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Multiphoton indistinguishability is a central resource for quantum enhancement in sensing and computation.
Developing and certifying large scale photonic devices requires reliable and accurate characterization of this
resource, preferably using methods that are robust against experimental errors. Here, we propose a set of meth-
ods for the characterization of multiphoton indistinguishability, based on measurements of bunching and photon
number variance. Our methods are robust in a semi-device independent way, in the sense of being effective even
when the interferometers are incorrectly dialled. We demonstrate the effectiveness of this approach using an ad-
vanced photonic platform comprising a quantum-dot single-photon source and a universal fully-programmable
integrated photonic processor. Our results show the practical usefulness of our methods, providing robust certi-
fication tools that can be scaled up to larger systems.

I. INTRODUCTION

Multiparticle interference is one of the fundamental re-
sources for quantum information tasks. In many situations,
interference provides a tool to outperform classical strategies
for tasks in metrology and information processing. In photon-
ics, multiphoton interference has been exploited for advantage
in quantum sensing [1–3], reaching sensitivities beyond the
standard quantum limit. In quantum computation, multipho-
ton interference enables a non-universal model known as Bo-
son Sampling [4], which involves sampling from the output
distribution of indistinguishable photons interfering in a lin-
ear interferometer. Boson Sampling machines, featuring vari-
ants of the original proposal [5–8], have been experimentally
implemented [9–12] for demonstrations of quantum compu-
tational advantage in Gaussian Boson Sampling experiments
that are hard to simulate by classical supercomputers.

Embracing the fundamental role of quantum many-body in-
terference, it is important to develop robust and accurate meth-
ods for the characterization of multiphoton indistinguishabil-
ity. This is essential for the development of better photon
sources [13], but also for the certification of quantum advan-
tage in applications featuring multiphoton interference. For
pairs of photons, the Hong-Ou-Mandel (HOM) interference
effect [14] can be used to completely characterize the level of
two-particle indistinguishability. The Hong-Ou-Mandel visi-
bility at the output of a symmetric beam-splitter leads to a di-
rect estimation of the overlap between the two single-photon
spectral functions, describing their internal degrees of free-
dom. If we have three or more photons, pairwise Hong-Ou-
Mandel interference experiments are no longer sufficient to
completely characterize indistinguishability [15, 16].
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A number of approaches to the characterization of mul-
tiphoton indistinguishability have been reported in the liter-
ature. One approach has defined inequalities whose viola-
tions bound parameters that characterize indistinguishability
[17–20] or other relevant quantities [21, 22] for multiphoton
scenarios. Starting from a prior knowledge of the model de-
scribing the multiparticle state, Bayesian [23] or maximum-
likelihood [24] methods have also been used to perform a di-
rect estimation of the indistinguishability parameters by mea-
suring the output pattern after interference within linear in-
terferometers. The flexibility in the design of linear interfer-
ometers requires an identification of the transformations that
optimize the amount of information retrieved with respect to
data sample size [23]. Other approaches are based on us-
ing specific classes of interferometers. For instance, a gen-
eralization of the Hong-Ou-Mandel to symmetric multimode
interferometers leads to a class of suppression laws [25–30],
which identify suppressed events due to the joint effect of in-
terferometer symmetry and bosonic statistics. Another recent
approach uses cyclic interferometers [31] for the estimation of
a notion of genuine indistinguishability for multiphoton states
of a particular form [17].

The methods discussed above are based on measuring out-
put patterns after linear-optics interference and are sensitive to
errors in the implementation of each interferometer design. A
good characterization of multiphoton indistinguishability re-
quires an accurate characterization of the implemented linear-
optical dynamics [32], with characterization errors in princi-
ple leading to biases in the analysis of multiphoton indistin-
guishability. Recent efforts to devise semi-device indepen-
dent approaches have the goal of enabling accurate conclu-
sions with less need for trusting the characterization of parts
of the experiment [33]. Here, in Sec. II we propose semi-
device independent methods for the characterization of multi-
photon indistinguishability, based on measurements of bunch-
ing and variance of photon number at the device’s output. We
then experimentally test the proposed methods in Sec. III us-
ing a photonic platform featuring a single-photon quantum dot
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source and an integrated photonic processors (IPP) that is uni-
versal and fully programmable.

II. THEORY

The set-up we consider consists of an n-mode general
linear-optical interferometer, with n single-photon inputs, one
per photonic mode. The interferometer is described by a uni-
tary n × n matrix U , which maps input creation operators
to output creation operators. The indistinguishability of the
photons is completely described by a Gram matrix of inner
products: Si,j = ⟨χi|χj⟩, where |χi⟩ is the spectral function
describing all the internal degrees of freedom of the photon
entering input port i. This Gram matrix can be written only in
terms of physically relevant unitary invariant properties of the
set of spectral functions describing the single-photon internal
degrees of freedom, as described in [34].

We will now discuss the theoretical framework that al-
lows for a characterization of multiphoton indistinguishabil-
ity based on measurements of photonic bunching and photon
number variance at the output of a general linear-optical de-
vice.

A. Full bunching probabilities

The probability of full bunching, studied for example in
[35–37], is defined as the probability that all n photons leave
the interferometer in a single chosen mode. It is known that
the probability of full bunching pFB decreases exponentially.
More precisely, [37] shows that pFB is upper-bounded by
pFB ≤ n!/nn, with the bound saturated by a balanced in-
terferometer, i.e. one which distributes any single-photon in-
put uniformly among the output modes. While this prevents
meaningful measurements of pFB for arbitrarily large num-
bers of photons, for small photon numbers one can estimate
pFB with photon-counting measurements only on a single
output mode.

Let us assume one can fix the interferometer design, and
pick two different indistinguishability scenarios characterized
by Gram matrices S1 and S2. Tichy showed in [35] that the
ratio of pFB for the two scenarios rFB = pFB(S1)/pFB(S2)
is exactly equal to the ratio of the permanents of the Gram
matrices S1, S2 describing them:

pFB(S1)

pFB(S2)
=

Per(S1)

Per(S2)
. (1)

Let us look at one particular application of Eq. (1) above.
A set of n perfectly indistinguishable photons is described
by a Gram matrix S1,i,j = 1 ∀i, j, for which Per(S1) =
n!. On the other hand, if the photons are perfectly distin-
guishable, they will be described by a diagonal Gram ma-
trix S2,i,j = diag(1, 1, . . . , 1), for which Per(S2) = 1, giv-
ing a ratio of full bunching for these two scenarios that is
Per(S1)/Per(S2) = n!. This is the full bunching law of
[36], which Eq. (1) generalizes for arbitrary indistinguishabil-
ity scenarios featuring pure single-photon spectral functions.

The law in Eq. (1) is valid for any pair of Gram ma-
trices. As we will see in the section on experimental re-
sults, this means one can fix an arbitrary interferometer de-
sign, then measure the probability of full bunching for per-
fectly distinguishable photons [described by a Gram matrix
S2 = diag(1, 1, . . . , 1)]. We can then prepare inputs de-
scribed by a different Gram matrix S1, and again measure
pFB . According to Eq. (1), the ratio of measured full-
bunching probabilities in the two scenarios will give us an es-
timate for Per(S1)/Per(S2) = Per(S1), which can be seen as
a measure of photon indistinguishability [35]. Another point
worth noting is that pFB is a function of Per(S), which itself
in general depends on higher-order unitary invariants encoded
in the Gram matrix (see [34] for an overview). This means
that measurements of pFB are sensitive to these so-called col-
lective photonic phases [15, 16], and can be used to estimate
them, as we will see in the section on experimental results.

B. Photon number variance

We will now show that the average photon number variance
at the output of the device can also be used to characterize
multiphoton indistinguishability. We define this quantity as:

σ =
1

n

n∑
i=1

〈
n2i
〉
− ⟨ni⟩2 , (2)

where ni is the number of photons at output mode i, still as-
suming we inject exactly one photon per input mode. Unlike
the probability of full bunching, σ does not decrease as n in-
creases. On the other hand, its estimation is experimentally
challenging, as in principle it requires photon-counting detec-
tion on all output modes.

In App. A we obtain a universal and simple expression for σ
that is valid for any interferometer and any number of modes:

σ = 1 +
1

n

∑
a̸=b

∑
i

|⟨χa|χb⟩|2|Uia|2|Uib|2 −
1

n

∑
ik

|Uik|4.

(3)
Note that, unlike the probability of full bunching pFB , the av-
erage photon number variance σ only depends on two-photon
overlaps ∆ab = |⟨χa|χb⟩|2, and not on higher-order unitary
invariants written as functions of three or more spectral func-
tions [15, 16, 34]. Moreover, it depends only on the absolute
value squared of the matrix elements of the interferometers,
which can be measured using classical light.

It can be seen from Eq. (3) that any increase on the overlaps
∆ab will result in an increased variance. This implies that,
for a given interferometer, the variance is maximized when
photons are fully indistinguishable. We show in App. A that
the overall maximum of the variance is obtained by further
optimizing over possible interferometers, which leads to the
value

σmax = 2− 2/n, (4)

obtained for indistinguishable photons and balanced interfer-
ometers on n modes, i.e. where |Uij |2 = 1/n such as the
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Fourier interferometer. In fact, it can be seen that the imple-
mentation of a balanced interferometer gives us direct access
to the average indistinguishability of the input states since

σbal = 1 +
n− 1

n
∆̄− 1

n
. (5)

Here, we defined the average indistinguishability ∆̄ as

∆̄ =

∑
a ̸=b ∆ab

n(n− 1)
. (6)

For large n, the expression in Eq. (5) matches the one ob-
tained in Ref. [38] by different techniques, which use the fact
that the reduced density matrix of a single output of the inter-
ferometer is well described by a product of thermal states in
the asymptotic limit.

We also show in App. B that the measurement of the vari-
ance with the Fourier interferometer for n = 3 also gives us a
non-trivial lower bound for all two-photon overlaps ∆ab:

min
a̸=b

∆ab ≥
(
9

4
σ − 2

)2

. (7)

without the need for any assumptions on the form of the Gram
matrix S. This shows σ can be used to certify the minimum
value of all 3 two-photon indistinguishabilities.

