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Abstract

Cancer cells exhibit significant alterations in their metabolism, characterised by
a reduction in oxidative phosphorylation (OXPHOS) and an increased reliance
on glycolysis, even in the presence of oxygen. This metabolic shift, known as
the Warburg effect, is pivotal in fuelling cancer’s uncontrolled growth, invasion,
and therapeutic resistance. While dysregulation of many genes contributes to
this metabolic shift, the tumour suppressor gene p53 emerges as a master player.
Yet, the molecular mechanisms remain elusive. This study introduces a compre-
hensive mathematical model, integrating essential p53 targets, offering insights
into how p53 orchestrates its targets to redirect cancer metabolism towards an
OXPHOS-dominant state. Simulation outcomes align closely with experimen-
tal data comparing glucose metabolism in colon cancer cells with wild-type and
mutated p53. Additionally, our findings reveal the dynamic capability of elevated
p53 activation to fully reverse the Warburg effect, highlighting the significance
of its activity levels not just in triggering apoptosis (programmed cell death)
post-chemotherapy but also in modifying the metabolic pathways implicated in
treatment resistance. In scenarios of p53 mutations, our analysis suggests target-
ing glycolysis-instigating signalling pathways as an alternative strategy, whereas
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targeting solely synthesis of cytochrome c oxidase 2 (SCO2) does support mito-
chondrial respiration but may not effectively suppress the glycolysis pathway,
potentially boosting the energy production and cancer cell viability.

Keywords: Cancer Metabolism, p53, Warburg effect, Glycolysis, Hypoxia,
Mathematical Biology

1 Introduction

Cancer cells undergo profound metabolic alterations facilitating their proliferation,
invasion, metastasis, and even drug resistance (Han et al., 2013; Rahman and
Hasan, 2015). Unlike normal cells, cancer cells derive a substantial amount of their
energy from glycolysis, converting a majority of incoming glucose into lactate in the
cytoplasm rather than metabolising it in the mitochondria through oxidative phos-
phorylation (OXPHOS) (Cairns et al., 2011; Simabuco et al., 2018). This metabolic
adaptation, recognised as the Warburg effect or aerobic glycolysis, leads to decreased
oxygen consumption required by mitochondrial respiration while generating an
increased amount of lactate (Simabuco et al., 2018).

By favouring glycolysis over OXPHOS, cancer cells ensure the availability of essen-
tial building blocks for biomass synthesis and meet the energy demands necessary
for their rapid growth (Hanahan and Weinberg, 2011; Simabuco et al., 2018). While
glycolysis can produce adenosine triphosphate (ATP), the major cellular energy unit,
more rapidly than oxidative phosphorylation, it is significantly less efficient in terms
of ATP generated per unit of glucose consumed (Cairns et al., 2011; Simabuco et al.,
2018). Consequently, tumour cells increase their glucose uptake at an exceptionally
high rate to adequately satisfy their elevated energy and biosynthesis needs (Cairns
et al., 2011; Simabuco et al., 2018).

The glycolytic phenotype of cancer cells is influenced by various molecular
mechanisms extending beyond hypoxic conditions. Disruptions in signalling path-
ways downstream of growth factor receptors have been observed to affect glucose
metabolism in cancer cells (Zhong et al., 2000; Laughner et al., 2001). Specifically, the
PI3K/AKT/mTOR pathway, which is activated in the vast majority of human can-
cers (Hennessy et al., 2005; Danielsen et al., 2015; Vara et al., 2004; Malinowsky et al.,
2014; Wang et al., 2013), and seen to instigate the glycolytic activity of cancer cells
by upregulating the hypoxia-inducible factor 1 (HIF1) and its downstream targets
(Cairns et al., 2011; Valvona et al., 2016; Laughner et al., 2001; Zhong et al., 2000).

Another crucial event that can impact cancer metabolism and is commonly
observed in cancer is the inactivation of the tumour suppressor gene p53. Depending
on the cellular conditions, p53 suppresses tumorigenesis by multiple mechanisms,
including cell cycle regulation, initiation of DNA repair, and induction of apoptosis
(programmed cell death) (Wanka et al., 2012; Simabuco et al., 2018). Moreover, p53
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has recently emerged as a significant metabolic regulator in cancer cells, whether by
inhibiting the PI3K/AKT/mTOR pathway (Feng and Levine, 2010), thereby dis-
rupting the glycolytic phenotype or by supporting mitochondrial respiration activity
(Vousden and Ryan, 2009; Zhang et al., 2010; Lago et al., 2011; Wanka et al., 2012;
Liang et al., 2013; Flöter et al., 2017; Simabuco et al., 2018; Liu et al., 2019). This
idea was investigated by Matoba et al. in 2006, where they examined the impact
of p53 alterations on the cellular metabolism of human colon cancer cells (Matoba
et al., 2006). Experimental results revealed that p53-deficient cells produced nearly
the same amount of ATP but with substantially higher levels of lactate and lower
oxygen consumption, highlighting the influence of p53 mutations in changing the
energy production mode to one favouring glycolysis (Matoba et al., 2006).

The metabolic response controlled by p53 is mediated through the AMP-activated
protein kinase (AMPK), a sensor attuned to cellular metabolic stress conditions
(Jones et al., 2005). When p53 is activated by AMPK, typically in response to
metabolic adversity such as those experienced by cancer cells, p53 restrains cell
growth and division, conserves energy, and shifts the cell towards oxidative phos-
phorylation for more efficient energy production (Feng and Levine, 2010). This can
elucidate why cancer cells with p53 mutations tend to rely more on glycolysis and
have a higher ability to grow and survive even under stress conditions.

While numerous p53 targets involved in cellular metabolism have been identified,
their complex molecular interactions across different scenarios remain largely unex-
plored. In this study, we leverage the power of mathematical modelling to unveil the
intricate machinery behind the regulation of cancer glucose metabolism by p53. By
transforming existing experimental data into a mathematical framework, we uncov-
ered hard-to-detect mechanisms and quantitatively analysed the activities of glycolysis
and OXPHOS pathways under different cellular states. This methodology provides
valuable insights for developing targeted therapeutic approaches aimed at disrupt-
ing cancer metabolism and combating the aggressive behaviour of cancer. Although
our primary focus is on colon cancer cells, the model’s applicability extends to many
cancer types experiencing similar conditions.

2 Model and Assumptions

We developed a comprehensive theoretical framework aiming to delineate the role of
p53 on cellular metabolism, particularly its involvement in the Warburg effect. While
cancer cells engage in diverse metabolic pathways, the Warburg effect is closely associ-
ated with alterations in glucose metabolism. Consequently, our primary attention was
devoted to glucose metabolism, investigating its main pathways: glycolysis and oxida-
tive phosphorylation. Integrating information from literature, our model incorporated
all well-established p53 targets that markedly manipulate these pathways alongside
the signalling pathways commonly activated in cancer in response to growth factors
or metabolic stress, influencing the decision-making between these pathways, see Fig.
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Fig. 1: Schematic diagram depicting the signalling pathway of key molecules involved
in glucose oxidation, spanning glycolysis, the tricarboxylic acid (TCA) cycle, and the
electron transport chain (ETC). In our notation, cytoplasmic, nuclear, and mitochon-
drial molecular species are indicated by subscripts ‘c’, ‘n’, and ‘m’, respectively, while
the ‘∗’ superscript symbol is used to denote active species in the case of species that
exist in two states (active and inactive)

1. The following section provides an overview of the cellular events and the molecule
interactions considered while constructing our model.

2.1 Model assumptions

2.1.1 Growth factors activate PI3K/AKT pathway

Under normal physiological conditions, the PI3K/AKT pathway activation is tightly
regulated, mainly dependent on external growth signals and nutrient availability
(Danielsen et al., 2015). This activation process is initiated when extracellular growth
molecules bind to specific receptors in the cell membrane. This binding event trig-
gers receptor activation, which subsequently activates intracellular phosphoinositide
3-kinase (PI3K) to catalyse the conversion of phosphatidylinositol 4,5-bisphosphate
(PIP2) lipids into phosphatidylinositol 3,4,5-trisphosphate (PIP3). Following this,
protein kinase B (AKT) undergoes phosphorylation at threonine-308 upon binding to
PIP3, which results in its activation. Once activated, AKT regulates various cellular
processes controlling cell survival, metabolism, and growth (Danielsen et al., 2015;
Vara et al., 2004; Carnero and Paramio, 2014).
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In recent years, extensive research has demonstrated that components of the
PI3K/AKT signalling pathway are frequently disrupted in human cancers, resulting
in its sustained activation (Danielsen et al., 2015; Vara et al., 2004; Malinowsky
et al., 2014; Wang et al., 2013). Colorectal cancer, in particular, has exhibited a high
occurrence of PI3K/AKT pathway activation, with reports indicating its involvement
in approximately 70% of colorectal cancer cases (Malinowsky et al., 2014). Thus, our
system assumes persistent activation of the PI3K/AKT pathway in cancer cells.

In terms of cellular compartmentalisation, it is established that PIP2 and PIP3
are localised to the plasma membrane (Vara et al., 2004; Carnero and Paramio, 2014),
while the protein AKT predominantly resides in the cytoplasm, with some presence
in the nucleus (Yang et al., 2009; Lee et al., 2008). However, the activation of AKT by
PI3K primarily occurs in the cytoplasm, leading to the accumulation of activated AKT
in this particular compartment. Therefore, our model assumes that all components of
this pathway, including PIP2, PIP3, and AKT, function as cytoplasmic proteins.

2.1.2 AKT mediates mTOR activating

Upon activation of AKT, various downstream substrates are phosphorylated. One
critical effector of AKT is the mammalian target of rapamycin (mTOR) (Dan et al.,
2014; Inoki et al., 2002). The activation of mTORC1 is vital for the control of cellular
processes such as cell growth and metabolism, primarily through its ability to regu-
late the mRNA translation (Dan et al., 2014; Inoki et al., 2002; Düvel et al., 2010).

In normal conditions, the TSC1-TSC2 complex acts as an inhibitor of mTORC1
activation; however, the function of this complex is negatively regulated by AKT
phosphorylation. Activated AKT phosphorylates TSC2, preventing the formation of
the TSC1-TSC2 complex, which, in turn, leads to the activation of mTORC1. Once
mTORC1 is activated, it directly phosphorylates the ribosomal protein S6 kinases
(S6K1 and S6K2) and the eukaryotic initiation factor 4E (eIF4E)-binding proteins
(4E-BP1 and 4E-BP2) controlling the initiation of cap-dependent translation (Dan
et al., 2014; Inoki et al., 2002; Düvel et al., 2010).

For simplicity, in our model, we assume that the mTORC1 activation is modu-
lated by the phosphorylation of AKT in response to growth factors without explicitly
incorporating the intermediate molecules involved in this process. Further, since
mTORC1 is predominantly cytoplasmic (Rosner and Hengstschläger, 2008), and the
upstream and downstream mTORC1 activation occurs in this compartment, our model
incorporates only the cytoplasmic mTORC1.

2.1.3 mTOR induces the expression of HIF1α

HIF1 is a transcription factor consisting of two subunits, HIF1α and HIF1β. The
β-subunit is constitutively present in the nucleus, while the α-subunit is rarely
detectable in normoxia but strikingly induced in hypoxic conditions (Valvona et al.,
2016; Laughner et al., 2001; Golias et al., 2019; Metzen et al., 2003). The HIF1α gene
is continuously transcribed and translated, but its expression stays low due to rapid
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destruction via the ubiquitin-proteasome pathway in an oxygen-dependent manner
(Valvona et al., 2016; Laughner et al., 2001; Golias et al., 2019).

The oxygen-dependent turnover of HIF1α is controlled by a family of prolyl
4-hydroxylases (PHDs) that uses oxygen as a substrate to hydroxylate HIF1α in its
oxygen-dependent degradation domain. Prolyl hydroxylation triggers the recognition
of HIF1α by the product of the Von Hippel-Lindau tumour suppressor gene (pVHL),
which acts as an E3 ubiquitin ligase mediating the ubiquitination and subsequent
degradation of HIF1α (Valvona et al., 2016; Golias et al., 2019).

Upon hypoxia, when oxygen availability is low, the activity of PHDs decreases,
thereby diminishing HIF1α recognition by pVHL and subsequent degradation. Conse-
quently, HIF1α accumulates and translocates into the nucleus to form a heterodimeric
complex with HIF1β. This complex binds to specific DNA sequences and activates
the transcription of target genes involved in cellular responses to hypoxia (Valvona
et al., 2016; Laughner et al., 2001).

However, HIF1α is often stabilised in cancer cells even in nonhypoxic conditions
(Laughner et al., 2001; Valvona et al., 2016; Zhong et al., 2000, 1999), suggesting
the involvement of other factors in its activation. Experimental investigations have
revealed that the expression of the HIF1α subunit and its nuclear translocation can
be induced under nonhypoxic conditions through the activation of growth factors-
dependent signalling pathway (Valvona et al., 2016; Laughner et al., 2001; Zhong
et al., 2000; Treins et al., 2005). More specifically, these studies provided evidence
that HIF1α induction in cancer is directly regulated by mTORC1 activation, which
alone is sufficient to stimulate an increase in HIF1α protein levels through activation
of cap-dependent translation (Düvel et al., 2010; Laughner et al., 2001; Hudson et al.,
2002; Treins et al., 2005).

In light of these findings, our model assumes that mTORC1 activation promotes
HIF1α protein synthesis and nuclear translocation, while the HIF1α oxygen-dependent
degradation is unaffected in nonhypoxic conditions. Considering the complexity of the
HIF1α oxygen-dependent degradation mechanism, we set the HIF1α degradation rate
based on the half-life of hydroxylated HIF1α under normal conditions (Golias et al.,
2019), without incorporating the intricate molecular process.

2.1.4 HIF1 promotes glycolysis pathway

HIF1 is a critical mediator of cellular responses, activating the transcription of target
genes that regulate various processes, including angiogenesis, glycolysis, and cell
survival. In our system, we focus on some of the HIF1 downstream targets that play
a critical role in shifting the cell towards glycolytic metabolism. These involve glu-
cose transporter-1 and -3 (GLUT1) and (GLUT3), respectively (Ancey et al., 2018),
lactate dehydrogenase (LDH) (Valvona et al., 2016), and pyruvate dehydrogenase
kinase-1 and -3 (PDK1) and (PDK3), respectively (Anwar et al., 2021; Lu et al.,
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2011; Wang et al., 2021; Kim et al., 2006).

GLUT1/3. Glucose transporters are a group of membrane proteins that catalyse
the glucose transport across the plasma membrane (Schwartzenberg-Bar-Yoseph
et al., 2004; Szablewski, 2013; Ancey et al., 2018; Mamun et al., 2020). Once inside the
cell, glucose undergoes glycolysis, a process that converts a molecule of glucose into
two molecules of pyruvate, generating two net ATP and two reduced nicotinamide
adenine dinucleotide (NADH) molecules Valvona et al. (2016); Golias et al. (2019).
Subsequently, pyruvate can either be converted into lactate in the cytoplasm, oxidis-
ing NADH back to NAD+, or transported into the mitochondria, in the presence of
oxygen, for further energy production through OXPHOS, resulting in approximately
36 ATP molecules (Valvona et al., 2016; Golias et al., 2019).

Tumour cells are known for exhibiting accelerated metabolic rates and high glucose
demand (Schwartzenberg-Bar-Yoseph et al., 2004; Ancey et al., 2018). Consequently,
increasing GLUT expression is essential to provide heightened glucose uptake, meet-
ing the elevated metabolic requirements in cancer (Schwartzenberg-Bar-Yoseph et al.,
2004; Ancey et al., 2018). GLUT1 and -3, a downstream target of HIF1 (Ancey et al.,
2018), are particularly significant in this context as their upregulation is consistently
observed in many cancer types (Schwartzenberg-Bar-Yoseph et al., 2004; Szablewski,
2013; Ancey et al., 2018; Mamun et al., 2020), and have been selected as targets to
completely block glucose uptake in cancer cells (Reckzeh and Waldmann, 2020).

GLUT1 is the predominant isoform of glucose transporter found in nearly all types
of cells (Szablewski, 2013; Mamun et al., 2020), and GLUT3 exhibits the highest
affinity for glucose (Day et al., 2013). Accordingly, our study incorporates these two
types, considering their central role in controlling the glucose uptake of both normal
and cancer cells.

LDH. Another important downstream target of HIF1 is LDH, a tetrameric enzyme
predominantly located in the cytoplasm facilitating the conversion of pyruvate to
lactate (Valvona et al., 2016; Anadón et al., 2014).

Pyruvate derived from glycolysis typically enters the mitochondria to generate
ATP more efficiently. However, when HIF1 is activated, the LDH protein level
increases, directing pyruvate away from the mitochondria by catalysing its conversion
to lactate (Valvona et al., 2016). This metabolic shift allows cells to produce ATP
through glycolysis, albeit in a less efficient manner, while consuming more glucose
(Valvona et al., 2016). Therefore, the activation of HIF1 in our system is assumed to
support glycolysis by inducing LDH enzyme.

PDK1/3. Pyruvate is metabolised within the mitochondria via pyruvate dehy-
drogenase (PDH) activity. The PDH complex, located in the mitochondrial matrix,
catalyses the oxidative decarboxylation of pyruvate to acetyl-CoA, NADH, and CO2
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(Wang et al., 2021; Woolbright et al., 2019; Rodrigues et al., 2015). Acetyl-CoA then
enters the tricarboxylic acid (TCA) cycle, where it undergoes further metabolism,
resulting in the eventual formation of ATP by the electron transport chain (ETC)
(Woolbright et al., 2019).

PDK family exerts significant regulatory control over PDH function through their
capacity to phosphorylate its E1-α subunit at three different sites: Ser293, Ser300, and
Ser232 (Wang et al., 2021; Woolbright et al., 2019; Rodrigues et al., 2015). Phospho-
rylation of PDH at any of these sites inhibits its decarboxylation activity, disrupting
pyruvate oxidation (Wang et al., 2021; Woolbright et al., 2019; Rodrigues et al., 2015).

