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On the duality in constant-roll inflation
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There is a duality in the observables ns, r and the inflaton potential between large

and small ηH for the constant-roll inflation if the slow-roll parameter ǫH is negligible.

In general, the duality between ηH and η̄H does not hold for the background evolution

of the inflaton. For some particular solutions for the constant-roll inflation with ηH

being a constant, we find that in the small field approximation, the potential takes

the quadratic form and it remains the same when the parameter ηH changes to

η̄H = 3 − ηH . If the scalar field is small and the contribution of ǫH is negligible,

we find that there exists the logarithmic duality and the duality between large and

small ηH for the primordial curvature perturbation in inflationary models with the

quadratic potential.

I. INTRODUCTION

As more evidences for the existence of primordial black holes (PBHs) were provided by

the observations of gravitational waves (GWs) such as the Laser Interferometer Gravita-

tional Wave Observatory (LIGO) Scientific and Virgo Collaborations [1–6], and the Pulsar

Timing Arrays (PTAs) [7–10], PBHs as dark matter attracted a lot of attention. When the

density contrast of overdense regions exceeds the threshold value at the horizon reentry dur-

ing radiation domination, PBHs may form through gravitational collapse [11, 12]. The large

density contrast of overdense regions may be seeded from large primordial curvature per-

turbations at small scales generated during inflation. The large curvature perturbations are
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also the sources of secondary gravitational waves (GWs) after the horizon reentry through

the scalar-tensor mixing [13–16]. Therefore, accompanied with the production of PBHs,

scalar induced gravitational waves (SIGWs) are generated [3, 13–53].

To produce large curvature perturbations at small scales during inflation, we usually

consider inflationary models with an inflection point in the inflaton potential [54–57]. Near

the inflection point, the slow-roll parameter ηH ≈ 3 and it is called the ultra-slow-roll

(USR) inflation [58, 59]. More general, the constant-roll inflation with ηH being a constant

was proposed [60, 61]. If ηH > 1, then the slow-roll condition is violated in constant-roll

inflation and the primordial curvature perturbations may evolve outside the horizon [59–66].

For constant-roll inflation, the inflationary potential and the background equation of motion

can be solved analytically. Due to different background evolution for large and small ηH ,

the observational data constrained ηH to be small [67–70]. Since the slow-roll parameter ǫH

decreases with time, so it may be negligible during inflation. By neglecting the contribution

from ǫH , it was found that there exists a duality between ηH and η̄H = 3 − ηH in the

observables the scalar spectral tilt ns and the tensor-to-scalar ratio r [71, 72]. The duality

between ηH and η̄H = 3 − ηH connects the constant slow-roll inflation with |ηH | ≪ 1 and

the USR inflation with ηH ≈ 3, so the behavior of the primordial curvature perturbations in

USR inflation can be understood from the usual slow-roll inflation. Recently, the logarithmic

duality of the primordial curvature perturbation was found for the quadratic potential in

Ref. [73]. Since the logarithmic duality applies to both the slow-roll and USR inflation, we

extend the discussion on the duality to constant-roll inflation in this paper.

The paper is organized as follows. In Section II, we discuss the duality in constant-roll

inflation. Motivated by the duality in constant-roll inflation, we then discuss the logarithmic

duality of the primordial curvature perturbation using the δN formalism in Section III. The

conclusion is drawn in Section IV.

II. THE CONSTANT-ROLL INFLATION

For the constant-roll inflation, we take the second Hubble flow slow-roll parameter

ηH =
2

H

d2H

dφ2
= −

Ḧ

2HḢ
= −

φ̈

Hφ̇
(1)
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to be a constant, i.e., we take ηH = 3 + α with α being a constant. If α ≈ −3, then ηH is

small and the constant-roll inflation is also a slow-roll inflation; If α ≈ 0, then ηH ≈ 3 and

dV/dφ ≈ 0, the constant-roll inflation is USR inflation. For the constant-roll inflation with

a constant ηH , the scalar spectral tilt is [61, 66]

ns − 1 ≈ 3− |2ηH − 3| −
2(2η2H − 9ηH + 6)

|2ηH − 3|
ǫH , (2)

and the tensor-to-scalar ratio is [61, 66]

r ≈ 27−|2ηH−3|

(

Γ[3/2]

