
Low-Overhead Defect-Adaptive Surface Code with Bandage-Like Super-Stabilizers

Zuolin Wei,1, 2 Tan He,1, 2 Yangsen Ye,1, 2 Dachao Wu,1, 2 Yiming Zhang,1, 2 Youwei
Zhao,1, 2 Weiping Lin,1, 2 He-Liang Huang,3, ∗ Xiaobo Zhu,1, 2, 4, † and Jian-Wei Pan1, 2, 4, ‡

1Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences,
University of Science and Technology of China, Hefei 230026, China

2Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics,
University of Science and Technology of China, Shanghai 201315, China

3Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China
4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China

To make practical quantum algorithms work, large-scale quantum processors protected by error-correcting
codes are required to resist noise and ensure reliable computational outcomes. However, a major challenge
arises from defects in processor fabrication, as well as occasional losses or cosmic rays during the computing
process, all of which can lead to qubit malfunctions and disrupt error-correcting codes’ normal operations. In
this context, we introduce an automatic adapter to implement the surface code on defective lattices. Unlike
previous approaches, this adapter leverages newly proposed bandage-like super-stabilizers to save more qubits
when defects are clustered, thus enhancing the code distance and reducing super-stabilizer weight. For instance,
in comparison with earlier methods, with a code size of 27 and a random defect rate of 2%, the disabled qubits
decrease by 1/3, and the average preserved code distance increases by 63%. This demonstrates a significant
reduction in overhead when handling defects using our approach, and this advantage amplifies with increasing
processor size and defect rates. Our work presents a low-overhead, automated solution to the challenge of
adapting the surface code to defects, an essential step towards scaling up the construction of large-scale quantum
computers for practical applications.

INTRODUCTION

Overcoming the challenges posed by realistic hardware
noise, quantum error correction (QEC) plays a pivotal role
in protecting fragile qubits from decoherence effects, unlock-
ing quantum computing’s full potential. Among various QEC
codes, the surface code [1–3] stands out due to its 2D nearest-
neighbor coupling lattice and high error threshold, typically
around 1%. While significant progress has been made in
small-scale implementations of the surface code, such as in-
creasing the code distance from two [4–6] to three [7, 8] and
then to five [9], as well as demonstrating logical gates [10, 11],
the road to achieving large-scale, practical algorithms de-
mands thousands of logical qubits with extremely low gate
error rates, typically below 10−10. This necessitates millions
of physical qubits [12], a scale far beyond the capabilities of
current physical devices.

As we strive to build larger quantum devices with more
qubits, defects like nonfunctional qubits or failed entangling
gates during fabrication are unavoidable. It is estimated
that approximately 2% of the qubits on a transmon device
would be defective with current technology [13]. Even ad-
vanced processors like Zuchongzhi [7, 14–17] and Google’s
Sycamore [9, 18], with just a few dozen qubits, are suscep-
tible to defects. Additionally, external events such as cosmic
rays impacting superconducting devices [19–23], or leakage
and loss events in ion trap or neutral atom arrays [24–26]
can mimic defects. Topological codes rely on specific lattice
structures to encode logical states, making them susceptible to
defect errors that alter the topology and reduce code distance,
necessitating an adaptive approach for error correction on de-
fective lattices [27–32]. To this end, we introduce an adapter

that deforms defective lattices and identifies super-stabilizers,
enabling the implementation of the surface code on defective
lattices. This adapter automates the entire process, which is
crucial for scalability. As chip sizes grow, manually design-
ing the adapter based on processor defects becomes challeng-
ing, especially since we aim for programmable logical oper-
ations. Additionally, our approach introduces a new type of
super-stabilizer called bandage-like super-stabilizers. These
super-stabilizers ensure that our adapter operates with low
overhead when dealing with defects. Compared to previ-
ous methods [29–32], our approach minimizes the number
of disabled qubits caused by defects as possible, achieving
higher code distances and lower-weight super-stabilizers, thus
significantly reducing logical error rates. These advantages
highlight that our low-overhead defect-adaptive surface code
approach provides a reliable and efficient path for scalable,
large-scale fault-tolerant quantum computing.

DEFECTIVE LATTICE SURFACE CODE ADAPTER

Creating a surface code adapter for defective lattices de-
mands an automated solution capable of handling diverse
defect scenarios that manifest randomly across the lattice,
whether along its edges or clustered closely together. Ad-
ditionally, we aim to retain as many qubits as possible to
mitigate the loss of error-correction capability caused by de-
fects. In pursuit of this objective, we present a fully automated
adapter customized for the surface code on a defective lattice,
as depicted in Fig. 1. This adapter comprises three sequential
subroutines:

Boundary Deformation: We kick off by addressing de-
fects along the boundary, removing unsafe boundary data

ar
X

iv
:2

40
4.

18
64

4v
1

 [
qu

an
t-

ph
]

 2
9

A
pr

 2
02

4

2

(a) (b)

(c)

(e) (f) (g) (h)

(d)

Sa
fe

 B
ou

nd
ar

y
D

at
a

Q
ub

it

Internal Qubit Disabling Rule

B
oundary D

eform
ation

Stabilizer Patch

Internal Defect Disabling

=

Bridge Syndrome Qubit

Frontier

Data qubit

Z syndrome
X syndrome Defective qubit

Disabled qubit

Coupler
Defective coupler
Disabled coupler

Z super-stabilizerX super-stabilizer
X logical operator Z logical operator

X boundary data Z boundary data

FIG. 1. The Construction Steps for the Defect-Adaptive Surface Code. (a) An example of a defective surface code lattice, where defective
qubits and couplers are marked in red, and boundary qubits are marked with star symbols. (b), (c), and (d) display the surface code lattice
after undergoing boundary deformation, internal defect disabling, and stabilizer patch, respectively. (e) Illustrates safe boundary data qubits
and their frontiers, including X , Z, and corner boundary data qubits from top to bottom, along with their frontiers, encompassing couplers
and syndrome qubits around data qubits. (f) Depicts the rules for internal defect disabling, showcasing the disabled qubits rules for defect
syndrome qubits, data qubits, and couplers from top to bottom. The rules for defect data qubits and couplers are the same. (g) and (h)
demonstrate the rules for bandage-like super-stabilizers. In scenarios where internal defect qubits are not clustered, they behave similarly to
traditional super-stabilizers, as shown in (g). However, in clustered situations, these super-stabilizers can stretch across weight-1 and bridge
syndrome qubits, as illustrated in (h). Additionally, (h) highlights a bridge syndrome qubit for illustration purposes.

qubits and redundant syndrome qubits. A boundary data qubit
is marked as safe if it ticks off three conditions: the qubit it-
self and its surrounding frontier, including neighboring undis-
abled syndrome qubits and couplers, are defect-free, and its
surrounding frontier aligns with the boundary type, as shown
in Fig. 1(e). This requirement stems from the surface code’s
need for specific syndromes to catch certain errors—an X(Z)
boundary data qubit, for instance, requires a Z(X) syndrome
to detect an X(Z) error, and two X(Z) syndromes to detect a
Z(X) error. Meanwhile, corner data qubits each require an X
and a Z syndrome to catch errors in both directions.

Following these safety guidelines, we turn to a Breadth-
First Search (BFS) algorithm to adjust the surface code lattice
boundaries inward. This process, elaborated in the “Bound-
ary Deformation” algorithm in the Supplementary Material,
assesses the safety of every boundary data qubit. Upon de-
tecting an unsafe data qubit, we disable it along with its sur-
rounding redundant syndrome qubits, which may be defective,

weight-0 (a weight-n syndrome qubit has n undisabled data
qubit neighbors), or of different types from the boundary (e.g.,
Z syndrome qubits adjacent to the disabled X boundary data
qubit). The BFS iteratively reassesses boundary data qubits to
identify any new unsafe ones and redundant syndrome qubits
until no new unsafe boundary data qubits emerge, resulting in
a defect-free boundary, as depicted in Fig. 1(b).