HIF1 enhances the promoter activities of two PDK family members, namely PDK1
and PDK3 (Anwar et al., 2021; Lu et al., 2011; Wang et al., 2021; Kim et al., 2006),
commonly overexpressed in tumours (Jin et al., 2020; Lu et al., 2011; Anwar et al.,
2021). Elevated PDK expression and subsequent PDH phosphorylation contribute to
diverting pyruvate to lactate to dispose of excess pyruvate when the mitochondrial
oxidative capacity is limited. Consequently, the activation of HIF1 in our model is
assumed to trigger the inhibitory regulation of the PDH activity by increasing PDK1
and PDK3 expression levels, both situated within the mitochondrial matrix (Wang
et al., 2021; Woolbright et al., 2019; Rodrigues et al., 2015).

2.1.5 Metabolic stress activates AMPK

AMP-activated protein kinase (AMPK) acts as a crucial energy sensor, maintaining
cellular energy homeostasis (Hardie, 2011; Hardie et al., 2012; Faubert et al., 2015;
Li et al., 2015). It is activated when cellular ATP levels drop under different forms of
metabolic stress, including glucose deprivation, ischemia, hypoxia, or oxidative stress
(Hardie, 2011; Hardie et al., 2012; Faubert et al., 2015; Li et al., 2015). Upon these
stresses, AMPK undergoes phosphorylation at Thr-172 to restore cellular energy
balance by suppressing ATP-consuming processes and promoting ATP production
(Hardie, 2011; Hardie et al., 2012; Faubert et al., 2015; Li et al., 2015).

Considering deregulated cellular energetics a hallmark of cancer (Hanahan and
Weinberg, 2011), our model incorporates AMPK activation in cancer cells. This acti-
vation restrains cancer growth and promotes ATP production efficiency mainly by
impeding mTORC1 activation via TSC2 phosphorylation and triggering p53 activation
(Faubert et al., 2015; Li et al., 2015; Inoki et al., 2003).

2.1.6 AMPK activates tumour suppressor gene p53

p53 is a major tumour suppressor gene that plays a critical role in preventing the
propagation of abnormal cells. It functions as a transcription factor, controlling the
expression of various genes involved in cell cycle regulation, repair DNA, apoptosis,
and cellular metabolism (Sun, 2015; Nag et al., 2013; Matoba et al., 2006). The p53
protein is continuously produced from the TP53 tumour suppressor gene (Sun, 2015).
However, its levels are kept low by the action of murine double minute 2 (MDM2),
an E3 ubiquitin ligase that promotes p53 degradation via the ubiquitin-proteasome
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pathway (Nag et al., 2013; Haupt et al., 1997).

Under conditions of metabolic stress, AMPK phosphorylates p53 on Ser15, pro-
moting its stabilisation by disrupting its binding to MDM2 (Jones et al., 2005;
Imamura et al., 2001). Thus, p53 accumulates and translocates to the nucleus, acti-
vating the transcription of its target genes.

In the basal state, p53 primarily resides in the cytoplasm, where it interacts
with MDM2, preventing its nuclear translocation (Liang and Clarke, 2001; Zer-
faoui et al., 2021). Therefore, in our model, p53 is considered a cytoplasmic protein
under unstressed conditions. However, upon AMPK activation, it is stabilised and
translocated into the nucleus, where it binds DNA and transcriptionally acts as a
tetramer.

2.1.7 p53 induces genes negatively regulate its activation

p53 triggers the production of proteins such as MDM2 and wild-type p53-induced
phosphatase 1 (WIP1) (Barak et al., 1993; Batchelor et al., 2011), which form a
negative feedback loop reducing its stability (Nag et al., 2013; Haupt et al., 1997;
Barak et al., 1993; Batchelor et al., 2011).

MDM2. MDM2 is a p53-negative regulator that can be further induced by p53
activation (Barak et al., 1993). It is predominantly located in the cytoplasm of
unstressed cells (Marchenko et al., 2010). However, in response to growth factors sig-
nalling, AKT phosphorylates MDM2 on Ser166 and -186, promoting its translocation
from the cytoplasm into the nucleus, thereby inhibiting the transcriptional function
of p53 (Mayo and Donner, 2001; Xu et al., 2012).

In our system, we assume that p53 activation triggers increased production of
the MDM2 protein, which is primarily cytoplasmic but migrates to the nucleus upon
AKT phosphorylation.

WIP1. Another target of p53 that can negatively affect its stability is WIP1. WIP1
resides exclusively in the nucleus (Fiscella et al., 1997), where it dephosphorylates
nuclear p53, rendering p53 more susceptible to MDM2-mediated degradation (Batch-
elor et al., 2011).

On the other hand, p53 undergoes nuclear export regulated by its nuclear export
signals (NES). The first NES is within the tetramerization domain, masked when p53
forms a tetramer. The second NES is in the MDM2-binding domain, which can be
attenuated by phosphorylating Ser15 via AMPK (Liang and Clarke, 2001; Marchenko
et al., 2010). Thus, phosphorylation and tetramerization can inhibit p53 nuclear
export by masking the NESs.
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Accordingly, in the model, we assume that phosphorylated p53 forms a tetramer
in the nucleus, yet WIP1-mediated dephosphorylation triggers p53 nuclear export by
unmasking the NES, leading to its relocation to the cytoplasm.

2.1.8 p53 induces genes to promote its activation, simultaneously
inhibiting HIF1

As previously discussed, the mTOR signalling pathway significantly influences HIF1
activation. Therefore, the ability of p53 to inhibit mTORC1 activation aligns with its
function as a negative regulator of HIF1. This inhibition is mainly mediated by three
p53 target genes: sestrin1 (SESN1), sestrin2 (SESN2), and phosphatase and tensin
homolog (PTEN) (Budanov and Karin, 2008; Sanli et al., 2012; Feng and Levine,
2010).

SESN1/2. p53 induces the expression of SESN1 and SESN2 proteins (Budanov
and Karin, 2008; Sanli et al., 2012), which interact with the α-subunits of AMPK,
resulting in AMPK phosphorylation on Thr172. This phosphorylation activates
AMPK, which subsequently inhibits mTORC1 activity (Budanov and Karin, 2008;
Sanli et al., 2012; Feng and Levine, 2010). Additionally, this activation forms a
positive feedback loop through the phosphorylation of p53 by active AMPK, further
supporting the p53 function (Feng and Levine, 2010). For simplicity, in our system,
we assume that the activation of p53 directly induces AMPK activation without
explicitly incorporating SESN1/2.

PTEN. Another crucial target gene of p53 involved in regulating mTORC1 activ-
ity is PTEN (Stambolic et al., 2001). Upon induction by p53, PTEN promotes the
degradation of PIP3 to PIP2, effectively suppressing the PI3K/AKT/mTOR pathway
(Mayo et al., 2002; Carnero and Paramio, 2014; Feng and Levine, 2010). The regu-
lation of PTEN by p53 also serves as a positive feedback loop. PTEN prevents the
AKT-dependent MDM2 translocation to the nucleus, boosting the nuclear p53 tran-
scriptional activity (Mayo et al., 2002, 2005). In the model, PTEN is considered to
be in the cytoplasm, negatively regulating the PI3K/AKT/mTOR pathway (Iijima
et al., 2004).

2.1.9 p53 suppresses glycolysis and enhances mitochondrial
respiration

p53 is a key target in cancer cells, exerting its influence on multiple levels. It inhibits
the glycolytic pathway not only by disrupting HIF1 activation but also by regulat-
ing genes directly involved in glucose metabolic pathways, including GLUT1 and
-3 (Ancey et al., 2018; Schwartzenberg-Bar-Yoseph et al., 2004; Kawauchi et al.,
2008), PDK2 (Anwar et al., 2021; Liang et al., 2020), TP53-inducible glycolysis and
apoptosis regulator (TIGAR) (Bensaad et al., 2006; Lee et al., 2015), and synthesis
of cytochrome c oxidase 2 (SCO2) (Matoba et al., 2006).
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GLUT1/3. Previously, we emphasised the significance of GLUT1 and -3 as preem-
inent actors in the enhanced cellular glucose uptake and the accelerated metabolism
in cancer cells (Ancey et al., 2018; Reckzeh and Waldmann, 2020).

p53, as a transcription factor, can either activate or suppress the expression of spe-
cific genes. In the case of GLUT1 and -3, p53 acts as a suppressor, diminishing their
protein levels (Ancey et al., 2018; Schwartzenberg-Bar-Yoseph et al., 2004; Kawauchi
et al., 2008). This repression exerted by p53 is assumed to reduce the baseline levels
of GLUT1 and -3 in our model, inhibiting the glycolytic pathway induced by HIF1.

TIGAR. Within the cell, glucose undergoes an irreversible conversion to glucose-
6-phosphate (G6P), which can then follow either the glycolysis pathway, forming
fructose-6-phosphate (F6P), or the pentose phosphate pathway (PPP) (Jiang et al.,
2014). The decision between these pathways is influenced by TIGAR, a p53 target.

TIGAR curtails the activity of the enzyme guiding F6P towards the next gly-
colytic step. This inhibition leads to the buildup of F6P, allowing its isomerisation
back to G6P and consequently diminishing glycolysis flux (Bensaad et al., 2006; Lee
et al., 2015). Thus, TIGAR functions as a cytoplasmic protein in our model (Tang
et al., 2021), triggered by p53 to slow down the glycolysis rate.

PDK2. The irreversible pyruvate decarboxylation, catalysed by the PDH complex
in the mitochondria, is a critical step in determining the metabolic fate of pyruvate
towards OXPHOS (Anwar et al., 2021; Wang et al., 2021; Woolbright et al., 2019;
Rodrigues et al., 2015).

As mentioned earlier, HIF1 activation in cancer cells upregulates PDK, particu-
larly PDK1 and -3, inhibiting PDH complex activity (Anwar et al., 2021; Wang et al.,
2021; Woolbright et al., 2019; Rodrigues et al., 2015; Lu et al., 2011). However, p53
counteracts HIF1’s inhibitory effect on PDH by suppressing the expression of another
PDK member called PDK2 (Anwar et al., 2021; Liang et al., 2020). Consequently,
the activation of p53 in our model is assumed to repress the PDK2 protein synthesis,
promoting mitochondrial respiration over glycolysis.

SCO2. Within the mitochondria, pyruvate is converted into acetyl-CoA, entering
the TCA cycle to undergo a series of chemical reactions. Each round of the TCA
cycle yields one energy molecule, three NADH molecules, and one reduced flavin
adenine dinucleotide (FADH2) molecule (Mart́ınez-Reyes and Chandel, 2020). The
NADH and FADH2 produced are then oxidised back into NAD+ and FAD via ETC
protein complexes (I, II, III, and IV) embedded in the inner mitochondrial membrane
(Ahmad et al., 2018). Complex I and II facilitate NADH and FADH2 oxidation,
respectively, and transfer the received electrons to Complex III and then to Complex
IV (Ahmad et al., 2018). As electrons traverse these complexes, protons pump from
the mitochondrial matrix to the intermembrane space. Each pair of electrons from
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NADH pumps ten protons (4 from Complex I, 4 from Complex III, and 2 from Com-
plex IV), while FADH2 pumps only six (4 from Complex III, and 2 from Complex
IV) (Ahmad et al., 2018).

Complex IV acts as the ultimate electron acceptor in this chain. It transfers
these electrons to molecular oxygen, promoting the reduction of oxygen to water
(Ahmad et al., 2018). However, electron transfer efficiency within Complex IV is
highly regulated by the p53 target, SCO2. SCO2 is a mitochondrial protein (Maxfield
et al., 2004), that is essential for the proper assembly and maturation of Complex
IV, ensuring its optimal functionality. Any deficiency or malfunction of SCO2 can
impair Complex IV function and its ability to efficiently consume oxygen in the final
step, disrupting the smooth flow of electrons through the ETC (Matoba et al., 2006;
Wanka et al., 2012).

The proton movement across the membrane while transferring electrons estab-
lishes an electrochemical gradient, creating a higher concentration of protons in the
intermembrane space compared to the matrix. Consequently, protons flow back into
the mitochondrial matrix through Complex V, ATP synthase, driving the ATP syn-
thesis (for every four protons, one ATP is produced) (Ahmad et al., 2018).

Based on the above, each acetyl-CoA entering the TCA cycle in our model produces
one ATP, one FADH2, and three NADH molecules (Mart́ınez-Reyes and Chandel,
2020). Considering that each NADH and FADH2 contributes nearly ten and six pro-
tons, respectively, and every four protons result in one ATP molecule, in our model,
NADH and FADH2 are assumed to yield 2.5 and 1.5 ATP molecules, respectively
(Ahmad et al., 2018). Regarding oxygen consumption, each NADH or FADH2 transfers
a pair of electrons to Complex IV, which is then converted to water (H2O), consum-
ing 0.5 oxygen (O2) molecules (Ahmad et al., 2018). Therefore, we assume that each
NADH or FADH2 entering the ETC consumes 0.5 oxygen molecules. Finally, p53 acti-
vation in our model is assumed to maintain mitochondrial respiration by inducing the
synthesis of SCO2, supporting Complex IV function and enhancing ETC activity.

2.2 Model reactions

The phosphorylation and dephosphorylation processes occurring at the molecular level
for p53, MDM2, AMPK, PIP2/3, AKT, mTOR, and PDH—impacting their locations,
functions, or activations— are represented in our model as enzyme-catalysed reactions
employing monosubstrate Michaelis-Menten kinetics. Likewise, the ubiquitination pro-
cess, facilitating species degradation, involving the p53 ubiquitination by MDM2, is
modelled using the same kinetic framework. This modelling choice is based on the
analogous catalytic roles of a protein kinase, phosphatase, or ubiquitin ligase and an
enzyme in converting a substrate into a product. The general form of this reaction is
expressed as:

v1(S) = Vmax

(
[S]

[S] +Km

)
,
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where Vmax denotes the maximum speed of the reaction, often regulated by the
total concentration of the protein enacting the phosphorylation, dephosphorylation,
or ubiquitination processes. Km is a Michaelis-Menten constant that represents the
substrate level [S] (the species undergoing phosphorylation, dephosphorylation, or
ubiquitination) at which half of the maximum reaction velocity is achieved. The
speed of this reaction increases linearly with the substrate [S] when the substrate
concentrations are low, while saturating and achieving the maximum speed for large
concentrations when [S]≫ Km.

p53 is a tetramer transcription factor that activates the production of proteins,
including MDM2, WIP1, PTEN, SCO2, and TIGAR, while suppressing the synthesis
of others, such as GLUT1/3 and PDK2. Accordingly, the production rates controlled
by the tetrameric p53 in the nucleus are modelled by a Hill function with coefficient
four, represented as:

v+2(S) = Vmax

(
[S]h

[S]h +Kh
m

)
, for activation

v−2(S) = Vmax

(
Kh

m

[S]h +Kh
m

)
, for inhibition

here Vmax denotes the maximum velocity, with [S] representing the concentration of
nuclear p53. The parameter h, set to four, is the Hill coefficient that determines the
steepness of the Hill function, while Km signifies the activation/inhibition threshold
constant, where the p53 influence kicks in by exceeding this threshold constant.

All species in our model undergoing modifications exclusively post-translation
without affecting their concentration levels, encompassing processes like phosphory-
lation, reduction, and oxidation, are assumed to be at a steady-state point, where the
total protein concentration across all forms remains constant over time. This applies
to various species, such as AMPK/AMPK*, PIP2/PIP3, AKT/AKT*, mTOR/m-
TOR*, ADP/ATP, NAD+/NADH, and FAD/FADH2.

The diffusivity of glucose and lactate molecules across the cell membrane, facili-
tated by transporters within the cellular membrane, is represented by a net flux. This
flux is determined by subtracting the amount of substrate moving out of the cell from
the amount moving into, depending on the substrate concentration inside and outside
the cell. Both inward and outward fluxes are modelled using the Michaelis-Menten
equation, accounting for the saturation process when all transporters become satu-
rated by the substrate (glucose/lactate). The general function can be expressed as
follows:

v3(S) = Vmax

(
[Sout]

[Sout] +Km
− [Sin]

[Sin] +Km

)
,

in this reaction, the first and second terms describe the influx and efflux, respectively,
where [Sin], and [Sout] denote the concentration of the substrate (glucose/lactate) in
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and out the cell. Km is the Michaelis-Menten constant, reflecting the affinity of each
substrate to its transporter.

In the metabolic pathways, some reactions involve more than one substrate and
product, such as the first and last step of the glycolysis pathway: (Glucose + ATP
→ G6P + ADP) and (Pyruvate + NADH → Lactate + NAD+). These two reactions
were classified to follow an order Bi-Bi sequential mechanism, where Hexokinase binds
the ATP molecule first then Glucose, releasing G6P first and then ATP (Toews, 1966).
Similarly, the LDH enzyme binds the NADH first followed by the Pyruvate molecule
to produce Lactate first and then NAD+ (Chang et al., 1991). Accordingly, these two
reactions are represented in our model by the order Bi-Bi Michaelis–Menten equation
(Toews, 1966; Chang et al., 1991; Kuby, 2019), which can be given by:

v4(S1,S2) = Vmax

(
[S1][S2]

[S1][S2] +Ks1[S2] +Ks2[S1] +Ks1Ks2

)
,

in which [S1] and [S2] represent the first and second substrate concentrations (ATP/-
NADH and Glucose/Pyruvate, respectively), whereas Ks1 and Ks2 represent the
enzyme’s Km values for their respective ligands.

On the other hand, the reaction catalysed by the PDH enzyme, involving the
conversion of Pyruvate and NAD+ into Acetyl-CoA and NADH, was assumed to follow
a multisite ping-pong mechanism (Reid et al., 1977). This mechanism is characterised
by the alternating binding of substrates and the release of products in a stepwise
manner. Thus, the kinetics of this reaction is modelled in our system using ping-pong
Michaelis–Menten equation (Reid et al., 1977; Kuby, 2019), expressed as:

v5(S1,S2) = Vmax

(
[S1][S2]

[S1][S2] +Ks1[S2] +Ks2[S1]

)
,

where [S1] and [S2] denote the concentrations of Pyruvate and NAD+, respectively.
And the parameters Ks1 and Ks2 correspond to the enzyme’s affinity constants (Km
values) for Pyruvate and NAD+, respectively.

