds of thousands or even billions of

dollars [48, 49]. Market participants desire an effective holistic model based on shared

information across departments, but privacy concerns make them hesitant to share

their data with business competitors, falling into a dilemma.

Federated learning (FL) is a multiparty setup where clients from different

agencies collaboratively build a shared model across various datasets through

exchanging intermediate computational results such as gradients or parameters,

instead of raw data. In this configuration, a central server or active party securely

aggregates calculation results from selected nodes to train or update a global model,

addressing critical issues such as data privacy, data security, and data access rights

[50]. As public concern about privacy continues to grow, FL is flourishing across

various industries including grids, IoT, defense, and finance. In literature [51],

multi-horizon FL was utilized for probabilistic forecasting of nodal voltages in local

energy communities. Wang et al. [52] proposed a privacy-preserving clustering

method to analyze clients’ behavior in smart grids. FL models have also been

employed to monitor the components in nuclear power plants, significantly improving

prediction performance and reducing overfitting issues. Article [53] introduced a

FL-based model for detecting wind turbine blade icing, providing real-time anomaly

detection. In the field of environment protection, Hu [54] designed a novel

environmental monitoring framework based on FL, effectively solving the challenges

of inconvenient interchangeable monitor data from different regions. Saputra et al. [55]

exploited a FL framework to predict energy demand for electric vehicle networks with

satisfactory results.

To sum up, FL provides a fresh impetus to the growth of ML when data is not

directly available due to some constraints, and the infinite potential of dispersed

https://www.sciencedirect.com/science/article/pii/S0360835220305532
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datasets could be fully exploited through it. However, to the best of our knowledge,

there is no related research investigating the application of FL in the petroleum

industry. With the advent of the Internet of Things (IoT) era, the demand for a safe,

effective, and accurate data-sharing approach in the petroleum field is increasing

dramatically. Therefore, this paper aims to introduce the FL technique into this area to

overcome data barriers between agencies and companies, facilitating the application

of ML methods to solve practical engineering problems. The benefits of FL

agreements will be evaluated and analyzed on an actual dataset in different scenarios.

The contributions of this study are three-fold:

(1) Two novel federated learning frameworks are proposed to tackle the

challenges arising from data reluctance and the inability to share among

contributors when predicting the potential productivity of gas wells.

(2) By achieving data availability while preserving data invisibility, this research

effectively resolves the issues of data scarcity and privacy. The validation of

these advancements is supported by real-world data obtained from two

unconventional gas reservoirs.

(3) Taking practicality into consideration, homomorphic encryption and

Bayesian Optimization are employed to enhance the performance of the FL

frameworks.

2 Methodology

Data scarcity and privacy concerns create a series of barriers to the application of

data-driven methods in the petroleum industry. To eliminate these barriers, this section

outlines the step-by-step workflow of the XGBoost model under the proposed FL

agreement for estimating the production potential of gas wells in unconventional
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reservoirs. Firstly, a robust classifier generated by the XGBoost model is introduced

to determine whether a gas well is worth developing. Next, a flexible and effective FL

framework combined with the XGBoost classifiers (FL-XGBoost) is established to

homogenize and safely consolidate data from disparate sources. Thirdly, partially

homomorphic encryption is used to perform mathematical operations on encrypted

data in various scenarios, leveraging its high efficiency and reliable security proof.

Besides, the overall performance of the proposed strategy is compared and discussed

based on the selected evaluation indexes. Finally, the Bayesian Optimization

algorithm is applied to enhance the overall performance of the models through

hyperparameter tuning. A detailed illustration of each of these steps (shown in Figure.

1) is explained as follows:

Figure. 1. Step-by-step workflow of the proposed federated learning approach.

2.1 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) offers a powerful gradient-boosting
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framework to solve problems efficiently. It generates a robust classifier by iteratively

updating the parameters of the former classifier to minimize the gradient of the loss

function [56]. In this study, XGBoost algorithm serves as a valuable tool to assist

administrators in making decisions regarding the development of gas wells.

The XGBoost object function J, consists of training loss function L and

regularization term Ω, as shown in Eq. 1:

� � = � � + Ω(�) (1)

where θ indicates the parameters trained from a given set of data; L is aimed to

estimate the model’s predictive ability, generally using square loss or logistic loss; Ω

contains L1 norm and L2 norm, which measures the complexity of the model.

For a dataset � ∈ ��×� with M sample and N features, the output of a

XGBoost model ��� , is averaged or voted by a collection F of k trees as follows [57]:

��� = �=1
� �� �� , �� ∈ �� (2)

where fk is a scoring function, corresponding to an independent tree structure and leaf

weight in the Classification and Regression Tree (CART) algorithm, and F is the

space of CART.

In each boosting step, the output is updated by adding the score of one new tree

at a time. The predication of XGBoost model at the t time iteration is defined in Eq.3

[54]:

�� �
(�) = �=1

� �� �� = �� �
(�−1) + �� ��� (3)

Based on Eq.4 and Eq.5, the objective function at t moment can be given as

follows:

�(�) = �=1
� �(��, �� �)� + �=1

� Ω ���

�(�) = �=1
� �(��, �� �

�−1 + �� �� )� + Ω �� + ��������
(4)

Ω �� = �� + 1
2

� �=1
� ��

2� (5)



9

where n is the number of predictions of XGBoost model; γ is the complexity

parameter of each leaf; T is the number of leaves; λ is a parameter to scale the penalty;

and w is the vector of scores on leaves.

To quickly optimize the objective in XGBoost model, a second-order Taylor

approximation can be used. When using mean square error as the loss function, the

simplified objective function at step t can be obtained by removing the constant terms.

�=1
� ���� + 1

2
�� + � ��

2 + ��� (6)

where �� = ���(�−1)� ��, ��(�−1) and ℎ� = ���(�−1)
2 � ��, ��(�−1) are first and second

order gradient statistics on the loss function respectively [55].

The tree model starts with single leaf nodes which includes all samples. Then the

node recursively splits the current samples into left and right subsets denoted by ��

and ��. The loss function after the split is:

ℒ����� = 1
2

( �∈��
��� )2

�∈��
ℎ�+��

+
( �∈��

��� )2

�∈��
ℎ�+��

−
( �∈��

��� )2

�∈��
ℎ�+��

− � (7)

where the best split is the one with the highest ℒ����� . The weight w of each leaf can

be calculated in Eq.8.

� =− �∈�� ���

�∈�� ℎ�+��
(8)

2.2 Federated learning

A vast amount of data from various sources supports

well-informed decision-making and a more holistic view of hidden opportunities for

each operator. However, the data availability of any party is limited. Collaboration

among multiple parties is embraced as a powerful tool for data-driven methods to

uncover and leverage new insights. Unfortunately, the participants frequently

encounter challenges in data sharing, whether due to confidentiality or business

reasons. When data is difficult or impossible to share, the ability to collaborate is
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hindered.  Therefore, the adoption of FL is crucial to enable modeling with accessible

yet concealed data from multiple parties.

According to the data distribution characteristics among participants, federated

learning can be classified into three types: Horizontal Federated Learning (HFL),

Vertical Federated Learning (VFL), and Federated Transfer Learning (FTL) [58].