Γ[|2ηH − 3|/2]

)2

ǫH , (3)

where ǫH = 2(dH/dφ)2/H2 = φ̇2/(2H2) is the first Hubble flow slow-roll parameter. If the

contribution of ǫH is negligible in Eq. (2), then the scalar spectral tilt remains unchanged

with the replacement of ηH by η̄H = 3−ηH . It is interesting to note that the tensor-to-scalar

ratio also keeps the same under the interchange between ηH and η̄H . The behaviours of ns

and r under the swap between ηH and η̄H = −α in the constant-roll inflation are called

the duality between large and small ηH in the observables ns and r [71, 72]. The duality

connects the slow-roll inflation with |ηH | ≪ 1 and the USR inflation with ηH ≈ 3, so it is

useful for the understanding of PBH formation and SIGW generation by USR inflation from

slow-roll inflation. If the contribution of ǫH in Eq. (2) is not negligible, then the duality in

ns does not exist, and the background evolutions are also very different [70]. Therefore, it

is important to further explore the duality between ηH and η̄H .

To see when ǫH can be neglected, substituting ηH = 3 + α into Eq. (2), we get

ns − 1 ≈ −2α−
2(2α2 + 3α− 3)

3 + 2α
ǫH , (4)

where α > −3/2. Therefore, the condition that the contribution of ǫH is negligible is

ǫH ≪

∣

∣

∣

∣

α(3 + 2α)

2α2 + 3α− 3

∣

∣

∣

∣

. (5)

For the USR inflation, |α| ≪ 1, the condition (5) means that ǫH ≪ |α| ≪ 1. Substituting

η̄H = −α into Eq. (2), we get

ns − 1 ≈ −2α−
2(2α2 − 9α + 6)

3 + 2α
ǫH . (6)

For the case with η̄H , the condition that the contribution of ǫH is negligible is

ǫH ≪

∣

∣

∣

∣

α(3 + 2α)

2α2 − 9α+ 6

∣

∣

∣

∣

. (7)
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For slow-roll constant inflation with |α| ≪ 1, the condition (7) becomes ǫH ≪ |α|/2 ≪ 1.

Combining the results (5) and (7), we see that the duality between the USR inflation with

ηH = 3+ α and the slow-roll constant inflation with η̄H = −α holds when ǫH ≪ |α|/2 ≪ 1.

Now we discuss the background evolution of the constant-roll inflation with negligible ǫH .

From the background equation

3H2 =
1

2
φ̇2 + V (φ), (8)

we get

V (φ) = (3− ǫH)H
2, (9)

and
dV

dφ
= (3− ηH)H

2 dφ

dN
. (10)

In terms of the number of e-folds N , dN = −Hdt, the equation of motion for the inflaton

becomes
d2φ

dN2
+ (ǫH − 3)

dφ

dN
+

1

H2

dV

dφ
= 0. (11)

Combining Eqs. (10) and (11), we get

d2φ

dN2
+ (ǫH − ηH)

dφ

dN
= 0. (12)

Eq. (12) is just the definition (1) of ηH . If ǫH is negligible, then Eqs. (9), (10) and (12)

become

V (φ) ≈ 3H2(φ), (13)

dV

dφ
≈

3− ηH
3

V (φ)
dφ

dN
, (14)

d2φ

dN2
− ηH

dφ

dN
≈ 0. (15)

The solution to Eq. (15) is

φ(N) ≈ AeηHN +B, (16)

where A and B are integration constants. Substituting the solution (16) into Eq. (14), we

get
dV

V
≈

1

3
ηH(3− ηH)(φ− B)dφ. (17)

So the potential is

V (φ) ≈ V0 exp

[

1

3
ηH(3− ηH)

(

1

2
φ2 −Bφ

)]

, (18)
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and H2 ≈ V (φ)/3, where V0 is an integration constant. Therefore, if ǫH is negligible, then

the potential (18) and the Hubble parameter H(φ) are unchanged under the transformation

from ηH to η̄H = 3− ηH , i.e., both H(φ) and V (φ) have the duality between ηH and η̄H .