Pyruvate, a product of cytoplasmic glycolysis, is transported into the mitochon-
dria via the mitochondrial pyruvate carrier (MPC) located in the outer mitochondrial
membrane (Ruiz-Iglesias and Mañes, 2021). This pyruvate mitochondrial import is
integrated into our model as a constant rate influenced negatively by mitochondrial
pyruvate concentrations to prevent excessive accumulation within the mitochondrial
compartment. Furthermore, cytoplasmic NADH typically travels into the mitochon-
dria through the Malate-Aspartate Shuttle (MAS) for oxidation in the respiratory
chain (Bhagavan, 2002). The NADH mitochondrial import by MAS is significant for
more efficient ATP production and maintaining a high NAD+/NADH ratio in the
cytosol (Bhagavan, 2002). To streamline our model, we simplified the representation
of NADH movement, considering a direct influx into the mitochondria at a con-
stant rate subject to inhibition regulation by the mitochondrial NADH level. These
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mitochondrial import reactions can be generally expressed as:

v6(S) = k[Sc]

(
Km

[Sm] +Km

)
,

where k represents the mitochondrial import rate, and [Sc] and [Sm] designate the
concentration of Pyruvate/NADH in the cytoplasm and mitochondria, respectively.
Km here serves as the inhibition threshold coefficient for mitochondrial import.

In our system, glycolysis, the TCA cycle, and the ETC are individually modelled as
one-step processes, considering the maximum velocity of each. These processes follow
kinetics reactions, saturating at high levels of its respective initial substrates, G6P
for glycolysis, Acetyl-CoA for TCA cycle, and NADH/FADH2 for ETC. However, as
these processes involve ADP phosphorylation and NAD+/FAD reduction, deficiency of
these molecules can impact the overall reaction speed. Therefore, the maximal velocity
is assumed to be governed by the total levels of ADP, NAD+, and FAD if they are
participants in the reaction. Comprehensively, the reaction can be described as:

v7(S) = Vmax

(
[S]

[S] +Km

)(
[A]

[A] +Ka

)(
[N ]

[N ] +Kn

)(
[F ]

[F ] +Kf

)
,

where [S] and Km represent the initial substrate concentration (G6P, Acetyl-CoA,
or NADH/FADH2) and their Michaelis-Mentent constant. [A], [N ], and [F ] denotes
the concentration of ADP, NAD+, and FAD, respectively, with Ka, Kn, and Kf

accounting for their threshold constants. Not all terms have to be involved in each
reaction; only the term where its corresponding molecule participates. Moreover, owing
to TIGAR’s noncompetitive inhibition on the glycolysis pathway, we adjust the first
term in glycolysis as follows: [S]

[S]

(
1 + [I]

Ki

)
+Km

(
1 + [I]

Ki

)


Mathematically, noncompetitive inhibition influences the maximum reaction speed
(Vmax) (Kuby, 2019), where [I] represents the inhibitor concentration, TIGAR in our
case, along with the inhibition threshold constant [Ki].

Finally, in all metabolic reactions when the catalysing protein (whether transporter
or enzyme) is part of our system, the maximum velocity is regulated by the catalysing
protein concentration (Vmax = kcat[E]tot). Except in the case of the LDH enzyme,
where its influence on the reaction speed is characterised by a Hill function with a
hill coefficient of four (similar to v+2(S)), considering the required tetramer formation

before catalysing the reaction (Fan et al., 2011; Valvona et al., 2016).
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2.3 Model equations

Our model network spans three compartments—cytoplasm, nucleus, and mitochon-
dria—where directional fluxes determine the temporal change in concentration of 33
molecules within the glucose oxidation pathways, schematically shown in Fig. 1. Conse-
quently, our system is entirely governed by 33 differential equations where cytoplasmic,
nuclear, and mitochondrial molecular species are represented in our equations by the
subscripts ‘c’, ‘n’, and ‘m’, respectively, while the ‘∗’ superscript symbol indicates
active species for those existing in both active and inactive states.

dP53c
dt

= k1 − k2Ampk∗c [v1(P53c)]− k3Mdm2c[v1(P53c)] + k4Wip1n[v1(P53n)]

− k5P53c, (1)

dP53n
dt

= k2Ampk∗c [v1(P53c)]− k6Mdm2n[v1(P53n)]− k4Wip1n[v1(P53n)], (2)

dMdm2c
dt

= k7 + k8[v
+
2(P53n)

]− k9Akt∗c [v1(Mdm2c)] + k10[v1(Mdm2n)]

− k11Mdm2c, (3)

dMdm2n
dt

= k9Akt∗c [v1(Mdm2c)]− k10[v1(Mdm2n)]− k11Mdm2n, (4)

dWip1n
dt

= k12 + k13[v
+
2(P53n)

]− k14Wip1n, (5)

dPtenc

dt
= k15 + k16[v

+
2(P53n)

]− k17Ptenc, (6)

dSco2m
dt

= k18 + k19[v
+
2(P53n)

]− k20Sco2m, (7)

dT igarc
dt

= k21 + k22[v
+
2(P53n)

]− k23Tigarc, (8)

dAmpk∗c
dt

= k24[v1(Ampkc)] + k25[v
+
2(P53n)

][v1(Ampkc)]− k26[v1(Ampk∗
c )
], (9)

dP ip3c
dt

= k27[v1(Pip2c)]− k28Ptenc[v1(Pip3c)], (10)

dAkt∗c
dt

= k29Pip3c[v1(Aktc)]− k30[v1(Akt∗c)
], (11)

dMtor∗c
dt

= k31Akt∗c [v1(Mtorc)]− k32Ampk∗c [v1(Mtor∗c )
]− k33[v1(Mtor∗c )

], (12)

dHif1αc

dt
= k34 + k35Mtor∗c − k36Mtor∗cHif1αc − k37Hif1αc, (13)

dHif1αn

dt
= k36Mtor∗cHif1αc − k37Hif1αn, (14)

dGlut1c
dt

= k38[v
−
2(P53n)

] + k39Hif1αn − k40Glut1c, (15)

dGlut3c
dt

= k41[v
−
2(P53n)

] + k42Hif1αn − k43Glut3c, (16)
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dPdk13m
dt

= k44 + k45Hif1αn − k46Pdk13m, (17)

dPdk2m
dt

= k47[v
−
2(P53n)

]− k46Pdk2m, (18)

dLdhc

dt
= k48 + k49Hif1αn − k50Ldhc, (19)

dPdh∗
m

dt
= k51 − k52

(
Pdk13m + Pdk2m

)
[v1(Pdh∗

m)] + k53[v1(Pdhm)]

− k54Pdh∗
m, (20)

dPdhm

dt
= k52

(
Pdk13m + Pdk2m

)
[v1(Pdh∗

m)]− k53[v1(Pdhm)]− k54Pdhm, (21)

dGlucosec
dt

= k55
(
Glut1c +Glut3c

)
[v3(Glucose)]− k56[v4(Glucosec,Atp)], (22)

dG6pc
dt

= k56[v4(Glucosec,Atp)]− k57[v7(G6pc)]− k58G6pc, (23)

dPyruvatec
dt

= 2k57[v7(G6pc)]− k59[v
+
2(Ldhc)

][v4(Pyruvatec,Nadhc)]

− k60[v6(Pyruvate)], (24)

dPyruvatem
dt

= k60[v6(Pyruvate)]− k61Pdh∗
m[v5(Pyruvatem,Nadm)], (25)

dAcetylm
dt

= k61Pdh∗
m[v5(Pyruvatem,Nadm)]− k62[v7(Acetylm)], (26)

dNadhc

dt
= 2k57[v7(G6pc)]− k59[v

+
2(Ldhc)

][v4(Pyruvatec,Nadhc)]

− k63[v6(Nadh)], (27)

dNadhm

dt
= k61Pdh∗

m[v5(Pyruvatem,Nadhm)] + 3k62[v7(Acetylm)] + k63[v6(Nadh)]

− k64Sco2m[v7(Nadhm)], (28)

dFadhm

dt
= k62[v7(Acetylm)]− k64Sco2m[v7(Fadhm)], (29)

dLactatec
dt

= k59[v
+
2(Ldhc)

][v4(Pyruvatec,Nadhc)]− k65[v3(Lactate)], (30)

dLactateout
dt

= k65[v3(Lactate)]− k66Lactateout, (31)

dAtp

dt
= −k56[v4(Glucosec,Atp)] + 3k57[v7(G6pc)] + k62[v7(Acetylm)]

+ 2.5k64Sco2m[v7(Nadhm)] + 1.5k64Sco2m[v7(Fadhm)]− k67Atp, (32)

dO2con
dt

= 0.5k64Sco2m[v7(Nadhm)] + 0.5k64Sco2m[v7(Fadhm)]. (33)

Each term in the model represented by ’v ’ notation corresponds to one of the reac-
tions detailed in the model reaction section, where v = v/Vmax or v/k. Despite the
model’s complexity, involving 67 parameters, it demonstrates significant robustness,
showing minimal sensitivity to only a few of these parameters (Table A9). For more
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details, the comprehensive model incorporating explicit differential equations, corre-
sponding chemical reactions, parameter values, parameter experimental justifications,
and model robustness analysis is provided in the Appendix section (A). Numerical
simulations for this system were conducted using the ’ode’ routine in MATLAB and
Gear’s method in the XPPAUT software.

3 Results

3.1 p53 orchestrates the metabolic shift in cancer: enhancing
oxidative phosphorylation, suppressing glucose
consumption and lactate production

To examine the normal and cancer cellular metabolism and investigate the influence
of p53 deficiency on cancer metabolic pathways seen in many laboratory experiments,
we simulated the experiment conducted by Wanka et al. (Wanka et al., 2012), using
our mathematical model.

In-silico, different types of cells (normal, cancer p53+/+, and cancer p53−/−) were
exposed to limited glucose (2 mM) for an 8-hour duration. Throughout this time-
frame, the glucose consumed, lactate produced, oxygen consumed, and ATP produced
were systematically monitored and quantified to provide a comprehensive comparison
of metabolic processes across these distinct cell types, as illustrated in Fig. 2.

Our simulations succeeded in clarifying the distinctions in glucose metabolic
pathways between cancer and normal cells. Cancer cells exhibited heightened glucose
consumption and elevated lactate secretion, signifying their commitment to the aero-
bic glycolysis phenotype. Conversely, in normal cells, glucose was mainly metabolised
by oxidative phosphorylation, accounting for 92% of the total ATP produced. More-
over, cancer cells in our model displayed high sensitivity to glucose availability,
experiencing a notable decline in metabolic activity as glucose levels decreased. How-
ever, normal cells maintained relatively stable metabolic levels that were minimally
affected by glucose fluctuations.

Our finding further confirms the significant influences of losing p53 in cancer
metabolism, which caused a high tendency towards the glycolytic pathway reducing
the oxygen consumption required for glucose oxidation by 22.5%, compensating that
by increasing glucose consumption and thus producing lactate at higher rates. A com-
parison of our simulation findings with experimental observations from various studies
reveals a good match (Wanka et al., 2012; Matoba et al., 2006; Wu et al., 2016).
Detailed insights are presented in Table 1, corroborating the consistency between
simulated and experimentally observed data.
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Fig. 2: A comparison between normal cells and cancer cells (p53+/+, p53−/−) regard-
ing their metabolic pathways. It shows the time course of the glucose consumption,
lactate production, oxygen consumption, and ATP production by each cell type
exposed to 2 mM of glucose over 8 hours

(a) Normoxic conditions (O2 21%)

In experiment In simulation

Cell type HCT116 p53+/+ HCT116 p53-/- Cancer p53+/+ Cancer p53-/-

Glucose consumption 1.35 mmol 1.60 mmol 1.34 mmol 1.60 mmol (Wanka et al., 2012)

Lactate production 2.00 mmol 2.88 mmol 2.01 mmol 2.82 mmol (Wanka et al., 2012)

Oxygen consumption 20 - 25% less in HCT116 p53-/- 22.5% less in Cancer p53-/-
(Wanka et al., 2012),
(Matoba et al., 2006)

ATP production phenotype 0.81 ± 0.12 1.72 ± 0.16 1.16 2.10 (Matoba et al., 2006)
(Lactatepro/Oxygencon)

Cell type Normal Cancer Normal Cancer

ATP produced by glycolysis 6 - 13% 24 - 52% 8% 26 - 35% (Wu et al., 2016)

ATP produced by OXPHOS 87 - 94% 48 - 76% 92% 65 - 74% (Wu et al., 2016)

ATP production phenotype - 1.57 - 1.80 - 1.50 - 1.76 (Wu et al., 2016)
(Lactatepro/Glucosecon)

(b) Hypoxic conditions (O2 1%)

In experiment In simulation

Cell type HCT116 p53+/+ HCT116 p53-/- Cancer p53+/+ Cancer p53-/-

Glucose consumption 1.75 mmol 2.00 mmol 1.82 mmol 1.93 mmol (Wanka et al., 2012)

Lactate production 2.90 mmol 3.50 mmol 3.86 mmol 4.89 mmol (Wanka et al., 2012)

Table 1: Comparing our simulation results with experimental observations under
normoxia, (a), and hypoxia, (b), after 8h
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3.2 The influence of abundant extracellular glucose level on
stimulating high-energy production in cancer cells

Considering the dynamic nature of cellular behaviour within the body, it is crucial to
note that experiments may not comprehensively capture the full spectrum of cellular
responses. In the experiment we reproduced, cells were subjected to a limited supply
of glucose that depletes over time. However, this scenario contrasts with the relatively
constant glucose level in the bloodstream that is readily accessible to cells within the
body.

Accordingly, for a more realistic representation of cellular metabolism, we need
to bridge the gap between the laboratory settings and the continuous physiological
conditions experienced by cells within the body. In pursuit of this goal, we replicated
previous simulations but this time assumed a consistent extracellular glucose level,
maintaining it at the normal physiological glucose blood concentration (5mM) (Grupe
et al., 1995), regardless of the cellular consumption rate.

By adopting this methodology, our simulations demonstrated that the mainte-
nance of stable glucose availability prompted both normal and cancer cells to exhibit a
sustained rate of glucose consumption throughout the 8-hour duration, which revealed
the distinctive ability of cancer cells to produce markedly higher levels of ATP com-
pared to our previous simulations and even more than normal cells (Fig. 3, Left).

This insight suggests that lowering the glucose levels in the bloodstream by fol-
lowing a specific regime could substantially diminish the ATP production in cancer
cells, limiting their ability to sustain and spread. In addition, a comparative analysis
of the three cell types under both limited and constant glucose levels highlights that
the more the cell relies on the glycolytic pathway, the more it is affected by reducing
glucose availability.

3.3 Unravelling hypoxia’s metabolism: adaptive strategies,
energy production, and mTOR signalling dynamics in
cancer progression

In cancer progression, hypoxia emerges as a vital challenge faced by rapidly pro-
liferating cancer cells due to the formation of regions within the tumour that are
deprived of an adequate blood supply. In response, cancer cells exhibit remarkable
adaptive strategies. They undergo complex molecular alterations, activating a cascade
of signalling pathways that drive angiogenesis (the formation of new blood vessels)
to restore oxygen balance and intensify the shift toward glycolytic energy production
mode to offset the deficit in respiration (Xu et al., 2019). These dynamic responses
are primarily governed by stabilising HIF1, a regulator suppressed under normal con-
ditions in an oxygen availability-dependent manner (Valvona et al., 2016; Laughner
et al., 2001; Xu et al., 2019).
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Fig. 3: Glucose metabolism under normoxic and hypoxic conditions. A comparison of
key outputs of metabolic pathways is shown for normal and cancer (p53+/+, p53−/−)
cells, considering limited extracellular glucose level that depletes over time (Top row)
and constant extracellular glucose levels (Bottom row). The glucose consumption,
lactate production, oxygen consumption, and ATP production were measured by sim-
ulating each cell type for 8h under normoxic/hypoxic conditions

To investigate the impact of hypoxic conditions on cellular metabolism, we mim-
icked the hypoxic environment by diminishing the oxygen-dependent degradation
rate of HIF-1, factoring in the HIF-1 half-life observed under hypoxic conditions
(Kubaichuk and Kietzmann, 2023). In parallel, we attenuated the activity of the
electron transport chain by an equivalent rate (50%), considering the inadequate
availability of oxygen to facilitate the oxygen reduction process. Additionally, because
hypoxia is often accompanied by a lack of blood supply to cancer cells, we reduced
the glucose availability to cells within the body by the same percentage (from 5 mM
to 2.5 mM).

By employing this approach, we anticipated and indeed observed a notable
increase in lactate fermentation by both normal and cancer cells to maximise energy
production as mitochondrial capacity diminishes, consequently escalating overall
glucose consumption (Fig. 3, right). This adaptive strategy mirrors the metabolic
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response seen in normal cells during intense exercise, where lower oxygen availability
prompts alternative energy pathways. Furthermore, our simulation closely aligned the
observed glucose metabolism outcomes for colon cancer cells HCT116 (p53+/+ and
p53−/−) under hypoxic conditions (O2 1%) (Wanka et al., 2012), providing a good
estimation of the glucose consumption levels with a slight increase in lactate produc-
tion, as detailed in Table 1, (b). The discrepancy in lactate production levels may be
attributed to the potential conversion of some lactate back to pyruvate, especially in
instances of extremely high lactate production not accounted for in our model.

On the other hand, our simulations revealed a prominent divergence in the
response to hypoxia between normal and cancer cells regarding their energy produc-
tion ability. While hypoxia led to a reduction in ATP production in normal cells,
cancer cells displayed resilience, maintaining their energy productivity close to normal
conditions (Fig. 3, second row). This intriguing observation prompted a thorough
investigation into possible factors that may be missed in our signalling network
influencing energy production under hypoxic conditions. Our investigation unveiled
that hypoxia typically induces the expression of the hypoxia-responsive REDD1 gene
(not incorporated in our model), which, in turn, disrupts mTOR activity as a major
control point to inhibit energy-intensive processes like protein translation (Brugarolas
et al., 2004; Connolly et al., 2006; DeYoung et al., 2008; Horak et al., 2010). This
cascade leads to a decrease in HIF1 levels and a dampening of the glycolytic pathway
(Brugarolas et al., 2004; Horak et al., 2010).