Internal Defect Disabling: This straightforward step in-
volves tackling internal defects, which come in three types:
data qubit defects, syndrome qubit defects, and coupler de-
fects. We follow the rules outlined in Fig. 1(f) to disable
these defects and their neighboring qubits. Specifically, for
data qubit and coupler defects, we disable the corresponding
data qubits. For syndrome qubit defects, we disable the corre-
sponding syndrome qubits and their neighboring data qubits.
The underlying reason for these rules is that internal data
qubits require two X and two Z syndrome qubits to detect
Z and X errors. A specific order is necessary when tackling

3

internal defects—defective syndrome qubit first, then defec-
tive data qubit, and finally defective coupler—to ensure each
rule is applied only once and prevent conflicts. Finally we dis-
able weight-0 syndrome qubits caused by the implementation
of the above rules. As can be easily seen, this entire process
is conducted without altering the boundary’s shape.

We note that internal defects may cluster together, espe-
cially at high defect rates. This leads to two primary sce-
narios: weight-1 syndrome qubit, and bridge syndrome qubit
(see Fig. 1(h)), where a syndrome qubit connects to two ac-
tive data qubits along the same diagonal line. Previous re-
search [32] suggests disabling these types of syndrome qubits.
However, such action may require reapplying internal de-
fect disabling rules, potentially disrupting the previously fixed
boundary shape. In cases of high defect rates, this could
trigger an avalanche effect, disabling a significant portion of
qubits (refer to the Supplemental Material for an example). In
our approach, we don’t disable internal weight-1 and bridge
syndrome qubits due to our proposed bandage-like super-
stabilizer. This strategy helps reduce disabled qubits, min-
imizing super-stabilizer weight and preventing an avalanche
effect. Additionally, retaining bridge syndrome qubits poten-
tially maintains a greater code distance (refer to the Supple-
mental Material for an example).

Stabilizer Patch: In this step, we utilize the proposed
bandage-like super-stabilizers, which combine the same type
of gauge syndrome qubits through disabled qubits, to cover
all internal disabled qubits. When internal defect qubits are
not clustered, they function similarly to traditional super-
stabilizers [29–32], as depicted in Fig. 1(g). However, if in-
ternal defect qubits cluster, these super-stabilizers can stretch
across weight-1 and bridge syndrome qubits, maintaining the
integrity of syndrome qubits and conserving more data qubits,
as shown in an example in Fig. 1(h). These super-stabilizers
share an even number of data qubits with the opposite type of
stabilizers, allowing them to commute with each other.

In the final step, we place logical operators X and Z, onto
the defective lattice. These operators are positioned along
paths containing opposing types of syndrome qubits to avoid
intersecting super-stabilizers and introducing gauge qubits.
Generally, multiple equivalent logical operators exist, and
we choose the most convenient option. Finally, our method
adapts the defect lattice depicted in Fig. 1(a) into surface code
shown in Fig. 1(d), resulting in a greater X distance of 5 com-
pared to the 4 achieved by the traditional method. (refer to
the Supplemental Material for the performance comparison
between the bandage-like method and traditional method for
this defect lattice).

BUILDING STABILIZER MEASUREMENT CIRCUIT

Building stabilizer measurement circuits for adapted de-
vices involves measuring super-stabilizers, which can’t be di-
rectly measured like regular single-syndrome stabilizers be-
cause they contain anti-commuting gauge operators. We mea-

sure super-stabilizers using a common method from Ref. [29],
where X and Z super-stabilizers are measured in alternate
cycles, and their outcomes are inferred from the gauge op-
erators’ product. We note that in our method, multiple
bandage-like super-stabilizers may intertwine to form a super-
stabilizers group (e.g., in Fig. 2(a) II, we see a group with 2
X and 2 Z bandage-like super-stabilizers). It’s crucial to en-
sure that X and Z super-stabilizers in the same group are not
measured in the same cycle while the same type in a group are
measured simultaneously.

Furthermore, to improve error correction ability, we can use
the shell method outlined in Ref. [30]. This involves repeat-
ing the measurement of the same type of gauge operator for
several consecutive cycles, allowing extracting information
about each gauge operator’s value. The number of consec-
utive measurement cycles is called the shell size, as illustrated
in Fig. 2(a). We must determine the appropriate shell size
for each stabilizer group while ensuring it aligns with experi-
mental constraints. Basically, there are two strategies for de-
termining the shell size: the global strategy applies the same
shell size to all stabilizer groups, while the local strategy as-
signs each stabilizer group its own shell size. The selection of
the shell size depends on the characteristics of the processor
and physical system, as discussed in the Supplemental Mate-
rial. For simplicity, in the following numerical simulations,
we use the global shell method.

Once the measurement circuit is set up, we can numerically
simulate and test the performance of the defective lattice sur-
face code adapter. In our simulations, we utilize the Stim sim-
ulator [33] and employ the SI1000 circuit-level noise model
[34], which is well-suited for simulating superconducting ex-
periments, as the error model. In Fig. 2(b), we observe that
for a physical error rate p = 0.002, varying the defect rate
from 0.005 to 0.02 (with consistent defect rates for qubits and
couplers) still allows us to exponentially suppress the Logi-
cal Error Rate (LER) with an increase in code size L (size
L device has L × L data qubits). This demonstrates that our
method maintains the error correction capability of the sur-
face code. Another observation is that lowering the defect
rate can improve error suppression ability. Furthermore, we
compare our results against a perfect lattice with SI1000 p
ranging from 0.002 to 0.004. We find that for a 1% defect rate
with p = 0.002, the error suppression ability of our adapter
is comparable to that of defect-free devices with p = 0.003.
This indicates that even at high defect rates, our adapter can
perform equivalent to a defect-free lattice with physical error
rate increasing only by 0.001, highlighting its practical utility.

BANDAGE-LIKE SUPER-STABILIZER ADVANTAGE

To further showcase the advantages of our approach, we
compare it with traditional super-stabilizer methods [29–32].
We start with a simple case of three scenarios with increas-
ing defects for L = 7 devices, as seen in Fig. 3(a). The
results are then shown in Fig. 3(b). When there’s only one

4

tim
e

sh
el

l s
iz

e

...

... ...

... ...(a)

(b)

I

II
III

IV V

Super-Stabilizer

X(Z) Stabilizer

Bandage-Like Super-Stabilizer

FIG. 2. Illustration of the Stabilizer Measurement Circuit Build-
ing and Related Simulation Results. (a) Space-time lattice with
super-stabilizers forming shells. The columns align along the tem-
poral direction to show the measurement of super-stabilizers in the
space-time lattice. Various types of super-stabilizers are shown: I.
Super-stabilizers formed by single data qubit defect. II. Bandage-
like super-stabilizers formed by nearby defect. III. Super-stabilizers
formed by single syndrome qubit defect. IV. X stabilizer unaffected
by defects. V. Z stabilizer unaffected by defects. The shell size
indicates the consecutive measurements of the same type of super-
stabilizers. For regular stabilizers, X and Z stabilizers are measured
in the same cycle. However, X and Z super-stabilizers cannot be
measured in the same cycle. (b) The Logical error rate (LER) of the
surface code under different code sizes L and defect rates (DR). The
box plot displays the logical error rates for defect rates of 0.005, 0.01,
0.015, and 0.02 at a physical error rate of p = 0.002. The whiskers
extend to data within 1.5 times the IQR from the box. Points beyond
are fliers. The green, blue, and red dashed lines represent references
for a perfect surface code with physical error rates of p = 0.002,
0.003, and 0.004, respectively. In simulations, we generated 100 de-
vices with randomly distributed defects for each L and defect rate.

defect A, the two methods perform equally. However, as we
move from A to AB and then ABC defects, the advantage of
the bandage-like method becomes more pronounced. Specifi-
cally, the bandage method lowers the LER by 42% (24%) for
the |0⟩L (|+⟩L) state with 2 defects, AB, and this improves
to 48% (73%) for 3 defects, ABC. This improvement happens
because the bandage-like method keeps more code distance
and lower-weight stabilizers. For the AB defect scenario, the
traditional method provides a X (Z) distance of 5 (5), while
the bandage-like method maintain 5 (6). Moreover, the aver-
age super-stabilizer weight decreases from 10 to 6.67. Simi-
larly, in the ABC defect case, the traditional method’s X (Z)

distance is 4 (4), while the bandage-like method provides 4
(6). And the average super-stabilizer weight drops from 14 to
7 (refer to Supplementary Material for details).