While balanced interferometers give us a direct way to ob-
tain guarantees on indistinguishability, we can also show that
arbitrary interferometers can be used to reconstruct the ma-
trix of overlaps ∆ab. Assuming knowledge on the values of
|Uij |2, the measurement of σ for different interferometers al-
lows us to reconstruct the matrix ∆ by solving a linear system
of equations (see Sec. III C). This approach is a practical way
of extracting information on the indistinguishability of the in-
put photons directly from the photon number variance σ at
the output of arbitrary interferometers. This could be helpful
in monitoring the photon source indistinguishability with no
need for interrupting the data acquisition to perform Hong-
Ou-Mandel tests.

We may also assume a scenario where we do not trust the
implementation of some desired unitary matrices, either be-
cause of experimental imperfections, or because we have ac-
cess to an interferometer built by an untrusted party. Even then
it may be possible to use such a device to obtain guarantees on
the average indistinguishability ∆̄. This can be done by mea-
suring the value of σ for a given distinguishability scenario
defined by the matrix ∆ as well as the value of σd, i.e. the
average variance when distinguishable photons are sent to the
same device. In App. C, we prove the following inequality,
which is valid for any interferometer

∆̄ ≥ 1

n(n− 1)

(
σ − 2σd + 1

1− σd

)2

− 1

n− 1
= ∆̄LB . (8)

This bound can be used to give us a guarantee on photon indis-
tinguishability in a semi-device independent scenario, where
the preparation of single photons and the Fock measurements
are trusted, but not the interferometer.

III. EXPERIMENTAL VERIFICATION

As a next step, we performed experimental measurements
of the probability of full bunching pFB and the average pho-
ton number variance at the output σ. The employed platform
comprises an up-to-date solid-state single-photon source, with
the aim of characterizing the indistinguishability of the output
photons and of testing different regimes via controlled tun-
ing. We implemented specific interferometers, such as the
balanced tritter, as well as randomly chosen 3× 3 transforma-
tions, as a way to test the semi-device independence features
of our approach. In Sec. III A we describe the experimental
setup used for our multiphoton indistinguishability tests. In
Sec. III B we describe the results on the full bunching ratio
measurements, and in Sec. III C we discuss the experimen-
tal results related to the measurement of the average photon
number variance.

A. Experimental setup

The experimental apparatus corresponds to a photonic ma-
chine named QOLOSSUS, that comprises different compo-
nents used for photon generation, manipulation and detection.
The multi-photon input states are generated using a quantum-
dot single-photon source (Quandela e-Delight system), con-
sisting of an InGaAs matrix located in a nanoscale electrically
controlled micropillar cavity [40–44]. The source operates in
a cryogenic environment (approximately 4K), obtained within
a Attocube-AttoDry800 He closed-cycle cryostat, and works
in a non-resonant regime exploiting a longitudinal-acoustic
(LA) phonon-assisted configuration [44], pumped by a blue-
detuned excitation obtained with a 927.2 mm wavelength,
Rexc = 79 MHz repetition rate, pulsed pump laser. The pho-
tons are emitted with a wavelength of 927.8 nm, in a train of
pulses emitted in time-bin of fixed distance τ ∼ 12.5 ns, that
is, the inverse of the pulsed pump laser repetition rate. The
output photons are coupled in a single-mode fiber through a
confocal microscope mounted on top of the cryostat and then
separated from the residual laser pump via spectral filtering.
Here we measure, on avalanche photodiodes with a quantum
efficiency of ηd ∼ 35%, a typical count rate of R ∼ 3.5
MHz. Accounting for the transmission efficiency of the col-
lection setup, estimated to be ηc ∼ 55%, this corresponds
to a first lens brightness B = R/(Rexcηdηc) ∼ 23%. We
assessed the single photon purity and pairwise photon indis-
tinguishability by measuring the second-order autocorrelation
function and the visibility in a Hong-Ou-Mandel experiment,
obtaining g(2)(0) ∼ 0.02 and V HOM ∼ 0.91, respectively.
The train of single-photon pulses emitted by the source is
then converted in a multi-photon input state, corresponding
to single photons propagating in different spatial modes, via
a commercially available temporal-to-spatial demultiplexing
system Quandela QDMX-6 [31, 45]. Specifically, the system
employs a RF-modulated acousto-optical material to diffract
an input signal towards several output spatial modes. We op-
timized the demultiplexing system to continuously divide the
input signal into three bunches with a duration of Tb ∼ 180
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Figure 1. Experimental setup. QOLOSSUS machine employed for the verification of the proposed tests. (a) Single-photon source composed
by a quantum dot operating in a non-resonant regime, emitting a train of single-photon pulses at fixed time intervals τ . A demultiplexing
module converts such a sequence to a set of three-photon input states injected in different modes of an IPP. (b) Scheme of the universal 8-mode
integrated photonic chip, using the layout of [39]. The elementary cells Bi are programmable MZIs composed of two balanced directional
couplers and of two thermo-optic phase shifters. Photons are coupled at the input and at the output of the integrated processor via single-mode
fiber arrays, directly pigtailed to the device. (c) Device programming scheme for the different performed measurements. When the processor
is employed to measure the full bunching ratio (top), three photons are injected in modes [3,4,5], with the first three layers of elementary cells
used to program transformation U3. The subsequent layers, and an off-chip fiber beam-splitter, are used to perform pseudo photon number
resolving detection via avalanche photo-diodes and a time-tagging system. I corresponds to the identity over the modes.

ns each. To achieve temporal synchronization of the photon
bunches, we added time delays obtained via custom-length
single-mode fibers. The overall input-output transmission ef-
ficiency has been measured to be in the interval ηDMX ∼ 0.75
in the worst case. The typical degree of HOM visibility V (T )
among photons separated by a time interval T was found to
be V HOM

12(23)(180 ns) = 0.83(1) and V HOM
13 (360 ns) ∼ 0.81(1).

This visibility decreases with increased pairwise photon de-
lays, as already observed in [45]. The reason for the visibility
decrease could be related to both the acousto-optic effect at
the basis of the demultiplexing system, and to spectral wan-
dering effects of the QD emission on the timescale of several
hundreds of nanoseconds. The overall source configuration is
shown in Fig. 1(a).

We use an 8-mode, fully programmable IPP to character-
ize the multiphoton indistinguishability of the source. This
device, fabricated via the femtosecond laser writing (FLW)
technology [46], consists of a mesh of waveguide interferome-
ters arranged according to the rectangular layout of [39]. This
layout choice allows the implementation of any linear-optical
transformation on 8 modes. As shown in Fig. 1(b), the device
is composed of a network of 28 beam-splitters with variable

beam-splitting ratios acting as elementary cells Bi, each of
which actually implemented as programmable Mach-Zehnder
Interferometers (MZIs). Each MZI is implemented using two
cascaded balanced directional couplers, and two thermo-optic
phase shifters which provide full control of the cell opera-
tion. The fabrication and calibration procedures are detailed
in App. D.

B. Measuring the full bunching ratio

As a first step, we programmed the device to implement a
balanced tritter transformation U3 on three single-photon in-
puts, injected in modes [3,4,5] [see Fig. 1(c)]. The device’s
programming was performed in the following way: the first
three layers of the IPP were used to implement the linear-
optical unitary U3, while the remainder of the device, together
with an external in-fiber beam splitter, was used to split the 3
outputs of U3 to perform pseudo photon number resolving de-
tection. The implemented transformation Ũ3 has been found
to reach a fidelity of F = |Tr(U3Ũ

†
3 )|/3 > 0.999 w.r.t. the
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ideal unitary U3 (see App. E). Hereafter, we will label as ∼ all
the experimentally measured quantities. The general form of
a Gram matrix describing a three-photon indistinguishability
scenario is given by a matrix in the form:

Sk =


1

√
∆k

ab

√
∆k

ac√
∆k

ab 1
√
∆k

bce
iφ√

∆k
ac

√
∆k

bce
−iφ 1

 . (9)

In what follows, we parameterize a scenario’s indistinguisha-
bility using positive, real-valued Gram matrices Sk, i.e. we
assume φ = 0, while k labels the scenario and (a, b, c) labels
the different photons injected at the interferometer’s inputs.
The assumption that the indistinguishability is well-described
by a Gram matrix as above was verified experimentally via
two independent tests, that is, by using a methodology based
on outcomes of a cyclic interferometer [31], and by direct
analysis of the output distribution after the tritter (see App.
F). At first, we implemented a scenario described by a Gram
matrix SA that identifies the intrinsic photon source indistin-
guishability reached after the demultiplexing module. In this
configuration, the values ∆̃A

ij are estimated from the visibili-
ties V HOM

ij of independent Hong-Ou-Mandel experiments, by
correcting for the effect of the non-zero value of the second
order correlation function g(2)(0) = 0.0218(6) following the
approach of [47]: ∆̃ij = (V HOM

ij +g(2)(0))/(1−g(2)(0)). In
our case, we obtained ∆̃A

ab = 0.875(4), ∆̃A
ac = 0.874(2) and

∆̃A
bc = 0.848(2).
The second scenario corresponds to a diagonal Gram ma-

trix SD describing photons made completely distinguishable
due to other auxiliary degrees of freedom, that is, time and
polarization. Tuning indistinguishability using polarization is
made possible by the polarization-independent operation of
the IPP.

The measured output probability distributions with 3-
photon inputs described by those two indistinguishability sce-
narios are shown in Fig. 2 (a-b), and compared with a model
(see App. G) which includes all main experimental features
such as losses, the effective matrix Ũ3, the effective Gram-
matrix of the input configuration, and multiphoton contribu-
tions related to the non-zero g(2)(0). The data are in good
agreement with the expectation from the model, see App. H
for more details on the analysis. The agreement can be quan-
tified by the total variation distances TVD = 1/2

∑
i |pi−qi|

between experiment (pi) and model (qi). The obtained val-
ues for the two configurations are respectively TVD(SA) =
0.015(2) and TVD(SD) = 0.013(2).