Motivated by these findings, we studied the impact of inhibiting mTOR activity
on metabolic pathways and energy production levels under hypoxic conditions. We
constructed a bifurcation diagram showcasing the metabolic activity of glycolysis
and OXPHOS and their contributions to energy production under different k35 rates
(mTOR-dependent HIF1 synthesis rate), see Fig. 4. Analysing these diagrams con-
firms the mTOR involvement in producing high energy levels in hypoxic cancer cells,
as impeding its activity drove the cell towards a similar energy level produced in our
hypoxic normal cells.

Nevertheless, numerous studies have consistently reported resistance of trans-
formed cells to mTOR inhibition under hypoxic conditions (Connolly et al., 2006).
This phenomenon is seen to preserve the protein synthesis rates and promote cell pro-
liferation and growth under hypoxia (Brugarolas et al., 2004; Connolly et al., 2006;
DeYoung et al., 2008). The engagement in energy-demanding processes, such as protein
synthesis and growth, underscores the cell’s proficiency in generating ample energy.
This concurs with our findings regarding hypoxic cancer cells, where the maintenance
of mTOR activity correlated with a remarkable ability to produce energy even in the
face of oxygen deficiency.
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Fig. 4: The effect of mTOR on the cellular metabolism and energy production levels in
hypoxic cancer cells (p53+/+, p53−/−). The glucose consumption, lactate production,
oxygen consumption, and ATP production were calculated under different mTOR-
dependent HIF1 activation rates, k35

3.4 Dual stable steady states in cancer cells, contrasted by
singular stability in normal cells

In previous sections, normal and cancerous cells, whether possessing wild-type p53 or
mutated p53, manifest distinct metabolic profiles, signifying different stability states.
To explore this further, we developed a phase space presenting the nullclines and
potential steady states of key players in glucose metabolic pathways, p53, HIF1, and
AMPK, across both normal and cancer cells (Fig. 5).

Considering the phase space diagrams, normal cells show a unique stability with
no activation of p53 and HIF1, indicative of a healthy environment. Conversely, can-
cer cells display two stable steady states, with an unstable one in between. The first
stable steady state lacks p53 activation but exhibits a high level of HIF1, representing
the case when cancer cells have p53 mutations. In contrast, the other stable steady
state shows high p53 activation with a lower level of HIF1, indicating the state of
cancer cells with wild-type p53.

The transition between these two states in p53 wild-type cells is governed by
the phosphorylation levels of AMPK, the protein responsible for instigating the
p53-metabolic stress response. This dynamic is further elucidated by the bifurcation
diagram, illustrating the levels of p53 and HIF1 under various AMPK phosphoryla-
tion rates denoted as k24 (Fig. 6).

Under low phosphorylation rates of AMPK, cells exhibit two stable steady states:
high activation of p53 (Stable SS p53+/+) and no activation of p53 (Stable SS p53−/−).
However, exceeding the bifurcation point by increasing the phosphorylation rate (k24)
induces p53 activation and shifts the cell into a unique stability regime, representing
the p53-wild-type state.
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Fig. 5: Phase portrait of the system in normal and cancer cells. (Top row) Nullcline
corresponding to nuclear p53 (p53n) and active AMPK (AMPK∗

c). (Bottom row) Null-
cline corresponding to nuclear HIF1 (HIF1n) and active AMPK (AMPK∗

c). The green,
yellow, and blue lines represent AMPK∗

c , p53n, and HIF1n nullclines, respectively.
Solid and hollow magenta dots denote stable and unstable equilibria, respectively.
The system exhibits a single stable equilibrium point in normal cells with no p53
and HIF1 activation, while in cancer cells, two stable and one unstable equilibria are
observed. For cancer cells, the stable equilibrium point with low p53n/high HIF1n
levels represents p53-mutated cancer cells. In contrast, the one with high p53n/low
HIF1n concentrations indicates p53-wild-type cancer cells

3.5 Restoring normal metabolism in cancer cells by increasing
the p53 activation levels

Beyond its traditional roles in DNA repair and apoptosis initiation, our study
highlights the enhanced activation potential of p53 to counter the Warburg effect,
restoring cancer cells to a more normal metabolic state. This transformative impact
unfolds across three distinct phases, depicted in Figure 7.

During the first phase (yellow area, Fig. 7), the elevation of nuclear p53 levels
leads to a modest reduction in glucose consumption and lactate production. Never-
theless, energy production levels remain high due to improved glucose respiration,
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Fig. 6: Bifurcation diagrams demonstrate nuclear p53 and HIF1 levels driven by
AMPK phosphorylation rate, k24, in cancer cells. The diagrams reveal a bistability
regime exhibiting low p53/high HIF1 and high p53/low HIF1 levels, which represent
the wild-type p53 (p53+/+) and mutated p53 (p53−/−) states, respectively. However,
with high AMPK activation surpassing the bifurcation point, unique stability emerges,
transitioning wild-type cancer cells to high p53 activation levels

explaining the increase in oxygen consumption despite the lower amount of glucose
consumed. Glycolysis maintains dominance in this phase, contributing to 47%-35% of
the overall energy produced.

Advancing the p53 activation will shift the cells towards the next phase (magenta
area, Fig. 7), further reducing glucose uptake and lactate formation. However, this
time, the ATP production is negatively impacted as a balanced state between glycol-
ysis and oxidative phosphorylation is achieved, with glycolysis responsible for 20-34%
of ATP output.

In the third phase (blue area, Fig. 7), oxidative phosphorylation overcomes
glycolysis, intensifying oxygen consumption while consistently diminishing glucose
utilisation and lactate production. This transition guides the cell towards achieving
the standards of normal cellular metabolism, represented by the dashed black line
around k2 = 0.9. Along this line, glycolysis and OXPHOS are involved in producing
energy with the same percentage seen in our normal cells, attaining standard rates
of glucose consumption and lactate production. However, with high activation of
TIGAR, glycolysis flux is lower than that of normal cells, resulting in reduced pyru-
vate production and overall ATP synthesis compared to the normal cellular state.

This finding sheds light on the crucial role of p53 activation levels in the cellular
outcomes following chemotherapy that activates p53 to trigger apoptosis. Unlike cells
with p53 mutation, those with intact p53 can manipulate cancer cells’ metabolism
in response to chemotherapy, restraining the glycolytic pathway and decreasing the
intracellular ATP levels, thereby boosting cells’ sensitivity to drugs.
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Fig. 7: The effect of p53 activation on cancer metabolism. These diagrams show the
steady state levels of nuclear p53 and four key metabolic indicators: glucose consump-
tion, lactate production, oxygen consumption, and ATP generation, under varying
rates of p53 phosphorylation (k2) in cancer cells. Each diagram is divided into three
distinct regions: the yellow region, where glycolysis dominates, contributing to 47%-
35% of ATP production; the magenta region, indicating a balanced state between
glycolysis and oxidative phosphorylation, with glycolysis contributing to 20-34% of
total ATP; and the blue region, where OXPHOS becomes dominant, accounting for
more than 80% of ATP production. A black dashed line within the diagrams marks
the targeted normal cellular metabolism

3.6 Targeting PI3K as an alternative player to p53 in
modulating the metabolism of p53-mutated cancer cells

In the context of addressing cancer metabolism in cells harbouring p53 mutations,
our analysis suggests an alternative strategy by targeting the growth factors sig-
nalling pathway. This critical pathway plays a central role in instigating the HIF1
and its associated targets that mainly support the aerobic glycolysis of cancer (Lien
et al., 2016). The initiation of this pathway involves the activation of PI3K, leading
to the transformation of PIP2 into PIP3 (Danielsen et al., 2015; Vara et al., 2004;
Lien et al., 2016). Thus, our investigation has focused on perturbing this pathway by
simulating methodologies such as triggering PTEN or blocking PI3K activation with
specific inhibitors, like idelalisib or copanlisib (Lannutti et al., 2011; Liu et al., 2013).
The outcomes reveal a profound and systematic influence on cellular metabolism,
manifesting across three phases (Fig. 8).

In the initial phase (yellow area, Fig. 8), the emphasis is placed on inhibiting the
glycolysis pathway while leaving the oxidative phosphorylation unaffected, leading to
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a decrease in total energy production following a loss of more than 20% in PIP3 con-
centration. Despite the reduction in glycolysis activity, it is considered predominant
in this phase, accounting for over 35% of cellular energy.

As PIP3 levels decrease, the glycolytic pathway continues to diminish, indirectly
prompting the OXPHOS pathway to regain its functionality and bringing the two
pathways into a balanced state (magenta area, Fig. 8). Restricting pyruvate flux to
lactate is expected to elevate cytosolic pyruvate concentrations, redirecting them
towards mitochondria and thus promoting pyruvate oxidation. This shift is reflected
in the notable oxygen consumption boost and sustained ATP production levels
despite lower glucose utilisation in this phase.

In the last phase (blue area, Fig. 8), glycolysis experiences a significant decline,
allowing OXPHOS to overcome it, thus improving energy production efficiency. In
this stage, glucose respiration becomes the preferred cellular pathway responsible for
80-90% of the total energy output. The black dashed line in this phase signifies the
targeted normal cellular metabolism, with 11% of energy production attributed to
glycolysis and 89% to OXPHOS.

Our simulations reveal the efficacy of targeting the growth factors signalling path-
way and highlight the potency of PI3K inhibitors in disrupting the aerobic glycolysis
in p53-mutated cancer cells, enhancing therapeutic outcomes.

3.7 SCO2: a critical component in boosting the OXPHOS, yet
alone insufficient for reversing the Warburg effect

Numerous studies have emphasised the crucial role of SCO2, a p53 target, in the
efficient functioning of the mitochondrial respiratory chain and cellular energy pro-
duction (Matoba et al., 2006; Wanka et al., 2012). SCO2 is essential for the proper
assembly and function of cytochrome c oxidase (Complex IV in ETC), which catal-
yses electron transfer to molecular oxygen in the inner mitochondrial membrane
(Matoba et al., 2006; Wanka et al., 2012). Given its significance in cellular respira-
tion, some studies have proposed targeting it as a potential strategy to rescue oxygen
consumption in p53-deficient cells and modulate the Warburg effect (Matoba et al.,
2006; Wanka et al., 2012).

Inspired by these insights, we delved into the impact of boosting SCO2 levels
on the metabolic phenotypes of cancer cells, particularly those with p53 mutations.
In-silico, we elevated the SCO2 expression levels of p53−/− cells by increasing its
basal production rate, k18 (Fig. 9).

Indeed, our simulations agreed with those studies’ observations (Matoba et al.,
2006; Wanka et al., 2012), revealing a substantial activation of aerobic respiration in
a SCO2 level-dependent manner. Additionally, we noticed that when SCO2 concen-
tration achieves its level in wild-type p53 cells, the oxygen consumption activity of
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Fig. 8: The impact of disrupting the growth factors signalling pathway on p53-
mutated cancer cells metabolism. These diagrams depict the steady state levels of
PIP3 alongside key metabolic metrics—glucose consumption, lactate production, oxy-
gen consumption, and ATP production—at different PIP2 phosphorylation rates (k27)
in cancer cells (p53−/−). The diagrams are categorised into three zones: yellow for
glycolytic predominance (accounting for over 35% of ATP production), magenta for
a metabolic balance between glycolysis and oxidative phosphorylation (20-34% of
ATP from glycolysis), and blue for oxidative phosphorylation supremacy (exceeding
80% of energy output). A black dashed line marks the standard for normal cellular
metabolism, with energy contributions of 11% from glycolysis and 89% from OXPHOS

p53−/− cells rises at a rate comparable to that in wild-type p53 cells. This is com-
pletely consistent with what was observed in Matoba’s study, which noted that the
amount of SCO2 protein needed to rescue the deficit in mitochondrial respiration of
the p53−/− cells corresponded well to the physiological levels observed in the p53+/+

cells (Matoba et al., 2006).

On the other hand, our findings also indicate that increasing SCO2 alone is insuffi-
cient to eliminate or reverse the Warburg effect. Enhancing oxidative phosphorylation
does not necessarily lead to efficient suppression of the glycolysis pathway, especially
with continued incentives to consume large amounts of glucose and high activation of
glycolysis enzymes. This clearly explains our results, which show a slight decline in
glycolysis despite a striking increase in the oxidative phosphorylation pathway (Fig.
9). Consequently, solely targeting SCO2 may elevate energy production levels, as
shown in our simulations, potentially promoting the proliferative capacity of cancer
cells.
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Fig. 9: The role of SCO2 in the metabolism of p53-deficient cancer cells. The diagrams
represent steady state levels of SCO2 alongside key metabolic metrics—glucose con-
sumption, lactate production, oxygen consumption, and ATP production—influenced
by various SCO2 basal production rates (k18) in p53−/− cancer cells. Magenta tri-
angles denote the baseline scenario of p53−/− cancer cells, whereas green triangles
signify the altered state after increasing SCO2 concentration to match levels observed
in p53+/+ cells

In brief, our results demonstrate that SCO2 may indeed play a robust role in trans-
forming cancer cell metabolism, but in conjunction with targeting enzymes stimulating
the glycolysis pathway.

4 Discussion

The Warburg effect is a hallmark of cancer metabolism, granting cancer cells excep-
tional metabolic flexibility that enables their rapid adaptation and survival in hostile
microenvironments. This phenomenon is pivotal in cancer research, with particular
interest in the regulatory mechanisms that govern metabolic pathways. At the fore-
front of these is the tumour suppressor gene p53, whose role extends beyond cell cycle
control and apoptosis to include metabolic processes. Our investigation delves into
the critical role of p53 in modulating cancer cell metabolism, offering novel insights
into its capacity to counteract the Warburg effect phenomenon.

In the context of existing research, previous computational modelling sheds light
on different aspects of cancer metabolism —ranging from the effect of reactive oxygen
species (ROS) on HIF1 stabilisation in ischemic conditions (Qutub and Popel, 2008)
to the identification of metabolic targets to hinder cancer migration (Yizhak et al.,
2014). Despite these insights, the genetic complexities underpinning the Warburg
effect remain elusive. A notable contribution in this domain has been introduced
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recently by Linglin et al., discussing the genetic regulation of the interplay between
glycolysis and oxidative phosphorylation (Yu et al., 2017). However, this work did
not take the vital influence of p53 into account and did not perform a quantitative
analysis of how genetic factors impact metabolic outcomes or potential strategies to
mitigate the Warburg effect. Our research bridges this gap by constructing a gene-
based mathematical framework that dissects the mechanisms through which p53,
alongside other genetic regulations, influences glycolysis and OXPHOS and quantita-
tively explores their impact on these pathways under various cellular conditions.

Our model analysis reveals distinct metabolic profiles characterised by different
stability regimes, delineating clear metabolic distinctions between normal and cancer
cells with or without p53 mutations. Importantly, our model successfully replicated
experimental observations on glucose metabolism in both p53-mutated and wild-type
colon cancer cells, underscoring its validity.

By exploring various scenarios, our study uncovers the mechanism of how dimin-
ished glucose availability massively curtails cancer cell proliferation and viability. We
further identify adaptive tactics cancer cells employ under low-oxygen conditions to
maintain energy production and growth, particularly emphasising the crucial role
of mTOR activation. This adaptation starkly contrasts with the energy production
downturn observed in normal cells under similar hypoxic conditions, highlighting the
unique metabolic resilience of cancer cells.

Interestingly, we detect a novel aspect of chemotherapy resistance linked to insuffi-
cient p53 activation levels, suggesting that beyond apoptosis evasion, inadequate p53
activity also impedes the reversal of the Warburg effect, enhancing cellular resistance.

Moreover, this study discusses strategies to combat the Warburg effect in p53-
mutated contexts, evaluating the efficacy of augmenting cellular respiration by
increasing the SCO2 expression levels. While this approach indeed elevates mitochon-
drial respiration, it does so without a noticeable reduction in the glycolysis pathway,
thereby boosting the overall ATP production and potentially supporting cancer cells
even further. Alternatively, we suggest inhibiting the glycolysis pathway using a PI3K
inhibitor, which has shown promising results in our simulations.

While our model has shown considerable success and offered valuable insights,
it is important to acknowledge its limitations. Our model does not incorporate the
competitive dynamics between p53 and HIF1 over transcriptional coactivators. Tran-
scription factors like p53 and HIF1 depend on coactivators such as p300/CBP for
gene regulation, which involves acetylating histones at specific gene promoters to
facilitate the recruitment of the transcriptional machinery (Grossman, 2001; Freed-
man et al., 2002). Given the finite availability of these coactivators, competition
for access between p53 and HIF1 emerges, affecting their transcriptional activities
(Schmid et al., 2004).
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Furthermore, our current work concentrated exclusively on glucose metabolism,
yet cells can utilise additional energy sources, such as glutamine and fatty acids.
Integrating these energy sources and the p53 influence on their respective metabolic
pathways might give a more comprehensive overview of the metabolism outcomes
and analyse the p53 role much deeper. Future research aims to expand our signalling
network to include these pathways, providing a more holistic view of p53 impact on
cancer metabolism.