Figure 2 illustrates the HFL and VFL frameworks in a two-party scenario.

Generally, HFL is commonly used when datasets share the same feature space

across all devices, such as gas wells in two fields or customers from several petroleum

companies. The HFL framework allows training datasets to be expanded in terms of

sample numbers, potentially enhancing the generalization ability of ML models.

In contrast, VFL is feature-based federated learning that utilizes the distinct

feature spaces from different datasets with the same ID of gas well to jointly train a

global model. Participants in VFL agreements may have diverse professional

backgrounds or play dissimilar roles in the industrial chain. For example, oil

enterprises could collaborate with banks using VFL to build financial risk or credit

assessment models for their customers. A broader range of data sources can be

tremendously helpful for ML algorithms in providing more accurate results,

particularly in cases where various factors may not have been adequately considered

[59].

For N distributed datasets �1, �2, …, ��, , each data owner locally develops N

prediction models ������
1 , ������

2 , …, ������
� using their own data sources. Clearly,

the generalizability of these separate models is probably poor. It is a wise choice for

data-driven organizations that train a holistic model by consolidating their respective

data. The collected datasets from all contributors ���� = �1 �2 …� ���� would

be formed commonly through openly data sharing, and subsequently, a centralized

model can be obtained. However, partial or full ���� is inevitably exposed to some
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participants or a third party, under the huge risk and uncertainty of privacy leakage.

FL frameworks enable safe collaborative modeling, and a secure global model would

be obtained, in which process that data is accessible but invisible.

The cost of privacy protection, denoted as Cprivacy, is defined as the expense

incurred in safeguarding the privacy of participants in collaborative modeling. Clearly,

utilizing the local data for separate modeling is secure, with its inherent privacy

protection cost being zero. For FL models, the cost of privacy protection can be

understood as the loss of performance incurred by introducing the FL framework,

given the same available data sources. It can be described in Eq.9

��������
�� = ����� �ℎ��� − ���������� (9)

where Aopen share is a performance score from the open share model and Afederated is that

from the FL model.

For centralized modeling with open data sharing, the cost of privacy protection

can be defined as the difference in performance compared to separate local modeling

under the same parameter settings.

��������
���� �ℎ��� = ����� �ℎ��� − ��������� (10)

where Aopen share is a performance score from the open share model, and Aseparate is that

from the separate model.

(a) Horizontal Federated Learning (Safe expansion in data samples)



12

(b) Vertical Federated Learning (Safe expansion in data features)

Figure. 2. Categorization of federated learning.

2.3 Homomorphic Encryption

Throughout the stage of data aggregation, calculation, transmission, and storage,

there is a possibility of inference attacks, resulting in the leakage of sensitive

information. To address this issue, homomorphic encryption (HE) has gained

recognition and extensive usage for secure aggregation and integrity verification in

various application scenarios [60, 61]. According to the supported calculation types

and support levels, HE can be classified into the following three types: Partially

homomorphic encryption (PHE), Somewhat homomorphic encryption (SWHE), and

Fully homomorphic encryption (FHE).

Among numerous homomorphic encryption schemes, PHE is the most

commonly employed scheme in practical privacy computing due to its efficiency and

complete security proof. Its prevalence can be attributed to the fact that, in specific

scenarios, only one HE operation, such as addition, is necessary to fulfill certain

functions. Hence, PHE is utilized in this article for conducting mathematical

operations on encrypted data. The four key steps for PHE are as follows.

Key generation: Two large prime numbers p and q are randomly selected to calculate

the Carmichael Function �(�) and Euler’s Totient Modulus �(�) , represented as
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follow in Eq.11 and Eq.12. Importantly, p and q need to meet certain conditions, as

shown in Eq. 12. Then, choose g as a random integer where � ∈ ��2
∗ , and the private

element � is obtained using Eq. 13.

�(�) = ��� � − 1, � − 1 (11)

� � = � − 1) × ( � − 1 (12)

��� � � , �(�) = 1 (13)

where function lcm means the least common multiple of the input variable; n is

the product of the proposed prime numbers p and q; function gcd means the greatest

common divisor of the input variable [59].

� = (�(�� ��� �2))−1 mod n, where �(�) = �−1
�

(14)

Encryption: For a given plaintext �� ∈ ��, the encryption algorithm converts mi to

the ciphertext as Ci. r represents a given random number, where 0 ≤ � < � and � ∈

��2
∗ .

�� = ��� ⋅ �� mod n2 (15)

Secure aggregation: when receiving ciphertexts Ci from multiple parties, the

aggregated ciphertext CAg is calculated by Eq.15.

��� = �=1
� �� ��� �2� (16)

Decryption: Upon receiving ciphertext CAg, the aggregated plaintext as m can be

computed by decryption algorithm as follows:

� = �+1
� ��� = � ��

� ��� �2 � ��� � (17)

Noting:

(1) The public encryption key is (n, g).

(2) The private decryption key is (λ, μ).

(3) It is greatly recommended to select p and q of equivalent or similar equivalent

length in practice to save the cost of calculation time.
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2.4 Bayesian Optimization

The accuracy of machine learning models not only relies on the algorithm but

also on the hyperparameters [62, 63]. Hyperparameters, which directly affect the

model's performance and behavior, are settings that aren't learned from the data

samples but set by the user before training [64]. Among the various methods available

for hyperparameter tuning, Bayesian Optimization (BO) has demonstrated its

suitability in XGBoost models [65, 66]. This approach combines prior information

from existing parameter selection results with sampling points, continuously updating

the probability distribution in the objective function by using Bayesian formula. The

prior knowledge obtained from the function distribution would guide the selection of

the next parameters, effectively reducing the retrieval times of hyperparameters. In

this research, BO is introduced to finetune the hyperparameters of the XGBoost

models.

For an aggregation � = (�1, �1), (�2, �2), …, (��, ��) of observations for the

previous t step, the observation error �� of the i-th step ( � ∈ [1, �] ) and posterior

distribution � �|�1:� of the objective function f are expressed as follows [67]:

�� = �� − � �� (18)

� �|�1:� ∝ � �1:�|� × � � (19)

where �� is the hyperparameter of the i-th step; �� represents the observed value for

the i-th step; � �� is the objective value at the observation point (��, ��) ; �(�)

means the prior distribution of f and � �1:�|� is the likelihood distribution of ��.

Gaussian Process (GP) is chosen as the surrogate model in this study to fit data

and update the posterior distribution of functions with its advantages of high

flexibility and tractability. Compared to traditional methods that aim to mitigate

distribution representation, GP differs in its direct modeling of functions, yielding a

non-parametric model. One prominent advantage of this approach is its ability to not
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only simulate any black-box function but also to simulate uncertainty. This

quantification of uncertainty is crucial for efficient training processes [67]. GP is the

extension of multivariate Gaussian distribution to infinite dimension, which is

composed of a mean value function ave and a positive-definitive kernel or covariance

function k.

� � ~�� ��� � , �(�, �') (20)

The RBF kernel function is selected as the covariance function in GP [66]:

� �, �' = exp ( ∥�−�'∥2

2�2 ) (21)

where � and �' are the data sample; � is a free parameter set to 1.