From the measured samples we have then estimated the full
bunching ratios for the two scenarios [p̃FB(SA), p̃FB(SD)],
summed over all the three possible output configurations
[(3, 0, 0), (0, 3, 0), (0, 0, 3)]. The measured value is found to
be r̃FB(SA) = p̃FB(SA)/p̃FB(SD) = 4.9(1). This is to be
compared in principle with the ratio between the permanents
of the Gram matrices per(SA)/per(SD) = 5.21(1). A more
accurate prediction of the full bunching ratio value expected
from the experiment can be computed from the model that
takes into account all the other sources of noise in the setup,
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Figure 2. Experimental measurement of the output distributions
with a balanced tritter. The measured distributions p̃(n1,n2,n3) are
obtained by programming the device to act as the Ũ3 transformation
according to the discussion in the main text. (a) Distribution obtained
for a Gram matrix SA. (b) Distribution obtained for distinguish-
able particles, corresponding to a Gram matrix SD . (c) Distribution
obtained for a Gram matrix SB . Colored bars: experimental data,
darker regions correspond to 1-σ confidence intervals. White bars:
predictions obtained from a model taking into account the imple-
mented transformation Ũ3, the Gram matrices estimated from pair-
wise Hong-Ou-Mandel experiments, losses, and multiphoton contri-
butions obtained from the estimated g(2) value.

i.e. multiphoton contributions and optical losses as described
in App. G. More specifically, by including these effects the
expected value reduces from the ratio between the Gram ma-
trix permanents per(SA)/per(SD) = 5.21(1) to rFB(SA) =
4.91(1), thus showing a very good agreement with the exper-
imental data. We use Eq. (1) and the two output distribu-
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Figure 3. Measurement of the full bunching ratios for 23 randomly-drawn interferometers. Measured values of rFB in the scenario SA

(a) and in the scenario SB′ (b) as a function of the corresponding measured pFB . The red shaded area in the two scenarios corresponds to
a prediction obtained by averaging the expected value with the model taking into account losses and multiphoton emission from the source,
and fluctuation on pairwise indistinguishability during the experimental run. The bottom histograms show the distribution of pFB over Haar
random unitaries, obtained via a Monte Carlo simulation in the ideal scenario in the two indistinguishability configurations (blue) and taking
into account experimental imperfections (orange).

tions to estimate the full bunching ratio for each of the 3 out-
put modes of U3: {r̃(3,0,0)FB (SA), r̃

(0,3,0)
FB (SA), r̃

(0,0,3)
FB (SA)} =

{5.1(2), 4.8(2), 4.7(2)}. The obtained values are in good
agreement with the predictions from the model, which
are found to be {r(3,0,0)FB (SA), r

(0,3,0)
FB (SA), r

(0,0,3)
FB (SA)} =

{4.91(1), 4.91(1), 4.91(1)}.
As a further test of our approach, we prepared photons de-

scribed by a different Gram matrix SB by tuning the polariza-
tion state of photon b to reduce its indistinguishability with re-
spect to the other two. The corresponding overlaps estimated
from the HOM visibilities were ∆̃ab = 0.103(4), ∆̃ac =

0.881(2), ∆̃bc = 0.107(2). The measured distribution is in
good agreement with the predictions from the model [see Fig.
2 (c)], quantified by the total variation distance TVD(SB) =
0.025(4). This configuration led to a measured full bunching
ratio of r̃FB(SB) = p̃FB(SB)/p̃FB(SD) = 2.11(6), to be
compared with the ratio between the permanents of the Gram
matrices per(SB)/per(SD) = 2.28(2) and with the predic-
tion obtained from the model rFB(SB) = 2.21(2).

To experimentally show that our approach is robustly in-
dependent of the interferometer implemented, we performed
additional experiments where the IPP was programmed to im-
plement 23 different random 3×3 trasformations, obtained by
driving with random currents the thermo-optic phase shifters
of the U3 block of the IPP [see Fig. 1(c)]. We measured
the full bunching ratio rFB of two indistinguishability sce-
narios against the one with distinguishable photons. Again,
scenario SA features highly indistinguishable photons from
the source after demultiplexing. Conversely, we reconstruct a
scenario SB′ in which one photon is completely distinguish-
able from the other two, corresponding to overlaps ∆̃B′

ab = 0,
∆̃B′

ac = 0.831(4), ∆̃B′

bc = 0, by injecting two photons in the
interferometer inputs {a, c} and reconstructing the full bunch-
ing probabilities from two-fold coincidence counts (see App.
H). The results are shown in Fig. 3 as a function of the full
bunching probability pFB for each random unitary. We ob-

serve that in both cases the measured values of rFB are very
close to the expected ones, independently of the dialled trans-
formations.

C. Measuring the photon number variance

The second step was dedicated to the characterization of
photon indistinguishability based on measurement of the pho-
ton number variance in our experimental platform. This ap-
proach requires measurement of the probabilities for all pos-
sible photon number output configurations, done via the de-
tection system described above, based on mode splitting and
coincidence detection.

We considered the same indistinguishability scenario SA

and SB described above, and evaluated the variance σ̃(Sk)
using the same measured data sample corresponding to a de-
vice programmed to act as a balanced tritter. The estimated
value of the variance was measured to be σ̃(SA) = 1.199(4),
while the maximum value for fully indistinguishable photons
would be 4/3 [see Eq. (4)]. The bound presented in Eq.
(7) can then be used to determine a non-trivial lower bound
min∆ij ≥ 0.49(1) for the three individual overlaps. The
same analysis was performed on data collected using the in-
distinguishability scenario SB , resulting in an estimated value
of the variance σ̃(SB) = 0.885(3). As expected, the previous
analysis now fails to give a non-trivial lower bound for the
overlaps values, being below the minimum threshold 8/9 for
Eq. (7) to give a meaningful lower bound on min∆ij .

Similarly, since the interferometer U3 was set to implement
the tritter matrix, we can use the relationship given by Eq.
(5) to extract an estimation of the average pairwise indistin-
guishability in the two scenarios given by:

∆̄(SA) = 0.80(1),

∆̄(SB) = 0.33(1).
(10)
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These values are found to be compatible with the pairwise
Hong-Ou-Mandel visibilities for each photon pair. Indeed,
the experimental estimate of the photon number variance is
sensitive to the presence of multiphoton components in the
emitted light, and thus the bound is expected to be compat-
ible with the Hong-Ou-Mandel visibilities, that include both
the overal and the multiphoton contributions. Finally by con-
sidering the expected variance in the distinguishable scenario
for the balanced three-mode interferometer σd = 2/3, we can
compute a non-trivial lower bound to the average pairwise in-
distinguishability ∆̄LB , as in Eq. (8):

∆̄(SA) ≥ 0.63(1), (11)

while scenario SB fails also in this case to give a non-trivial
lower bound for the overlaps values. Again, we note that
such estimation of a lower bound on ∆̄ is completely semi-
device independent, as it requires as a further element only
a direct measurement of the average variance in a fully-
distinguishable scenario σd or its reconstruction, as in Eq.
(3), via the unitary moduli |Uij |, which can be measured in
a straightforward experiment using classical light.

Besides this direct application of the photon number vari-
ance σ either to obtain a lower bound on all overlaps using
Eq. (7) to estimate an average pairwise overlap parameter, we
now show how σ measurements can also be used to directly
monitor the value of each individual overlap. The key idea

0.75 0.8 0.85
ij

0

1

2

N
ru

ns
(×

10
3 )

Figure 4. Inference of the experimental overlaps (visibilities) via
the photon number variances measured over 23 randomly sam-
pled unitaries. Here we report the histogram of pairwise overlaps
{∆′

ab,∆
′
bc,∆

′
ac} inferred by numerically minimizing Eq. (12) over

50000 bootstrapped optimization runs. The considered photon num-
ber variances in the optimization problem are obtained experimen-
tally considering three photons injected in the interferometer set to
implement 23 different unitaries, in the indistinguishability scenario
SA. Blue bars: ∆′

ab. Orange bars: ∆′
ab. Green bars: ∆′

bc. Vertical
dashed lines identify the average of the Monte Carlo distributions.

is to program the device to implement interferometers drawn
from a random ensemble, and use σ together with information
from measurements of the moduli |Uij | as we now describe.
We can interpret Eq. (3) as a linear equation for the three
unknown overlaps |⟨χa|χb⟩|2, |⟨χb|χc⟩|2 and |⟨χc|χa⟩|2 we
would like to estimate, while the moduli |Uij | and σ as mea-
sured (known) coefficients. If we dial 3 different unitaries and

measure the corresponding variances σ, together with knowl-
edge of the moduli |Uij |, Eq. (3) gives us a linear system
of equations that can be solved to obtain the three individual
overlap values. The robustness of the method to experimen-
tal imperfections, e.g., small changes in the overlaps during
the measurement runs, can be improved by collecting an over-
complete data set corresponding to more than 3 unitaries, and
performing a numerical optimization for a more stable solu-
tion. One way of doing this is to consider a given set of uni-
taries {Ui}, and define the following numerical minimization
problem:

min
∆jk

∑
i

[σ̃Ui
− σUi

(∆′
ab,∆

′
ac,∆

′
bc)]

2

Var[σ̃Ui
]

, (12)

where Var[σ̃Ui
] is the experimental uncertainty associated

with the photon number variance σ̃Ui
measured when the in-

terferometer is programmed to implement unitary Ui. We ap-
plied this method to the output data from the 23 implemented
random unitaries, in scenario SA. As reported in Fig. 4, we
show the numerical results of 50000 bootstrapped optimiza-
tions runs of the quantity in Eq. (12). The resulting values

0.4 0.2 0.0 0.2 0.4 0.6 0.8
LB

0.0

0.5

1.0
U

i
(a)