To generalize this advantage to a broader context, we com-
pare our bandage-like super-stabilizer approach with tradi-
tional methods [29–32] for adapting multiple devices with
randomly distributed defects. It’s worth noting that we in-
tentionally kept weight-1 and bridge syndrome qubits near
boundary data qubits to prevent further boundary deforma-
tion for the traditional methods. This design choice slightly
favored the traditional method, resulting in a higher baseline
performance. In our simulations, we generated 100 devices
with randomly distributed defects for each scenario for statis-
tical purposes, and the defect rates are consistent across qubits
and couplers (refer to the Supplemental Material for scenarios
of devices with only coupler defects).

Figure 3(c-d) shows the average code distance after adap-
tation with increasing defect rates. Naturally, code distance
decreases with higher defect rates for both methods. How-
ever, the bandage-like method consistently maintains a supe-
rior code distance, and this advantage grows as defect rates
increase, similar to the above specific case. For instance, at
a code size of L = 27 and a defect rate of 0.01 (0.02), the
average X distance improves from 14.8 (7.3) to 15.9 (12.0),
and the Z distance from 15.0 (7.4) to 16.1 (11.9), marking a
7.6% (63%) average improvement.

The bandage-like method preserves code distance by dis-
abling fewer qubits. To quantitatively illustrate this, Fig. 3(e)
shows the average percentage of disabled qubits after adapta-
tion. While disabled qubits increase with defect rates, the ban-
dage method exhibits a slower increase, indicating better qubit
preservation compared to the traditional method. For instance,
at a code size of L = 27 and a defect rate of 0.01 (0.02),
the average percentage of disabled qubits improves from 8.5%
(32.8%) to 5.8% (11.1%).

Additionally, Fig. 3(f) shows the weighted average of the
average super-stabilizer weight for each random device, cal-
culated as: wavg = (

∑
d

∑
i wdi)/(

∑
d

∑
i 1). Here, d rep-

resents the index of the random device (100 devices with de-
fects randomly distributed in our simulation), and i represents
the index of the super-stabilizer in each device. wdi repre-
sents the weight of the super-stabilizer indexed by d and i.
We can observe that the bandage-like method exhibits lower
average super-stabilizer weights. For instance, at a code size
of L = 27 and a defect rate of 0.01 (0.02), the average super-
stabilizer weight improves from 7.8 (10.1) to 7.3 (8.0), mark-
ing a 6.3% (21%) improvement. This reduction in weight
enhances the reliability of the super-stabilizer because lower-
weight super-stabilizers are better at identifying errors within
a more localized area, thus preventing error spread and en-
hancing error detection and correction capabilities.

Analyzing Fig. 3(c-f) collectively, we observe another sig-
nificant trend: as code size increases under the same defect
rates, the bandage-like method’s advantages over the tradi-
tional approach also increase in terms of code distance, dis-
abled qubit percentage, and super-stabilizer weight. This scal-

5

A

C

B

FIG. 3. Performance Comparison of the Traditional Method with Our Approach in Handling Defects. (a) An example with a code size
of L = 7. Three highlighted circles represent potential defects, labeled as A, B, and C. We examine three scenarios: only defect A, defects
A and B, and defects A, B, and C. (b) Comparison of logical error rate between bandage-like (B) and traditional (T) methods for the three
scenarios in (a) at a physical error rate of p = 0.002. The bandage-like method shows significant advantages for both |0⟩L and |+⟩L states.
(c-f) display statistics for the bandage-like and traditional methods regarding (c) Average X distance, (d) Average Z distance, (e) Average
disabled qubit percentage, and (f) Average super-stabilizer weight across different defect rates. Each data point is based on 100 generated
devices with defects randomly distributed. In our simulations, defect rates are uniform for qubits and couplers. The bandage-like method
consistently demonstrates substantial advantages, regardless of defect rates or code size. These advantages increase significantly with larger
code sizes and defect rates.

ability advantage is crucial for scaling quantum computing de-
vices.

CONCLUSION AND OUTLOOK

The proposed defect-adaptive surface code has two main
features: 1) Our algorithm automates defect handling step
by step, including boundary deformation, internal defect dis-
abling, stabilizer patch, all without conflicts even in complex
defect scenarios. This method allows us to obtain defect-
adaptive surface codes automatically in all simulations, with-
out manual intervention. Even with a high defect rate of 2%,
our method still shows an exponentially suppression in the
logical error rate as the code distance increases, demonstrat-
ing the feasibility and excellent performance of our approach.
These advantages are crucial for the large-scale expansion of
quantum computing. 2) Unlike previous methods, our adapter
utilizes a new type of bandage-like super-stabilizers, offering
advantages in maintaining more qubits and code distance, and
reducing super-stabilizer weight, especially in scenarios with
clustered defects. This significantly reduces the logical error
rate of quantum memory on defective lattices. In a simulation
with three defects, our method reduces the logical error rate by

48% and 73% for the |0⟩L and |+⟩L states compared to pre-
vious works. Future interesting work will involve observing
the performance of our experimentally-ready approach in real-
world experiments and achieving error suppression by scaling
surface code logical qubits under defective lattices.

The authors are grateful for valuable discussions with Ar-
mands Strikis and Ke Liu. Funding: This research was
supported by the Chinese Academy of Sciences, Anhui Ini-
tiative in Quantum Information Technologies, Shanghai Mu-
nicipal Science and Technology Major Project (Grant No.
2019SHZDZX01), Innovation Program for Quantum Science
and Technology (Grant No. 2021ZD0300200), Special funds
from Jinan science and Technology Bureau and Jinan high
tech Zone Management Committee, Technology Committee
of Shanghai Municipality, National Science Foundation of
China (Grants No. 11905217, No. 11774326), Natural Sci-
ence Foundation of Shandong Province, China (grant num-
ber ZR202209080019), and Natural Science Foundation of
Shanghai (Grant No. 23ZR1469600), the Shanghai Sailing
Program (Grant No. 23YF1452600). X. B. Zhu acknowl-
edges support from the New Cornerstone Science Foundation
through the XPLORER PRIZE. H.-L. H. acknowledges sup-
port from the National Natural Science Foundation of China
(Grant No. 12274464), Natural Science Foundation of Henan

6

(Grant No. 242300421049), and Youth Talent Lifting Project
(Grant No. 2020-JCJQ-QT-030).

∗ quanhhl@ustc.edu.cn
† xbzhu16@ustc.edu.cn
‡ pan@ustc.edu.cn

[1] A. Kitaev, Ann. Phys. 303, 2 (2003).
[2] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cle-

land, Phys. Rev. A 86, 032324 (2012).
[3] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504

(2007).
[4] C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix,

G. J. Norris, M. Gabureac, C. Eichler, and A. Wallraff, Nat.
Phys. 16, 875 (2020).

[5] G. Q. AI, Nature 595, 383 (2021).
[6] J. Marques, B. Varbanov, M. Moreira, H. Ali, N. Muthusubra-

manian, C. Zachariadis, F. Battistel, M. Beekman, N. Haider,
W. Vlothuizen, et al., Nat. Phys. 18, 80 (2022).

[7] Y. Zhao, Y. Ye, H.-L. Huang, Y. Zhang, D. Wu, H. Guan,
Q. Zhu, Z. Wei, T. He, S. Cao, et al., Phys. Rev. Lett. 129,
030501 (2022).

[8] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois,
C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann,
et al., Nature 605, 669 (2022).

[9] G. Q. AI, Nature 614, 676 (2023).
[10] D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou,

T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter,
et al., Nature 626, 58 (2024).

[11] A. Erhard, H. Poulsen Nautrup, M. Meth, L. Postler, R. Stricker,
M. Stadler, V. Negnevitsky, M. Ringbauer, P. Schindler, H. J.
Briegel, et al., Nature 589, 220 (2021).

[12] C. Gidney and M. Ekerå, Quantum 5, 433 (2021).
[13] K. N. Smith, G. S. Ravi, J. M. Baker, and F. T. Chong, in

2022 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO) (IEEE, 2022) pp. 1092–1109.

