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Abstract

The design of communication systems dedicated to machine learning tasks is one key aspect

of goal-oriented communications. In this framework, this article investigates the interplay between

data reconstruction and learning from the same compressed observations, particularly focusing on

the regression problem. We establish achievable rate-generalization error regions for both parametric

and non-parametric regression, where the generalization error measures the regression performance on

previously unseen data. The analysis covers both asymptotic and finite block-length regimes, providing

fundamental results and practical insights for the design of coding schemes dedicated to regression.

The asymptotic analysis relies on conventional Wyner-Ziv coding schemes which we extend to study

the convergence of the generalization error. The finite-length analysis uses the notions of information

density and dispersion with additional term for the generalization error. We further investigate the trade-

off between reconstruction and regression in both asymptotic and non-asymptotic regimes. Contrary

to the existing literature which focused on other learning tasks, our results state that in the case of

regression, there is no trade-off between data reconstruction and regression in the asymptotic regime.

We also observe the same absence of trade-off for the considered achievable scheme in the finite-length

regime, by analyzing correlation between distortion and generalization error.
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I. INTRODUCTION

A. Context and problem

The interaction of machine learning and communications is presently a vibrant area of research

with numerous works dedicated to machine learning for communications. But the reciprocal

relationship is also of significant interest and lies in the design of communication systems

dedicated to machine learning tasks. This paradigm falls into the emerging area of goal-oriented

communications [1]. In this case, the primary objective of the communication system shifts

towards extracting and transmitting relevant information for the targeted learning task, encom-

passing methods such as hypothesis testing [2], regression [3], or classification [4]. When

engineers tackle machine learning over a rate-limited channel, the following key questions

emerge: do the optimal encoder and decoder design for the learning task align with those used in

conventional communication systems? Or is there an inherent trade-off between the learning task

and data reconstruction? In this article, we address these questions in the context of regression.

Regression is one of the most popular supervised machine learning tasks and despite its

apparent simplicity, it is used in many practical signal processing and telecommunication prob-

lems. For instance, non-parametric regression is used to reconstruct electrocardiograms in [5].

In [6], the base station relies on the users signal feedback to estimate a radio map with a semi-

parametric regression. In [7], frequency hopping parameters are inferred from a sparse linear

regression. The work in [8] deals with the identification of non-linearities in Wiener systems from

a semi-parametric regression technique. In [9], a parametric regression technique is proposed to

estimate a field function through distributed and noisy sensor measurements sent to a fusion

center. However, none of these works considers the problem of compressing and communicating

the data so as to perform the regression task at the remote server.

In this paper, we formulate the distributed regression problem as follows. As in standard

regression, we consider a pair of real-valued random variables (X, Y ). We assume that the

statistical relation between X and Y is described by a function f : R → R such that X =

f(Y ) + N , where f is unknown and N is a Gaussian noise. Like in the conventional Wyner-

Ziv setup [10], we consider that X acts as the source to be encoded, while Y serves as side

information available only at the decoder. But in our case, the objective of the decoder is to
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infer the function f from Y and from the coded version of X . This regression is performed by

minimizing the Mean-Squared Error (MSE) E
[
(f̂(Y )−X)2

]
with respect to f̂ .

In cases where there is prior knowledge about the structure of the function f (linear, polyno-

mial, etc.) and f depends on a finite number of parameters, the problem is termed as parametric

regression. In this context, the ordinary least squares (OLS) estimator is known for providing

the best unbiased estimator [11]. On the other hand, non-parametric regression does not make

any assumption about the structure of the underlying function f . In this case, various methods,

such as kernel methods, K-Nearest Neighbors (KNN), or modeling involving a local or global

averaging over the training set are applicable [12]. In this paper, we investigate both parametric

regression and non-parametric kernel regression.

As learning performance criterion, we consider the regression generalization error, defined as

the MSE evaluated on test samples different from the training samples. Our first objective is to

provide achievable rates under constraints on the generalization error, for parametric and non-

parametric regressions. Our second objective is to investigate the trade-off between reconstruction

and regression, whenever the coding scheme is required to satisfy not only the constraint on the

generalization error, but also another constraint on the distortion on X .

B. Related works

Coding for computation has been a long-standing area of research, extending the Wyner-Ziv

setup to cases where the decoder aims to compute a function of the source and side information.

Studies such as [13], [14], building upon earlier works [15], [16], have investigated the theoretical

limits of coding data specifically for computation purposes. These studies typically focus on

decoding one output value f(Xk, Yk) for each sample pair (Xk, Yk), using a predefined function

f . However, this approach differs from our regression problem, where the goal is to infer the

function f itself across an entire length-n sequence of sample pairs {(Xk, Yk)}nk=1. Additionally,

the theoretical frameworks in the previous works rely on the entropy of a characteristic graph, a

measure suitable only for functions with finite support, rendering it less appropriate for addressing

regression.