Haar, model
Experimental data

0.4 0.2 0.0 0.2 0.4 0.6 0.8
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0
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N
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(b)
Haar
Haar, model

Figure 5. Semi-device independent lower bounds on the average
overlap ∆̄: (a) Lower bounds ∆̄LB on the average overlap param-
eter ∆̄, inferred from the experimentally measured photon number
variances σ̃Ui . Here we show σ̃Ui as a function of ∆̄LB which has
been inferred from the data. The dashed line shows the numerically
expected behaviour in the indistinguishability scenario described by
SA. (b) Histogram of a Monte Carlo simulation of the lower bound
on the average overlap parameter ∆̄ obtained from numerical cal-
culation of the photon number variances both in an ideal scenario
described by the Gram matrix SA, and taking into account exper-
imental imperfections such as multi-photon contributions - in blue
and orange respectively. This gives us numerical evidence that with
Gram matrix SA, around 70% of randomly sampled Haar random
unitaries give a non-trivial, i.e. positive, lower bound on the param-
eter ∆̄. On both plots, this is highlighted as the non-shadea area
corresponding to non-trivial lower bounds ∆̄LB .
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for the estimated overlaps ∆′
ab = 0.818(6), ∆′

bc = 0.80(1)
and ∆′

ac = 0.84(1) are found to be compatible with the av-
erage Hong-Ou-Mandel visibilities for each photon pair mon-
itored independently during the data acquisition process for
the random interferometers. Indeed Eq. (3) does not take into
account multiphoton emission between the source, while the
presence of multiphoton emission has the effect of reducing
the observed value of the Hong-Ou-Mandel visibilities with
respect to the overlaps |⟨χi|χj⟩|2. To conclude, we note that
the semi-device independent bound described by Eq. (8) re-
turns a positive and thus non-trivial lower bound for the aver-
age indistinguishability ∆̄LB ≥ 0 for approximately half the
implemented random unitaries, as reported in Fig. 5. There,
we also show the distribution of the lower bounds on the av-
erage overlap parameter ∆̄LB obtained via a Monte Carlo nu-
merical simulation over 105 randomly drawn Haar random
matrices, carried out in an ideal scenario described by the in-
distinguishability configuration SA and finally taking into ac-
count experimental imperfections such as multi-photon con-
tributions. This gives us numerical evidence of the fact that
for this indistinguishability scenario, around 70% of Haar ran-
dom unitaries give a non-trivial, i.e. positive, lower bound on
the average overlap parameter.

IV. CONCLUSIONS

We have reported on the proposal and experimental im-
plementation of tests to perform robust characterization of
multiphoton interference. Our approach, based on measur-
ing the bunching properties or the average variance of the
photon number distribution at each output, can be considered
semi-device independent as the results are not biased by incor-
rect implementation of different interferometer designs. The
validity of the approach has been verified experimentally in
an advanced photonic platform comprising different compo-
nents such as a quantum-dot source interfaced with a fully-
programmable IPP. In particular, our approach based on pho-
ton number variances improves upon previous work on semi-
device independent witnesses of indistinguishability based on
a single two-mode correlator [33], by giving non-trivial guar-
antees on indistinguishability for a large fraction of Haar ran-
dom interferometers. The obtained results have confirmed the
robustness of the method, showing its applicability in a prac-
tical setting that can be extended for the characterization of
sources of larger numbers of photons.
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Appendix A: Average photon number variance at the output

In this Section we obtain a simple and universal expression
for the average photon number variance σ that is valid for any
interferometer, and any number n of modes:

σ = 1 +
1

n

∑
a̸=b

∑
i

|⟨χa|χb⟩|2|Uia|2|Uib|2 −
1

n

∑
ik

|Uik|4.

(A1)
To derive this expression, we will use the fact that correlation
between photon numbers in modes i and j, with i ̸= j, can be
written as [48]

Cij = ⟨n̂in̂j⟩ − ⟨n̂i⟩⟨n̂j⟩ =

=
∑
a ̸=b

|⟨χa|χb⟩|2UiaUjbU ibU ja −
∑
k

|Uik|2|Ujk|2.

(A2)
The conservation of the total number of photons allows us
to express the average variance in terms of these correlators.
Defining N̂ =

∑
i n̂i as the total photon number operator, we

have from photon number conservation that

⟨N̂2⟩ − ⟨N̂⟩2 = 0, (A3)

which leads to∑
i

⟨n̂2i ⟩ − ⟨n̂i⟩2 = −
∑
i ̸=j

⟨n̂in̂j⟩ − ⟨n̂i⟩⟨n̂j⟩, (A4)

While a single two-mode correlator Cij was considered previ-
ously as a semi-device independent witness of indistinguisha-
bility [33], it can be seen from the equation above that the av-
erage variance takes into account all possible two-mode cor-
relators in an unbiased way. This leads to better semidevice-
independent guarantees on indistinguishability for unbiased
as well as Haar random interferometers as demonstrated in
the main text.

Using Eqs. (A4) and (A2), we can establish the following
equality

σ =
1

n

∑
i

⟨n̂2i ⟩ − ⟨n̂i⟩2 (A5)

= − 1

n

∑
a ̸=b

|⟨χa|χb⟩|2
∑
i̸=j

UiaUjbU ibU ja︸ ︷︷ ︸
A

+

+
1

n

∑
k

∑
i̸=j

|Uik|2|Ujk|2︸ ︷︷ ︸
B

. (A6)



9

The terms A and B can be simplified in the following way

A = −
∑
i

UiaUibU iaU ib +
∑
i,j

UiaU ibUjbU ja =

= −
∑
i

|Uia|2|Uib|2 + δa,bδa,b,
(A7)

and

B = −
∑
i

|Uik|4 +
∑
i

|Uik|2
∑
j

|Ujk|2 = 1−
∑
i

|Uik|4.

(A8)
Plugging in these simplifications in Eq. (A6), we obtain the
expression for σ shown in the main text and in Eq. (A1).

Furthermore, by considering a balanced interferometer
such as the Fourier transform, where all matrix elements of
the unitary are equal to 1√

n
where n is the number of modes,

we obtain:

σbal = 1+
∑
a ̸=b

|⟨χa|χb⟩|2

n2
− 1

n
= 1− 1

n
+

2

n2

∑
a>b

|⟨χa|χb⟩|2 .

(A9)
In particular, for the three-mode balanced tritter imple-

mented experimentally (see main text) we have:

σbal =
2

3
+

2

9

(
|⟨χ1|χ2⟩|2+

+ |⟨χ2|χ3⟩|2 + |⟨χ1|χ3⟩|2
)
.

(A10)

1. Maximizing σ for indistinguishable photons

In this section we show that any balanced interferometer on
nmodes maximizes σ for perfectly indistinguishable photons;
in particular, the Fourier interferometer maximizes σ. In the
fully indistinguishable case all Gram matrix elements equal 1,
i.e. ∀a,b : ⟨χa|χb⟩ = 1, which leads to

σ = 2− 2

n

∑
a,i

|Uia|4. (A11)

Therefore, the maximization of σ reduces to the minimiza-
tion of

∑
a,i |Uia|4. We demonstrate that this term is lower-

bounded by 1 and that this lower bound is attained exactly for
balanced interferometers, i.e. |Uij |2 = 1

n∀i, j, as is the case
for the Fourier transform.

To demonstrate this we define the doubly-stochastic matrix
Pij = |Uij |2 with

∑
i Pij =

∑
j Pij = 1. Using a known

inequality between 1-norm and 2-norm, we have that:√∑
i

P 2
ij ≥

1√
n

∑
i

Pij = 1 =⇒
∑
j

P 2
ij ≥

1

n
. (A12)

Hence
∑

i,j P
2
ij ≥ 1. Moreover, it is easy to see that the bound

is attained if Pij = 1/n.

A similar reasoning can be taken for the fully distinguisha-
bility scenario, where all off-diagonal elements of the Gram
matrix are 0, i.e. ⟨χa|χb⟩ = 0, ∀a ̸= b. Here all the terms
related to a ̸= b vanish leaving the expression just as

σd = 1− 1

n

∑
ik

|Uik|4, (A13)

which is also maximized for balanced interferometers.

Appendix B: Lower bounds for overlaps using the n = 3
balanced interferometer

For the 3-mode Fourier transform, in Eq. (A10) we found
an expression for the average variance σ of the photon num-
ber at the output modes in terms of two-photon overlaps ∆i

(∆1 = ∆AB ,∆2 = ∆BC ,∆3 = ∆AC):

σbal =
2

3
+

2

9

(
3∑

i=1

∆i

)
. (B1)

In what follows we show how to obtain a lower bound for
all overlaps using σ. This is a natural task when using σ to cer-
tify the pairwise indistinguishability of a multiphoton source.
We start by writing

∑
i ∆i as a function of the measured σ:

∑
i

∆i =
9

2
σ − 3. (B2)

So if

σ > 10/9 →
∑
i

∆i > 2 → min
i
(∆i) > 0. (B3)

More precisely, when σ > 10/9, σ gives a non-trivial lower
bound for the smallest two-state overlap:

min
i

∆i ≥
∑
i

∆i − 2 =
9

2
σ − 5. (B4)

We can use the measured value of σ in a Fourier interferom-
eter to obtain better lower bounds for all overlaps ∆i. We
recall that 3 quantum states have 3 overlaps ∆i that satisfy the
following inequality [18]:∑

i

∆i − 2
√
∆1∆2∆3 ≤ 1. (B5)

Using Eq. (B2) to write
∑

i ∆i as a function of the variance
σ, we get:√

∆1∆2∆3 ≥ 9

4
σ − 2 ⇒ ∆1∆2∆3 ≥

(
9

4
σ − 2

)2

. (B6)

The product of all ∆i is a lower bound for each individual ∆i,
in particular for mini ∆i, so:

min
i

∆i ≥ ∆1∆2∆3 ≥
(
9

4
σ − 2

)2

. (B7)



10

The inequality above give us a better (larger) lower bound
for all overlaps, in terms of the observed variance σ, than
Eq. (B4) does. In particular, it guarantees a non-trivial lower
bound when σ > 8/9, whereas Eq. (B4) only does that for
σ > 10/9. In Fig. 6 we plot the two lower bounds as a func-
tion of σ.
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Figure 6. Bounds on the two-photon overlaps. Two lower bounds
for the smallest overlap of 3 states, as a function of the observed
average photon number variance σ. Blue curve is the best lower
bound, obtained from the results of [18]. The blue lower bound is
non-trivial for σ > 8/9, whereas the red lower bound is non-trivial
only when σ > 10/9.