In conclusion, this study broadens our understanding of the Warburg effect
through the lens of p53 regulatory mechanisms, introducing, for the first time, a
mathematical model that captures the observed impact of p53 deficiency on cancer
metabolism. This pioneering model unravels the metabolic underpinnings of cancer,
thoroughly scrutinising glucose metabolic pathways across different scenarios. Addi-
tionally, model findings propose fresh perspectives to improve therapeutic approaches,
significantly highlighting the importance of optimal p53 activation for reversing the
Warburg effect and the efficacy of PI3K inhibitors in overcoming metabolic adapta-
tions in p53-mutated cancer cells.
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Castillo, A., Callejas, L., Alvarez-González, C.A., Maldonado, C., Cuzon, G., Gaxiola,
G.: Effect of native and modified starches on nutritional and hysiological perfor-
mance of wild juveniles of red grouper (epinephelus morio). Ecosistemas y recursos
agropecuarios 5(15), 491–500 (2018)

Chang, G.-G., Huang, S.-M., Chiou, S.-H.: Kinetic mechanism of the endogenous
lactate dehydrogenase activity of duck ϵ-crystallin. Archives of biochemistry and
biophysics 284(2), 285–291 (1991)

Cairns, R.A., Harris, I.S., Mak, T.W.: Regulation of cancer cell metabolism. Nature
Reviews Cancer 11(2), 85–95 (2011)

Carnero, A., Paramio, J.M.: The pten/pi3k/akt pathway in vivo, cancer mouse models.
Frontiers in oncology 4, 252 (2014)

Crewe, C., Schafer, C., Lee, I., Kinter, M., Szweda, L.I.: Regulation of pyruvate dehy-
drogenase kinase 4 in the heart through degradation by the lon protease in response
to mitochondrial substrate availability. Journal of Biological Chemistry 292(1),
305–312 (2017)

Day, P., Cleal, J., Lofthouse, E., Hanson, M., Lewis, R.: What factors determine
placental glucose transfer kinetics? Placenta 34(10), 953–958 (2013)

Danielsen, S.A., Eide, P.W., Nesbakken, A., Guren, T., Leithe, E., Lothe, R.A.: Por-
trait of the pi3k/akt pathway in colorectal cancer. Biochimica et Biophysica Acta
(BBA)-Reviews on Cancer 1855(1), 104–121 (2015)

Dan, H.C., Ebbs, A., Pasparakis, M., Van Dyke, T., Basseres, D.S., Baldwin, A.S.:
Akt-dependent activation of mtorc1 complex involves phosphorylation of mtor
(mammalian target of rapamycin) by iκb kinase α (ikkα). Journal of Biological
Chemistry 289(36), 25227–25240 (2014)

Devic, S.: Warburg effect-a consequence or the cause of carcinogenesis? Journal of
Cancer 7(7), 817 (2016)

DeYoung, M.P., Horak, P., Sofer, A., Sgroi, D., Ellisen, L.W.: Hypoxia regulates
tsc1/2–mtor signaling and tumor suppression through redd1-mediated 14–3–3
shuttling. Genes & development 22(2), 239–251 (2008)

Dai, W., Xu, Y., Mo, S., Li, Q., Yu, J., Wang, R., Ma, Y., Ni, Y., Xiang, W., Han,
L., et al.: Glut3 induced by ampk/creb1 axis is key for withstanding energy stress
and augments the efficacy of current colorectal cancer therapies. Signal transduction
and targeted therapy 5(1), 177 (2020)

33



Düvel, K., Yecies, J.L., Menon, S., Raman, P., Lipovsky, A.I., Souza, A.L., Triantafel-
low, E., Ma, Q., Gorski, R., Cleaver, S., et al.: Activation of a metabolic gene
regulatory network downstream of mtor complex 1. Molecular cell 39(2), 171–183
(2010)

Fan, J., Hitosugi, T., Chung, T.-W., Xie, J., Ge, Q., Gu, T.-L., Polakiewicz, R.D.,
Chen, G.Z., Boggon, T.J., Lonial, S., et al.: Tyrosine phosphorylation of lactate
dehydrogenase a is important for nadh/nad+ redox homeostasis in cancer cells.
Molecular and cellular biology 31(24), 4938–4950 (2011)
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G., Höfler, H., Slotta-Huspenina, J., Becker, K.: Activation of the pi3k/akt pathway
correlates with prognosis in stage ii colon cancer. British journal of cancer 110(8),
2081–2089 (2014)

Mart́ınez-Reyes, I., Chandel, N.S.: Mitochondrial tca cycle metabolites control physi-
ology and disease. Nature communications 11(1), 102 (2020)

Mayo, L.D., Seo, Y.R., Jackson, M.W., Smith, M.L., Guzman, J.R., Korgaonkar, C.K.,
Donner, D.B.: Phosphorylation of human p53 at serine 46 determines promoter
selection and whether apoptosis is attenuated or amplified. Journal of Biological
Chemistry 280(28), 25953–25959 (2005)

Nag, S., Qin, J., Srivenugopal, K.S., Wang, M., Zhang, R.: The mdm2-p53 pathway
revisited. Journal of biomedical research 27(4), 254 (2013)

Oakhill, J.S., Steel, R., Chen, Z.-P., Scott, J.W., Ling, N., Tam, S., Kemp, B.E.: Ampk
is a direct adenylate charge-regulated protein kinase. Science 332(6036), 1433–1435
(2011)

Qutub, A.A., Popel, A.S.: Reactive oxygen species regulate hypoxia-inducible factor
1α differentially in cancer and ischemia. Molecular and cellular biology (2008)

Rodrigues, A.S., Correia, M., Gomes, A., Pereira, S.L., Perestrelo, T., Sousa, M.I.,
Ramalho-Santos, J.: Dichloroacetate, the pyruvate dehydrogenase complex and the
modulation of mesc pluripotency. PLoS One 10(7), 0131663 (2015)
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Zimmerman, J.J., Saint André-von Arnim, A., McLaughlin, J.: Cellular respiration.
in: Pediatric critical care. Elsevier, 1058–1072 (2011)

Zeng, S., Zhao, Z., Zheng, S., Wu, M., Song, X., Li, Y., Zheng, Y., Liu, B., Chen, L.,
Gao, C., et al.: The e3 ubiquitin ligase trim31 is involved in cerebral ischemic injury
by promoting degradation of tigar. Redox Biology 45, 102058 (2021)

43



Appendix A Detailed Model

A.1 Model descriptions

A.1.1 Cytoplasmic and nuclear p53 equations

In response to metabolic stress encountered by cancer cells, the AMP-activated pro-
tein kinase (AMPK) is activated through phosphorylation (Hardie, 2011; Hardie et al.,
2012; Faubert et al., 2015; Li et al., 2015), which then phosphorylates cytoplasmic
p53, triggering its stabilisation and nuclear translocation (Jones et al., 2005; Ima-
mura et al., 2001). The breakdown of the p53 protein involves two pathways: a basal
degradation and a process mediated by murine double minute 2 (MDM2) via the
ubiquitin-proteasome pathway (Nag et al., 2013; Haupt et al., 1997). The dephospho-
rylation of nuclear p53 is catalysed by wild-type p53-induced phosphatase 1 (WIP1)
(Batchelor et al., 2011), which unmasks p53 nuclear export signals, thus directing
them back to the cytoplasm. Let the concentration of cytoplasmic p53, nuclear p53,
active cytoplasmic AMPK, cytoplasmic MDM2, nuclear MDM2, and nuclear WIP1
be denoted by P53c, P53n, Ampk∗c , Mdm2c, Mdm2n, and Wip1n, respectively.

Chemical reactions:

• k1−→ P53c

P53c + Ampk∗c
k2−→ P53n + Ampk∗c

P53c + Mdm2c
k3−→ • + Mdm2c

P53n + Wip1n
k4−→ P53c + Wip1n

P53c
k5−→ •

P53n + Mdm2n
k6−→ • + Mdm2n

Equations:

dP53c
dt

= k1 − k2Ampk∗c

(
P53c

P53c +Kp1

)
− k3Mdm2c

(
P53c

P53c +Kp2

)
+ k4Wip1n

(
P53n

P53n +Kp3

)
− k5P53c, (A1)

dP53n
dt

= k2Ampk∗c

(
P53c

P53c +Kp1

)
− k6Mdm2n

(
P53n

P53n +Kp4

)
− k4Wip1n

(
P53n

P53n +Kp3

)
. (A2)
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Parameter values:

Parameter Description Value Unit Reference

k1 p53c basal production rate 0.2 µM/min (Abukwaik et al., 2023)
k2 AMPK∗

c -dependent p53c phosphorylation rate 0.351 /min Assumed
Kp1 M.C. of AMPK∗

c -dependent p53c phosphorylation 1 µM Assumed
k3 MDM2c-dependent p53c degradation rate 0.75 /min (Abukwaik et al., 2023)
Kp2 M.C. of MDM2c-dependent p53c degradation 0.03 µM (Abukwaik et al., 2023)
k4 WIP1n-dependent p53n dephosphorylation rate 0.2 /min (Abukwaik et al., 2023)
Kp3 M.C. of WIP1n-dependent p53n dephosphorylation 0.05 µM (Abukwaik et al., 2023)
k5 p53c basal degradation rate 0.02 /min (Abukwaik et al., 2023)
k6 MDM2n-dependent p53n degradation rate 0.02 /min (Abukwaik et al., 2023)
Kp4 M.C. of MDM2n-dependent p53n degradation 0.3 µM (Abukwaik et al., 2023)

Table A1: Parameter values of Eqs. (A1) and (A2), where M.C. denotes the Michaelis
Constant
1This parameter varies by cell type. It is set to be 0.35 in normal and wild-type cancer
cells but reduced to 0 in mutated cancer cells to ensure no response of p53 in this cell
type.

A.1.2 Cytoplasmic and nuclear MDM2 equations

Upon activation, tetrameric nuclear p53 triggers the production of its negative reg-
ulator, MDM2, in the cytoplasm (Barak et al., 1993), a process modelled by a Hill
function with a coefficient four. Although MDM2 predominantly resides within the
cytoplasm (Marchenko et al., 2010), stimulation by growth factor signals causes pro-
tein kinase B (AKT) to phosphorylate MDM2, facilitating its relocation to the nucleus
to hinder p53 transcriptional activity (Mayo and Donner, 2001; Xu et al., 2012). Let
Akt∗c denote the active cytoplasmic AKT concentration.

Chemical reactions:

• k7−→ Mdm2c

P53n
k8−→ P53n + Mdm2c

Mdm2c + Akt∗c
k9−→ Mdm2n + Akt∗c

Mdm2n
k10−−→ Mdm2c

Mdm2c
k11−−→ •

Mdm2n
k11−−→ •

Equations:

dMdm2c
dt

= k7 + k8

(
P53n

h

P53n
h +Kp53

h

)
− k9Akt∗c

(
Mdm2c

Mdm2c +Km1

)
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+ k10

(
Mdm2n

Mdm2n +Km2

)
− k11Mdm2c, (A3)

dMdm2n
dt

= k9Akt∗c

(
Mdm2c

Mdm2c +Km1

)
− k10

(
Mdm2n

Mdm2n +Km2

)
− k11Mdm2n. (A4)

Parameter values:

Parameter Description Value Unit Reference

k7 MDM2c basal production rate 0.002 µM/min (Abukwaik et al., 2023)
k8 p53n-dependent MDM2c production rate 0.024 µM/min (Abukwaik et al., 2023)
Kp53 T.C. of p53n transcription activation 0.25 µM (Abukwaik et al., 2023)
h Hill coefficient of p53n transcription activation 4 - (Abukwaik et al., 2023)
k9 AKT∗

c -dependent MDM2c phosphorylation rate 10 /min (Wee and Aguda, 2006)
Km1 M.C. of AKT∗

c -dependent MDM2c phosphorylation 0.3 µM (Wee and Aguda, 2006)
k10 MDM2n dephosphorylation rate 0.2 µM/min (Wee and Aguda, 2006)
Km2 M.C. of MDM2n dephosphorylation 0.1 µM (Wee and Aguda, 2006)
k11 MDM2 basal degradation rate 0.0028 /min (Abukwaik et al., 2023)

Table A2: Parameter values of Eqs. (A3) and (A4). T.C. denotes Threshold Constant,
while M.C. represents Michaelis Constant

A.1.3 WIP1, PTEN, SCO2, and TIGAR equations

WIP1, phosphatase and tensin homolog (PTEN), synthesis of cytochrome c oxidase
2 (SCO2), and TP53-inducible glycolysis and apoptosis regulator (TIGAR) are all
targets of p53, synthesised under normal conditions. However, with the activation of
p53, nuclear p53 instigates the activation of their promoters, enhancing their produc-
tion rate (Batchelor et al., 2011; Feng and Levine, 2010; Matoba et al., 2006; Bensaad
et al., 2006; Lee et al., 2015; Stambolic et al., 2001). Among these, WIP1 forms a
negative feedback loop that inhibits p53 function, whereas PTEN contributes to a
positive feedback loop that supports p53 activity. Let the concentration of the cyto-
plasmic PTEN, mitochondrial SCO2, and cytoplasmic TIGAR be denoted by Ptenc,
Sco2m, and Tigarc, respectively.

Chemical reactions:

• k12−−→ Wip1n

P53n
k13−−→ P53n + Wip1n

Wip1n
k14−−→ •

• k15−−→ Ptenc

P53n
k16−−→ P53n + Ptenc

46



Ptenc
k17−−→ •

• k18−−→ Sco2m

P53n
k19−−→ P53n + Sco2m

Sco2m
k20−−→ •

• k21−−→ Tigarc

P53n
k22−−→ P53n + Tigarc

Tigarc
k23−−→ •

Equations:

dWip1n
dt

= k12 + k13

(
P53n

h

P53n
h +Kp53

h

)
− k14Wip1n, (A5)

dPtenc

dt
= k15 + k16

(
P53n

h

P53n
h +Kp53

h

)
− k17Ptenc, (A6)

dSco2m
dt

= k18 + k19

(
P53n

h

P53n
h +Kp53

h

)
− k20Sco2m, (A7)

dT igarc
dt

= k21 + k22

(
P53n

h

P53n
h +Kp53

h

)
− k23Tigarc. (A8)

Parameter values:

Parameter Description Value Unit Reference

k12 WIP1n basal production rate 0.002 µM/min (Abukwaik et al., 2023)
k13 p53n-dependent WIP1n production rate 0.09 µM/min (Abukwaik et al., 2023)
k14 WIP1n basal degradation rate 0.02 /min (Abukwaik et al., 2023)
k15 PTENc basal production rate 0.001 µM/min (Wee and Aguda, 2006)
k16 p53n-dependent PTENc production rate 0.006 µM/min (Wee and Aguda, 2006)
k17 PTENc basal degradation rate 0.0063 /min (Wee and Aguda, 2006)
k18 SCO2m basal production rate 0.002 µM/min Like k12
k19 p53n-dependent SCO2m production rate 0.007 µM/min Estimated (Wanka et al., 2012)
k20 SCO2m basal degradation rate 0.02 /min Like k14
k21 TIGARc basal production rate 0.00004 µM/min Estimated (Al-Khayal et al., 2016)
k22 p53n-dependent TIGARc production rate 0.009 µM/min Estimated (Lee et al., 2015)
k23 TIGARc basal degradation rate 0.0012 /min Estimated (Zeng et al., 2021)

Table A3: Parameter values of Eqs. (A5)-(A8)

A.1.4 Active AMPK, PIP3, AKT, and mTOR equations

Along with AMPK activation by metabolic stress, p53 also triggers AMPK activa-
tion through its targets, sestrin1 and 2, which interact with the α-subunits of AMPK,
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resulting in its phosphorylation (Budanov and Karin, 2008; Sanli et al., 2012). Our
model incorporates this process by assuming a direct activation of AMPK by nuclear
p53, forming a robust positive feedback loop. On the other hand, growth factor stimula-
tion leads to the phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP2) into
phosphatidylinositol 3,4,5-trisphosphate (PIP3), facilitating AKT phosphorylation by
biding to PIP3 (Danielsen et al., 2015; Vara et al., 2004; Carnero and Paramio, 2014).
This series of events activates AKT, which then influences the mammalian target of
rapamycin (mTOR) activation (Dan et al., 2014; Inoki et al., 2002). However, upon
p53 activation, p53 target PTEN converts PIP3 back to PIP2, effectively attenuating
the growth factors signalling pathway (Mayo et al., 2002; Carnero and Paramio, 2014;
Feng and Levine, 2010). Furthermore, the activation of AMPK acts as a regulatory
mechanism that suppresses mTOR activity to constrain the protein synthesis process
induced by mTOR (Budanov and Karin, 2008; Sanli et al., 2012; Feng and Levine,
2010). Let the concentration of cytoplasmic PIP3 and active cytoplasmic mTOR be
denoted by Pip3c and Mtor∗c , respectively, while Ampkc, Pip2c, Aktc and Mtorc
represent the concentrations for the inactive form of the corresponding variable.