[14] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H.
Chung, H. Deng, Y. Du, D. Fan, et al., Phys. Rev. Lett. 127,
180501 (2021).

[15] Q. Zhu, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung,
H. Deng, Y. Du, D. Fan, M. Gong, et al., Sci. Bull. 67, 240
(2022).

[16] Y. Ye, T. He, H.-L. Huang, Z. Wei, Y. Zhang, Y. Zhao, D. Wu,
Q. Zhu, H. Guan, S. Cao, et al., Phys. Rev. Lett. 131, 210603
(2023).

[17] M. Gong, H.-L. Huang, S. Wang, C. Guo, S. Li, Y. Wu, Q. Zhu,
Y. Zhao, S. Guo, H. Qian, et al., Sci. Bull. 68, 906 (2023).

[18] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell,
et al., Nature 574, 505 (2019).

[19] J. M. Martinis, npj Quantum Inf. 7, 90 (2021).
[20] M. McEwen, L. Faoro, K. Arya, A. Dunsworth, T. Huang,

S. Kim, B. Burkett, A. Fowler, F. Arute, J. C. Bardin, et al.,
Nat. Phys. 18, 107 (2022).

[21] C. D. Wilen, S. Abdullah, N. Kurinsky, C. Stanford, L. Cardani,
G. d’Imperio, C. Tomei, L. Faoro, L. Ioffe, C. Liu, et al., Nature
594, 369 (2021).

[22] A. P. Vepsäläinen, A. H. Karamlou, J. L. Orrell, A. S. Do-
gra, B. Loer, F. Vasconcelos, D. K. Kim, A. J. Melville, B. M.
Niedzielski, J. L. Yoder, et al., Nature 584, 551 (2020).

[23] L. Cardani, F. Valenti, N. Casali, G. Catelani, T. Charpen-
tier, M. Clemenza, I. Colantoni, A. Cruciani, G. D’Imperio,
L. Gironi, et al., Nat. Commun. 12, 2733 (2021).

[24] J. Vala, K. B. Whaley, and D. S. Weiss, Phys. Rev. A 72,
052318 (2005).

[25] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Neg-
nevitsky, P. Schindler, T. Monz, U. G. Poschinger, C. Hempel,
J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin,
and M. Müller, Phys. Rev. X 7, 041061 (2017).

[26] I. Cong, H. Levine, A. Keesling, D. Bluvstein, S.-T. Wang, and
M. D. Lukin, Phys. Rev. X 12, 021049 (2022).

[27] T. M. Stace, S. D. Barrett, and A. C. Doherty, Phys. Rev. Lett.
102, 200501 (2009).

[28] S. Nagayama, A. G. Fowler, D. Horsman, S. J. Devitt, and
R. Van Meter, New J. Phys. 19, 023050 (2017).

[29] J. M. Auger, H. Anwar, M. Gimeno-Segovia, T. M. Stace, and
D. E. Browne, Phys. Rev. A 96, 042316 (2017).

[30] A. Strikis, S. C. Benjamin, and B. J. Brown, Phys. Rev. Appl.
19, 064081 (2023).

[31] A. Siegel, A. Strikis, T. Flatters, and S. Benjamin, Quantum 7,
1065 (2023).

[32] S. F. Lin, J. Viszlai, K. N. Smith, G. S. Ravi, C. Yuan,
F. T. Chong, and B. J. Brown, “Codesign of quantum error-
correcting codes and modular chiplets in the presence of de-
fects,” (2024), arXiv:2305.00138 [quant-ph].

[33] C. Gidney, Quantum 5, 497 (2021).
[34] C. Gidney, M. Newman, A. Fowler, and M. Broughton, Quan-

tum 5, 605 (2021).

Supplemental Material for “Low-Overhead Defect-Adaptive Surface Code with Bandage-Like
Super-Stabilizers”

Zuolin Wei,1, 2 Tan He,1, 2 Yangsen Ye,1, 2 Dachao Wu,1, 2 Yiming Zhang,1, 2 Youwei
Zhao,1, 2 Weiping Lin,1, 2 He-Liang Huang,3, ∗ Xiaobo Zhu,1, 2, 4, † and Jian-Wei Pan1, 2, 4, ‡

1Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences,
University of Science and Technology of China, Hefei 230026, China

2Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics,
University of Science and Technology of China, Shanghai 201315, China

3Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China
4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China

DEFECTIVE LATTICE SURFACE CODE ADAPTER

The adapter we propose achieves the creation of func-
tional surface codes on defective lattices through three key
steps: boundary deformation, internal defect disabling, and
stabilizer patching. Let’s explore each of these steps and
algorithms thoroughly. In the upcoming algorithms, we’ll
approach it from a graphical perspective, treating qubits
(whether data or syndrome qubits) and couplers within the lat-
tice as nodes and edges on a graph, respectively.

Boundary Deformation

First up is boundary deformation, aimed at handling defects
along the boundary. We’ll kick things off by laying out the
definitions for the different types of boundary data nodes.

Definition 1. Types of Boundary Data Node:

• A boundary data node exclusively situated on X/Z
boundary is categorized as a X/Z-type boundary data
node (see Fig. S1(a) and Fig. S1(b)).

• A boundary data node located on both X and Z bound-
aries is classified as a C-type (Corner) boundary data
node (see Fig. S1(c)).

Figure S2(a) provides an example, marking the different
types of boundary data nodes in a surface code. Following
that, we define the frontier of a boundary data node as the set
of its neighboring syndrome nodes and the edges connecting
to these nodes, as illustrated in Fig. S1. With these concepts,
we can determine if a boundary data node is safe, which must
meet the following three conditions simultaneously:

• Condition-1: The boundary data node itself is defect-
free;

• Condition-2: The components in its frontier, including
syndrome nodes and edges, are defect-free;

• Condition-3: The type and number of syndrome qubits
on the frontier should match the type of the boundary
data node, as illustrated in Fig. S1.

Frontier

(b) (c)(a)

FIG. S1. Safe boundary data nodes and theirs frontiers. The
frontiers of a boundary data node comprise neighboring syndrome
nodes along with the connecting edges. A boundary data node is safe
if the node itself and its frontier are defect-free, and its frontier should
match the type of boundary data node: (a) An X-type boundary data
node should have a frontier containing 2 X syndrome nodes and 1
Z syndrome node. (b) A Z-type boundary data node should have a
frontier containing 2 Z syndrome nodes and 1 X syndrome node. (c)
A C-type boundary data node should have a frontier containing 1 Z
syndrome node and 1 X syndrome node.

Algorithm 1 Boundary Deformation
Input: Initial boundary data nodes
Output: Disabled boundary nodes
for n0 in C boundary data nodes do

if n0 is unsafe then ▷ Visiting the corner first is better
Disable n0

FRONTIERCLEANER(n0)
end if ▷ Refer to Algorithm 2

end for
flag← True
while flag do

flag← False
for n0 in undisabled boundary data nodes do

if n0 is unsafe then
flag← True
Disable n0

FRONTIERCLEANER(n0)
end if ▷ Refer to Algorithm 2

end for
end while

We remove all the unsafe boundary data nodes using the
boundary deformation algorithm, detailed in Algorithm 1.
This iterative algorithm evaluates the safety of each bound-
ary data node, starting with corner boundary data nodes in
the initial round and then assessing all boundary data nodes

ar
X

iv
:2

40
4.