III. LOGARITHMIC DUALITY OF PRIMORDIAL CURVATURE

PERTURBATION

From the definition (1) of ηH , we get

d2H

dφ2
−

ηH
2
H = 0. (19)

The solution to Eq. (19) is

H(φ) = C1 exp

(
√

ηH
2

φ

)

+ C2 exp

(

−

√

ηH
2

φ

)

, (20)

for ηH > 0, and

H(φ) = C1 cos

(
√

−
ηH
2

φ

)

+ C2 sin

(
√

−
ηH
2

φ

)

, (21)

for ηH < 0, where C1 and C2 are integration constants. Substituting the solutions (20)

and (21) into Eq. (9), we can obtain the potential V (φ). Therefore, the potential and

the background evolution of the inflaton are determined by the parameter ηH only for the

constant-roll inflation with the slow-roll parameter ηH being a constant [61].

For the particular solution

H(φ) = M sinh

(
√

ηH
2
φ

)

, (22)

the potential is

V (φ) = M2

[

3 sinh2

(
√

ηH
2
φ

)

− ηH cosh2

(
√

ηH
2
φ

)]

. (23)

In the small field approximation with |φ| ≪ 1, we get

V (φ) ≈ M2

[

−ηH + ηH(3− ηH)
φ2

2

]

. (24)

Because of the presence of the first term −ηH in the right hand side of Eq. (24), the duality

between ηH < 3 and η̄H = 3 − ηH does not hold in both H(φ) and V (φ) for the solutions

(22) and (23). When ηH > 3, the solution for η̄H = 3− ηH < 0 is

H(φ) = M sin

(

√

−
η̄H
2

φ

)

, (25)
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and the potential is

V (φ) = M2

[

3 sin2

(

√

−
η̄H
2
φ

)

+ η̄H cos2

(

√

−
η̄H
2

φ

)]

. (26)

In the small field approximation with |φ| ≪ 1, we get

V (φ) ≈ M2

[

η̄H − η̄H(3− η̄H)
φ2

2

]

. (27)

Due to the presence of the first term η̄H in the right hand side of Eq. (27), the duality

between ηH > 3 and η̄H = 3 − ηH does not hold for the solutions (25) and (27) either even

in the small field approximation.

For the particular solution

H(φ) = M cosh

(
√

ηH
2
φ

)

, (28)

the potential is

V (φ) = M2

[

3 cosh2

(
√

ηH
2
φ

)

− ηH sinh2

(
√

ηH
2
φ

)]

. (29)

In the small field approximation with |φ| ≪ 1, we get

V (φ) ≈ M2

[

3 +
1

2
ηH(3− ηH)φ

2

]

. (30)

It is interesting to note that in the small field approximation with |φ| ≪ 1, the potential

(30) keeps to be the same if we change ηH (0 < ηH < 3) to η̄H = 3 − ηH , i.e., there is a

duality between ηH and η̄H in the potential (30), but the duality does not exist in H(φ). If

ηH > 3, then η̄H = 3− ηH < 0, the solution for η̄H is

H(φ) = M cos

(

√

−
η̄H
2
φ

)

, (31)

and the potential is

V (φ) = M2

[

3 cos2

(

√

−
η̄H
2
φ

)

+ η̄H sin2

(

√

−
η̄H
2
φ

)]

. (32)

In the small field approximation with |φ| ≪ 1, we get

V (φ) ≈ M2

[

3 +
1

2
η̄H(3− η̄H)φ

2

]

. (33)
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Therefore, in the small field approximation with |φ| ≪ 1, the potential (33) has the same

form as (30) except that here η̄H < 0, and it seems that there exists the duality between

ηH and η̄H = 3 − ηH in the potential (33). When η̄H < 0, ηH = 3 − η̄H > 0, actually

the potential (32) with η̄H < 0 should be replaced by the potential (29) with ηH > 0, so

there is no duality between ηH and η̄H = 3 − ηH in the potential (32) in the small field

approximation. In fact, if we replace ηH = 3+α with α > 0 by η̄H = −α, the solutions (28)

and (29) should be replaced by the solutions (31) and (32), so the potential (30) is dual to

the potential (33) under the interchange between ηH > 3 and η̄H = 3− ηH < 0.