Constrained by privacy protection mechanisms, neither the active party nor

trusted third party under the FL framework can directly access any of the databases

without ownership. Hence, conventional optimization methods, like Bayesian

optimization algorithm, are difficult to apply for the proposed FL-XGBoost model.

On the other hand, the high communication costs of optimization algorithms under the

FL agreement are also a significant obstacle in actual engineering [68]. Based on this,

a feasible, secure, and simple Bayesian optimization method has been innovatively

introduced for tuning the hyperparameter of the FL-XGBoost models. The optimized

aggregated parameters �������
�� for the joint models can be obtained by Eq. 21. The

optimized parameters for the global model are calculated through proportional

aggregation of the optimized parameters based on multiple party local datasets.

�������
�� = �=1

� ��

�=1
� ���

� × ��
�� (22)

where N is the number of participants in the joint modeling; �� is the sample number

provided by the participant i; ��
�� represents the hyperparameter optimized by the

BO algorithm based on the datasets owned by the participant i.
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2.5 Evaluation index

To investigate the benefits of the proposed FL frameworks, several performance

metrics are selected as evaluation indexes in this section.

The concept of confusion matrix, which is an essential index to evaluate the

results of a binary classification model, is introduced initially. As shown in the left

side of Figure 3, it is a summary table with four different combinations: True Positive

(TP), False Positive (FP), False Negative (FN), and True Negative (TN) of “Actual

Value” and “Predicated Value” [69]. These values in the confusion matrix are used to

calculate the following performance metrics.

Accuracy of a classifier (ACC) refers to the ratio of correctly classified test

samples to the total number of test samples.

�������� = ��+��
��+��+��+��

(23)

Precision is defined as the ratio of correctly classified test samples with the

positive label to the total test sample predicted to be positive.

��������� = ��
��+��

(24)

Recall metric represents the ratio of correctly classified positive test samples

divided by total number of test samples that are actually positive.

������ = ��
��+��

(25)

F1-Score, a metric designed to work well on imbalanced data, is defined as the

harmonic mean of Precision and Recall, as shown as follows. It is easy to understand

from Eq. 25 that an excellent model will obtain a high F1 scores.

�1 = 2(���������⋅������)
���������+������

(26)

False Positive Rate (FPR) is able to explain what proportion of the negative class

got incorrectly classified by the model.
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��� = ��
��+��

(27)

The metrics mentioned above are prone to being influenced by varying threshold

values across different datasets. To quickly visualize which threshold can yield a

better result, the Area Under the Receiver Operating Characteristic (AUC-ROC) curve

has been used, as shown on the right side of Figure 3. Receiver Operator

Characteristic (ROC) is a probability curve that shows the performance of a

classification model at all classification thresholds. The AUC represents the degree or

measure of separability, which is used as a summary of the ROC curve. It tells how

much the model is capable of distinguishing between classes. Obviously, the higher

the AUC, the better the model.

Figure. 3. Illustration for confusion matrix and AUC curve.

2.6 XGBoost models under horizontal federated learning frameworks

Following the methodology detailed in Section 2.1, 2.2, and 2.3, a novel

privacy-protection FL framework integrating XGBoost models and homomorphic

encryption, namely HFL-XGBoost is introduced for expanding the sample size of

training data.

The whole training process for the HFL-XGBoost model is illustrated in Protocol
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1. The process commences with participants initialize �� �� with random values and

obtaining binning points for all features within the HFL framework. Local data

samples are then pre-processed accordingly. Each client calculates a local histogram

containing gradient �� and hessian matrix ℎ� based on their respective datasets. For

each tree in the ensemble, the parameter D is defined, signifying the maximum depth

of the tree. To mitigate data leakage during histogram exchange, clients introduce a

random number to their local histograms before transmitting their unique parameters

to the central server (from �� and ℎ� transferred to [��] and [ℎ�]). These random

numbers cancel each other out through calculation, ensuring that the server can derive

global parameters from clients without accessing the original information. The server

performs histogram subtractions to identify the best split points. New node histograms

are obtained by subtracting the submitted node local histograms from the aggregated

node histograms. The best splits points are then broadcasted to clients. Upon receiving

and decrypting the new node histograms, clients construct the next layer for the

current local model (decision tree), and local data samples are reassigned. Clients

compute the leaf nodes of the tree model and update the local histogram. The updated

histograms are sent to global server for parameters aggregation after encryption. The

process is repeated until the decision tree reaches the required max depth or stop

conditions are fulfilled (e.g., maximum tree number or convergences of loss). When

the process is completed, a collaborative XGBoost model is established and then sent

to every participant. The proposed HFL framework enables petroleum companies to

leverage each other's data for training better ML models without compromising the

privacy of individual datasets.

Protocol 1: Horizontal Federated Learning XGBoost model

Input: �� �×�� the feature dataset of participant party k (1 ≤ k ≤ m); � �
� , the
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label dataset of participant party k; T, number of trees; D, maximum depth of tree;

B, number of bins; ɛ minimum loss reduction for a split; �, L2 regularization term.

Output: The t-th decision tree for 1≤�≤�. The main tree structure is sent to each

party when the global model is established.

1: for each party

2: Initialized �� �� with random values.

3: end

4: for 1≤�≤� do

5: for each party

6: Party �: Calculate the gradient �� and hessian matrix ℎ� of local

database.

7: Encrypt �� into [��] and ℎ� into [ℎ�].

8: end

Protocol 1 (Continued).

9: for 1≤d≤D do

10: for each tree node on depth �−1 do

11: for 1≤�≤M do

12: for each party

13: Do binning on � and Xk, getting the binning result ��
��� and binning

boundaries ��,� for 1≤� ≤��. Then encrypt the ��
��� into [��

���], and

record the binning boundaries ��,� to local storage.

14: Based on [��] and [ℎ�] and [��
���], calculate aggregated gradients [��]

and [��]. Send [��] and [��] to the Server.

15: end

16: Server: Decrypt the aggregated gradients [��] and [��] for all party, to
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get �� and �� . Compute the best split of this tree node and record

corresponding information about this node into a lookup table,

including the split party, the split feature, the split position and split

thresholds.

17: The best splits points are then broadcasted to each party.

18: Party �: According to the feature ID on party k and the position of

split points, for sample vector I, determine the left sample space IL.

Send I� to the Server.

19: Server: Compute �� ← � − �� . Split the current tree node into two

child nodes to join the node queue, assign �� and �� to them

respectively.

20: end

21: end

22: for each leaf node u in the tree do

Protocol 1 (Continued).

Compute the weight �� ← − �∈�� ���

�∈�� ℎ�+��

end

Add the new generated decision tree to the model

end

return the generated model with all trees.

2.7 XGBoost models under vertical federated learning frameworks

Unlike HFL, vertical federated learning (VFL) holds promise in safe expansion

of data features among various industries. In this section, a VFL method combined

with XGBoost, namely VFL-XGBoost, has been illustrated.