18
64

4v
1

 [
qu

an
t-

ph
]

 2
9

A
pr

 2
02

4

2

(a)

(c) (d)

(b)1 1

1

2

2

3

3

4

4

5

5

6

6

7 8

Data qubit

Z syndrome
X syndrome Defective qubit

Disabled qubit

Coupler
Defective coupler
Disabled coupler

X boundary data
Z boundary data
Unsafe boundary data

FIG. S2. Detailed steps for the boundary deformation of defective lattice in the Fig. 1(a) of the main text. The entire process is illustrated
sequentially from (a) to (d). (a) Initial boundary data nodes are highlighted with colored stars. The top and bottom boundaries correspond to
X boundaries, while the left and right boundaries correspond to Z boundaries. Intersections of X and Z boundaries are denoted as C (corner)
boundary data nodes. Step 1 addresses corner boundary data qubits first. As shown, one corner boundary data node is unsafe due to being
defective, and should be disabled. Further, the Z syndrome neighbors to it should be cleaned according to the frontier cleaner subroutine.
(b) Step 2 is introduced to address the remaining boundary data node defects. Several scenarios are encountered here: Unsafe boundary data
nodes 1, 5 and 8 are defective themselves; unsafe node 2 has defective edge in the frontier; unsafe nodes 3, 4, 6 and 7 have defective syndrome
node in the frontier. All these unsafe boundary data nodes need to be disabled, and the syndrome nodes neighboring the unsafe ones should be
cleaned using the frontier cleaner, including isolated syndrome nodes and syndrome nodes with the wrong type from the boundary. (c) Step 3
is similar to step 2. Unsafe boundary data nodes 1-6 have an incorrect frontier shape with its boundary type. (d) Upon completing the above
process, a clean boundary with all boundary data nodes safe is obtained.

in subsequent rounds. If an unsafe data node is detected, it
needs to be disabled, and then the frontier cleaner described
in Algorithm 2 is called to clean its frontier. This involves re-
moving weight-0 syndrome nodes, defective syndromes, and
syndrome qubits of different types from the boundary, such
as the Z syndrome qubit adjacent to the disabled X bound-
ary data qubit. After implementing these, new boundary data
nodes are introduced, pushing the boundary inward. This it-

erative process continues until no unsafe boundary data nodes
remain within the boundary. Figure S2 illustrates a sample of
boundary deformation steps for the defect lattice in Fig. 1(a)
of the main text.

3

Internal Defect Disabling

The step of Internal Defect Disabling addresses internal de-
fects. This process is straightforward; by applying the fol-
lowing rules (see Fig. S3) just once, internal defects and their
related qubits can be effectively removed.

• Step 1: Disable the defective syndrome nodes and their
neighboring data nodes, as shown in Fig. S3(a).

• Step 2: Disable all defective data nodes, as illustrated
in Fig. S3(b).

• Step 3: Disable data nodes if the edges (couplers) con-
nected to them are defective, as depicted in Fig. S3(c).

• Step 4: Disable any weight-0 syndrome nodes resulting
from the above steps.

After executing these steps, all defect nodes and edges in
the surface code lattice will be successfully processed. For
example, in the lattice shown in Fig. S2(d), after the step
of Internal Defect Disabling, we obtain the lattice shown in
Fig. S4(a).

(a)

(b)

(c)

FIG. S3. Internal defect disabling rules. (a) Rule for a defective
syndrome node; (b) Rule for a defective data node; (c) Rule for a
defective coupler. Red indicates defective components, while gray
represents disabled components.

Stabilizer Patching

Since the previous steps have disabled some qubits, we
need to search for super-stabilizers to ensure that the sur-
face code can function properly. The bandage-like super-
stabilizers combine the same type of gauge syndrome nodes
through disabled nodes and can be searched using a path find-
ing algorithm. For this purpose, we first define the stabilizer
search graph to simplify the stabilizer search procedure by
identifying connected components on it.

Definition 2. Stabilizer Search Graph.
An X(Z) stabilizer search graph is a subgraph of the orig-

inal surface code lattice, containing:

• All internally disabled data nodes within the lattice.

• All X(Z) syndrome nodes.

• All edges connecting the aforementioned node types.

A sample X stabilizer search graph is illustrated in
Fig. S4(b). We then utilize Algorithm 3 to conduct X(Z)
super-stabilizer search on the X(Z) stabilizer search graph.
This algorithm traverses all undisabled syndrome nodes on the
stabilizer search subgraph and identifies all connected compo-
nents. The syndrome nodes within the same connected com-
ponent naturally constitute a super-stabilizer, as depicted in
Fig. S4(b). By executing the Stabilizer Search for both X and
Z syndrome nodes, all stabilizers have now been formed, ef-
fectively addressing all defects, and they all commute.

Finally, we will discuss the placement of logical operators
on a surface code to encode a logical qubit within the defec-
tive surface code lattice. To achieve this, we will introduce
the concept of the logical operator search for positioning X/Z
logical operators.

Definition 3. Logical Operator Search Graph.
An X(Z) logical operator search graph is a subgraph of the

original surface code lattice that consists of several elements:

• All undisabled data nodes

• All Z(X) undisabled syndrome nodes

• All edges in the original graph that connect these ele-
ments

A sample X logical operator search graph is depicted in
Fig. S4(c). Once established, determining logical operators
becomes straightforward:

• The X logical operator is determined by identifying the
shortest path between the top and bottom boundaries
of the X boundaries on the X logical operator search
graph.

• Similarly, the Z logical operator is determined by iden-
tifying the shortest path between the left and right
boundaries of the Z boundaries on the Z logical op-
erator search graph.

The selection of the shortest path is based on the require-
ment that, following the property of the surface code, all log-
ical operators connecting both parts of the boundaries in the
logical operator search graph must be identical after decoding.

After implementing these algorithmic steps, we have suc-
cessfully adapted the surface code, achieving the following
outcomes:

• Nodes related to defects were disabled to preserve the
properties of the stabilizer code.

• Establishment of stabilizers (including super-
stabilizers) in the adapted code.

• Determination of X and Z logical operators intended
for protection by the code.

4

Algorithm 2 Frontier Cleaner Subroutine
Input: n0 ← Disabled data node to clean its frontier
Output: Disabled syndrome nodes in the frontier, new introduced boundary data nodes
t← boundary type of n0 ▷ Type of boundary data node in BX, BZ or BC
Sf ← undisabled syndrome nodes neighbor to n0

for s in Sf do ▷ Disabling redundant syndrome nodes
if s is defective then Disable s, continue
else if s is weight-0 syndrome node then Disable s, continue
else if s is X syndrome node and t = BZ then Disable s, continue
else if s is Z syndrome node and t = BX then Disable s, continue
end if

end for
if t = BC then

S′
f ← undisabled syndrome nodes neighbor to n0 ▷ S′

f differs from Sf
if len(S′

f) = 2 then
Disable the node with fewer undisabled neighbors; if they are equal, disable the Z syndrome node.

end if ▷ Prefer X syndrome nodes
end if
Sd ← disabled syndrome nodes that have undisabled neighbors and are neighbors to n0

if t = BC then ▷ Introducing new boundary data nodes, C Boundary situation
x← 0, z ← 0
for s in Sd do

N0 ← undisabled nodes that have 3 undisabled neighbors and are neighbors to s
if s is X syndrome node then

x← x+ len(N0)
else if s is Z syndrome node then

z ← z + len(N0)
end if

end for
if x < z then t← BX ▷ Treat corner as X boundary
else if x > z then t← BZ ▷ Treat corner as Z boundary
else if x = z then t← BX ▷ Prefer X syndrome nodes
end if

end if
for s in Sd do

if s is X syndrome and t = BZ or s is Z syndrome and t = BX then
N1 ← undisabled nodes neighbor to s
if t = BX then ▷ X boundary situation

Add N1 to the X boundary
else if t = BZ then ▷ Z boundary situation

Add N1 to the Z boundary
end if

end if
end for

5

(a) (b) (c)

FIG. S4. Subgraphs for stabilizer and logical operator search. (a) The lattice has undergone boundary deformation and internal defect
disabling, rendering all defective nodes and edges (depicted in gray) inactive in this diagram. This enables us to search for stabilizers and
logical operators within its subgraphs. (b) X stabilizer search graph. This subgraph is employed for searching X stabilizers. It encompasses
all internally deactivated data nodes, alongside all X syndrome nodes and their connecting edges. Algorithm 3 is deployed to identify all
connected components on this graph containing active X syndrome nodes, facilitating the creation of stabilizers, including super-stabilizers.
(c) X logical operator search graph. This subgraph is dedicated to the search for X logical operators. It includes all active data nodes,
undisabled Z syndrome nodes, and the connecting edges. The shortest logical X operator, highlighted by an orange line, illustrates how it can
span between the top and bottom sections of the X boundaries, composed of data nodes on the shortest path.