Chemical reactions:

Ampkc
k24−−→ Ampk∗c

P53n + Ampkc
k25−−→ P53n + Ampk∗c

Ampk∗c
k26−−→ Ampkc

Pip2c
k27−−→ Pip3c

Pip3c + Ptenc
k28−−→ Pip2c + Ptenc

Aktc + Pip3c
k29−−→ Akt∗c + Pip3c

Akt∗c
k30−−→ Aktc

Mtorc + Akt∗c
k31−−→ Mtor∗c + Akt∗c

Mtor∗c + Ampk∗c
k32−−→ Mtorc + Ampk∗c

Mtor∗c
k33−−→ Mtorc

Equations:

dAmpk∗c
dt

= k24

(
Ampktot −Ampk∗c

Ampktot −Ampk∗c +Ka1

)
+ k25

(
P53n

h

P53n
h +Kp53

h

)
×
(

Ampktot −Ampk∗c
Ampktot −Ampk∗c +Ka1

)
− k26

(
Ampk∗c

Ampk∗c +Ka2

)
, (A9)

dP ip3c
dt

= k27

(
Piptot − Pip3c

Piptot − Pip3c +Kpip1

)
− k28Ptenc

(
Pip3c

Pip3c +Kpip2

)
, (A10)
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dAkt∗c
dt

= k29Pip3c

(
Akttot −Akt∗c

Akttot −Akt∗c +Kakt1

)
− k30

(
Akt∗c

Akt∗c +Kakt2

)
, (A11)

dMtor∗c
dt

= k31Akt∗c

(
Mtortot −Mtor∗c

Mtortot −Mtor∗c +Kmtor1

)
− [k32Ampk∗c + k33]

×
(

Mtor∗c
Mtor∗c +Kmtor2

)
. (A12)

Parameter values:

Parameter Description Value Unit Reference

k24 AMPKc phosphorylation rate 0.0011 µM/min Assumed
Ampktot The total concentration of all AMPKc forms 1 µM Like Piptot
Ka1 M.C. of AMPKc phosphorylation 0.2 µM Assumed
k25 p53n-dependent AMPKc phosphorylation rate 0.001 µM/min Like k24
k26 AMPK∗

c dephosphorylation rate 0.0001 µM/min Assumed
Ka2 M.C. of AMPKk∗c dephosphorylation 0.5 µM Assumed
k27 PIP2c phosphorylation rate 0.151 µM/min (Wee and Aguda, 2006)
Piptot The total concentration of all PIPc forms 1 µM (Wee and Aguda, 2006)
Kpip1 M.C. of PIP2c phosphorylation 0.1 µM (Wee and Aguda, 2006)
k28 PTENc-dependent PIP3c dephosphorylation rate 0.5 /min (Zhang et al., 2011)
KPip2 M.C. of PTENc-dependent PIP3c dephosphorylation 0.5 µM (Wee and Aguda, 2006; Zhang et al., 2011)
k29 PIP3c-dependent AKTc phosphorylation rate 0.25 /min (Zhang et al., 2011)
Akttot The total concentration of all AKTc forms 1 µM (Zhang et al., 2011)
Kakt1 M.C. of PIP3c-dependent AKTc phosphorylation 0.35 µM (Tian et al., 2017)
k30 AKT∗

c dephosphorylation rate 0.1 µM/min (Zhang et al., 2011)
Kakt2 M.C. of AKT∗

c dephosphorylation 0.2 µM (Zhang et al., 2011)
k31 AKT∗

c -dependent mTORc activation rate 0.25 /min Like k29
Mtortot The total concentration of all mTORc forms 1 µM Like Piptot
Kmtor1 M.C. of AKT∗

c -dependent mTORc activation 0.1 µM Like Kpip1

k32 AMPK∗
c -dependent mTOR∗

c inactivation rate 0.2 /min Assumed
Kmtor2 M.C. of mTOR∗

c inactivation 0.5 µM Like Kpip2

k33 AMPK∗
c -independent mTOR∗

c inactivation rate 0.00001 µM/min Assumed

Table A4: Parameter values of Eqs. (A9)-(A12). M.C. represents Michaelis Constant.
1In the model, metabolic stress and continuous activation of growth factor signals are
considered exclusive to cancer cells, assuming that normal cells exist in a healthy and
disorder-free environment. Therefore, these parameters are set to 0 in normal cells

A.1.5 Cytoplasmic and nuclear HIF1 equations

The hypoxia-inducible factor 1 α (HIF1α) gene is continuously transcribed and trans-
lated, yet its expression levels remain undetectable under normoxia due to its rapid
degradation via the ubiquitin-proteasome pathway in an oxygen-dependent process
(Valvona et al., 2016; Laughner et al., 2001; Golias et al., 2019). However, with the
activation of the growth factor signalling pathway, mTOR enhances HIF1α protein lev-
els through activation of cap-dependent translation and further facilitates its nuclear
translocation (Düvel et al., 2010; Valvona et al., 2016; Laughner et al., 2001; Zhong
et al., 2000; Treins et al., 2005). Let Hif1αc and Hif1αn denote the concentrations
of cytoplasmic and nuclear HIF1α, respectively.

Chemical reactions:

• k34−−→ Hif1αc
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Mtor∗c
k35−−→ Mtor∗c + Hif1αc

Mtor∗c + Hif1αc
k36−−→ Mtor∗c + Hif1αn

Hif1αc
k37−−→ •

Hif1αn
k37−−→ •

Equations:

dHif1αc

dt
= k34 + k35Mtor∗c − k36Mtor∗cHif1αc − k37Hif1αc, (A13)

dHif1αn

dt
= k36Mtor∗cHif1αc − k37Hif1αn. (A14)

Parameter values:

Parameter Description Value Unit Reference

k34 HIF1αc basal production rate 0.00002 µM/min Assumed
k35 mTOR∗

c -dependent HIF1αc induction rate 0.000045 /min Estimated (Düvel et al., 2010; Lu et al., 2011)
k36 mTOR∗

c -dependent HIF1αc nuclear import rate 1.45 /µMmin Estimated (Treins et al., 2005)
k37 HIF1α basal degradation rate 0.1386 /min Estimated (Golias et al., 2019)

Table A5: Parameter values of Eqs. (A13) and (A14)

A.1.6 GLUT1, GLUT3, PDK1/3, PDK2, and LDH equations

Glucose transporters (GLUT1 and GLUT3), along with pyruvate dehydrogenase
kinases (PDK1, PDK2, and PDK3) and lactate dehydrogenase (LDH), play crucial
roles in regulating glucose metabolism pathways. Under normal conditions, these
proteins are produced at baseline rates, but their production can be significantly
influenced by the activation of HIF1 or p53, which can either stimulate or inhibit
their synthesis. Specifically, GLUT1 and GLUT3 are vital for cellular glucose uptake
(Schwartzenberg-Bar-Yoseph et al., 2004; Szablewski, 2013; Ancey et al., 2018; Mamun
et al., 2020), a process enhanced by HIF1 but dampened by p53 (Ancey et al., 2018;
Schwartzenberg-Bar-Yoseph et al., 2004; Kawauchi et al., 2008). PDK kinases, which
interfere with the conversion of pyruvate to acetyl-CoA in mitochondria (Wang et al.,
2021; Woolbright et al., 2019; Rodrigues et al., 2015), are differentially regulated: HIF1
promotes the expression of PDK1 and PDK3 (Anwar et al., 2021; Lu et al., 2011; Wang
et al., 2021; Kim et al., 2006), disrupting pyruvate oxidation, while p53 acts to diminish
PDK2 activity Anwar et al. (2021); Liang et al. (2020). LDH enzyme, pivotal for con-
verting pyruvate to lactate in the cytoplasm, receives support from HIF1, facilitating
the anaerobic glycolysis pathway (Valvona et al., 2016). This intricate gene regulation
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network highlights the dynamic interplay between HIF1 and p53 in modulating glu-
cose metabolic pathways. Let the concentration of cytoplasmic GLUT1, cytoplasmic
GLUT3, mitochondrial PDK1 and 3, mitochondrial PDK2, and cytoplasmic LDH be
denoted by Glut1c, Glut3c, Pdk13m, Pdk2m, and Ldhc, respectively.

Chemical reactions:

• k38−−→ Glut1c

Hif1αn
k39−−→ Glut1c + Hif1αn

Glut1c
k40−−→ •

• k41−−→ Glut3c

Hif1αn
k42−−→ Glut3c + Hif1αn

Glut3c
k43−−→ •

• k44−−→ Pdk13m

Hif1αn
k45−−→ Pdk13m + Hif1αn

Pdk13m
k46−−→ •

• k47−−→ Pdk2m

Pdk2m
k46−−→ •

• k48−−→ Ldhc

Hif1αn
k49−−→ Ldhc + Hif1αn

Ldhc
k50−−→ •

Equations:

dGlut1c
dt

= k38

(
Kp53

h

P53n
h +Kp53

h

)
+ k39Hif1αn − k40Glut1c, (A15)

dGlut3c
dt

= k41

(
Kp53

h

P53n
h +Kp53

h

)
+ k42Hif1αn − k43Glut3c, (A16)

dPdk13m
dt

= k44 + k45Hif1αn − k46Pdk13m, (A17)

dPdk2m
dt

= k47

(
Kp53

h

P53n
h +Kp53

h

)
− k46Pdk2m, (A18)

dLdhc

dt
= k48 + k49Hif1αn − k50Ldhc. (A19)
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Parameter values:

Parameter Description Value Unit Reference

k38 GLUT1c basal production rate 0.00005 µM/min Estimated (Schwartzenberg-Bar-Yoseph et al., 2004)
k39 HIF1αn-dependent GLUT1c production rate 0.48 /min Estimated (Düvel et al., 2010)
k40 GLUT1c basal degradation rate 0.0019 /min Estimated (Khayat et al., 1998)
k41 GLUT3c basal production rate 0.00001 µM/min Assumed
k42 HIF1αn-dependent GLUT3c production rate 0.095 /min Estimated (Wood et al., 2007)
k43 GLUT3c basal degradation rate 0.00075 /min Estimated (Khayat et al., 1998)
k44 PDK1,3m basal production rate 0.0002 µM/min Assumed
k45 HIF1αn-dependent PDK1,3m production rate 0.7 /min Estimated (Lu et al., 2011)
k46 PDKm basal degradation rate 0.0019 /min Estimated (Crewe et al., 2017; Huang et al., 2002)
k47 PDK2m basal production rate 0.0001 µM/min Half k44, (Liang et al., 2020)
k48 LDHc basal production rate 0.0001 µM/min Like k47
k49 HIF1αn-dependent LDHc production rate 0.85 /min Estimated (Hu et al., 2006)
k50 LDHc basal degradation rate 0.000825 /min Estimated (Garćıa-Aguilar et al., 2019)

Table A6: Parameter values of Eqs. (A15)-(A19)

A.1.7 Active and inactive PDH equations

Pyruvate dehydrogenase (PDH) is an enzyme that facilitates the first step towards
glucose respiration by catalysing pyruvate oxidative decarboxylation into acetyl-CoA
within the mitochondria (Wang et al., 2021; Woolbright et al., 2019; Rodrigues et al.,
2015). However, this enzyme’s function is negatively regulated by the PDK family,
which phosphorate PDH complex at three different sites, inhibiting its activity (Wang
et al., 2021; Woolbright et al., 2019; Rodrigues et al., 2015). Let the concentration of
active and inactive mitochondrial PDH be denoted by Pdh∗

m and Pdhm, respectively.

Chemical reactions:

• k51−−→ Pdh∗
m

Pdh∗
m + Pdk13m

k52−−→ Pdhm + Pdk13m

Pdh∗
m + Pdk2m

k52−−→ Pdhm + Pdk2m

Pdhm
k53−−→ Pdh∗

m

Pdh∗
m

k54−−→ •

Pdhm
k54−−→ •

Equations:

dPdh∗
m

dt
= k51 − k52Pdk13m

(
Pdh∗

m

Pdh∗
m +Kpdh1

)
− k52Pdk2m

×
(

Pdh∗
m

Pdh∗
m +Kpdh1

)
+ k53

(
Pdhm

Pdhm +Kpdh2

)
− k54Pdh∗

m, (A20)
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dPdhm

dt
= k52Pdk13m

(
Pdh∗

m

Pdh∗
m +Kpdh1

)
+ k52Pdk2m

(
Pdh∗

m

Pdh∗
m +Kpdh1

)
− k53

(
Pdhm

Pdhm +Kpdh2

)
− k54Pdhm. (A21)

Parameter values:

Parameter Description Value Unit Reference

k51 PDH∗
m basal production rate 0.001 µM/min Assumed

k52 PDKm-dependent PDH∗
m phosphorylation rate 0.017 /min Estimated (Liang et al., 2020)

Kpdh1 M.C. of PDKm-dependent PDH∗
m phosphorylation 0.5 µM Assumed

k53 PDHm dephosphorylation rate 0.005 µM/min Estimated (Liang et al., 2020)
Kpdh2 M.C. of PDHm dephosphorylation 0.5 µM Assumed
k54 PDHm basal degradation rate 0.00028 /min Estimated (Hu et al., 1983)

Table A7: Parameter values of Eqs. (A20) and (A21). M.C. denotes Michaelis Con-
stant

A.1.8 Metabolic equations

Glucose metabolism involves three main stages: starting with glycolysis, advancing
to the tricarboxylic acid (TCA) cycle, and finishing with the electron transport chain
(ETC).

Glycolysis. Glucose is transported into and out of the cells by specific glucose
transporters located in the cell membrane (Schwartzenberg-Bar-Yoseph et al., 2004;
Szablewski, 2013; Ancey et al., 2018; Mamun et al., 2020), namely GLUT1 and
GLUT3 in our model. Once inside the cell, glucose undergoes an irreversible con-
version to glucose-6-phosphate (G6P), consuming one ATP molecule (Golias et al.,
2019). Then the G6P can either proceed through glycolysis or enter the pentose
phosphate pathway (PPP) (Jiang et al., 2014), a decision influenced by TIGAR which
inhibits the enzyme catalysing the third step in the glycolysis pathway, diminishing
glycolysis flux (Bensaad et al., 2006; Lee et al., 2015). Continuing with glycolysis
converts a molecule of G6P into two molecules of pyruvate, yielding three net ATP
and two reduced nicotinamide adenine dinucleotide (NADH) molecules (Valvona
et al., 2016; Golias et al., 2019). Following this, the produced pyruvate can either be
converted into lactate in the cytoplasm by LDH enzyme, oxidising NADH back to
NAD+, or transported into the mitochondria in the presence of oxygen for further
energy production through oxidative phosphorylation (OXPHOS) (Valvona et al.,
2016; Golias et al., 2019).

TCA cycle. Within the mitochondria, the PDH complex irreversibly catalyses
the oxidative decarboxylation of pyruvate to acetyl-CoA, concurrently reducing one
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NAD+ into NADH (Wang et al., 2021; Woolbright et al., 2019; Rodrigues et al.,
2015). Acetyl-CoA subsequently enters the TCA cycle, undergoing a series of chem-
ical reactions that generate one ATP, three NADH, and one reduced flavin adenine
dinucleotide (FADH2) molecule (Mart́ınez-Reyes and Chandel, 2020).

ETC. In the last stage, NADH and FADH2 are oxidised back into NAD+ and FAD
via protein complexes in the inner mitochondrial membrane (Ahmad et al., 2018).
This oxidation process involves electron transfer from NADH and FADH2 across
these complexes, during which protons are pumped from the mitochondrial matrix to
the intermembrane space. This action creates a proton gradient that drives protons
back into the matrix, facilitating ATP production (Ahmad et al., 2018). Given that
NADH and FADH2 contribute to the pumping of approximately ten and six protons,
respectively, and the movement of every four protons generates one ATP molecule,
our model estimates that NADH and FADH2 respectively produce 2.5 and 1.5 ATP
molecules (Ahmad et al., 2018). Among these complexes, Complex IV acts as the
final electron acceptor, channelling the electrons to molecular oxygen by using 0.5
oxygen (O2) molecules for each pair of electrons received from NADH or FADH2
(Ahmad et al., 2018). However, the activity of Complex IV is regulated by SCO2, a
p53-regulated gene essential for its proper assembly and maturation. Thus, deficiency
of SCO2 can impair Complex IV functionality and disrupt the electron flow within
the ETC (Matoba et al., 2006; Wanka et al., 2012).

Let the concentration of cytoplasmic glucose, G6P, pyruvate, NADH, NAD+, and
lactate be denoted byGlucosec,G6pc, Pyruvatec,Nadhc,Nadc, and Lactatec, respec-
tively. Meanwhile, the mitochondrial concentrations of pyruvate, acetyl-CoA, NADH,
NAD+, FADH2, and FAD are represented by Pyruvatem, Acetylm, Nadhm, Nadm,
Fadhm, and Fadm. Additionally, Glucoseout and Lactateout respectively represent
the concentration of glucose and lactate outside the cell, whereas Atp, Adp, and O2con
indicate the total concentration of ATP, ADP, and oxygen consumption, respectively.

Chemical reactions:

Glucoseout +Glut1c

k55←−−−−−→ Glucosec +Glut1c

Glucoseout +Glut3c

k55←−−−−−→ Glucosec +Glut3c

Glucosec +Atp
k56−−→ G6pc +Adp

G6pc + 2Nadc + 3Adp
k57−−→ 2Pyruvatec + 2Nadhc + 3Atp

G6pc
k58−−→ PPP

Pyruvatec +Nadhc + Ldhc
k59−−→ Lactatec +Nadc + Ldhc

Pyruvatec
k60−−→ Pyruvatem

Pyruvatem +Nadm + Pdh∗
m

k61−−→ Acetylm +Nadhm + Pdh∗
m
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Acetylm + 3Nadm + Fadm +Adp
k62−−→ 3Nadhm + Fadhm +Atp

Nadhc
k63−−→ Nadhm

Nadhm + 2.5Adp+ Sco2m
k64−−→ Nadm + 2.5Atp+ 0.5O2con + Sco2m

Fadhm + 1.5Adp+ Sco2m
k64−−→ Fadm + 1.5Atp+ 0.5O2con + Sco2m

Lactatec

k65←−−−−−→ Lactateout

Lactateout
k66−−→ •

Atp
k67−−→ Adp

Equations:

dGlucosec
dt

= k55Glut1c

(
Glucoseout

Glucoseout +Kg1
− Glucosec

Glucosec +Kg1

)
+ k55Glut3c

(
Glucoseout

Glucoseout +Kg2
− Glucosec

Glucosec +Kg2

)
− k56

(
GlucosecAtp

GlucosecAtp+KatpGlucosec +Kg3Atp+KatpKg3

)
, (A22)

dG6pc
dt

= k56

(
GlucosecAtp

GlucosecAtp+KatpGlucosec +Kg3Atp+KatpKg3

)

− k57

 G6pc

G6pc

(
1 + Tigarc

Ktig

)
+Kg4

(
1 + Tigarc

Ktig

)


×
(

Nctot −Nadhc

Nctot −Nadhc +Knadc

)(
Atot −Atp

Atot −Atp+Kadp

)
− k58G6pc, (A23)

dPyruvatec
dt

= 2k57

 G6pc

G6pc

(
1 + Tigarc

Ktig

)
+Kg4

(
1 + Tigarc

Ktig

)


×
(

Nctot −Nadhc

Nctot −Nadhc +Knadc

)(
Atot −Atp

Atot −Atp+Kadp

)
− k59

(
Ldhc

m

Ldhc
m +Kl

m

)
×
(

PyruvatecNadhc

PyruvatecNadhc +KncPyruvatec +Kpyr1Nadhc +KncKpyr1

)
− k60Pyruvatec

(
Kpyr2

Pyruvatem +Kpyr2

)
, (A24)
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dPyruvatem
dt

= k60Pyruvatec

(
Kpyr2

Pyruvatem +Kpyr2

)
− k61Pdh∗

m

×
(

Pyruvatem(Nmtot −Nadhm)

(Pyruvatem +Kpyr3)(Nmtot −Nadhm) +Knadm1Pyruvatem

)
,

(A25)

dAcetylm
dt

= k61Pdh∗
m

×
(

Pyruvatem(Nmtot −Nadhm)

(Pyruvatem +Kpyr3)(Nmtot −Nadhm) +Knadm1Pyruvatem

)
− k62

(
Acetylm

Acetylm +Kace

)(
Nmtot −Nadhm

Nmtot −Nadhm +Knadm2

)
×
(

Fmtot − Fadhm

Fmtot − Fadhm +Kfadm

)(
Atot −Atp

Atot −Atp+Kadp

)
, (A26)

dNadhc

dt
= 2k57

 G6pc

G6pc

(
1 + Tigarc

Ktig

)
+Kg4

(
1 + Tigarc

Ktig

)