Regarding coding schemes dedicated to learning, [17], [18] state that the optimal performance

is achieved through an estimate-and-compress strategy. However, practical limitations due to

hardware constraints or computational capabilities at the encoder, as well as the distributed

nature of data across networks, often make this strategy impractical. In such cases, a compress-
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and-estimate scheme [19]–[22] is more relevant. For example, a rate-distortion framework has

been introduced in [19] specifically for semantic communications involving continuous sources,

where each source is subject to its own distortion constraints: one for the information observed at

the encoder and another for the hidden semantic source. This approach was further extended to

discrete sources in [20]. Moreover, the information bottleneck framework [23]–[25] utilizes mu-

tual information to measure the relevance of information extracted from the source. Despite these

advancements, there remains a significant challenge in linking distortion or mutual information

metrics directly to the performance of the considered learning tasks.

Some other works have considered coding with performance metrics specific to the considered

learning task. Especially, the study conducted in [21] demonstrated that, under the criterion of

the variance of unbiased estimator, the rate necessary for estimating a parameter θ of the joint

distribution PXY is lower than that required for source reconstruction. Distributed hypothesis

testing has also been widely explored recently. For instance, [22], [26], [27] provided Type-II

error exponents under constraints on the Type-I error for various hypothesis testing problems

including testing against independence. In addition, Raginsky has established lower and upper

bounds on the learning generalization error of coding schemes dedicated to a range of distributed

learning problems involving two sources X and Y [3]. However, we demonstrated in [28], [29]

that the upper bound in [3] is loose for both linear and polynomial regression. Building on these

findings, this paper aims to investigate regression more broadly, addressing both parametric and

non-parametric regression.

In the context of parameter estimation [21], hypothesis testing [22], as well as in the rate-

distortion framework for semantic compression [19], [20], [30], research has consistently demon-

strated an inherent trade-off between data reconstruction and the specific learning task being

considered. A similar trade-off was showcased for the problem of visual perception versus data

reconstruction [31], where visual perception was measured from a divergence term, and also in

the context of data identification and reconstruction in a noisy database [32]. In this paper, we

also investigate this trade-off for the considered regression problems.

C. Contributions

In this paper, we provide rate-generalization error regions for both parametric regression and

kernel regression, across both asymptotic and finite block-length regimes, for the source coding

setup with side information.
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We first investigate the asymptotically achievable rates under generalization error constraints.

We utilize standard methods from asymptotic information theory, e.g., [10], [33], which we extend

to address the regression problem and analyze the generalization error. More specifically, we

consider the achievable coding scheme of Draper [33], originally proposed for Wyner-Ziv coding

when the joint distribution PXY is unknown. Within this scheme, our novel contribution lies in

analyzing the convergence of the generalization error for regression, instead of the distortion. Our

results demonstrate that the minimum expected regression generalization error can be achieved at

any positive rate, thus closing the gap between the lower and upper bounds on the generalization

error, and improving upon the upper bound established by Raginsky [3].

Furthermore, we extend these results beyond the asymptotic regime by employing finite block-

length tools from [34]–[36]. Especially, while the original information density vector for the

Wyner-Ziv problem comprised three components, two for the rate and one for the distortion [36],

we introduce an additional term accounting for the regression generalization error. This allows

us to provide an achievable finite block-length rate-generalization error region for regression.

Finally, in both the asymptotic and the finite block-length regime, we investigate the trade-off

in terms of coding rate between regression and data reconstruction. Interestingly, our asymptotic

analysis reveals a noteworthy outcome: contrary to findings in existing literature, there appears to

be no trade-off between data reconstruction and regression in our investigated context. This result

comes from the fact that asymptotically the generalization error upper bound matches the lower

bound. At finite-length, we propose a novel method to analyze the trade-off by investigating

the correlation between the distortion and generalization-error. We show that for the proposed

achievability scheme, there is again no trade-off between the two constraints at finite-length.

This analysis of the correlation could be easily extended to other achievability schemes which

may be derived for the regression-reconstruction problem in the future.

The remaining of the paper is organized as follows. Section II presents the source model and

describes the considered regression methods. Section III defines the generalization error as well

as the coding scheme for regression. Section IV and Section V provide the asymptotic and non-

asymptotic rate-generalization error regions, respectively. Section VI provides numerical results

in non-asymptotic regime for several regression problems.
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II. REGRESSION PROBLEM

In this section, after providing the notation we will use throughout the paper, we define the

statistical model we consider for the sources X and Y . We then present the two regression

methods we investigate in this paper: parametric regression with OLS, and non-parametric

regression from kernel methods.

A. Notation

A random variable X is denoted with a capital letter, while a realization of the random variable

is denoted with lower-case letter x. Let E [X] and V [X] be the mean and variance of the random

variable X . Random vectors of length n are denoted in bold, e.g, X = [X1, ..., Xn]
T , and E[X]

and C [X] are the mean vector and the covariance matrix of X , respectively. Next, we use bold

letters with underlines, e.g., X to denote matrices. When X is a squared matrix, we use Tr(X)

to denote its trace, while λmax(X) and λmin(X) are the maximum and minimum eigenvalues

of X , respectively. We further denote ||X|| as the norm-2 of a matrix X . Sets are denoted with

calligraphic fonts, and if f : X → Y is a mapping then |f | is the cardinality of Y . In addition,

log(·) denotes the base-2 logarithm. Moreover, the indicator function is defined as 1 [x ∈ A] = 1

if x ∈ A and 0 otherwise.