Protocol 2 shows the detailed training process of VFL-XGBoost model. For the
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�-th tree within the model, the workflow starts from computation of predicted values

��� (1 ≤ � ≤ �) from the preceding �−1 tree. Subsequently, the first- and

second-order gradients, denoted as �� and ℎ� (1 ≤ � ≤ �) respectively, undergo

computation. These gradients are then subjected to encryption and transmission as [��]

and [ℎ�] (1 ≤ � ≤ �) to the cryptographic endpoint. The construction of the tree

commences with the creation of the root node �₀ and the initialization of the sample

space ��0 , which encompasses the entire dataset. The iterative node splitting process

progresses through each depth. At each depth, the active participant shares its sample

space � with all passive participants. Subsequently, each participant � conducts

binning on its local feature dataset �� within the shared sample space �. The

outcomes of this binning process are encrypted as [��
���] and transmitted to the

cryptographic endpoint, with the binning boundaries stored locally. Upon receiving

the encrypted binning results, the cryptographic endpoint aggregates the gradients

based on these results and transmits the aggregated gradients [�� ] and [�� ] to the

active participant. The active participant, upon decryption, calculates the information

gain for each feature from every participant, determining the optimal split. The active

participant then communicates this optimal split to the respective participant, which

employs it to update its sample space and initiate the next level of the tree. This

process iterates until the tree reaches its defined maximum depth. The weights of the

leaf nodes are subsequently computed, and the newly generated tree is incorporated

into the ensemble model. Each party only knows the detailed split information of the

tree nodes where the split features are provided by the party. By following these steps,

multiple parties could collaboratively build a XGBoost model based on the VFL

framework without privacy leakage.
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Protocol 2: Vertical Federated Learning XGBoost model

Input: �� �×�� the feature dataset of participant party k (1≤ k ≤ m); � � , the

label dataset; T, number of trees; D, maximum depth of tree; B, number of bins; ɛ

minimum loss reduction for a split; �, L2 regularization term.

Output: The t-th decision tree for 1≤�≤�. The main tree structure is stored on the

active party, while the binning boundaries are stored distributed across all parties.

1: for 1≤�≤� do

2: Active party: Initialized and calculate the gradient �� and hessian matrix

ℎ�

3: Encrypt �� into [��] and ℎ� into [ℎ�]

4: Add the root node u0 to the tree, set the sample space ��0

5: for 1≤d≤D do

6: for each tree node on depth �−1 do

7: Active party: For this tree node, send its sample space � to all passive

parties

Protocol 2 (Continued).

8: for 1≤�≤M do

9: Passive Party �: Do binning on � and Xk, getting the binning result

��
��� and binning boundaries ��,�

for 1≤� ≤�� do

Then encrypt the ��
��� into [��

���], and record the binning boundaries

��,� to local storage.

10: Passive Party �: Based on [ �� ] and [ ℎ� ] and [��
���] , calculate

aggregated gradients [��] and [��]. Send [��] and [��] to the active

party.
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11: end

12: Active party: Decrypt the aggregated gradients [�� ] and [�� ] for all

party, to get �� and �� . Compute the best split of this tree node and

record corresponding information about this node into a lookup table,

including the split feature, the split position and split thresholds.

13: Passive Party �: According to the feature ID on party k and the

position of split point, for sample vector I, determine the left sample

space IL. Send I� to the active party.

14: Active Party: Compute �� ← � − �� . Split the current tree node into

two child nodes to join the node queue, assign �� and �� to them

respectively.

15: end

16: end

17: for each leaf node u in the tree do

18: Compute the weight �� ← − �∈�� ���

�∈�� ℎ�+��

3 Problem Definition

In this section, the reasons behind the existence of data silo in petroleum industry

would be analyzed deeply and a FL-based solution, namely FL-XGBoost, is given to

overcome this challenge under two different scenarios.

The conventional workflow of gas well exploration is illustrated in the left side

of Figure. 4. In the initial phase, two petroleum enterprise (Company A and Company

B) commission an exploration institute to gather geological information of their

respective reservoirs. Based on the geological features of the two reservoirs, the
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exploration institute offers tailored development plans, encompassing engineering

directives and corresponding technical parameters, to both Company A and Company

B. Subsequently, the two asset owners evaluate the feasibility of the proposed plans,

taking into account various factors such as technological considerations, economic

viability, and societal implications. Once the final construction plans are determined,

both companies can initiate the collection of real-time data about the engineering

features and productivity of each well in their own reservoirs.

Both geological and operational features of exploration techniques wield a

substantial influence on the productivity of undeveloped gas wells. However, as

shown on the right side of Figure 4, data barriers pose challenges in the reservoir

exploration process. As depicted in Figure.4, the exploration institute hold only the

detailed geological features (GA and GB) of the gas wells in the two reservoirs.

Significantly, there is a notable disparity exists between the well development plans,

including the operational features O0A and O0B, and the actual engineering data (O1A

and O1B) under the ownership of the Petroleum Company A and B, respectively. The

predication objects, productivity (PA and PB), are exclusively stored in the datasets of

the asset owners. Due to the limited availability of features in their respective

databases, none of the participating parties can perform EPP tasks or update their

existing models in isolation. Furthermore, collaboration barriers often impede data

sample expansion between functionally equivalent organizations, like Companies A

and B. Concerns related to privacy and the protection of business secrets significantly

limit the data availability and diversity, fostering the growth of data silos.

Conventional ML solutions heavily rely on the quality and quantity of data, rendering

them impractical in scenarios where data is limited [45]. The establishment of

accurate ML models becomes challenging, as evident in the literature, without a

secure data-sharing agreement between participants due to the existing data barriers.
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As previously analyzed, the difficulty in reaching similar open-access agreements is

increasing exponentially. Hence, the adoption of FL is urgently needed to address this

problem.

Figure. 4. Data silo in the process of exploration and drilling for gas wells.

3.1 Two designed cases of FL-XGBoost frameworks

In the previous section, an exhaustive analysis of the factors contributing to data

barriers was presented. Moderately increasing the quantity of data samples can

enhance the performance of ML models. Unfortunately, in practice, data samples from

gas wells are often limited since the extremely high exploration and drilling costs.

Another significant challenge in applying ML algorithms is the scarcity of feature

samples for objects. Reservoir exploration involves diverse participants with distinct

roles in the upstream, midstream, or downstream sectors of the industrial chain.

Consequently, the same ID samples with different features are collected and stored in

different institutions, leading to the prevalent issue of data barriers in the petroleum

field.
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To address these issues, the HFL-XGBoost and VFL-XGBoost models are

expected to securely expand sensitive gas well data in terms of both sample and

feature quantities. Two scenarios have been designed for the application of the two

frameworks.

Case One: two petroleum companies, each with its data of own gas wells,

collaborate to train a global XGBoost model without exposing data to others. The

specific workflow is presented in Figure 5. Oil Company A and B, each holding

labeled samples with the same features, are clients of the HFL agreement, while the

centralized server, the platform's dominant administrator, is introduced. The server is

responsible for collecting, computing, updating and sending the parameters of ML

models between clients.

Case Two: an oil company and an exploration institute collaborate to build a

XGBoost model for predicting the productivity of unconventional reservoirs. The oil

company, holding the label Y and the engineering data matrix of petroleum wells in

field A and B, takes on the active party role in the scenario. As shown in Figure 6, the

active party assumes a dominant position in the VFL framework. Simultaneously, the

exploration institute, equipped with only the geological feature matrix of the same

wells, acts as the passive party in this cooperation. The passive party aims to build a

model to predict the label Y for its own purposes and plays the role of a client in the

VFL setting.
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Figure. 5. Workflow of XGBoost algorithm in the HFL framework.