Algorithm 3 Stabilizer Search
for ns in undisabled syndrome nodes do

if the ns is already part of a stabilizer then
continue ▷ Skip visited syndrome node.

end if
cc← CONNECTEDCOMPONENT(ns) ▷ Connected component on stabilizer search graph, as shown in Fig. S4(b).
Combine all undisabled syndrome nodes in cc to form a stabilizer.

end for

6

BUILDING STABILIZER MEASUREMENT CIRCUIT

Shell Strategies

As mentioned in the main text, when building the stabilizer
circuit, we can employ two methods: using a global shell size
for all stabilizer groups, or using a local shell size for each sta-
bilizer group, as illustrated in Fig. S5. For the local approach,
further subdivision is possible. In this section, we will inves-
tigate three different shell strategies, as outlined below:

• GLOBAL: All stabilizer groups share the same shell
size nshell, ranging from 1 to (L− 1)/2, where L is the
code size of the original lattice with L× L data qubits.

• LOCALAVG: Each stabilizer group has a shell size of
⌊r · wavg⌋, where r is the shell size-weight ratio, and
wavg represents the average weight of super-stabilizers
in each stabilizer group.

• LOCALMAX: Each stabilizer group has a shell size of
⌊r ·wmax⌋, where wmax represents the maximum weight
of super-stabilizers in each stabilizer group.

tim
e

sh
el

l s
iz

e

...

... ...

... ...

I

II
III

IV V

Super-Stabilizer

X(Z) Stabilizer

Bandage-Like Super-Stabilizer

tim
e

sh
el

l s
iz

e

...

...

...

... ...

I

II
III

IV V

Super-Stabilizer

X(Z) Stabilizer

Bandage-Like Super-Stabilizer

(a)

(b)

FIG. S5. Illustration of global and local shell strategies. (a) Global
strategy. The same shell size is maintained for different stabilizer
groups I, II, and III. Stabilizer IV and V, unaffected by defects, are
measured every cycle. (b) Local strategy. Different shell sizes are
allocated for different stabilizer groups. For instance, groups I, II,
and III have shell sizes of 2, 3, and 4, respectively. Stabilizers IV and
V are measured every cycle, similar to the global strategy.

Next, we’ll demonstrate the performance of different shell
size strategies from a simulation perspective. It’s worth not-
ing that in our simulations, we did not consider complex

noise models like crosstalk or leakage. Therefore, considering
the specific physical implementation, we recommend initially
comparing these strategies through experiments to choose the
one that offers better performance. And our analysis in this
section can provide insights for how to select the optimal strat-
egy.

Settings for the Simulation

We generate a stabilizer measurement circuit and leverage
the Stim simulator [1] for the simulation. Our choice of the
SI1000 circuit-level noise model, as described in [2], is par-
ticularly suitable for simulating superconducting experiments.
The error rate for each quantum gate is outlined in Table S1.
We conducted simulations on 100 devices with randomly in-
troduced defects for each defect rate and code size, and these
devices maintain a consistent defect rate for both qubits and
couplers (applicable to the scenario of superconducting quan-
tum devices with tunable coupler architecture). Logical error
rates for the |0⟩ and |+⟩ states are simulated after L cycles
of stabilizer measurements, where L represents the code size
of the unadapted lattice. The circuit begins by measuring the
opposite super-stabilizer of the initial state to cover all types
of errors that may occur at the beginning of the circuit. For in-
stance, when considering the |0⟩ state, we begin by measuring
X super-stabilizers.

Gate Error Rate Noise Channel
CZ p 2-qubit depolarizing

AnyClifford1 p/10 1-qubit depolarizing
InitZ 2p bitflip
MZ 5p bitflip
Idle p/10 1-qubit depolarizing

ResonatorIdle 2p 1-qubit depolarizing

TABLE S1. SI1000 circuit-level noise model [2]. We use p to indi-
cate the physical error rate.

Simulation Results

For each strategy, we must first determine the optimal shell
size. To achieve this, we analyze the trend of the logical error
rate (LER) as the shell size increases. The simulation results
for a specific device are depicted in Fig. S6 (a) and (b). Typi-
cally, the LER for this device typically exhibits a decreasing-
then-increasing trend with the growth of either the global shell
size nshell or the local shell ratio r. Hence, there exists an opti-
mal point for the global shell size or the local shell ratio. This
trend is consistent across most random devices. The point
with the lowest LER is termed the “sweet point” for each de-
vice. In our simulation, we use LER at the “sweet point” to
represent the LER for each random device.

7

2 4 6 8 10
nshell

0.01

0.02

0.03

0.04
LE

R
(a) G, |0

G, | +

0.0 0.2 0.4 0.6 0.8
r

0.01

0.02

0.03

0.04

LE
R

(b) LA, |0
LA, | +
LM, |0
LM, | +

FIG. S6. Determining the optimal shell size by investigating dif-
ferent values of nshell for the GLOBAL(G) method, and r for the
LOCALAVG(LA) and LOCALMAX(LM) methods. (a) LER ver-
sus global shell size nshell for a specific device, with a defect rate of
0.02 for qubits and couplers, code size L = 21 and a physical error
rate of p = 0.002. (b) LER versus local shell ratio r for the same
specific device. Both global and local methods exhibit a trend of de-
creasing LER followed by an increase. The point with the lowest
LER is referred to as the “sweet point”.

We then conducted a comparison of the performance dif-
ferences between the global and local shell strategies. In our
simulation, we randomly generated 100 devices with code size
L = 21 and a defect rate of 0.02. We compared the rela-
tive LER difference at the sweet point to investigate the vari-
ance in error correction ability between different shell strate-
gies, as depicted in Fig. S7. From the results, we observed
that the LOCALAVG strategy exhibited a greater advantage
over the GLOBAL strategy compared to the LOCALMAX
strategy. The GLOBAL strategy exhibits a median 12% in-
crease in LER compared to the LOCALAVG strategy. This
suggests that customizing a local shell strategy for each sta-
bilizer subgroup yields better performance than the global
approach. Moreover, different local strategies demonstrate
varying performance disparities. For achieving higher error
correction performance, further customization of local strate-
gies based on experimental system requirements may be war-
ranted. However, it’s worth noting that our current anal-
ysis overlooks complex noise sources such as leakage and
crosstalk. When considering these noise factors, the global
strategy might have advantages, particularly when calibrating
a few parallel CNOT or CZ patterns. Nevertheless, we refrain
from delving into detailed discussions on this aspect here. For
simplicity, we primarily employ the global shell method in

0.1 0.0 0.1 0.2 0.3
Relative LER Difference

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

G-LA, |0
G-LA, | +
G-LM, |0
G-LM, | +
Med.: 0.12
Med.: 0.11
Med.: 0.08
Med.: 0.07

FIG. S7. Cumulative Distribution Function (CDF) shows the
difference in relative LER between the GLOBAL(G), LO-
CALAVG(LA) and LOCALMAX(LM) Strategies. G-LA rep-
resents (LERG − LERLA)/LERLA; G-LM represents (LERG −
LERLM)/LERLM. The colored vertical dashed lines indicate the me-
dians on the plots. In our simulation, we randomly generated 100
devices with L = 21 and a defect rate of 0.02 for qubits and cou-
plers, using a physical error rate of p = 0.002.

most of our simulations in the main text.

THE ADVANTAGE OF BANDAGE-LIKE
SUPER-STABILIZERS

Advantages over Traditional Methods in Handling Bridge
Syndrome Qubits (Using the Case of Fig. 3(a) in the Main Text

as an Example)

In comparison to traditional methods, our approach retains
bridge syndrome qubits instead of removing them when deal-
ing with internal defects. This could potentially result in ob-
taining a larger code distance. Here, we illustrate and analyze
this phenomenon using a specific example from the main text
in Fig. 3(a): an L = 7 lattice with 1 (left panel of Fig. S8(a)),
2 (middle panel of Fig. S8(a)), and 3 (right panel of Fig. S8(a))
diagonal nearest neighbor data qubit defects.

In the case of 1 data qubit defect (left panel of Fig. S8(a)),
both methods show no difference (see left panel of Fig. S8(b)
and Fig. S8(c)), as no bridge syndrome qubits appear.