Since logarithmic duality of the primordial curvature perturbation was found for the

quadratic potential in Ref. [73], we will discuss whether the logarithmic duality exists in

the constant-roll inflation for the particular solutions (30) and (33). If ǫH ≪ 1 and φ ≪ 1,

then substituting the potential (30) into Eq. (9), we get

H2(φ) ≈ V (φ)/3 ≈ M2. (34)

Plugging the potential (30) into Eq. (11) and neglecting ǫH , we get

d2φ

dN2
− 3

dφ

dN
+ ηH(3− ηH)φ = 0. (35)

The solution is

φ(N) = C+e
λ+(N−Ne) + C−e

λ
−
(N−Ne), (36)

where λ+ and λ− are

λ+ =
3 +

√

9− 4ηH(3− ηH)

2
,

λ− =
3−

√

9− 4ηH(3− ηH)

2
,

(37)

and Ne is the number of e-folds at the end of inflation. Note that both λ+ and λ− are

invariant under the interchange between ηH and η̄H , and the inflationary model is not

constant-roll inflation. Remember that for constant-roll inflation with negligible ǫH , the

equation of motion for the scalar field satisfies Eq. (15). Combining Eqs. (35) and (15), we

get

dφ

dN
= ηHφ, (38)

d2φ

dN2
= η2Hφ. (39)
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So the solution (36) is not the solution to constant-roll inflation, but we can still take ηH as

a parameter even though it loses the meaning of the second slow-roll parameter as defined in

Eq. (1) and think that the quadratic potentials (30) and (33) are motivated from constant-

roll inflation. Now back to the solution (36), to determine the coefficients C+ and C−, we

use the velocity of the scalar field

π = −
dφ

dN
= −C+λ+e

λ+(N−Ne) − C−λ−e
λ
−
(N−Ne), (40)

to get

C+ = −
λ−φe + πe

λ+ − λ−
, C− =

λ+φe + πe

λ+ − λ−
, (41)

where πe is the value of π(N) at Ne. Since λ+ and λ− have the duality between ηH and η̄H ,

so C+ and C− also have the duality between ηH and η̄H . If we swap λ+ and λ−, then C+

and C− are interchanged, and φ(N) and π(N) are invariant. Therefore

eλ+(N−Ne) =
λ−φ+ π

λ−φe + πe

,

eλ−
(N−Ne) =

λ+φ+ π

λ+φe + πe

,

(42)

and

N −Ne =
1

λ+
ln

(

λ−φ+ π

λ−φe + πe

)

=
1

λ−
ln

(

λ+φ+ π

λ+φe + πe

)

.

(43)

Using the δN formalism [74–77], we get the primordial curvature perturbation

ζ = δ(N −Ne)

=
1

λ+
ln

(

1 +
λ−δφ+ δπ

λ−φ+ π

)

−
1

λ+
ln

(

1 +
δπe

λ−φe + πe

)

=
1

λ−

ln

(

1 +
λ+δφ+ δπ

λ+φ+ π

)

−
1

λ−

ln

(

1 +
δπe

λ+φe + πe

)

.

(44)

It can be seen that under the interchange between λ+ and λ−, the two formulae for

the primordial curvature perturbation are equivalent and the equivalence is guaranteed by

taking the perturbation on Eq. (42),

(

1+
δπe

πe + λ+φe

)−λ+
(

1+
δπe

πe + λ−φe

)λ
−

=

(

1+
δπ + λ−δφ

π + λ−φ

)λ
−

(

1+
δπ + λ+δφ

π + λ+φ

)−λ+

. (45)
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The formula (45) connects δπe with δφ and δπ. In the same way, we can get the same result

for the potential (33). The result is the same as that found in [73] and is called logarithmic

duality. Therefore, there exists the logarithmic duality and the duality between large and

small ηH for the primordial curvature perturbation in inflationary models with the potential

(30) and (33).