Figure. 6. Workflow of XGBoost algorithm in the VFL framework.
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4 Experiment and results

4.1 Data description and experiment settings

In this section, an effective privacy-preserving classification framework, namely

FL-XGBoost is established for the detection of high-yield gas wells, and its benefits

are estimated using real-world datasets consisting of a total of 284 gas wells from two

shale gas fields, Field A and B, which are located in the Sichuan Basin, China. The

target feature in this study is the yield productivity of gas wells and a criterion is

introduced for classifying a gas well as high-yield. Based on the essential information

provided by the gas field owners, the criterion is set at 2×104 m3 per day. In other

words, if the average productivity of the gas well exceeds this threshold, it is defined

as a high yield well (positive sample) in this study. Otherwise, it is classified as a low

yield well (negative sample). The sample composition of the dataset is shown in Table

1. Raw data undergoes preprocessing before modelling to ensure the completeness of

features and values, which is crucial for the accuracy of the models. During this step,

features with a high number of missing values are deleted from the dataset.

Consequently, 16 operational features and 16 geological parameters are selected as

input features for the models. The nomenclature table of the selected featured is

provided in Table 2. Besides, more details of the input features are summarized in

Appendix A, Table A1 and A2.

To enhance dataset partition certainty, k-folds cross-validation, a resampling

method has been applied in this research [70]. The preprocessed data is divided into k

groups of approximately equal size [71]. In each test round, one group is treated as the

testing set, while the remaining k-1 groups are used as the training set. This process is

repeated k times, with each group serving as the testing set once. The evaluation

results from each round are then averaged to estimate the performance of the model.
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In this research, k is chosen as 5. In each iteration, 80% of the data is utilized as the

training dataset, and the remaining 20% is allocated as the test set. During the

modelling and hyperparameter tuning process, 10% of the training data was randomly

selected as a validation set. To directly illustrate the gains and costs of the FL

framework, a comparison and analysis of the separate model, the federated model,

and the centralized model are conducted in the case of HFL and VFL, as summarized

in Table 3.

The separate models and centralized models are constructed using Python

platform with Scikit-learn ML library [72]. As for federated models, the framework is

supported by FATE, an open-source project initiated by Webank’s AI Department [73].

The basic settings and parameter selections for the three types of XGBoost models are

identical, as listed in Table 4. More specific illustration for the basic settings of

XGBoost models can be found in in Appendix B, Table B1. Furthermore, BO

algorithm is employed to enhance the performance of the models by tuning

hyperparameters. Due to differences in structure and settings between Scikit-learn and

FATE, 8 adjustable hyperparameters is chosen to be optimized, as summarized in

Table 4. Since FATE platform currently does not support the conventional BO method,

which requires global data information, is unavailable restrained by the FL agreement.

Therefore, the optimized hyperparameter of FL-XGBoost models are obtained

through proportional aggregation of the optimized parameters based on participants’

local models, as calculated in Eq.22. This method is referred to aggregated

optimization, distinguishing it from the traditional optimization.

Table 1. Data size of 284 shale gas wells in the study case.

Item District A District B Total

Number of positive samples 25 (34.72%) 144 (68.87%) 171 (60.21%)
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Number of negative samples 47 (65.28%) 66 (31.13%) 113 (39.79%)

Sum 72 212 284

Table 2. Nomenclature table of the input features in the study case.

Geological parameters

Item Units Symbol

Total horizontal section length (HSL) m G1

HSL in section ‘Jiancaogou’ m G2

HSL in section 1 m G3

HSL in section 2 m G4

HSL in section 3 m G5

HSL in section 4 m G6

HSL in section 5 m G7

HSL in section 6, 7, 8 and 9 m G8

Total HSL in section 1 and 3 m G9

Ordinate of the wellhead - G10

Abscissa of the wellhead - G11

Middle depth of the well m G12

Porosity of reservoir % G13

Total organic carbon of reservoir % G14

Formation pressure coefficient - G15

Mean fracture pressure MPa G16

Operational parameters

Item Units Symbol

Content of slick water in fracturing fluid m3 O1
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Content of guanidine gum in fracturing fluid m3 O2

Total content of liquid in fracturing fluid m3 O3

Total content of quartz sand in fracturing fluid m3 O4

Table 2 (Continued). Nomenclature table of the input features in the study case.

Operational parameters

Item Units Symbol

Average content of quartz sand in fracturing fluid m3 O5

Average content of quartz sand in sections m3 O6

Average content of liquid in sections m3 O7

Average content of liquid in clusters m3 O8

Content of 30-50 mesh proppant m3 O9

Content of 40-70 mesh proppant m3 O10

Content of 70-140 mesh proppant m3 O11

Average ratio of quartz sand - O12

Cluster number of perforations - O13

Mean pump pressure MPa O14

Average length of fracturing stages m O15

Fracturing stages - O16

Table 3. Description of modelling in the study case.

Modelling Description Privacy Generalizable

Separate modelling: Each party independently

builds an ML model using its own database
Yes No

Centralized modelling: All parties could collaborate No Yes
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with each other by openly data exchange

Federated modelling: Safe centralized modelling Yes Yes

Table 4. Basic information for the setting of FL-XGBoost model.

Basic setting (Fixed)

Item Details Item Details

booster gbtree colsample_bylevel 1

seed 0 colsample_bytree 1

eval_metric auc max_delta_step 0

tree_method hist Gamma 0

random_state 0 num_parallel_tree 1

objective binary: logistic

Hyperparameter (Optimized by OP algorithm)

Item Default value Adjustment range

learning_rate 0.3 [0.01, 0.5]

max_bin 32 [8, 512]

max_depth 5 [0, 10]

min_child_weight 1 [0, 10]

n_estimators 20 [20, 100]

reg_alpha 0 [0,1]

reg_lambda 0 [0,1]

subsample 1 [0.01, 1]
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4.2 Experiments and results in the case of HFL

In the case of HFL, where two petroleum companies with different labeled

samples but the same features collaborate to build a global model while avoiding

privacy leakage, the prediction results of different models are presented in Table 5.

The aggregated optimized parameters and the direct optimized parameters for the

HFL-XGBoost model are collected respectively in Appendix B, Table B2 and Table

B3.

According to the results in Table 5, the overall performance of the XGBoost

model improves dramatically as the number of sample clusters increases. The

federated XGBoost framework outperforms the separate model based on the local

dataset of Company A by up to 20.08% in AUC, 26.73% in ACC and 36.98% in

F1-Score. For Company B, which contributes nearly 75% of the data samples, the

gains from collaborative modeling are still remarkable. AUC, ACC, and F1-Score are

4.55%, 5.67%, and 2.39% higher respectively than the local model. This improvement

can be attributed to the larger data volume provided by other participants, which

enhances the knowledge available for the ML models. More importantly, the federated

XGBoost model achieves an almost perfect trade-off between privacy and accuracy.

