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Abstract. Ontology and knowledge graph matching systems are evalu-
ated annually by the Ontology Alignment Evaluation Initiative (OAEI).
More and more systems use machine learning-based approaches, includ-
ing large language models. The training and validation datasets are usu-
ally determined by the system developer and often a subset of the ref-
erence alignments are used. This sampling is against the OAEI rules
and makes a fair comparison impossible. Furthermore, those models are
trained offline (a trained and optimized model is packaged into the
matcher) and therefore the systems are specifically trained for those
tasks. In this paper, we introduce a dataset that contains training, val-
idation, and test sets for most of the OAEI tracks. Thus, online model
learning (the systems must adapt to the given input alignment without
human intervention) is made possible to enable a fair comparison for ML-
based systems. We showcase the usefulness of the dataset by fine-tuning
the confidence thresholds of popular systems.

Keywords: Ontology Matching · Machine Learning · Online Model
Generation.

1 Introduction

If applications want to use two or more knowledge graphs (KGs) simultane-
ously, the corresponding ontologies and instances must be aligned. This process
is called ontology alignment (more generally, KG alignment). The inputs are two
KGs (KG1 and KG2) as well as an input alignment Ain. The produced result
is an improved alignment Aout. Each alignment consists of (possibly) multiple
correspondences in the form < e1, e2, r, c > where e1 ∈ KG1 and e2 ∈ KG2. r
represents the relation between the entities, such as equivalence or subsumption
relation (in case of class correspondences), and c ∈ [0, 1] is a confidence value
given by the matching process.

Starting from 2004, the Ontology Alignment Evaluation Initiative (OAEI)
evaluates matching systems each year and allows for a fair comparison between

http://arxiv.org/abs/2404.18542v1


2 Sven Hertling, Ebrahim Norouzi, and Harald Sack

them. Over the years, more and more systems required correspondences for train-
ing and validating their machine learning-based approaches. Especially in 2023,
systems for the conference track heavily relied on some form of training data3

(due to the low number of correspondences in the reference alignment, this makes
a huge difference in the final result metrics) but also in other tracks those systems
would like to adapt their matching behavior to the task at hand.

In this paper, we introduce train, validation, and test splits for common
OAEI datasets and argue that the models need to adapt to the given input
alignment during the execution of the systems (online model generation) instead
of downloading and generating a model by hand and package it into a matching
system (offline model generation). With the latter, the systems will hardly be
applicable to new datasets, which is one huge advantage of all matching systems
participating at OAEI.

2 Related Work

Many systems submitted to OAEI require training data, and in the following, we
list those systems together with their setup for generating training examples. In
2023, GraphMatcher [1] used the reference alignment in its 5-fold cross-validation
and TOMATO [11] splitted the created dataset into 60% for training and 40%
for testing. SEBMatcher [3] in 2022 generated a training dataset by reference
and string alignments and sampled 20 % of the reference alignment to create
positive cases. Fine-TOM [10] (participating in OAEI 2021) used a transformer
architecture that needed fine-tuning. Their dataset included 20% of each refer-
ence alignment from the Anatomy, Conference, and Knowledge Graph track.

One first direction in creating a machine learning dataset for OAEI is done
by He et al. [4]. They provide a train, validation, and test split for a new track
called Bio-ML. In their evaluation, they used systems that are trained offline,
which means the developers download the training alignments, tune the model,
and upload a matcher including that model.

3 Generation of the dataset

We use the defined tracks of OAEI and split the reference alignment into 20% for
training, 10% for validation, and 70% for testing to align with He et al. [4] and
most other systems that generate training data. The reason why the training
and validation fraction is so low is the extreme imbalance between correct and
incorrect correspondences. Furthermore, in the real-world setting, only a few
positive correspondences will be provided as a training signal due to the high
effort of creating those correspondences.

To have a good segmentation of the reference alignment, we stratify it by
the following criteria: (1) entity type (class, property, instance) of the source
and target entity, (2) relation type, and (3) difficulty of the mapping. For the

3 https://oaei.ontologymatching.org/2023/results/conference/index.html
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latter, we further differentiate between easy, medium, and hard matches. Easy
matches can be found by simple label matching with a bit of string processing
like lowercasing and camel case splitting. Medium matches share at least one
token among the labels, and the rest are considered hard matches.

The stratification for all criteria is achieved by creating subgroups for each
combination, e.g., the group class-class-equivalence-easy and instance-instance-
equivalence-medium are two subgroups that we use for stratification, such that in
training, validation, and test, we ensure the same distribution as in the original
reference alignment. We include the easy matches in the training and valida-
tion alignment because, in the real-world use case, the provided matches will
also contain those simple correspondences (especially if the mapping is created
by finding matching entities for a random sample of entities). The input to a
matching system is only one alignment. To differentiate between the training
and validation set, we added an additional correspondence extension to indicate
to which set it belongs. If a system ignores this distinction, it can use the whole
input as training data.