Appendix C: Semi-device independent bounds on the average
indistinguishability

To simplify the expression for the average photon number
variance in Eq. (3) it is useful to introduce some notation. We
define ∆ab = |⟨χa|χb⟩|2 as the n × n matrix containing all
the overlaps. Moreover we define the doubly stochastic matrix
Pab = |Uab|2 associated to the unitary U , as well as the (also
doubly stochastic) matrix Q = PTP . The expression for σ
can now be written as

σ = 1 +
1

n

∑
a̸=b

∆abQab −
1

n
tr(Q). (C1)

(C2)

For fully distinguishable photons we obtain

σd = 1− 1

n
tr(Q). (C3)

The difference between the measured values of σ, for some
distinguishability scenario, and σd gives us

σ − σd =
1

n

∑
a ̸=b

∆abQab. (C4)

Unless U is the identity matrix, the difference between σ
and σd will be positive and will give some information about

the overlap matrix ∆. To quantify this difference, let us
rewrite the equation as follows

σ − σd =
1

n
(tr(∆Q)− tr(Q)) . (C5)

Using Eq. (C3), we have

σ − 2σd + 1 =
tr(∆Q)

n
. (C6)

Since Q and ∆ are positive-semidefinite matrices, we can use
the inequality tr(∆Q) ≤ ||∆||tr(Q), where ||∆|| denotes the
spectral norm (largest eigenvalue) of ∆. This leads to the fol-
lowing inequality

||∆||
n

≥ σ − 2σd + 1

n(1− σd)
. (C7)

While ||∆||/n itself could be seen as a measure of indistin-
guishability, our aim here is to use this bound to obtain guar-
antees on the average indistinguishability ∆̄ from Eq. (6). To
do so, we first use the fact that ∆ = S ⊙ ST , where S is the
Gram matrix Sab = ⟨χa|χb⟩, where ⊙ denotes the Hadamard
(entrywise) product. It follows that ||∆|| ≤ ||S|| [49] which,
together with Eq. (C7), implies that

||S||
n

≥ σ − 2σd + 1

n(1− σd)
. (C8)

In order to write an inequality in terms of the average indistin-
guishability, we can use the fact that ||S||F =

√∑
a,b ∆ab ≥

||S||, where ||S||F is the Frobenius norm, which can be writ-
ten in terms of ∆̄ as

||S||F
n

=

√
n(n− 1)

n2
∆̄ + 1/n. (C9)

This expression, together with the bound ||S||F ≥ ||S|| and
Eq. (C8), implies that

∆̄ ≥ 1

n(n− 1)

(
σ − 2σd + 1

1− σd

)2

− 1

n− 1
. (C10)

Appendix D: Integrated photonic processor

The experiment has been performed by using an 8-mode
fully-programmable IPP. The fabrication of the IPP is based
on FLW as described in [50]. The single-mode waveg-
uides were inscribed in an alumino-borosilicate glass sub-
strate (Corning Eagle XG); the device features a mesh of 28
MZIs in a rectangular configuration, allowing the implemen-
tation of any unitary matrix transformation in 8 modes. The
waveguides were optimized for a wavelength of 928 nm and
the designs of the interferometers and the mesh as a whole
have been optimized for higher integration density as detailed
in [51]. On top of each MZI, a pair of resistive heating el-
ements has been fabricated through a new two-metal pho-
tolithographic approach [51]. These elements allow the con-
trol of each MZI’s operation through phase shifting via the
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thermo-optic effect, with a dissipated power needed to achieve
a 2π shift of about 35mW on average per MZI. Finally, fiber
arrays are glued with UV-curing resin to both the input and
output ports of the device, allowing easy interfacing with the
photon sources and detectors. The integrated interferometer
has a planar footprint of about 1× 80mm2 and total insertion
losses below 3 dB.

The model we employ for the relationship between the vec-
tor of currents I and the vector of MZI phases ϕ is as follows:

ϕ = ϕ0 +A1I
2 +A2I

4, (D1)

where ϕ0 is the vector of initial phases, while A1 and A2 are
matrices respectively representing all the terms that are lin-
ear in the dissipated power at each resistive element includ-
ing the thermal cross-talk terms and representing the terms
that depend on the square of the dissipated power. A calibra-
tion procedure was employed to retrieve the ϕ0, A1, and A2

arrays, in order to implement the required unitary transforma-
tions for this work. The calibration consists of a node isolation
algorithm where coherent light is injected at the input of each
individual MZI [52]. The performance of the calibration has
been measured with the amplitude fidelity figure of merit:

Fampl =
1

8

∑
ij

|(Ut)ij ||(Um)ij |, (D2)

where Ut and Um are the target unitary matrix and the imple-
mented unitary matrix, respectively. Through this calibration,
it was possible to achieve an average fidelity of 0.962 over a
sample of 6000 random Haar matrices, as reported in Fig. 7
(a).

After this preliminary calibration step, the device’s opera-
tion was further optimized algorithmically. In particular, the
predicted currents from a large sample size of 6000 random
Haar matrices were calculated taking the initial calibration as
a starting point. A machine learning algorithm was employed
using the data as a training set, to further tune the calibration
parameters in order to maximize the amplitude fidelity. This
algorithm optimized the model parameters, addressing imbal-
ances in the couplers in each MZI, non-idealities in the manual
calibration process, and fabrication tolerances. After this step,
the average fidelity was increased to 0.991 as reported in Fig.
7 (b).

Appendix E: Characterization of tritter unitary transformation

In this Section we describe the procedure employed to re-
construct the unitary matrix U describing the balanced tritter
transformation, which was experimentally realized using our
integrated photonic device. In the linear optics formalism, one
can characterize the action of an n-mode integrated interfer-
ometer as a n× n unitary matrix mapping the creation mode
operators a⃗† into output mode creation operators b⃗†:

b†0
b†1
. . .
b†n

 = U


a†0
a†1
. . .
a†n

. (E1)

As described in Ref. [53], in order to reconstruct the elements
Uαβ = |Uαβ |eiϕαβ of U it is in principle sufficient to estimate
the following quantities:

Vij,mn = 1−
P I
ij,mn

PD
ij,mn

, (E2)

where P I
ij,mn gives the probability of recovering a coinci-

dence click on outputs (i, j) when injecting identical photons
in inputs (m,n), while PD

ij,mn identifies the analogous quan-
tity computed with distinguishable photons, i.e. in absence of
quantum interference. The quantity Vij,mn depends on both
the moduli and the phases of each involved unitary element,
i.e. (Uim, Uin, Ujm, Ujn). An over-complete characterization
of the unitary U requires to inject a pair of photons in each
possible combination of input modes. Formally, the elements
present in Eq. (E2), are associated to the 2 × 2 sub-block of
the unitary matrix U :

Uijmn =

(
Uim Uin

Ujm Ujn

)
. (E3)

Indeed, the output coincidence probability for indistinguish-
able photons is related to the square moduli of the permanent
of Uijmn:

P I
ij,mn = |Per(Uijmn)|2 = |UimUjn + UinUjm|2 =

= |UimUjn|2 + |UinUjm|2+
+ 2|UimUjnUinUjm| cos(ϕim + ϕjn − ϕin − ϕjm),

(E4)
while for completely distinguishable photons the output coin-
cidence probability is given by the permanent of the moduli
square matrix |Uijmn|2:

PD
ij,mn = Per(|Uijmn|2) = |UimUjn|2 + |UinUjm|2. (E5)

In our optical setup, based on a QD single photon source
paired with a time-to-spatial demultiplexing setup, a direct
estimation of the quantities described in Eq. (E2) requires
taking into account the presence of the time-to-spatial demul-
tiplexed setup, and the resulting non-unitary indistinguisha-
bility amongst photon pairs. Then, similarly to Eq. (E2), one
can consider the following quantity:

Rij,mn =
Aτ=0

ij,mn

Aτ=±T
ij,mn

, (E6)

where the terms in the numerator and the denominator are
respectively related to the areas of the zero(T )-delay coin-
cidence peaks in a typical correlation histogram measured at
outputs (i, j) when injecting a stream of photon pairs in inputs
(m,n). Here, T represent the 12 ns separation between subse-
quent peaks due to the 79 MHz excitation of the QD. Indeed,
the two-photon input state in our optical interferometer can be
described by the overlap ω, where this parameter takes into
account the partial distinguishability amongst the input pho-
tons’ wavepackets. Then, when considering the zero-delay
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(b)(a)

Figure 7. Implementation of random Haar unitary matrices on the 8 mode IPP. The fidelities over (a) 6000 random Haar matrices before
the optimization algorithm and (b) 100 random Haar matrices after the optimization algorithm. The average fidelity is marked with a horizontal
dashed line.

coincidence peak Aτ=0
ij,mn, it can be shown that this quantity is

proportional to:

Aτ=0
ij,mn ∝ P τ=0

ij,mn = ωP I
ij,mn + (1− ω)PD

ij,mn =

= |UimUjn|2 + |UinUjm|2+
+ 2ω|UimUjnUinUjm| cos(ϕim + ϕjn − ϕin − ϕjm).

(E7)
Conversely, a contribution to the T -delay coinci-
dence peak will be given by two photons sepa-
rated by T entering the interferometer in inputs
{(m0,mT ), (n0, nT ), (m0, nT ), (n0,mT )}, thus leading
to:

Aτ=T
ij,mn ∝ |UimUjm|2+|UinUjn|2+|UimUjn|2+|UinUjm|2.