×
(

Nctot −Nadhc

Nctot −Nadhc +Knadc

)(
Atot −Atp

Atot −Atp+Kadp

)
− k59

(
Ldhc

m

Ldhc
m +Kl

m

)
×
(

PyruvatecNadhc

PyruvatecNadhc +KncPyruvatec +Kpyr1Nadhc +KncKpyr1

)
− k63Nadhc

(
Knm

Nadhm +Knm

)
, (A27)

dNadhm

dt
= k61Pdh∗

m

×
(

Pyruvatem(Nmtot −Nadhm)

(Pyruvatem +Kpyr3)(Nmtot −Nadhm) +Knadm1Pyruvatem

)
+ 3k62

(
Acetylm

Acetylm +Kace

)(
Nmtot −Nadhm

Nmtot −Nadhm +Knadm2

)
×
(

Fmtot − Fadhm

Fmtot − Fadhm +Kfadm

)(
Atot −Atp

Atot −Atp+Kadp

)
+ k63Nadhc

(
Knm

Nadhm +Knm

)
− k64Sco2m

(
Nadhm

Nadhm +Ke

)
×
(

Atot −Atp

Atot −Atp+Kadp

)
, (A28)

dFadhm

dt
= k62

(
Acetylm

Acetylm +Kace

)(
Nmtot −Nadhm

Nmtot −Nadhm +Knadm2

)
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×
(

Fmtot − Fadhm

Fmtot − Fadhm +Kfadm

)(
Atot −Atp

Atot −Atp+Kadp

)
− k64Sco2m

(
Fadhm

Fadhm +Ke

)(
Atot −Atp

Atot −Atp+Kadp

)
, (A29)

dLactatec
dt

= k59

(
Ldhc

m

Ldhc
m +Kl

m

)
×
(

PyruvatecNadhc

PyruvatecNadhc +KncPyruvatec +Kpyr1Nadhc +KncKpyr1

)
− k65

(
Lactatec

Lactatec +Klac
− Lactateout

Lactateout +Klac

)
, (A30)

dLactateout
dt

= k65

(
Lactatec

Lactatec +Klac
− Lactateout

Lactateout +Klac

)
− k66Lactateout, (A31)

dAtp

dt
= −k56

(
GlucosecAtp

GlucosecAtp+KatpGlucosec +Kg3Atp+KatpKg3

)

+ 3k57

 G6pc

G6pc

(
1 + Tigarc

Ktig

)
+Kg4

(
1 + Tigarc

Ktig

)


×
(

Nctot −Nadhc

Nctot −Nadhc +Knadc

)(
Atot −Atp

Atot −Atp+Kadp

)
+ k62

(
Acetylm

Acetylm +Kace

)(
Nmtot −Nadhm

Nmtot −Nadhm +Knadm2

)
×
(

Fmtot − Fadhm

Fmtot − Fadhm +Kfadm

)(
Atot −Atp

Atot −Atp+Kadp

)
+ 2.5k64Sco2m

(
Nadhm

Nadhm +Ke

)(
Atot −Atp

Atot −Atp+Kadp

)
+ 1.5k64Sco2m

(
Fadhm

Fadhm +Ke

)(
Atot −Atp

Atot −Atp+Kadp

)
− k67Atp, (A32)

dO2con
dt

= 0.5k64Sco2m

(
Nadhm

Nadhm +Ke

)(
Atot −Atp

Atot −Atp+Kadp

)
+ 0.5k64Sco2m

(
Fadhm

Fadhm +Ke

)(
Atot −Atp

Atot −Atp+Kadp

)
. (A33)
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Parameter values:

Parameter Description Value Unit Reference

k55 GLUTc-dependent Glucose transport rate 61 /min (Wanka et al., 2012; Maddalena et al., 2015)
Glucoseout Glucose blood concentration 5000 µM (Grupe et al., 1995)
Kg1 M.C. of GLUT1c-dependent Glucose transport 3000 µM (Day et al., 2013)
Kg2 M.C. of GLUT3c-dependent Glucose transport 1400 µM (Day et al., 2013)
k56 Maximal HK-dependent G6Pc and ADP formation rate 30 µM/min (Usvalampi et al., 2021)
Kg3 M.C. of HK-dependent G6Pc and ADP formation for Glucosec 100 µM (Usvalampi et al., 2021; Castillo et al., 2018; Toews, 1966)
Katp M.C. of HK-dependent G6Pc and ADP formation for ATP 1000 µM (Usvalampi et al., 2021; Toews, 1966)
k57 Maximal Glycolysis rate 40 µM/min (Ataullakhanov and Vitvitsky, 2002)
Kg4 M.C. of Glycolysis for G6Pc 1000 µM Assumed

Knadc T.C. for NAD+
c reduction into NADHc 100 µM Assumed

Kadp T.C. for ADP phosphorylation into ATP 100 µM Assumed

Nctot The total concentration of NAD+
c and NADHc 3000 µM (Yang and Sauve, 2021)

Atot The total concentration of ATP and ADP 5000 µM (Zimmerman et al., 2011)
Ktig T.C of Glycolysis inhibition by TIGARc 3.5 µM Assumed
k58 G6Pc undergoing the PPP rate 0.0015 /min Estimated (Kight and Fleming, 1995)

k59 Maximal LDHc-dependent Lactatec and NAD+
c formation rate 300 µM/min (Javed et al., 1997)

Kl T.C. of LDHc-dependent Lactatec and NAD+
c formation 0.3 µM Assumed

m Hill coefficient of LDHc-dependent Lactatec and NAD+
c formation 4 - LDH is a tetrameric enzyme (Fan et al., 2011; Valvona et al., 2016)

Kpyr1 M.C. of LDHc-dependent Lactatec and NAD+
c formation for Pyruvatec 630 µM (Talaiezadeh et al., 2015)

Knc M.C. of LDHc-dependent Lactatec and NAD+
c formation for NADHc 330 µM (Talaiezadeh et al., 2015)

k60 Pyruvatec mitochondrial import rate 0.01 /min Estimated (Li et al., 2017)
Kpyr2 T.C. of Pyruvatec mitochondrial import 5 µM Assumed
k61 PDH∗

m-dependent Acetyl-CoAm and NADHm formation rate 95 /min Estimated (Javed et al., 1997)
Kpyr3 M.C. of PDH∗

m-dependent Acetyl-CoAm and NADHm formation for Pyruvatem 430 µM (Sun et al., 2012)

Knadm1 M.C. of PDH∗
m-dependent Acetyl-CoAm and NADHm formation for NAD+

m 280 µM (Sun et al., 2012)

Nmtot The total concentration of NAD+
m and NADHm 80 µM (Yang and Sauve, 2021)

Fmtot The total concentration of FADm and FADH2m 10 µM (Yang and Sauve, 2021)
k62 Maximal TCA cycle rate 4 µM/min Estimated (Ataullakhanov and Vitvitsky, 2002; Devic, 2016)
Kace M.C. of TCA cycle for Acetyl-CoAm 500 µM Assumed

Knadm2 T.C. for NAD+
m reduction to NADHm 10 µM Assumed

Kfadm T.C. for FADm reduction to FADH2m 1 µM Assumed
k63 NADHc mitochondrial import rate 0.1 /min Assumed
Knm T.C. of NADHc mitochondrial import 1 µM Assumed
k64 SCO2m-dependent ETC rate 120 /min Estimated (Ataullakhanov and Vitvitsky, 2002; Devic, 2016)
Ke M.C. of SCO2m-dependent ETC 10 µM Assumed
k65 Maximal carrier-dependent Lactatec transport rate 8300 µM/min (Koho et al., 2008)
Klac M.C. of carrier-dependent Lactatec transport 1000000 µM Assumed
k66 Lactateout degradation rate 0.01155 /min Estimated (Rosenstein et al., 2018)
k67 ATP basal consumption rate 0.0066 /min Assumed

Table A8: Parameter values of Eqs. (A22)-(A33). T.C. denotes Threshold Constant,
while M.C. represents Michaelis Constant

A.2 Discussion of Parameter Values

This section offers a detailed explanation of the methodologies and mechanisms
employed to derive several parameters within our model.

k2: AMPK∗
c -dependent p53c phosphorylation rate.

For effective gene activation in response to stimuli, p53 must maintain its active
(phosphorylated) state for a certain period. Consequently, we assumed a faster
phosphorylation rate for p53 than its dephosphorylation rate (k4), ensuring that p53
remains active long enough to complete the transcription of necessary genes. Fur-
thermore, we discussed the impact of varying this parameter on the model outcomes
through bifurcation diagrams, as shown in Fig. 7.

k18 and k20: SCO2m basal production and degradation rates, respectively.
Due to the lack of experimental data to estimate the production and degradation
rates of SCO2, we have chosen to align them with those of WIP1. However, since
SCO2 exclusively impacts the ETC activity in our model, we adjusted the process
speed to reflect normal activity at the SCO2 steady-state level. Therefore, any vari-
ations in SCO2 concentrations—either increases or decreases—directly affect the
ETC’s baseline functioning, enhancing or diminishing it.
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k19: p53n-dependent SCO2m production rate.
Experimental findings by Wanka et al. reveal that in colon cancer cells possessing
wild-type p53 (HCT116 p53+/+), SCO2 levels are approximately 2.3 times higher
than in cells with mutated p53 (HCT116 p53−/−) (Wanka et al., 2012). Based on
this data, we estimated that the activation of p53 in wild-type cells elevates SCO2
levels by 2.3-fold.

k21: TIGARc basal production rate.
TIGAR expression was undetectable in normal colon cells (Al-Khayal et al., 2016).
Accordingly, we assumed a minimal basal production rate for TIGAR, resulting in
negligible levels that do not exert TIGAR influence under normal conditions.

k22: p53n-dependent TIGARc production rate.
We used a least squares method to estimate the induction rate of TIGAR by p53,
drawing on data from Lee et al., which demonstrated how various p53 levels affect
TIGAR protein concentrations (Lee et al., 2015).

k23: TIGARc basal degradation rate.
We determined the TIGAR degradation rate based on its half-life, which is approxi-
mately 10 hours, as reported in (Zeng et al., 2021).

k24: AMPKc phosphorylation rate.
p53 activation is a critical adaptive response to metabolic stress, triggered by the
activation of AMPK (Jones et al., 2005; Imamura et al., 2001). Thus, for effective
p53 response in stressed cells, AMPK activation levels must be sufficiently high. To
determine this threshold, we analysed the impact of different AMPK activation rates
on the nuclear accumulation of p53, aiming to identify the activation rate required
for a robust p53 response, see Fig. 6.

k25: p53n-dependent AMPKc phosphorylation rate.
The kinetics of AMPK phosphorylation, whether initiated by metabolic stress or p53
activation, may differ based on the triggering event, cell type, and current physiolog-
ical state. Despite these variations, since both mechanisms engage similar cofactors
and protein-protein interactions and target the same phosphorylation site on AMPK,
we assumed that the phosphorylation speed catalysed by p53 is consistent with that
induced by metabolic stress (k24).

k26: AMPK∗
c dephosphorylation rate.

The activation process of AMPK also involves dephosphorylation inhibitory mecha-
nisms that guarantee AMPK stays active sufficiently to re-establish cellular energy
balance (Oakhill et al., 2011). Therefore, we assumed the AMPK dephosphorylation
rate to be ten-fold slower than its phosphorylation rate (k24/k26=10), enabling cells
to adapt swiftly to metabolic stress and gradually return to baseline once the stress
is mitigated.
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k31: AKT∗
c -dependent mTORc activation rate.

Lacking experimental data to measure mTOR activation and inactivation rates, our
study proceeds under the assumption that the speed of mTOR activation by AKT is
akin to that of AKT activation by PIP3 (k29). This assumption is grounded in the
observation that both steps are integral components of the PI3K/AKT/mTOR sig-
nalling pathway, known for its rapid and tightly regulated response. While the precise
kinetics of mTOR activation involve different mechanisms, the need for synchronised
actions within the signalling cascade suggests these key activation events occur at
comparable rates. This assumption simplifies our model, enabling us to explore the
broader dynamics of the PI3K/AKT/mTOR pathway without being hindered by the
lack of detailed kinetic data for each step.

k32 and k33: AMPK∗
c -dependent and independent mTORc inactivation rates,

respectively.
In line with our assumptions, we set the mTOR inactivation rate slightly lower than
its activation rate (k31), allowing cellular responses to persist adequately for desired
physiological effects. Additionally, we introduced a minimal AMPK-independent
inactivation rate for mTOR, ensuring its regression after stimuli removal, even in
the absence of AMPK activity. Our assumption allows effective mTOR response to
cellular signals and returns to a basal state when necessary.

k34: HIF1αc basal production rate.
As we do not have direct laboratory measurements to estimate the HIF1α production
rate confidently, we infer an appropriately low rate, guided by the rapid degradation
mechanisms that maintain minimal HIF1α levels under normoxic conditions (Valvona
et al., 2016; Laughner et al., 2001; Golias et al., 2019). Then, by establishing this
low steady-state level as a baseline, we accurately model the influence of HIF1α on
its target genes, ensuring that any deviation from this baseline—under conditions
that inhibit its degradation or increase its synthesis—precisely reflects the increased
activity of HIF1α on its target genes’ expression.

k35: mTOR∗
c -dependent HIF1αc induction rate.

mTOR signalling is recognized for its role in boosting HIF1α protein levels by pro-
moting its mRNA translation (Laughner et al., 2001; Hudson et al., 2002; Düvel
et al., 2010). Activation of mTOR has been observed to elevate HIF1α expression by
about 2.3-fold, as seen in (Düvel et al., 2010). The same increase in HIF1α levels was
also evident in colon cancer cells compared to normal cells (Lu et al., 2011). Based
on these findings, we estimated the induction rate of HIF1α by mTOR to reflect a
2.3-fold increase in HIF1α levels.

k36: mTOR∗
c -dependent HIF1αc nuclear import rate.

HIF1α is predominantly found in the cytoplasm under nonhypoxic conditions (Kallio
et al., 1998). However, the HIF1α protein induced by growth factors, specifically
by mTOR, has been noted to localise exclusively within the nucleus (Treins et al.,
2005). Hence, we set this parameter to ensure exclusive HIF1α nuclear localisation in
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response to growth factor signals.

k37: HIF1α basal degradation rate.
Hydroxylated HIF1α exhibits high instability in vitro, with a half-life of less than five
minutes (Golias et al., 2019). Accordingly, we considered that the half-life of HIF1α
under nonhypoxic conditions is five minutes, estimating the HIF1α degradation rate
at k37 = 0.1386 / min.

k38: GLUT1c basal production rate.
The introduction of wild-type p53 expression vectors was found to dose-
dependently decrease the GLUT1 promoter activity by up to 50% of its basal levels
(Schwartzenberg-Bar-Yoseph et al., 2004). Based on this evidence, and considering
that p53 activation in our cancer cells induces an average level of p53, we hypothesise
a mean reduction of approximately 35% in the GLUT1 production rate (from 0.00005
µM/min to 0.000032 µM/min) due to p53 activation in cancerous environments.

k39: HIF1αn-dependent GLUT1c production rate.
mTOR activation elevated HIF1α expression by 2.3-fold, which subsequently induced
a 3.4-fold increase in GLUT1 concentration (Düvel et al., 2010). From these observa-
tions, we infer that a 2.3-fold rise in HIF1α, triggered by mTOR activation, will lead
to a 3.4-fold enhancement in GLUT1 levels.

k40 and k43: GLUT1c and GLUT3c basal degradation rate, respectively.
The half-life of the GLUT1 and GLUT3 proteins has been reported to be around 6
and 15 hours, respectively (Khayat et al., 1998). Thus, we calculated their degrada-
tion rates to be 0.0019 and 0.00075 / min, respectively.

k41: GLUT3c basal production rate.
GLUT1 is known as the most abundantly expressed glucose transporter within the
GLUT family, facilitating basal glucose uptake in nearly all cell types (Sargeant and
Pâquet, 1993; Schwartzenberg-Bar-Yoseph et al., 2004; Dai et al., 2020). In contrast,
GLUT3 expression is more selective and less common under normal conditions.
Accordingly, we made the assumption that the expression of GLUT3 protein is
lower than that of GLUT1, estimating this parameter to yield approximately half of
GLUT1 concentration in normal cells.

k42: HIF1αn-dependent GLUT3c production rate.
Given that both GLUT1 and GLUT3 respond similarly to HIF1α induction under
hypoxia (Wood et al., 2007), we extend this pattern to predict a 3.4-fold increase in
GLUT3 levels following a 2.3-fold rise in HIF1α, mirroring the GLUT1 response.

k44, k47, k48, and k51: PDK1,3m, PDK2m, LDHc, and PDH∗
m basal production

rate, respectively.
Under normal physiological conditions, LDH and PDK proteins are typically main-
tained at modest levels, consistent with their roles in metabolic regulation under
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non-stressed states. Consequently, we have set a low basal production rate for them
at 0.0001 µM/min to reflect the minimal activity required for metabolic homeostasis.
In contrast, for effective aerobic respiration, PDH levels must significantly exceed the
levels of PDK to guarantee efficient conversion of pyruvate to acetyl-CoA within the
mitochondria. Thus, we estimated the PDH production rate to be ten times that of
PDK, 0.001 µM/min.