IV. CONCLUSION

PBHs and accompanying SIGWs are usually generated in inflationary models with inflec-

tion point. Near the inflection point, the slow-roll parameter ηH ≈ 3 and the inflation is also

USR inflation which is a special case of the constant-roll inflation. For the constant-roll in-

flation, it is interesting that there is a duality between large and small ηH in the observables

ns and r if the slow-roll parameter ǫH is negligible. The duality between ηH and η̄H = 3−ηH

connects the constant slow-roll inflation with |ηH | ≪ 1 and the USR inflation with ηH ≈ 3,

so the behavior of primordial curvature perturbations in USR inflation can be understood

from the usual slow-roll inflation. However, the duality does not hold for the background

evolution of the inflaton in general. If we neglect the contribution of ǫH in the background

evolution of the inflaton, we find that the inflaton potential has the duality between ηH

and η̄H . We also derive the condition for neglecting ǫH . In some particular solutions of

constant-roll inflation and in the small field approximation, the inflaton potential takes a

quadratic form and it remains the same under the interchange of the parameter ηH and

η̄H . When 0 < ηH < 3, in the small field approximation, there is a duality between ηH

and η̄H in the potential (30), but there does not exist the duality in H(φ). When ηH > 3

and η̄H = 3 − ηH < 0, if we replace ηH by η̄H , then the potential (30) for ηH > 3 should

be replaced by the potential (33) for η̄H < 0. Even in the small field approximation, both

the potentials (30) and (33) take the same quadratic form and are invariant under the in-

terchange between ηH and η̄H , there does not exist the duality between ηH and η̄H in the

potentials (30) and (33).

If we start with the quadratic potential (30) and (33) without the restriction on constant-

roll inflation, then using the δN formalism we find that the primordial curvature perturbation

exhibits a logarithmic duality if we neglect the contribution of ǫH . Since both λ− and λ+ are

invariant under the interchange between the parameter ηH and η̄H = 3 − ηH , φ(N), π(N)
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and the primordial curvature perturbation also exhibit the duality between the parameters

ηH and η̄H .
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[1] S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Häımoud, M. Kamionkowski, E. D. Kovetz, A. Rac-

canelli, and A. G. Riess, Did LIGO detect dark matter?, Phys. Rev. Lett. 116, 201301 (2016).

[2] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, Primordial Black Hole Scenario for

the Gravitational-Wave Event GW150914, Phys. Rev. Lett. 117, 061101 (2016), [Erratum:

Phys.Rev.Lett. 121, 059901 (2018)].

[3] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, and T. T. Yanagida, Inflationary primordial

black holes for the LIGO gravitational wave events and pulsar timing array experiments,

Phys. Rev. D 95, 123510 (2017).

[4] V. De Luca, V. Desjacques, G. Franciolini, P. Pani, and A. Riotto, GW190521 Mass Gap

Event and the Primordial Black Hole Scenario, Phys. Rev. Lett. 126, 051101 (2021).

[5] V. De Luca, G. Franciolini, P. Pani, and A. Riotto, Bayesian Evidence for Both Astrophysical

and Primordial Black Holes: Mapping the GWTC-2 Catalog to Third-Generation Detectors,

J. Cosmol. Astropart. Phys. 05 (2021) 003.

[6] G. Franciolini, V. Baibhav, V. De Luca, K. K. Y. Ng, K. W. K. Wong, E. Berti, P. Pani,

A. Riotto, and S. Vitale, Searching for a subpopulation of primordial black holes in LIGO-

Virgo gravitational-wave data, Phys. Rev. D 105, 083526 (2022).

[7] V. De Luca, G. Franciolini, and A. Riotto, NANOGrav Data Hints at Primordial Black Holes

as Dark Matter, Phys. Rev. Lett. 126, 041303 (2021).
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