(E8)
Note that in such a way, the ratiosRij,mn(U, ω) will be a func-
tion of both the two photon overlap ω and the implemented
unitary transformationU . Thus, by measuring the ratios in Eq.
(E6) for each possible combination of inputs (m,n) and out-
puts (i, j), together with the HOM visibilities, we can solve
the following optimization problem to recover the experimen-
tally implemented Ũ3 transformation:

min
U

∑
ijmn

[R̃ijmn −Rijmn(U, Ṽ )]2

σ2(R̃ijmn)
, (E9)

where R̃ijmn are the experimentally measured ratios,
σ2(R̃ijmn) are the associated experimental error and
Rijmn(U, Ṽ ) are the theoretical predictions for ω = Ṽ , be-
ing Ṽ the experimental two-photon visibility. Note that, gen-
erally, a 3x3 complex unitary matrix will depend only on 8
free parameters. Thus we can exploit the parametrization pre-
sented in Ref. [54] to decrease the complexity of the opti-
mization problem. Overall, we obtain the reconstructed ma-
trix element moduli:

|Ũ3| =

0.611± 0.001 0.552± 0.001 0.567± 0.001
0.559± 0.001 0.598± 0.001 0.575± 0.001
0.561± 0.001 0.581± 0.001 0.590± 0.001

 ,

(E10)

with phases

arg(Ũ3) =

0 0 0
0 2.128± 0.004 −2.107± 0.004
0 −2.087± 0.004 2.155± 0.003

 ,

(E11)
where, without loss of generality, the complex phases in both
the first column and row of the matrix can be constrained to
be zero. The reconstructed matrix Ũ3 reached a fidelity of
F = |Tr(U3Ũ

†
3 )|/3 > 0.999 w.r.t. the ideal tritter unitary

U3. Here, standard errors have been computed as a mean over
≈ 500 successfully converged instances of the problem in Eq.
(E9), where the input Rexp

ijmn are statistically sampled from a
normal distribution.

Appendix F: Testing the Gram-matrix phase

In the main text, we considered the measurement of the dif-
ferent tests by considering positive real-valued Gram-matrices
of the form:

Sk =


1

√
∆̃k

ab

√
∆̃k

ac√
∆̃k

ab 1
√

∆̃k
bc√

∆̃k
ac

√
∆̃k

bc 1

 . (F1)

To justify this assumption on the tested input state configu-
ration, we verified experimentally that the output states gen-
erated from our source are well represented by this form of
the Gram-matrix. This can be done by exploiting the class
of cyclic interferometers employed in Ref. [31] as a mean
to measure genuine multiphoton indistinguishability. Let us
then consider a 6-mode cyclic interferometer described by the
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matrix:

Ucyc(α) =
1

2


1 −1 1 1 0 0
1 −1 −1 −1 0 0
eıα eıα 0 0 1 −1
eıα eıα 0 0 −1 1
0 0 1 −1 1 1
0 0 1 −1 −1 −1

 , (F2)

where α is a tunable phase shift. This matrix belongs to the
same class of cyclic interferometers of [31], up to mode swaps
and to a different complex phase choice for the elementary
beam-splitter unitary cell.

Let us then consider the scenario with three input photons,
described by three internal states |χa⟩, |χb⟩, and |χc⟩. In this
case, the general form of the Gram-matrix can be written as:

S =

 1
√
∆ab

√
∆ac√

∆ab 1
√
∆bce

ıφ
√
∆ac

√
∆bce

−ıφ 1

 . (F3)

Let us consider the case where the three photons are injected
in input ports [1, 3, 5] of Ucyc. The input state can be thus
described as a†1b

†
3c

†
5|0⟩, where the operators {a†i , b

†
j , c

†
k} la-

bel respectively the creation operators for a photon in inter-
nal states |χa⟩, |χb⟩, |χc⟩ and input modes i, j, k respectively.
We consider the subset of output modes corresponding to
the relevant configurations identified by [31], namely the sets
s+ = {[1, 3, 5], [1, 4, 5], [2, 3, 6], [2, 4, 5]} and s− = {[1, 3, 6],
[1, 4, 5], [2, 3, 5], [2, 4, 6]}. We then transform the creation
operators of the input state according to the action of the
interferometer. This is performed by considering that ac-
cording to the adopted notation the input-output relation is
â†i →

∑
j [U

t
cyc(α)]ij â

†
j , where t stands for the matrix trans-

pose, and analogously for b̂†i and ĉ†i . The input state a†1b
†
3c

†
5|0⟩

then evolves into:

|ψcyc(α)⟩ =
1

8
(â†1 + â†2 + eıαâ†3 + eıαâ†4)×

× (b̂†1 − b̂†2 + b̂†5 + b̂†6)× (ĉ†3 − ĉ†4 + ĉ†5 − ĉ†6)|0⟩.
(F4)

Let us first focus on output configuration [1, 3, 5] ∈ s+. We
first select the (unnormalized) portion of the output state con-
taining one operator for each output mode:

|ψ1,3,5⟩ =
1

8

(
â†1b̂

†
5ĉ

†
3 + eıαâ†3b̂

†
1ĉ

†
5

)
|0⟩. (F5)

The probability of this output configuration can be then ob-
tained by evaluating the overlap ⟨ψ1,3,5|ψ1,3,5⟩. By repeating
the same calculation for all states belonging to sets s+ and s−,
the output probabilities are found to be:

P±(α,φ) =
1

32

[
1±

√
∆ab

√
∆bc

√
∆ac cos(α+ φ)

]
,

(F6)
where the ± sign depends on whether the output configuration
belongs to set s+ or s−.

The value of the complex phase φ of the Gram-matrix can
be thus retrieved by injecting the three photons on input ports

𝑈𝑐𝑦𝑐(𝛼)

𝐼

Figure 8. Device programming for the cyclic interferometers.
The processor was also programmed to act as a cyclic interferom-
eter Ucyc(α) over the first six modes to test the assumption of a real-
valued Gram matrix. In both schemes, I corresponds to the identity
over the modes.

[1, 3, 5] measuring the output probabilities, and by measuring
the probabilities of output configurations in sets s+ and s−
after programming the interferometer to act as Ucyc(α) for
different values of α (see Fig. 8). The results of this mea-
surement for scenario SA are shown in Fig. 9 for 10 different
values of α covering the [0, 2π) interval. The value of φ can
be then obtained by grouping the measured output three-fold
coincidences according to the s+ and s− sets, and by fitting
the grouped data with a sinusoidal function as a function of α,
given that φ corresponds to the phase offset of the patterns. In
our case (see Fig. 10), we foundφ = −0.03(2), which is com-
patible with φ0 = 0 within 2 standard deviations. This ap-
proach, and the corresponding experimental verification, jus-
tifies the adoption of positive real-valued Gram-matrices in
the main text.

0.0000.6981.3962.0942.7923.4904.1894.8875.5856.283

ou
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[1, 3, 5]
[2, 3, 6]
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[2, 4, 5]

[1, 3, 6]
[2, 3, 5]

[1, 4, 5]
[2, 4, 6]

C3
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100
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Figure 9. Measurements with a 6-mode cyclic interferometer.
Measured three-fold coincidences C3 obtained by programming the
IPP to act as Ucyc(α) for input modes [1, 3, 5] and output configu-
rations in s+ (blue bars) and s− (red bars), for different values of
α. The darker regions in the bars correspond to the 1-σ measured
interval for the output three-fold coincidences according to the Pois-
sonian statistics of the detected events.

An independent verification on the assumption of posi-
tive real-valued Gram-matrices can be also obtained by direct
analysis of the measured 3-photon distribution after the tritter
transformation, assuming knowledge on the two-photon over-
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laps. Let us then consider again scenario SA, corresponding
to measured values of the overlaps ∆̃A

ab = 0.875(4), ∆̃A
ac =

0.874(2) and ∆̃A
bc = 0.848(2). We then consider the general

Gauge-invariant form of the Gram matrix for 3 photons [Eq.
(F3)], leaving φ as a free parameter. Let p̃(n1,n2,n3) the ex-
perimentally measured probabilities after the tritter transfor-
mation Ũ3, where (n1, n2, n3) is one of the possible photon
number occupation configurations on the output modes. Con-
versely, let p(n1,n2,n3)(φ) be the expected value of the out-
put probabilities for a Gram matrix having two-photon over-
lap equal to the measured values reported above, and value φ
for the phase. One can then define the following quantity:

e(φ) =
∑

n1,n2,n3

[p̃(n1,n2,n3) − p(n1,n2,n3)(φ)]
2

σ2(p̃(n1,n2,n3))
, (F7)

where σ(p̃n1,n2,n3
) is the experimental uncertainty associated

to p̃n1,n2,n3
, and the sum extended over all possible 3-photon

configurations (n1, n2, n3) where ni is the occupation number
of mode i thus satisfying

∑
i ni = 3. This quantity represents

0 /2 3 /2 2
200

400

600

800

1000

1200

C 3

Figure 10. Estimation of the three-photon Gram-matrix phase
φ. Three-fold coincidences C3 at the output of the interferometer
programmed as Ucyc(α) from three photon in input modes [1, 3, 5],
grouped in output sets s+ (blue) and s− (red). Solid lines are best-fit
with a sinusoidal model, with the constraint that the two curves share
the same phase-offset. Error bars are due to the Poissonian statistic
of the detected events.

the squared error between the expectations for a given value
of φ, and the experimentally measured values, weighted by
the experimental uncertainty. One can then retrieve the value
of φ by numerically minimizing this quantity. We have per-
formed this optimization by considering as a model the closed
forms of p(n1,n2,n3)(φ) calculated in [15], which correspond-
ing to an ideal tritter with no multiphoton contributions from
the source, and our detailed model including the main sources
of noises. The value of φ obtained with the two choices of
the expectations p(n1,n2,n3)(φ) after minimization of e(φ) are
found to be respectively φ = 0.0053(1) and φ = 0.0078(1),
which are compatible with the measurement performed via the
cyclic interferometer.