Despite this arbitrary production rate for these enzymes, we accurately reflect
their impact on cellular metabolism. These enzymes catalyse key metabolic reactions
in glucose metabolism, where their activities directly influence the corresponding
reaction rates. Therefore, we derived the maximum velocity (Vmax) of these reactions
under standard conditions from literature and then correlated these with enzymes’
basal steady-state levels in our model. This approach allows us to predict how
variations in enzyme levels—increases or decreases under different physiological sce-
narios— affect reaction speeds and metabolic outcomes, even in the absence of exact
production rate data.

k45: HIF1αn-dependent PDK1,3m production rate.
PDK3 levels were found to be roughly 2-fold higher in colon cancer cells than in
normal cells, aligning with a 2.3-fold enhancement in HIF1α levels detected in these
cancer cells (Lu et al., 2011). Given this correlation, we estimate a 2-fold escalation in
PDK3 expression in response to the 2.3-fold rise in HIF1α. In a similar vein, PDK1
exhibited a comparable upsurge to PDK3 under hypoxic conditions in colorectal
cancer cells (Lu et al., 2011), leading us to anticipate an analogous increase in PDK1
in response to HIF1α elevation.

k46: PDKm basal degradation rate.
Measuring the PDK protein stability over time in cells treated with cycloheximide
revealed that PDK1 and PDK2 levels remain stable for up to two hours (Crewe et al.,
2017). Another study indicates the mRNA half-life of PDK2 extends beyond six hours
(Huang et al., 2002). However, due to a lack of direct data specifying the half-life of
each PDK protein, for simplicity, we assume that PDK1, PDK2, and PDK3 uniformly
exhibit a half-life of six hours. This assumption leads to an estimated degradation
rate of 0.0019 / min.

k47: PDK2m basal production rate.
The expression level of PDK2 is regulated by the p53 target gene miR-149-3p. Com-
parative analyses between HCT116 cells, which have a high miR-149-3p level, and
HCT116/F cells, exhibiting reduced miR-149-3p levels due to loss of p53 function,
showed that PDK2 expression is approximately 1.4-fold higher in HCT116/F cells
(Liang et al., 2020). Consistent with this, the p53 activation in our cancer cells effec-
tively reduces PDK2 basal expression to a comparable extent.

k49: HIF1αn-dependent LDHc production rate.
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Under hypoxic conditions, LDH protein levels increased due to HIF1α induction at the
same rate as GLUT1 (Hu et al., 2006). Therefore, we estimated this rate to instigate a
3.4-fold boost in LDH protein level in response to a 2.3-fold rise in HIF1α expression.

k50: LDHc basal degradation rate.
The half-life of LDH in HCT116 cells is reported to be 14 hours (Garćıa-Aguilar
et al., 2019), which corresponds to a degradation rate of 0.000825 / min.

k52 and k53: PDKm-dependent PDH∗
m phosphorylation and PDHm

dephosphorylation rates, respectively.
According to a study investigating colon cancer cells with high miR-149-3p levels
(HCT116) versus those with diminished miR-149-3p due to p53 loss (HCT116/F),
the observed 1.4-fold increase in PDK2 levels in HCT116/F cells led to a higher PDH
phosphorylation level by 1.8-fold than HCT116 (Liang et al., 2020). As a result, we
estimated elevated PDK levels in our p53-mutated cancer cells to induce a 1.8-fold
increase in PDH phosphorylation relative to cells with wild-type p53.

k54: PDHm basal degradation rate.
We calculated the PDH degradation rate by considering its half-life, which varies
from 41 to 49 hours (Hu et al., 1983), opting to use the shorter duration of 41 hours
for our estimation.

k58: G6Pc undergoing the PPP rate.
Studies indicate that under typical physiological conditions, glucose metabolism
proceeds primarily via the glycolytic pathway, with a small fraction, around 5%,
being directed into the PPP (Kight and Fleming, 1995). Guided by this evidence, we
have estimated this rate to drive a similar proportion of G6P to the PPP in normal
conditions, with the remainder metabolised through glycolysis.

k60: Pyruvatec mitochondrial import rate.
Pyruvate concentrations were quantified within the mitochondria and cytoplasm in
mouse prostate cancer cells (Li et al., 2017). The data revealed that mitochondrial
pyruvate concentration is significantly lower than that in the cytosol by approximately
80-fold. Drawing on this data, we estimated this rate to maintain pyruvate concen-
trations between the compartments relatively close to the experimental findings.

k61: PDH∗
m-dependent Acetyl-CoAm and NADHm formation rate.

We assumed that the rate of pyruvate conversion into acetyl-CoA matches the rate
of pyruvate conversion into lactate, set at 300 µM/min. This rate aligns with a
calculated constant of k61 = [300 µM/min] / [the normal PDH∗

m level (3.176 µM)],
yielding a rate of 95 /min. Our assumption is based on the premise that, under cer-
tain conditions, the cell’s metabolic machinery adjusts to utilize pyruvate efficiently
for both anaerobic and aerobic pathways, allowing for comparable conversion rates.

k62: Maximal TCA cycle rate.
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It has been reported that glycolysis operates at a rate approximately ten times faster
than oxidative phosphorylation (Devic, 2016). Based on this insight, we inferred that
the maximal rate of the TCA cycle is likely around ten times slower than glycolysis,
leading to a rate of k57/10 = 4 µM/min for the TCA cycle.

k63: NADHc mitochondrial import rate.
NADH enters the mitochondria through the Malate-Aspartate Shuttle (MAS), essen-
tial for preserving a high cytosolic NAD+/NADH ratio (Bhagavan, 2002). This
shuttle is represented implicitly in our model without experimental data to define
its rate. However, varying this parameter in our simulations showed the system’s
robustness, with no notable sensitivity to the model outcomes. Consequently, we have
assigned an arbitrary rate of 0.1 /min.

k64: SCO2m-dependent ETC rate.
The TCA cycle comprises a series of sequential chemical reactions, each depending on
the completion of the previous step and catalysed by different enzymes. In contrast,
the ETC primarily involves electron transfer and proton pumping, processes that can
proceed rapidly once initiated. Given these characteristics, we assumed that the ETC
operates relatively faster than the TCA cycle, estimating it to be three times quicker.
Thus, we set k64 = [12 µM/min] / [the standard SCO2 level (0.1 µM)] = 120 /min.

k66: Lactateout degradation rate.
This rate was determined based on the half-life of lactate in healthy cells, which is
around 60 min (Rosenstein et al., 2018).

k67: ATP basal consumption rate.
This rate was selected arbitrarily to facilitate a comparative analysis of ATP steady-
state levels across all three cell types: normal, cancer p53+/+, and cancer p53−/−.

A.3 Parameter Robustness Analysis

To investigate our model robustness against parameter uncertainties, we conducted
a sensitivity analysis (∂ logO/∂ logP ), assessing how changes in each parameter (P )
influence key system outcomes (O) across both cancer cell phenotypes. During this
analysis, each parameter was individually adjusted by 10% above or below its baseline
value, while all other parameters remained constant, as detailed in Table A9.

The data indicate that cancer cells with intact p53 are more sensitive to parameter
variations, especially in terms of glucose consumption and lactate production, when
compared to p53-mutant cells. Conversely, processes like oxygen consumption and ATP
production were more robust, showing no sensitivity. The parameters significantly
affecting these responses were primarily associated with the dynamics of p53 activation
and deactivation by WIP1 (k2, k4, k13, and k14), and those regulating growth factor
signalling pathways (k16, k17, k27, k28, k29, k30, k31, and k32). Notably, the oxygen-
dependent degradation rate of HIF1 (k37) and the rate of glucose transport (k55) were
critical for both cell types.
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Cancer cells (p53+/+) Cancer cells (p53-/-)

Glucosecon Lactatepro Oxygencon ATPpro Glucosecon Lactatepro Oxygencon ATPpro

Parameter +10% -10% +10% -10% +10% -10% +10% -10% +10% -10% +10% -10% +10% -10% +10% -10%

k 1
-0.14 -0.17 -0.16 -0.20 0.01 0.02 -0.04 -0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 2
-1.14 -1.00 -1.32 -1.16 0.12 0.12 -0.29 -0.24 - - - - - - - -

k 3
0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 4 0.84 1.13 0.98 1.30 -0.10 -0.12 0.20 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 5
0.12 0.13 0.14 0.15 -0.01 -0.01 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 6
0.13 0.14 0.16 0.16 -0.01 -0.01 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 7 0.03 0.03 0.03 0.03 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 8
0.11 0.11 0.13 0.13 -0.01 -0.01 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 9
-0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 10
0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 11
-0.13 -0.15 -0.15 -0.17 0.01 0.02 -0.03 -0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 12
0.06 0.06 0.07 0.07 -0.01 -0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 13
0.80 1.06 0.92 1.23 -0.09 -0.11 0.19 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 14 -1.02 -0.92 -1.17 -1.06 0.10 0.11 -0.25 -0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 15
-0.50 -0.46 -0.55 -0.50 0.00 0.00 -0.15 -0.13 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00

k 16
-1.09 -0.92 -1.20 -0.98 0.02 0.00 -0.31 -0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 17 1.00 1.39 1.05 1.53 0.00 -0.04 0.28 0.39 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

k 18
0.00 0.00 -0.03 -0.03 0.11 0.12 0.07 0.08 0.00 0.00 -0.04 -0.04 0.32 0.37 0.16 0.19

k 19
0.00 0.00 -0.03 -0.03 0.14 0.15 0.09 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 20
0.00 0.00 0.06 0.06 -0.25 -0.27 -0.16 -0.17 0.00 0.00 0.04 0.04 -0.33 -0.35 -0.17 -0.18

k 21
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 22
0.00 0.00 -0.06 -0.06 -0.01 -0.01 -0.03 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 23
0.00 0.00 0.05 0.06 0.01 0.01 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 24 -0.01 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 25
-0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 26
0.02 0.02 0.02 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 27 1.00 1.39 1.05 1.53 0.00 -0.04 0.28 0.39 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

k 28
-1.28 -1.05 -1.41 -1.11 0.03 0.00 -0.36 -0.29 -0.01 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00

k 29
0.86 1.15 0.92 1.26 0.00 -0.02 0.24 0.33 0.06 0.09 0.06 0.09 0.00 0.00 0.02 0.04

k 30
-1.04 -0.94 -1.14 -0.99 0.02 0.00 -0.30 -0.26 -0.08 -0.06 -0.08 -0.07 0.00 0.00 -0.03 -0.03

k 31
0.72 0.80 0.77 0.88 0.00 -0.01 0.20 0.23 0.19 0.28 0.19 0.29 -0.01 -0.01 0.08 0.12

k 32
-0.73 -0.79 -0.79 -0.84 0.01 0.00 -0.21 -0.22 -0.25 -0.20 -0.26 -0.21 0.01 0.01 -0.10 -0.08

k 33
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 34 0.34 0.34 0.37 0.37 0.00 0.00 0.10 0.10 0.26 0.26 0.27 0.27 -0.01 -0.01 0.10 0.11

k 35
0.45 0.45 0.48 0.49 0.00 0.00 0.13 0.13 0.49 0.50 0.51 0.52 -0.03 -0.02 0.20 0.21

k 36
0.10 0.12 0.11 0.13 0.00 0.00 0.03 0.04 0.07 0.08 0.07 0.09 0.00 0.00 0.03 0.03

k 37 -0.82 -1.00 -0.90 -1.06 0.01 0.00 -0.24 -0.28 -0.76 -0.92 -0.79 -0.95 0.02 0.08 -0.32 -0.35

k 38
0.11 0.11 0.12 0.12 0.03 0.03 0.05 0.05 0.13 0.13 0.13 0.13 0.01 0.02 0.06 0.07

k 39
0.49 0.49 0.49 0.50 0.11 0.13 0.21 0.23 0.47 0.47 0.47 0.48 0.04 0.07 0.22 0.24

k 40 -0.55 -0.67 -0.57 -0.68 -0.15 -0.14 -0.26 -0.28 -0.54 -0.66 -0.56 -0.67 -0.08 -0.05 -0.28 -0.31

k 41 0.07 0.07 0.07 0.07 0.02 0.02 0.03 0.03 0.08 0.08 0.08 0.08 0.01 0.01 0.04 0.04

k 42 0.30 0.30 0.31 0.31 0.07 0.08 0.13 0.14 0.29 0.29 0.29 0.30 0.03 0.04 0.14 0.15

k 43 -0.34 -0.42 -0.35 -0.42 -0.09 -0.09 -0.16 -0.18 -0.34 -0.41 -0.34 -0.41 -0.05 -0.04 -0.17 -0.19

k 44 0.00 0.00 0.01 0.00 -0.02 -0.02 -0.02 -0.01 0.00 0.00 0.00 0.00 -0.03 -0.03 -0.02 -0.02

k 45 0.00 0.00 0.01 0.00 -0.02 -0.02 -0.02 -0.01 0.00 0.00 0.01 0.00 -0.05 -0.04 -0.02 -0.02

k 46 0.00 0.00 -0.01 -0.02 0.04 0.07 0.03 0.04 0.00 0.00 -0.01 -0.01 0.07 0.12 0.04 0.06

k 47 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 -0.02 -0.01 -0.01

k 48 0.00 0.00 0.02 0.02 -0.07 -0.08 -0.04 -0.05 0.00 0.00 0.00 0.00 -0.02 -0.03 -0.01 -0.01

k 49 0.00 0.00 0.03 0.05 -0.15 -0.20 -0.10 -0.13 0.00 0.00 0.01 0.01 -0.07 -0.10 -0.04 -0.05

k 50
0.00 0.00 -0.06 -0.05 0.27 0.22 0.17 0.14 0.00 0.00 -0.01 -0.01 0.12 0.10 0.06 0.05

k 51
0.00 0.00 -0.02 -0.02 0.08 0.09 0.05 0.06 0.00 0.00 -0.01 -0.01 0.07 0.09 0.04 0.04

k 52
0.00 0.00 0.01 0.01 -0.06 -0.05 -0.04 -0.03 0.00 0.00 0.01 0.01 -0.11 -0.08 -0.05 -0.04

k 53
0.00 0.00 -0.01 -0.01 0.04 0.06 0.03 0.04 0.00 0.00 -0.01 -0.01 0.07 0.10 0.04 0.05

Table A9: Parameter robustness analysis. The table demonstrates the impact of
altering each model parameter by 10% above or below its default value. Numbers
highlighted in bold indicate a high sensitivity of the model outcomes to the variation
in the corresponding parameter
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Cancer cells (p53+/+) Cancer cells (p53-/-)

Glucosecon Lactatepro Oxygencon ATPpro Glucosecon Lactatepro Oxygencon ATPpro

Parameter +10% -10% +10% -10% +10% -10% +10% -10% +10% -10% +10% -10% +10% -10% +10% -10%

k 54 0.00 0.00 0.02 0.02 -0.08 -0.08 -0.05 -0.05 0.00 0.00 0.01 0.01 -0.07 -0.07 -0.03 -0.04

k 55
0.98 0.98 0.98 1.02 0.19 0.28 0.39 0.48 0.96 0.97 0.97 1.00 0.05 0.18 0.43 0.52

k 56
0.02 0.03 0.02 0.03 0.01 0.01 0.01 0.01 0.03 0.05 0.04 0.05 0.00 0.01 0.02 0.02

k 57 0.00 0.00 0.12 0.15 0.02 0.03 0.07 0.09 0.00 0.00 0.06 0.08 0.00 0.00 0.04 0.05

k 58
0.00 0.00 -0.10 -0.10 -0.02 -0.02 -0.06 -0.06 0.00 0.00 -0.05 -0.06 0.00 0.00 -0.04 -0.04

k 59
0.00 0.00 0.06 0.07 -0.27 -0.30 -0.18 -0.19 0.00 0.00 0.03 0.03 -0.24 -0.27 -0.13 -0.14

k 60
0.00 0.00 -0.05 -0.05 0.21 0.23 0.13 0.15 0.00 0.00 -0.02 -0.02 0.20 0.22 0.10 0.11

k 61
0.00 0.00 -0.01 -0.02 0.06 0.08 0.04 0.05 0.00 0.00 -0.01 -0.01 0.06 0.07 0.03 0.04

k 62
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 63
0.00 0.00 -0.05 -0.06 0.23 0.26 0.14 0.16 0.00 0.00 -0.02 -0.02 0.18 0.20 0.09 0.10

k 64 0.00 0.00 -0.06 -0.06 0.25 0.28 0.16 0.18 0.00 0.00 -0.04 -0.04 0.32 0.37 0.16 0.19

k 65
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 66
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k 67 0.00 0.00 0.03 0.11 0.16 0.40 0.14 0.35 -0.01 -0.01 0.01 0.05 0.22 0.55 0.14 0.36

Table A9: Parameter robustness analysis. The table demonstrates the impact of
altering each model parameter by 10% above or below its default value. Numbers
highlighted in bold indicate a high sensitivity of the model outcomes to the variation
in the corresponding parameter

66


	Introduction
	Model and Assumptions
	Model assumptions
	Growth factors activate PI3K/AKT pathway
	AKT mediates mTOR activating
	mTOR induces the expression of HIF1
	HIF1 promotes glycolysis pathway
	GLUT1/3
	LDH
	PDK1/3


	Metabolic stress activates AMPK
	AMPK activates tumour suppressor gene p53
	p53 induces genes negatively regulate its activation
	MDM2
	WIP1


	p53 induces genes to promote its activation, simultaneously inhibiting HIF1
	SESN1/2
	PTEN


	p53 suppresses glycolysis and enhances mitochondrial respiration
	GLUT1/3
	TIGAR
	PDK2
	SCO2



	Model reactions
	Model equations

	Results
	p53 orchestrates the metabolic shift in cancer: enhancing oxidative phosphorylation, suppressing glucose consumption and lactate production
	The influence of abundant extracellular glucose level on stimulating high-energy production in cancer cells
	Unravelling hypoxia's metabolism: adaptive strategies, energy production, and mTOR signalling dynamics in cancer progression
	Dual stable steady states in cancer cells, contrasted by singular stability in normal cells
	Restoring normal metabolism in cancer cells by increasing the p53 activation levels
	Targeting PI3K as an alternative player to p53 in modulating the metabolism of p53-mutated cancer cells
	SCO2: a critical component in boosting the OXPHOS, yet alone insufficient for reversing the Warburg effect

	Discussion
	Acknowledgements
	Author Contributions
	Data Availability
	Conflict of interest
	Use of AI




	Detailed Model
	Model descriptions
	Cytoplasmic and nuclear p53 equations
	Cytoplasmic and nuclear MDM2 equations
	WIP1, PTEN, SCO2, and TIGAR equations
	Active AMPK, PIP3, AKT, and mTOR equations
	Cytoplasmic and nuclear HIF1 equations
	GLUT1, GLUT3, PDK1/3, PDK2, and LDH equations
	Active and inactive PDH equations
	Metabolic equations
	Glycolysis
	TCA cycle
	ETC



	Discussion of Parameter Values
	Parameter Robustness Analysis