Calculated by Eq.9, the costs of privacy preservation in AUC, ACC and F1-score are

0.28%, 1.41%, and 1.27% under the proposed FL framework, while the centralized

models have a higher average cost of 28.92% (Company A) and 5.19% (Company B)

for privacy protection across these evaluation indicators.

Apparently, there was a quick performance boost after hyperparameters tuning,

especially for the separate models. FL model received a slight improvement from the

safe aggregated optimization, with AUC and F1-Score increasing by 0.54% and

0.34%. In contrast, the centralized XGBoost model with the same setting showed

more notable gains in each evaluation index, increasing by an average of 1.78%. Two
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factors might contribute to this phenomenon. First, the BO module in the FL

framework only obtains locally optimal hyperparameters from the selected

independent datasets, lacking the complete information about the full data samples.

The second reason is that communication loss between encryption and decryption

might further aggravate this problem. Hence, it is understandable that the direct BO

algorithm can provide a more notable growth for the centralized model, with an

average benefit of up to 3.74%, which is higher than the benefit from the aggregated

BO. Although BO methods effectively reduce the privacy protection costs of

centralized modeling, they still remain twice as high as those of FL models. The

average privacy-care costs for the three evaluating indicators of FL models are 0.95%

for AUC, 3.90% for ACC, and 2.59% for F1-score.

From the standpoint of the company A and B in the HFL case, Figure 7 illustrates

the benefits provided by the different methods in detail and their privacy preservation

costs. FL techniques distinctly diminish privacy preservation costs, yielding a mere

0.28% cost on AUC, 1.41% on ACC, and 1.27% on F1-score in the case of HFL. For

participants with a small sample dataset, like company A, insufficient data volume is

the primary constraint for training models, and embracing collaboration is a wise

choice to achieve more accurate prediction results. Besides, centralized modeling

incurs significantly higher privacy protection costs than contributors with larger

datasets, especially concerning F1-score. There is a decrease in privacy preservation

costs by 0.72% on AUC, 3.92% on ACC, and 11.61% on F1-score after

hyperparameter tuning.

As shown in Figure 7 (b), the increments in AUC and ACC are obvious for

Company B with the 25% increase in data samples, while the improvement of

F1-Score is more sensitive to the hyperparameter variation. Hence, selecting

appropriate parameters is a prudent solution to effectively enhance the F1-Score of the
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XGBoost algorithm. Intriguingly, the AUC of the centralized model for Company B

decreased by 1.5% after Bayesian Optimization, while ACC and F1-score increased

by 1.32% and 2.42%, respectively. This phenomenon is attributed to the great

improvement from parameter adjustment in AUC and F1-score for the centralized

model compared to the separate model built by Company B. Since direct data access

is prohibited under the FL agreement, FL models optimized using the aggregation BO

algorithm yield suboptimal outcomes. resulting in a larger increase in the privacy

protection cost of FL models after adopting hyperparameter optimization in HFL.

(a) Take separate model built by the company A as the baseline.
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(b) Take separate model built by the oil company B as the baseline.

Figure. 7. The benefits brought from collaborative modelling and hyperparameter

optimization in the case of HFL.

Table 5. The comparison results in the case of HFL.

Item Privacy AUC ACC F1-Score

Separate

model

Company A Safe 69.25% 56.03% 48.49%

Direct BO Safe 73.19% 64.11% 63.94%

Company B Safe 84.78% 77.09% 83.08%

Direct BO Safe 88.93% 79.93% 84.50%

Federated

model

Original Safe 89.33% 82.76% 85.47%

Aggregated BO Safe 89.87% 82.73% 85.81%

Centralized

model

Original Not safe 89.61% 84.17% 86.74%

Aggregated BO Not safe 90.82% 86.63% 88.40%

Direct BO Not safe 92.83% 88.33% 90.58%
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4.3 Experiments and results in the case of VFL

Under the VFL agreement, the active party, which possesses the label samples (Y

label), can engage the suitable passive party in a collaborative effort to build a model

through encrypted communication. In this scenario, the prediction results of various

XGBoost models are collected in Table 6. Additionally, the aggregated optimized

parameters and the direct optimized parameters for the models are summarized

respectively in Appendix B, Table B4 and Table B5.

As outlined in Table 6, the performance of the XGBoost model notably improves

with the increase in data dimension, especially concerning AUC. Owning to the

stronger correlation between well productivity and the surrounding geological

characteristics, the accuracy of the separate model established by the exploration

institute surpasses that of the model based solely on operational data of the wells.

When the exploration department adopt the FL framework, the AUC rise by 6%,

which is twice the increment seen in ACC and F1-score. For the owner of operational

data, the benefits derived from the joint FL model are significantly higher, with an

improvement of 16.72% in AUC, 7.78% in ACC, and 5.71% in F1-score. In the

scenario of local modelling, parameter optimization more readily enhances AUC,

particularly for participants with operational data. But whether using the direct BO

method or the aggregated BO method, both approaches result in more substantial

improvements in ACC and F1-score for collaborative models.

The gains from the different ML models and the privacy-preserving costs are

illustrated detailly in the case of VFL. In Figure 8 (a), the most substantial

enhancement in AUC of the model based on the oil company exceeds 15% when

geological features from the exploration institute are introduced to the training

datasets. In Figure 8 (b), operational features lead to a 5.91% improvement in AUC of

the separate model within the VFL framework, while the growth in ACC and
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F1-Score is comparatively limited. One the other hand, both the FL model and

centralized model experience satisfactory advancements from the aggregated BO

method, especially for ACC, which increases by 3.19% for the FL model and 2.46%

for the centralized approach.

In the case of VFL, the privacy-preserving cost of FL models remains

significantly lower than that of centralized models, whether for the Oil Company or

the Exploration Institutes. Specifically, the FL models exhibit a 5.78% lower privacy

protection cost in terms of AUC, a 3.53% lower cost in terms of ACC, and a 3.05%

lower cost in terms of F1-score. Although this advantage may slightly diminish after

parameter optimization, it still maintains a notable edge compared to the centralized

models. Except for the privacy protection cost of the centralized model for the Oil

Company, which experienced a 1.89% decrease in AUC after optimization, the cost of

all other models showed increments in all metrics.

(a) Take separated model built by the oil company as the baseline.
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(b) Take separated model built by the exploration institute as the baseline.

Figure. 8. The benefits brought from collaborative modelling and hyperparameter

optimization in the case of VFL.

Table 6. The comparison results in the case of VFL.

Item
Evaluation index

Privacy AUC ACC F1-Score

Separate

model

Oil Company Safe 72.76% 72.86% 78.63%

Direct BO Safe 77.87% 75.33% 80.72%

Exploration Institute Safe 83.70% 77.11% 81.29%

Direct BO Safe 86.49% 80.32% 84.25%

Federated

model

Original Safe 89.48% 80.64% 84.34%

Aggregated BO Safe 89.10% 83.82% 86.57%

Centralized

model

Original Not safe 89.61% 84.17% 86.74%

Aggregated BO Not safe 90.82% 86.63% 88.40%
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Direct BO Not safe 92.83% 88.33% 90.58%

5 Discussion

The practical implementation of ML algorithms in energy fields is impeded by

two prominent challenges: privacy protection and data collection. To address this

issue, this research proposes a novel privacy-protection framework to overcome data

barriers between agencies and companies, facilitating the application of ML methods

in energy fields. XGBoost model was chosen to address a classical binary

classification problem under the proposed FL framework.