Appendix G: Model of the experiment

In this Section we provide a brief overview of the theoret-
ical model for the experimental data, which follows a similar
approach to the one reported in [31]. In the present imple-
mentation, we need to take into account different features of
the platform: (i) the actual value of the photon indistinguisha-
bility, quantified by the Gram matrix S, (ii) multiphoton con-
tributions from the source, (iii) the effective unitary transfor-
mation Ũ implemented by the integrated device and (iv) losses
in the apparatus.

Regarding photon indistinguishability (i), this is taken into
account by considering that the output probabilities are evalu-
ated according to the theory reported in [35], which explictly
includes the overlap between photon states according to the
Gram matrix S.

On a second note, we can include the effect of multiphoton
emission (ii) by considering that on each time-bin (before the
demultiplexing module), and thus on each spatial mode, there
is a non-negligible probability that a second photon is emitted.
This corresponds to write the input state on each mode as:

ρ = p0|0⟩⟨0|+ p1|1⟩⟨1̃|+ p2|1, 1̃⟩⟨1, 1̃|, (G1)

where the 1̃ corresponds to the presence of an additional
noise photon, which for the employed quantum-dot source
has zero-overlap with the principal photon [47]. The pa-
rameters [p0, p1, p2] can be retrieved, from the source bright-
ness and from the measured g(2)(0), as B ∼ p1 + p2 and
g(2)(0) = 2p2/(p1 + 2p2)

2.
While the effective unitary Ũ (iii) can be directly included

in the probability distribution calculation, the remaining fea-
ture to be taken into account is the presence of losses (iv). In
our apparatus, we observe that losses are approximately bal-
anced for each photon. We can model this effect by consid-
ering that a round of balanced losses commutes with passive
linear optical circuits [55]. Thus, we can approximate that
all losses in our apparatus can be grouped and placed at the
output of the source, where the transmission coefficient per
photon η0 is obtained as the product of all transmissivities of
each element. Finally, we observe that in our model, we do
not have to take into account unbalancements in the detection
system efficiencies, since the measurement apparatus has been
characterized and the output probabilities have been normal-
ized accordingly.

Appendix H: Data analysis

In this Section we provide more details on the analysis per-
formed on the experimental data, reported in the main text.

1. Pseudo Number Resolved detection

The reconstruction of the bunching probabilities reported
in the main text requires the capabilities of distinguishing
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the photon number at the output of each mode of the pro-
grammed 3-mode unitary transformation. To this end, we
employed a probabilistic pseudo-photon number detection ap-
proach. More specifically, if one wants to detect up to 3 pho-
tons in a given output mode i (i = 1, 2, 3) with threshold de-
tectors, such a mode can be divided among three auxiliary
modes iα (α = 1, 2, 3) by means of an appropriate cascade of
beam splitters. In our experiment, we employed the remaining
layers of the IIP together with an external in-fiber single mode
50:50 beam splitter to perform such a balanced mode splitting.
After this operation, the probability of detecting a photon ex-
iting mode i in the detection mode iα will be Pi→iα = 1/3.
One can then compute the probability of observing an output
configuration n⃗ = (n1, n2, n3) with

∑
i ni = 3. It is easy

to show that, given a detection efficiency η and by denoting
as {n1, n2, n3} a valid permutation of three photons exiting 3
modes, the detection probabilities of an output configuration
{n1, n2, n3} with the probabilities scheme reads:

P det
{3,0,0} = 2η3/9, (H1)

P det
{2,1,0} = 2η3/3, (H2)

P det
{1,1,1} = η3. (H3)

This detection probabilities act as an effective additional loss
factor dependent on the output configuration. This means that,
to estimate the full three-photon probability distribution, it is
necessary have to normalize the measured three-fold counts
Ñ(n1,n2,n3) as:

N(n1,n2,n3) = Ñ(n1,n2,n3)/P
det
{n1,n2,n3}, (H4)

where Ñ(n1,n2,n3) if the effective measured number of events
associated to configuration (n1, n2, n3). In such a way, with
a total of 9 detectors, one can reconstruct the full probability
distribution at the output of a generic transformation U :

p̃(n1,n2,n3) =
N(n1,n2,n3)∑

n1,n2,n3
N(n1,n2,n3)

, (H5)

where n1, n2, n3 ∈ {0, 1, 2, 3} with
∑

i ni = 3. Without loss
of generality, the detection efficiency can be included in a di-
rect estimation of the experimental mode-detection probabil-
ities P̃i→iα. This coefficients have been measured by setting
U = I and injecting the IIP with single photon states at each
input mode i, measuring:

P̃i→iα =
Niα∑
j Niα

, (H6)

where i, α ∈ (1, 2, 3). This expression can be then used to
measure the detection coefficients P det

{n1,n2,n3} which we re-
port in Table I.

2. Reconstruction of bunching probabilities with
distinguishable photons

To estimate the bunching probabilities in the fully distin-
guishable scenario for the random unitaries, we exploited that

(n1, n2, n3) P det
{n1,n2,n3}

(1, 1, 1) 1.0
(2, 1, 0) 0.666
(2, 0, 1) 0.666
(1, 2, 0) 0.6646
(0, 2, 1) 0.6646
(0, 1, 2) 0.6662
(1, 0, 2) 0.6662
(3, 0, 0) 0.2216
(0, 3, 0) 0.2201
(0, 0, 3) 0.2218

Table I. Pseudo-number resolved detection efficiencies. The val-
ues reported are estimated according to the procedure described
above.

the 3-photon probabilities are a convex combination of single-
particle ones. Given a unitary matrix U describing the pro-
grammed interferometer, where the matrix element Uij de-
scribes the transmission amplitude between input mode j and
output mode i, and considering an input state with one-photon
on each of the 3 input modes, the following relations hold:

pD(3,0,0) =

3∏
l=1

|U1l|2, (H7)

pD(0,3,0) =

3∏
l=1

|U2l|2, (H8)

pD(0,0,3) =

3∏
l=1

|U3l|2, (H9)

which depend only on the square moduli |Uij |2 of the unitary
matrix U . Such moduli can be measured by injected in the
IIP single photons into each input j, and measuring the corre-
sponding counts Nij from each output mode i. Note that here
the mode splitting matrix was not programmed on the device,
thus resulting in a 1-to-1 correspondence between input and
output modes. Then, the moduli square of the unitary matrix
can be reconstructed as:

Tij = |Uij |2 =
Nij∑
iNij

. (H10)

3. Experimental data tables

We conclude this section by describing the data analysis
procedure supporting the data shown in Fig. 3. In particular,
given a 3-mode unitary transformation U programmed on the
IIP, for the scenario related to the Gram matrix SA, we pro-
ceeded by acquiring raw three-fold events Ñ(n1,n2,n3) at the
output of the interferometric mesh, over a time span of ∼ 1
hour, in the complete configuration composed by the unitary
transformation plus the mode splitting setup. We then cor-
rected such events as in Eq. (H4) to compute the experimen-
tal probability distribution p̃(n1,n2,n3) for each output config-
uration (n1, n2, n3) as in Eq. (H5). Then, we computed the



16

bunching ratio r̃FB(SA) as:

r̃FB(SA) =
p̃(3,0,0) + p̃(0,3,0) + p̃(0,0,3)

pD(3,0,0) + pD(0,3,0) + pD(0,0,3)
=
p̃FB(SA)

p̃FB(SD)
,

(H11)
where the elements pD(n1,n2,n3)

were reconstructed by measur-

ing the moduli square of the unitary transformation |Uij |2 as
described above. In Table II we report the complete set of
experimental data collected, related to the 23 chosen configu-
rations of the three-mode unitary transformation U .

For the scenario described by the Gram matrix SB′ , that
is a scenario in which one photon is made completely dis-
tinguishable from the others, the reconstruction of the prob-
ability distribution in such a scenario can be performed
by injecting the interferometer with two photons in input
ports (1, 3), and the measure the two photon probabilities
{p̃(2,0,0), p̃(0,2,0), p̃(0,0,2)}. To estimate the corresponding el-
ements {p̃(3,0,0), p̃(0,3,0), p̃(0,0,3)} for this indistinguishability
scenario, it is then enough to perform a classical convolution

of the two-photon probabilities with the probabilities Ti2 ob-
tained with a distinguishable photon input in port 2 according
to:

p̃(3,0,0) = p̃(2,0,0)T12, (H12)
p̃(0,3,0) = p̃(0,2,0)T22, (H13)
p̃(0,0,3) = p̃(0,0,2)T32. (H14)

The bunching ratio r̃FB(SC) can be then estimated from these
reconstructed probabilities according to the following expres-
sion:

r̃FB(SC) =
p̃(2,0,0)T12 + p̃(0,2,0)T22 + p̃(0,0,2)T32

pD(3,0,0) + pD(0,3,0) + pD(0,0,3)
=

=
p̃FB(SC)

p̃FB(SD)
.