Only positive training examples are provided as input. For a machine learn-
ing model, negative examples are often required. Unlike [4], we do not provide
negatives (they need it for easily evaluating a ranking-based method) but let the
system create them on the fly. This can be achieved by assuming that, for an
entity in the source, at most one entity exists in the target graph (or vice versa),
and both graphs are duplicate-free. Then, given a correspondence < A,B > in
the training alignment, the system can use its own distance function to search
for hard negatives of A and B. The advantage is that those correspondences are
hard negatives for the matching system at hand and reflects the amount and
distribution during the matching of the whole input KGs.

We used only OAEI test cases with at least 350 correspondences in the ref-
erence alignment, such that the combined training and validation sets have at
least 100 correspondences. This results in the following tracks: Anatomy, BioDiv,
Knowledge Graph, and Bio-ML.

All datasets are well integrated with MELT [7] and can be downloaded via
the track repository4 (there is a separated section for it). Code for the generation
and evaluation can be found on GitHub5.

4 Use Case

We analyze the usefulness of the presented dataset by using three matching
systems from OAEI 2023, which return correspondences with a wide range of
confidence values (not only 1.0). This results in the following systems: Matcha
[2], LogMap [8,9], and OLaLa [6,5]. We use the training and validation data to
adapt the confidence threshold to the task at hand and remove correspondences
below the threshold, which could improve precision and eventually lower recall.
Two automated approaches for finding the right threshold are implemented under

4 https://dwslab.github.io/melt/track-repository#ml-based-tracks
5 https://github.com/dwslab/melt/tree/master/examples/mlDataset
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Table 1. Results of unsupervised (U) and two supervised approaches (SPart, SComp)
for tuning the confidence threshold.

Precision Recall F1-Measure

U SPart SComp U SPart SComp U SPart SComp

Anatomy
Matcha 93.09 93.42 94.72 92.65 92.37 91.23 92.87 92.89 92.94

LogMap 88.34 89.86 96.85 85.01 84.35 69.46 86.65 87.02 80.90
OLaLa 89.04 89.27 95.93 89.63 89.35 82.09 89.34 89.31 88.47

BioDiv
Matcha 62.30 63.32 63.69 99.12 99.07 99.05 76.51 77.26 77.53

LogMap 61.02 61.86 62.72 99.25 98.30 93.84 75.58 75.93 75.19
OLaLa 63.37 63.69 90.37 99.27 99.18 90.63 77.36 77.57 90.50

KnowledgeGraph
Matcha 7.01 13.35 33.09 80.64 74.88 56.63 12.90 22.66 41.78

LogMap 45.86 45.90 46.31 72.65 72.65 72.56 56.23 56.26 56.54

Bio-ML
Matcha 61.37 61.45 63.78 60.29 60.18 57.31 60.80 60.81 60.37
LogMap 58.22 58.46 64.51 58.43 58.27 53.46 58.33 58.36 58.47

OLaLa 36.42 37.31 51.11 42.30 42.04 34.33 39.14 39.53 41.07

the assumption that the input alignment is partial (supervised partial - SPart)
or complete (supervised complete - SComp). It computes the optimal threshold
by using the training and validation data as a ground truth and finds the value
that gives the highest F1-Measure.

Table 1 shows the micro-averaged results for all tracks and matchers. The
numbers represent the class matches except for the Knowledge Graph track,
where the instance matches are shown (OLaLa is not capable of matching in-
stances). The unsupervised case is evaluated on the same test set so that all
numbers are comparable.

In most cases, there is only a slight improvement because the systems are
highly tuned, and the alignment filtering relies solely on the confidence values.
Nevertheless, in some cases, huge improvements can be observed. For example,
when setting the right confidence threshold for OLaLa in the BioDiv dataset,
there is a huge improvement of over 13% in terms of F1-Measure. We hope to
see larger improvements if systems use it to train their whole approach using
more features to differentiate between correct and incorrect mappings.

5 Conclusion

In this paper, we introduced a new dataset for machine learning systems based
on existing OAEI tracks. With the presented dataset, we hope to encourage
matching system developers to use a given input alignment to tune and optimize
their parameters online and only fall back to default/pre-trained parameters if
no input alignment is given.
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In the future, we plan to create datasets for the conference track that do
not have many correspondences. Thus, one complete test case can be used as
training data and another one as a test (in-domain transfer learning).
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