As analyzed in the previous section, the evaluation and comparison of the

separate models, centralized models and FL models were executed based on the actual

dataset. FL agreements empower participants to leverage data securely and derive

collaboration benefits whether in the case of HFL or VFL. FL models manifest higher

accuracy and superior generalization ability over the separate models. Simultaneously,

the privacy persevering costs associated with FL models are significantly lower than

that of the centralized models. Bayesian Optimization emerges as a viable solution for

tuning the hyperparameters of the XGBoost models. Following the application of the

Bayesian Optimization method to adjust the hyperparameters of the XGBoost models,

the performance of all models has been improved to varying degrees. Constrained by

the privacy protection agreement, hyperparameter tuning has been identified as a

critical issue for the FL models. The safe-aggregation Bayesian optimization is

effective and maneuverable in improving the accuracy of XGBoost models.

To sum up, the experimental results successfully demonstrate the feasibility of

the FL framework in the geonergy sector. As the starting point of this work, there are

still certain issues that need to be discussed.
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5.1 Training cost

The training cost of ML models, encompassing computational, personnel

expenses, and storage, is pivotal for efficient model development. In this research, an

AMD Ryzen 9 7950X 16-Core Processor was utilized for the training, optimization,

and prediction processes. Based on the results in Section 4, secure data collaborations

and satisfactory accuracy under the FL frameworks derive from intricate ciphertext

computations and frequent encryption-decryption processes. However, these

processes notably escalate the training costs of FL models, as evidenced in Table 7

and Table 8.

From Table 7 and Table 8, the time consumptions of the separate and centralized

models basically maintained within 1 second, while the training costs of FL models

are close to 7 minutes. Fortunately, the data samples in energy industry, especially in

geoenergy sector, are usually insufficient. Hence, while FL frameworks must carry

high computational burdens, the time consumption is generally acceptable in practical

applications. Additionally, real-time computation is unnecessary in the vast majority

of cases within the energy fields.

To achieve effective modelling under the FL framework, several strategies can be

implemented. Firstly, optimize the communication mechanisms in the FL process,

which can be achieved through techniques such as data compression, differential

privacy, or employing more efficient communication protocols [74, 75]. Secondly,

selectively uploading updates that significantly impact the global model can help to

prioritize the transmission of relevant information [76, 77]. Participants can evaluate

the importance of their local updates based on criteria such as their impact on the

model's performance or their relevance to specific tasks. Besides, employing

techniques such as model pruning and quantization can reduce the complexity of the
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model without sacrificing performance, thereby decreasing both computational and

communication overheads [78, 79]. Finally, adopting incremental learning approaches

involves updating the model gradually over time, rather than retraining it from scratch

with each iteration. This incremental approach can help to accelerate convergence,

especially in scenarios where the underlying data distribution may change gradually

over time [80].

Therefore, the efficiency of the proposed FL-XGBoost framework is expected to

be overcome. It stands as a pivotal research focus for our future endeavors that build a

practical, efficient, privacy-persevering FL framework in the energy field.

Table 7. Comparison results of training and optimization time consumption for

various models in the case of HFL (Unit: Second).

Item Total time consumption

Separate model
Company A 0.04

Company B 0.10

Federated model Original 391.56

Centralized model Original 0.13

Table 8. Comparison results of training and optimization time consumption for

various models in the case of VFL (Unit: Second).

Item Time consumption

Separate model
Oil Company 0.06

Exploration Institute 0.05

Federated model Original 399.56

Centralized model Original 0.13
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5.2 Ethical Consideration

Considering the sensitive data in energy fields, FL presents an excellent solution

by achieving data availability while preserving data invisibility, thereby overcoming

data barriers between agencies and companies at the lowest cost. In the two designed

cases, expansions in data volume and features were successfully achieved without

compromising the confidentiality of the original data. But, ethical considerations

associated with FL should be carefully addressed.

(1) Transparency: Federated learning models may lack transparency, making it

difficult for participants to understand how decisions are made or identify potential

biases in the collaborative models. Hence, even if a more superior predictive model is

obtained based on FL technology, the results hardly provide some specific and reliable

advice to each participant. Ensuring the transparency and accountability of algorithms

is crucial for addressing ethical issues and building trust in FL systems.

(2) Dishonesty: A comprehensive management system is needed to regulate FL

modelling participants. During the data-share collaboration, dishonest participants

may attempt to tamper with the global model or inject malicious code by forging data.

These actions not only compromise the security and reliability of the collaborative

models but also undermine the trust among participants. So, clear guidelines and

protocols should be established to govern the behavior of participants and outline the

consequences of engaging in fraudulent activities.

(3) Algorithm bias: Algorithm bias cannot be ignored, as the training data for

each collaboration may come from different datasets. The active modeling party or

trusted third-party may selectively choose joint modeling participants in a biased

manner, leading to data bias and resulting in unfair or inaccurate results from the

model. It is essential to ensure a fair and representative selection of participants in the

FL process to minimize algorithm bias.
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6 Conclusion

This study comprehensively investigates the significance and feasibility of

deploying the FL-XGBoost model for high-yield gas well classification in the

geoenergy fields, emphasizing the evaluation of FL framework benefits in two

scenarios. The key findings are summarized as follows:

 The proposed FL models effectively enhance data samples and features,

ensuring data privacy and significantly the performance of the XGBoost

models.

 Whether under HFL or VFL scenarios, the proposed FL-XGBoost model

achieves an exceptional balance between privacy and accuracy.

 Constrained by the privacy protection agreement within the FL framework, the

employed aggregated Bayesian Optimization approach demonstrates

simplicity and effectiveness in improving the accuracy of the XGBoost

models.

In summary, FL agreements empower secure and collaborative data utilization,

exhibiting higher accuracy and superior generalization ability over individual models.

Notably, privacy-preserving costs associated with FL models are significantly lower

than those of centralized models. As the information technology landscape evolves,

Federated Learning holds promise as a prospective solution for addressing expanding

data barriers within the geoenergy sector.
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Appendix A. Description of the dataset

The two fields are located in the eastern fold belt of the Sichuan Basin, with a

relatively higher structural position. Certain characteristics define Field A: a gentle

dip (10 to 20°) in the southwest and a steep dip (20 to 30°) in the northeast. The

reservoir depth within the Field A exceeds 3,200 m, surpassing that of the main part of

the Field B by 500 to 900 m. Positioned to the west of the Field A, the

Field B boasts a relatively smoother attitude of the main strata.

Table A1. Input features of 72 shale gas wells in the A district.