(H15)
The complete set of data in this scenario SC with the 23 ran-
dom unitaries is reported in Table III.
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r̃FB(SA) σ̃(Ui) ∆̄(Ui)
Ñ(3,0,0) p̃(3,0,0)

p̃(3,0,0)

pD
(3,0,0)

Ñ(0,3,0) p̃(0,3,0)
p̃(0,3,0)

pD
(0,3,0)

Ñ(0,0,3) p̃(0,0,3)
p̃(0,0,3)

pD
(0,0,3)(×103) (×103) (×103)

4.84(9) 0.736(3) −0.098(3) 0.26(2) 0.0138(8) 4.9(3) 1.58(4) 0.083(2) 4.9(1) 0.47(2) 0.025(1) 4.7(2)
4.8(1) 0.606(3) −0.170(2) 0.92(3) 0.048(2) 4.7(1) 0.34(2) 0.0176(9) 5.3(3) 0.56(2) 0.029(1) 4.6(2)
4.77(6) 0.857(4) −0.004(4) 2.15(5) 0.114(2) 4.76(9) 1.29(4) 0.069(2) 4.7(1) 0.44(2) 0.023(1) 4.9(2)
4.7(1) 0.711(4) −0.114(3) 0.90(3) 0.064(2) 4.6(1) 0.66(3) 0.047(2) 4.8(2) 0.23(2) 0.016(1) 5.0(3)
4.87(5) 1.071(5) 0.289(9) 2.15(5) 0.145(3) 5.1(1) 2.30(5) 0.156(3) 4.78(9) 0.89(3) 0.060(2) 4.6(1)
5.04(4) 1.129(5) 0.41(1) 2.88(5) 0.162(3) 5.15(8) 2.93(5) 0.166(3) 5.08(8) 1.72(4) 0.096(2) 4.8(1)
4.99(7) 0.889(4) 0.030(5) 0.94(3) 0.053(2) 4.8(2) 1.97(4) 0.113(2) 4.9(1) 0.89(3) 0.051(2) 5.3(2)
5.06(8) 0.800(4) −0.048(4) 1.79(4) 0.103(2) 5.0(1) 0.85(3) 0.049(2) 5.0(2) 0.48(2) 0.027(1) 5.2(2)
5.16(7) 0.937(4) 0.084(5) 2.06(5) 0.127(3) 5.1(1) 1.25(4) 0.077(2) 5.3(1) 0.53(2) 0.033(1) 4.8(2)
4.83(3) 1.163(5) 0.51(1) 3.57(6) 0.171(3) 4.99(7) 3.61(6) 0.175(3) 4.88(7) 3.00(5) 0.144(2) 4.60(8)
4.91(5) 0.985(4) 0.145(6) 1.05(3) 0.057(2) 4.7(1) 2.85(5) 0.155(3) 4.98(8) 1.35(4) 0.073(2) 4.9(1)
5.2(1) 0.766(3) −0.071(3) 0.63(3) 0.034(1) 5.1(2) 0.068(8) 0.0037(4) 13(2) 1.38(4) 0.074(2) 5.1(1)
4.99(8) 0.846(4) −0.010(4) 1.53(4) 0.082(2) 5.2(1) 1.55(4) 0.084(2) 4.7(1) 0.10(1) 0.0052(5) 8.1(8)
4.91(4) 1.101(5) 0.349(9) 2.87(5) 0.152(3) 5.16(9) 2.20(5) 0.118(2) 4.87(9) 2.76(5) 0.147(2) 4.70(8)
5.3(2) 0.388(2) −0.248(1) 0.12(1) 0.0065(6) 5.6(5) 0.40(2) 0.022(1) 5.3(3) 0.068(8) 0.0037(4) 5.3(6)
5.09(5) 0.992(4) 0.155(6) 1.48(4) 0.079(2) 5.2(1) 2.16(5) 0.116(2) 5.3(1) 2.29(5) 0.122(2) 4.90(9)
5.0(1) 0.693(3) −0.121(3) 0.25(2) 0.0136(9) 5.1(3) 1.02(3) 0.056(2) 5.2(2) 0.92(3) 0.050(2) 4.7(1)
4.86(7) 0.844(4) −0.013(4) 2.30(5) 0.120(2) 4.79(9) 0.21(1) 0.0109(8) 5.0(3) 0.62(2) 0.032(1) 5.1(2)
5.09(7) 0.830(4) −0.025(4) 0.62(2) 0.034(1) 5.3(2) 1.70(4) 0.093(2) 5.4(1) 1.28(4) 0.069(2) 4.7(1)
4.87(4) 1.031(4) 0.216(7) 1.04(3) 0.055(2) 5.3(2) 3.00(5) 0.158(3) 4.95(8) 2.21(5) 0.116(2) 4.57(9)
4.85(6) 0.949(4) 0.097(5) 0.16(1) 0.0086(7) 8.3(6) 1.27(4) 0.067(2) 5.3(1) 3.10(6) 0.163(3) 4.58(7)
4.9(2) 0.460(2) −0.232(1) 0.036(6) 0.0019(3) 7(1)× 10 0.51(2) 0.027(1) 4.6(2) 0.019(4) 0.0010(2) 4(1)
4.97(7) 0.824(4) −0.030(4) 1.57(4) 0.079(2) 5.0(1) 0.19(1) 0.0097(7) 7.6(5) 1.63(4) 0.082(2) 4.7(1)

Table II. Full table of the results obtained for the 23 unitaries for the scenario associated to the Gram matrix SA. Here, r̃FB(SA) =
p̃FB(SA)/p̃FB(SD) represents the experimentally measured overall bunching ratio rFB(SA) = per(SA)/per(SD); while σ̃(Ui) indicates
the experimentally measured photon number variance at the output of the interferometer. We denote by Ñ(n1,n2,n2) the raw counts measured
at the output of the pseudo number resolving detection setup.

r̃FB(SC)
Ñ(2,0,0) p̃(2,0,0)T12

p̃(3,0,0)

pD
(3,0,0)

Ñ(0,2,0) p̃(0,2,0)T22

p̃(0,3,0)

pD
(0,3,0)

Ñ(0,0,2) p̃(0,0,2)T32

p̃(0,0,3)

pD
(0,0,3)(×104) (×104) (×104)

1.83(2) 1.25(1) 0.00510(4) 1.80(1) 0.432(7) 0.0309(5) 1.80(3) 0.272(5) 0.0102(2) 1.94(4)
1.77(1) 1.87(1) 0.0184(1) 1.80(1) 0.056(2) 0.0055(2) 1.65(7) 2.36(2) 0.01115(6) 1.79(1)
1.77(1) 1.30(1) 0.0400(3) 1.67(1) 0.354(6) 0.0281(5) 1.93(3) 2.77(2) 0.00847(4) 1.802(9)
1.71(2) 0.717(8) 0.0211(2) 1.52(2) 0.238(5) 0.0189(4) 1.89(4) 1.51(1) 0.00616(4) 1.90(1)
1.814(6) 2.68(2) 0.0490(2) 1.728(9) 2.31(2) 0.0583(3) 1.78(1) 0.405(6) 0.0270(4) 2.09(3)
1.785(7) 1.10(1) 0.0604(5) 1.92(2) 1.24(1) 0.0548(5) 1.68(1) 3.09(2) 0.0351(2) 1.743(8)
1.776(9) 0.95(1) 0.0190(2) 1.71(2) 2.08(1) 0.0397(2) 1.74(1) 0.264(5) 0.0187(4) 1.95(4)
1.75(1) 0.467(7) 0.0336(5) 1.65(2) 1.31(1) 0.0179(1) 1.83(1) 0.403(6) 0.0106(2) 2.02(3)
1.86(1) 0.701(8) 0.0461(5) 1.87(2) 0.669(8) 0.0276(3) 1.91(2) 2.49(2) 0.01175(6) 1.736(9)
1.766(5) 1.39(1) 0.0596(5) 1.74(1) 1.75(1) 0.0646(4) 1.81(1) 1.82(1) 0.0547(4) 1.75(1)
1.782(9) 2.16(1) 0.0211(1) 1.75(1) 1.05(1) 0.0554(5) 1.78(2) 0.572(8) 0.0270(3) 1.82(2)
1.81(2) 0.166(4) 0.0109(3) 1.66(4) 1.33(1) 0.000480(4) 1.75(1) 0.606(8) 0.0269(3) 1.87(2)
1.83(2) 0.427(7) 0.0298(4) 1.87(3) 0.747(9) 0.0322(4) 1.81(2) 2.10(1) 0.001088(6) 1.69(1)
1.743(6) 0.812(9) 0.0480(5) 1.62(2) 2.61(2) 0.0452(2) 1.873(9) 1.51(1) 0.0548(4) 1.75(1)
1.84(2) 1.78(1) 0.00206(1) 1.78(1) 1.52(1) 0.00734(5) 1.78(1) 0.015(1) 0.0016(1) 2.3(2)
1.851(8) 1.12(1) 0.0299(3) 1.95(2) 1.85(1) 0.0403(3) 1.83(1) 0.726(9) 0.0449(5) 1.81(2)
1.78(2) 1.49(1) 0.00499(4) 1.88(1) 0.238(5) 0.0192(4) 1.78(4) 0.656(8) 0.0184(2) 1.75(2)
1.760(9) 2.76(2) 0.0421(2) 1.675(8) 0.066(3) 0.0062(2) 2.8(1) 3.47(2) 0.01102(4) 1.730(7)
1.91(1) 1.13(1) 0.0117(1) 1.83(2) 1.03(1) 0.0330(3) 1.91(2) 0.425(7) 0.0289(4) 1.94(3)
1.788(6) 0.242(5) 0.0176(4) 1.72(3) 2.63(2) 0.0596(3) 1.865(9) 2.71(2) 0.0434(2) 1.717(8)
1.838(9) 0.050(2) 0.0028(1) 2.7(1) 1.51(1) 0.0253(2) 2.01(1) 1.56(1) 0.0622(4) 1.75(1)
1.99(3) 0.0041(6) 0.00037(6) 14(2) 0.490(7) 0.0113(2) 1.94(3) 0.460(7) 0.000423(6) 1.81(3)
1.819(6) 2.66(2) 0.0290(1) 1.841(9) 0.029(2) 0.0027(2) 2.1(1) 3.03(2) 0.0309(1) 1.778(8)

Table III. Full table of the results obtained for the 23 unitaries, for the scenario associated to the Gram matrix SC . Here,
r̃FB(SC) = p̃FB(SC)/p̃FB(SD) represents the experimentally measured overall bunching ratio rFB(SC) = per(SC)/per(SD). We de-
note by Ñ(n1,n2,n3) the raw counts measured at the output of the pseudo number resolving detection setup, for the two-photon input as
described above. The three-photon bunching probabilities can be then retrieved as {p̃(n1,n2,n3)T12, p̃(n1,n2,n3)T22, p̃(n1,n2,n3)T32}, where
Tij represents the measured square moduli |Uij |2 of the programmed unitary matrix.
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