For 2 nearest neighbor data qubit defects (middle panel of
Fig. S8(a)), the bandage-like method demonstrates an advan-
tage over the traditional one. In the traditional method, after
removing the defective data qubits, a bridge syndrome qubit
marked as 1⃝ appears. This qubit and its surrounding data
qubits need to be removed to form the super-stabilizer shown
in Fig. S8(c). However, with the bandage-like method, no
additional qubits need to be removed after disabling the de-
fective data qubits, enabling the surface code to function nor-
mally with bandage-like super-stabilizers. As a result, the

8

(a) Original Devices

Bandage-Like Method

Traditional Method

(b)

(c)

1

53

4

2

FIG. S8. An example is provided to illustrate the difference
between the bandage-like and traditional methods in handling
bridge syndrome qubits. (a) A lattice with a code size of L = 7 as
mentioned in main text Fig. 3(a), with 1, 2, and 3 diagonal data qubit
defects from left to right. (b) The lattice obtained by the bandage-
like method. Only defective data qubits are disabled. (c) The lattice
obtained by the traditional method. Bridge syndrome qubits (and
popped-up weight-1 syndrome qubits) are disabled, leading to the
disabling of more qubits, resulting in the formation of a large area of
disabled qubits protected by large weight super-stabilizers.

Z distance improves from 5 (traditional) to 6 (bandage-like),
while the X distance remains 5 for both methods. Moreover,
the average super-stabilizer weight decreases from 10 (tradi-
tional) to 6.67 (bandage-like). By preserving the syndrome
qubit 1⃝, not only two additional data qubits are saved, but
also two more syndrome qubits marked as 2⃝ and 3⃝ remain
unaffected by defects, providing extra information for error
correction.

In the case of 3 nearest neighbor data qubit defects (right
panel of Fig. S8(a)), the advantage of the bandage-like method
is further amplified. Two bridge syndrome qubits marked as
4⃝ and 5⃝ in Fig. S8(b) are preserved, leading to an improve-

ment in Z distance from 4 (traditional) to 6 (bandage-like),
and a decrease in the average super-stabilizer weight from 14
(traditional) to 7 (bandage-like).

Advantages over Traditional Methods in Handling Weight-1
Syndrome Qubits

Our bandage-like method also preserves weight-1 syn-
drome qubits, unlike the traditional approach where they are

2
3

1

(a) (b)
Bandage-Like Method Traditional Method

FIG. S9. An example illustrates the contrast between the
bandage-like and traditional methods in handling weight-1 syn-
drome qubits. (a) Bandage-like method: Depicts a scenario with a
weight-1 Z syndrome qubit, labeled as 1⃝. It forms a C-shaped X
bandage-like super-stabilizer and a T-shaped Z bandage-like super-
stabilizer. By preserving weight-1 syndrome qubit 1⃝, qubit 2⃝ is
also preserved, while syndrome qubit 3⃝ remains unaffected by de-
fects. (b) Traditional method: Involves disabling the weight-1 syn-
drome qubit and its neighboring data qubit, resulting in the formation
of a higher-weight Z super-stabilizer.

disabled. Illustrated in Fig. S9(a), the weight-1 syndrome
qubit marked as 1⃝ is retained, resulting in a C-shaped weight-
8 X super-stabilizer and a T-shaped weight-10 Z super-
stabilizer. However, in contrast to the traditional method
shown in Fig. S9(b), the weight-1 syndrome qubit 1⃝ would
be disabled, and further the data qubit marked as 2⃝ must also
be disabled. Consequently, our method yields a weight of 10
for the Z super-stabilizer, lower than the traditional method’s
12, while maintaining the X super-stabilizer’s weight at 8.
Additionally, we gain an extra normal Z syndrome qubit 3⃝,
enhancing error correction by providing more information.

It’s noteworthy that qubit 2⃝ in Fig. S9(a) is included twice
in the X super-stabilizer, indicating that the X super-stabilizer
will not be triggered if a Z error occurs on it. However, ac-
cording to our logical operator placement strategy, no X logi-
cal operator will pass through the qubit 2⃝. Thus, disregarding
Z errors on qubit 2⃝ does not negatively impact the integrity
of the code.

More Shortcomings of Traditional Methods

Traditional methods disable weight-1 and bridge syndrome
qubits when handling internal defects, which can introduce
more issues, as described below.

Avalanche Effect

In the process of disabling weight-1 and bridge syndrome
qubits, traditional methods may generate new weight-1 and
bridge syndrome qubits. Therefore, this process needs to be
iterated until no new weight-1 and bridge syndrome qubits are
generated. This iterative process may require many iterations
and result in the removal of many qubits, a phenomenon re-
ferred to as the avalanche effect.

9

Figure S10 provides a very intuitive example. For the sur-
face code lattice in Fig. S10(a), after three iterations of the tra-
ditional method to disable all weight-1 and bridge syndrome
qubits, a total of 13 qubits are disabled. However, in the
bandage-like method, only the 3 defective qubits will be dis-
abled, maintaining the least overhead.

(a)
Bandage-Like Method

Traditional Method

(b)

(c) (d)

1 1

2

2
3 3

4 4

FIG. S10. An example illustrates the avalanche effect of the tra-
ditional method. (a) A device generated by the internal defect-
disabling rules of the bandage-like method. Three data qubits are
disabled. A bridge syndrome qubit exists, marked as 1⃝. If the
traditional method is used, this bridge syndrome qubit needs to be
removed. (b) Using the traditional method to remove bridge syn-
drome qubit 1⃝ results in the emergence of a new bridge syndrome
qubit, marked as 2⃝. (c) Continuing with the traditional method to
remove bridge syndrome qubit 2⃝ leads to the appearance of two new
weight-1 syndrome qubits, marked as 3⃝ and 4⃝. (d) The two weight-
1 syndrome qubits, 3⃝ and 4⃝, are then disabled. Finally, the iterative
disabling process results in a significant area of disabled qubits.

Boundary Affected by Traditional Internal Defect Disabling Rules

In our method, the second step of handling internal de-
fects does not affect the boundary qubits anymore, whereas
in traditional methods, disabling weight-1 and bridge syn-
drome qubits neighboring boundary data qubits may impact
the boundary.

An intuitive example is illustrated in Fig. S11. For the sur-
face code lattice in Fig. S11(a), the bandage-like method does
not require further disabling of qubits, while in the traditional
method, additional weight-1 and bridge syndrome qubits need
to be disabled, resulting in the boundary being affected, as
shown in Fig. S11(b). One drawback of this process is the
need for repeated execution of boundary deformation and in-
ternal defect disabling steps until no unsafe qubits remain.
However, in our method, this situation does not arise, as only
one iteration of boundary deformation and internal defect dis-
abling is required.

It is worth mentioning that, for simplicity, when dealing
with internal defects in both the main text and appendix, we

1

4 3

2

Bandage-Like Method Traditional Method
(a) (b)

FIG. S11. An example illustrates the traditional method’s poten-
tial impact on the boundary when handling internal defects. (a)
The device processed using the internal defect-disabling rules of the
bandage-like method. Weight-1 syndrome qubits (marked as 4⃝) and
bridge syndrome qubits (marked as 1⃝- 3⃝) are adjacent to boundary
data qubits. (b) The traditional method requires further disabling of
1⃝- 4⃝, leading to the disabling of more qubits and altering the shape

of the boundary.

(a)
Bandage-Like Method Traditional Method

(b)
E1

E2

E3

E4

E5

E6
1 1

FIG. S12. Comparison between the bandage-like method and
traditional method in handling the defective lattice shown in
Fig. 1(a) of the main text. (a) The result from the bandage-like
method. (b) The result from the traditional method. The red lines
indicate the logical error strings occurring on undisabled data qubits
that trigger no stabilizer. The solid line marked as E1 and E4 repre-
sents the X error string, while the dashed line marked as E2, E3, E5

and E6 represent Z error strings.

do not remove weight-1 and bridge syndrome qubits neighbor-
ing boundary data qubits, even in traditional methods. There-
fore, in practice, the modified traditional method we use as
the baseline should perform better than the original traditional
method.