Item Unit Average Median Range

G1 m 1570.38 1554.00 [895.63, 2163.00]

G2 m 17.23 0.00 [0.00, 173.40]

G3 m 243.23 178.15 [0.00, 1036.00]

G4 m 102.49 72.30 [0.00, 417.00]

G5 m 1019.13 1057.25 [0.00, 1788.00]

G6 m 127.79 51.75 [0.00, 1362.00]

G7 m 43.23 0.00 [0.00, 912.00]

G8 m 17.28 0.00 [0.00, 836.00]

G9 m 1262.36 1328.25 [0.00, 1975.60]

G10 - 3291330.10 3291291.00 [3283866.00, 3297271.10]

G11 - 18738860.64 18739164.65 [18731627.60, 18747507.10]

G12 m 3463.95 3530.85 [2399.20, 4345.74]

G13 % 4.42 4.44 [3.57, 5.07]

G14 % 3.93 3.95 [2.46, 4.89]

G15 - 1.60 1.60 [1.30, 1.90]
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Table A1 (Continued). Input features of 72 shale gas wells in the A district.

Item Unit Average Median Range

G16 MPa 79.23 78.16 [65.45, 100.77]

O1 m3 35471.40 34738.04 [18001.00, 60115.00]

O2 m3 2897.63 2992.30 [223.40, 6181.68]

O3 m3 39897.46 38964.49 [20013.58, 65022.80]

O4 m3 1385.30 1254.15 [604.60, 2682.60]

O5 m3 68.05 61.37 [40.84, 107.30]

O6 m3 474.61 628.20 [9.18, 920.02]

O7 m3 1956.57 1933.50 [1229.13, 2335.37]

O8 m3 1535.71 1887.98 [187.98, 2196.65]

O9 m3 62.42 24.15 [0.00, 968.00]

O10 m3 917.03 773.37 [214.30, 1861.60]

O11 m3 405.84 353.83 [108.90, 921.10]

O12 - 6.47 6.49 [5.18, 8.55]

O13 - 76.74 60.00 [28.00, 255.00]

O14 MPa 45.22 44.74 [30.63, 57.74]

O15 m 76.93 78.72 [57.73, 92.72]

O16 - 20.13 20.00 [10.00, 30.00]
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Table A2. Data characteristics of 212 shale gas wells in the B district.

Item Unit Average Median Range

G1 m 1468.05 1500 [786.00, 2203.00]

G2 m 28.63 0.00 [0.00, 551.50]

G3 m 386.18 306.00 [0.00, 1748.00]

G4 m 89.30 50.00 [0.00, 666.00]

G5 m 743.99 726.00 [0.00, 1613.00]

G6 m 152.25 39.00 [0.00, 1303.00]

G7 m 54.09 0.00 [0.00, 757.00]

G8 m 18.47 0.00 [0.00, 471.00]

G9 m 1111.93 1216.60 [0.00, 1867.20]

G10 - 3284124.81 3284647.66 [3272450.10, 3296023.60]

G11 - 18743263.60 18743721.90 [18732341.10, 18751582.80]

G12 m 2728.33 2646.00 [1278.20, 5645.00]

G13 % 4.71 4.71 [2.93, 6.37]

G14 % 3.59 3.62 [2.00, 5.03]

G15 - 1.42 1.46 [0.98, 1.69]

G16 MPa 72.65 73.17 [40.02, 88.87]

O1 m3 31159.44 31170.63 [3683.58, 57188.90]

O2 m3 2611.47 2391.16 [129.40, 7914.90]

O3 m3 35173.27 34940.60 [3840.13, 59781.90]

O4 m3 966.16 988.81 [111.90, 1786.00]

O5 m3 50.27 50.65 [31.22, 79.45]

O6 m3 20.06 20.06 [12.54, 29.79]

O7 m3 1803.70 1820.16 [1240.64, 2178.36]
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Table A2 (Continued). Data characteristics of 212 shale gas wells in the B

district.

O8 m3 706.50 701.00 [489.51, 1009.85]

O9 m3 41.55 38.80 [0.00, 241.90]

O10 m3 696.12 709.20 [87.30 1273.80]

O11 m3 228.49 215.20 [19.60, 438.50]

O12 - 7.44 7.28 [4.81, 23.70]

O13 - 48.37 49.00 [5.00 75.00]

O14 MPa 35.69 34.91 [16.08, 64.48]

O15 m 74.07 75.00 [36.00, 97.00]

O16 - 18.67 19.00 [2.00, 29.00]
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Appendix B. Illustration of hyperparameters of

FL-XGBoost model

Table B1. Illustration for the setting parameters of FL-XGBoost model.

Parameter Description

colsample_bylevel The subsample ratio of columns for each level

colsample_bytree
The subsample ratio of columns when constructing each

tree

gamma
Minimum loss reduction required to make a further

partition on a leaf node of the tree

learning_rate Step size shrinkage used in update to prevents overfitting

max_bin Maximum number of bins to bucket continuous features

max_delta_step Maximum delta step of each leaf output

max_depth Maximum depth of a tree

min_child_weight Minimum sum of instance weight needed in a child.

n_estimators The number of decision trees.

subsample Subsample ratio of the training instances.

booster The kind of booster used in XGBoost

objective Learning task and objective

reg_alpha L1 regularization term on weights

reg_lambda L2 regularization term on weights

eval_metric Evaluation metrics for testing dataset

tree_method The tree construction algorithm used in XGBoost

seed Random number seed
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Table B2. The optimized aggregation parameters applied for the FL-XGBoost model

and the global model in the case of HFL.

Item 1 2 3 4 5

learning_rate 0.5 0.47 0.40 0.43 0.5

max_bin 343 27 8 16 8

max_depth 4 4 10 6 9

min_child_weight 0.34 0.34 0.66 1.66 2.32

n_estimators 30 28.3 23.20 29 28.64

reg_alpha 0.66 0.66 0.66 0.66 0.66

reg_lambda 0.34 0.34 0.34 0 0

Subsample 0.85 1.00 1.00 0.78 0.74

Table B3. The optimized parameters applied for the global model in the case of HFL.

Item 1 2 3 4 5

learning_rate 0.5 0.5 0.4 0.5 0.2011

max_bin 8 8 8 512 188

max_depth 10 1 8 10 10

min_child_weight 1 0 0.66 3 3

n_estimators 0.5 0 0.66 1 1

reg_alpha 0 1 0.3 0.8 0

reg_lambda 0.7273 1 1 1 1

Subsample 30 30 20 30 30
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Table B4. The optimized aggregation parameters applied for the FL-XGBoost model

and the global model in the case of VFL.

Item 1 2 3 4 5

learning_rate 0.12 0.50 0.48 0.50 0.15

max_bin 260 271 76 264 207

max_depth 9 6 4 6 10

min_child_weight 1.5 1 1 1.5 0

n_estimators 30 20 20 23.5 28

reg_alpha 0.5 0.5 0 0 1

reg_lambda 0.5 1 0.5 0.5 0.5

subsample 0.93 0.84 0.85 0.71 0.58

Table B5. The optimized parameters applied for the global model in the case of VFL.

Item 1 2 3 4 5

learning_rate 0.1304 0.1407 0.2900 0.1772 0.2655

max_bin 512 8 128 52 45

max_depth 7 10 8 8 7

min_child_weight 2 1 2 4 1

n_estimators 0 0 0 1 0

reg_alpha 1 0 0 0 0

reg_lambda 0.5 0.3042 0.9897 0.6566 0.51

subsample 30 30 28 30 15
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