Extended Data for the Main Text

Extended Data for Fig. 1 in the Main Text

For the defective lattice shown in Fig. 1(a) of the main text,
we compare the surface codes obtained using the bandage-
like method and traditional methods for handling defects, il-
lustrated in Fig. S12(a) and Fig. S12(b) respectively.

To showcase the effectiveness of the bandage-like method
in improving the code distance, we examine the shortest error
strings that do not trigger any stabilizer. In Fig. S12(a), us-
ing the bandage-like method, we find that the shortest X error

10

0.005 0.01 0.015 0.02
Defect Rate

5

10

15

20
X

Di
st

an
ce

(a) B, L=15
B, L=21
B, L=27

T, L=15
T, L=21
T, L=27

0.005 0.01 0.015 0.02
Defect Rate

5

10

15

20

Z
Di

st
an

ce

(b) B, L=15
B, L=21
B, L=27

T, L=15
T, L=21
T, L=27

0.005 0.01 0.015 0.02
Defect Rate

0.0

0.2

0.4

0.6

0.8

Di
sa

bl
ed

 Q
ub

it
Pc

t.

(c) B, L=15
B, L=21
B, L=27

T, L=15
T, L=21
T, L=27

0.005 0.01 0.015 0.02
Defect Rate

20

40

60

80

100

Av
g.

 S
up

er
-S

ta
b.

 W
ei

gh
t

(d) B, L=15
B, L=21
B, L=27

T, L=15
T, L=21
T, L=27

0.005 0.01 0.015 0.02
Defect Rate

6

8

10

12

14

16

18

Av
g.

 S
up

er
-S

ta
b.

 W
ei

gh
t

(e) B, L=15
B, L=21
B, L=27

T, L=15
T, L=21
T, L=27

FIG. S13. Extended Data for Fig. 3(c-f) in the Main Text. The whiskers extend to data within 1.5 times the IQR from the box. Points
beyond are fliers. (a-d) display statistics for the bandage-like (B) and traditional (T) methods regarding (a) Average X distance, (b) Average
Z distance, (c) Average disabled qubit percentage, and (d) Average super-stabilizer weight across different defect rates. (e) Average super-
stabilizer weight without fliers.

string labeled as E1 consists of 5 undisabled data qubits, with
a weight of 5. Consequently, the X distance achieved with the
bandage-like method is 5. Conversely, in Fig. S12(b), employ-
ing the traditional method, the shortest X error string labeled
as E4 consists of 4 undisabled data qubits, with a weight of 4.
Thus, the X distance of the code generated by the bandage-
like method exceeds that of the traditional method. Addi-
tionally, the bandage-like method reduces the average super-
stabilizer weight from 8.5 to 7.2 and disables 5 fewer qubits.

For Z errors, both the shortest Z logical error strings
marked as E2 and E5 have a weight of 5. Therefore, the Z
distance of the bandage-like method is not improved. How-
ever, even though the Z distance is not improved, saving more
qubits in the bandage-like method increases the weight of
some logical error strings. For instance, consider a data qubit
marked as 1⃝ saved in the bandage-like method. Qubit 1⃝ ele-
vates a weight-5 Z error string marked as E6 in the traditional
method to a weight-6 string marked as E3 in the bandage-like
method. In this example device, 12 weight-5 Z logical error
strings are elevated, reducing the total number of weight-5 Z
error strings from 18 (traditional) to 6 (bandage-like). Ele-
vating the weight of logical error strings led to a decrease in
their probability of occurrence, ultimately reducing the logi-
cal error rate. This phenomenon is also discussed in [3], which
highlights the correlation between error correction ability and
the number of unique weight-d logical operators.

0.01 0.02 0.03 0.04
Defect Rate

6

8

10

12

14

16

18

20

Av
g.

 X
 D

ist
an

ce

(a) T, L=15
B, L=15
T, L=21
B, L=21
T, L=27
B, L=27

0.01 0.02 0.03 0.04
Defect Rate

6

8

10

12

14

16

18

20

Av
g.

 Z
 D

ist
an

ce

(b) T, L=15
B, L=15
T, L=21
B, L=21
T, L=27
B, L=27

0.01 0.02 0.03 0.04
Defect Rate

0.1

0.2

0.3

0.4

Av
g.

 D
isa

bl
ed

 Q
ub

it
Pc

t.(c) T, L=15
B, L=15
T, L=21
B, L=21
T, L=27
B, L=27

0.01 0.02 0.03 0.04
Defect Rate

7

8

9

10

Av
g.

 S
up

er
-S

ta
b.

 W
ei

gh
t(d) T, L=15

B, L=15
T, L=21
B, L=21
T, L=27
B, L=27

FIG. S14. Performance comparison of the traditional method
with our approach in handling defects for the scenarios of devices
with only coupler defects (a-d) display statistics for the bandage-
like (B) and traditional (T) methods regarding (a) Average X dis-
tance, (v) Average Z distance, (c) Average disabled qubit percentage,
and (d) Average super-stabilizer weight across different defect rates.
The defects occur exclusively in couplers.

Extended Data for Fig. 3(c-f) in the Main Text

Here, we provide comprehensive boxplots illustrating the
advantages in terms of code distance preservation, disabled

11

qubit percentage, and average super-stabilizer weight, as dis-
cussed in Fig. 3(c-f) of the main text. The results are depicted
in Fig. S13. For each defect rate and code size L, we gener-
ated 100 devices with randomly distributed defects. Notably,
the results for disabled qubit percentage and average super-
stabilizer weight display numerous fliers for the traditional
method at higher defect rates. This indicates that as the de-
fect rate increases, defects tend to cluster, resulting in a sig-
nificant overhead for the traditional method in handling such
situations. Occasionally, the traditional method for adapting
devices fails to generate a correct stabilizer measurement cir-
cuit at high error rates due to excessive qubit disabling. Con-
versely, the bandage-like method adeptly manages such situ-
ations and successfully generates stabilizer measurement cir-
cuits for all cases in the simulation. For better clarity, the
average super-stabilizer weight without fliers is presented in
Fig. S13(e).

Scenarios of Devices with Only Coupler Defects

In the main text, our discussion mainly focuses on scenar-
ios where qubits and couplers share the same defect rate. In
fixed-frequency transmon setups, frequency collisions are the
most significant fabrication defects, treated as coupler defects
in our method. Continuous coupler defects often result in
weight-1 syndrome qubits and bridge syndrome qubits, lead-
ing to the traditional method disabling more qubits and result-
ing in higher-weight super-stabilizers. However, the bandage-
like method effectively mitigates this issue with minimal addi-
tional costs. Therefore, in scenarios with only coupler defects,

the bandage-like method demonstrates even more significant
advantages over the traditional approach.

We considered extreme scenarios of devices with only cou-
pler defects. Similar to Fig. 3(c-f) in the main text, we sim-
ulated the variations of code distance, disabled qubit percent-
age, and average super-stabilizer weight with changing defect
rates and code size L, as shown in Fig. S14. It’s evident that
under conditions where only coupler defects are present, the
bandage-like method exhibits even greater advantages com-
pared to traditional methods. For instance, at a code size of
L = 27 and a defect rate of 0.04 for the couplers (the defect
rate on the entire lattice is greater than the situation where both
coupler and qubit defect rates are 0.02), the average X dis-
tance improves from 5.8 to 12.5, and the Z distance from 5.8
to 12.6, representing a 117% average improvement. Mean-
while, the disabled qubit percentage decreases from 43.2% to
9.8%, and the average super-stabilizer weight decreases from
10.4 to 7.2, marking a 31% improvement. This increase in im-
provement is significantly higher than scenarios where qubits
and couplers share the same defect rate as shown in the main
text.

∗ quanhhl@ustc.edu.cn
† xbzhu16@ustc.edu.cn
‡ pan@ustc.edu.cn

[1] C. Gidney, Quantum 5, 497 (2021).
[2] C. Gidney, M. Newman, A. Fowler, and M. Broughton, Quan-

tum 5, 605 (2021).
[3] S. F. Lin, J. Viszlai, K. N. Smith, G. S. Ravi, C. Yuan, F. T.

Chong, and B. J. Brown, “Codesign of quantum error-correcting
codes and modular chiplets in the presence of defects,” (2024),
arXiv:2305.00138 [quant-ph].