Let us consider the measurable space (X ,B (X )), where B (X ) is the Borel σ-algebra on the

set X . The probability measure PX over (X ,B (X )) is the distribution of X . The notation P [·]

is used for the probability of an event over the underlying probability space. When X = R and

the Radon-Nykodym derivative of PX with respect to the Lebesgue measure λ exists, then it is

denoted pX and is called the probability density function of the random variable X . When X

is countable or finite and the Radon-Nykodym derivative with respect to the counting measure

µ exists, pX is referred to as the the probability mass function of this random variable.

Being given a random vector X , the probability measure PX on the measurable space

(Rn,B (Rn)) admits a joint probability density function pX if for all x = [x1, x2, · · · , xn]
T

in Rn we have:

PX (]−∞, x1]× · · · × ]−∞, xn]) =

∫ x1

−∞
· · ·
∫ xn

−∞
pX (u1, · · · , un) du1 · · · dun. (1)

Moreover, for a joint probability measure PXY on X ×Y , the information density is denoted

as [37]

ι (x, y) := log
dPY |X=x

dPY

(y) , (2)
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where the ratio above is the Radon-Nykodym derivative of the conditional measure PY |X=x with

respect to the measure PY , in y. Given a pair (X, Y ) on the measurable space (R2,B (R2))

induced by the joint probability measure PXY , then the function

R2 −→ R+

(x, y) 7−→ pXY (x,y)
pX(x)

(3)

is called the conditional probability density function of Y given X and is denoted pY |X (y | x).

When X is discrete and Y is continuous, let us consider the measurable space (N× R,P (N)⊗ B (R)),

where P (N) is a partition of the set of integers. We define the joint probability measure PXY

such as, for all A ∈ P (N) and B ∈ B (R), we have

PXY (A×B)
a

=

∫
A×B

pX(x)pY |X(y|x)dµ(x)dλ(y) =
∑
x∈A

pX(x)

∫
B

pY |X(y|x)dy. (4)

B. Source definitions

Let (X, Y ) ∼ PXY be a pair of jointly distributed real-valued random variables, where X is

the source to be encoded and Y is the side information only available at the decoder. We assume

that there exists a function f : R → R such that

X = f(Y ) +N, (5)

where N ∼ N (0, σ2) follows a Gaussian distribution with mean 0 and variance σ2. We further

suppose that N is independent from Y . Without loss of generality but for simplicity, we consider

E [Y ] = 0. We do not make any further assumption on the distribution of Y , except for

kernel regression where the distribution support of source Y has to be bounded. Therefore,

our theoretical results apply to a wide range of distributions for X and Y . In addition, the

function f between X and Y is deterministic, and we consider that it is unknown. The purpose

of regression is to infer the function f from a set of observations represented by n independent

and identically distributed (i.i.d.) sample pairs {(Xk, Yk)}nk=1. There exists different types of

regression, depending on what prior knowledge is available on the structure of the function f .

C. Parametric regression

In the case of parametric regression, (5) can be rewritten as [11]

X =
k−1∑
i=0

βihi(Y ) +N, (6)

April 30, 2024 DRAFT



8

where k is the order of the regression, and the functions hi : R → R are fixed and known

in advance, while the parameters βi are unknown, for all i ∈ J0, k − 1K. Therefore, parametric

regression reduces to estimating the parameter vector β = [β0, · · · , βk−1].

Here, we consider the OLS estimator, known for being the unbiased estimator with the

minimal variance [11, Chapter 7]. Let us define Y ⋆
j = [h0(Yj), ..., hk−1(Yj)]

T ∈ Rk, and

Y ⋆ = [Y ⋆
1 , ...,Y

⋆
n ] ∈ Rk×n. For given vectors X and Y , the OLS estimator β̂ is given by

β̂ =
(
Y ⋆Y ⋆T

)−1

Y ⋆X. (7)

According to the properties of OLS estimators, we have [11, Chapter 7]:

E
[
β̂
]
= β and C

[
β̂|Y

]
= σ2

X|Y

(
Y ⋆Y ⋆T

)−1

, (8)

where C
[
β̂|Y

]
is the covariance matrix of β̂ given Y and σ2

X|Y is the conditional variance of

X given Y .

D. Non-parametric regression

In the case of non-parametric regression, no prior assumption on the form of the function

f is made, and we typically resort to various local or global smoothing techniques to estimate

the regression function E [X|Y = y] [12]. In this paper, we consider the widely used kernel

regression technique as an example, and we leave the extension to other non-parametric regression

techniques for future works.

A one-dimensional kernel is any smooth, symmetric function K : R → R such that ∀x ∈

R, K(x) ≥ 0, and the following relations hold [38]∫
R
K(x)dx = 1,

∫
R
xK(x)dx = 0, and 0 ≤

∫
R
x2K(x)dx ≤ ∞. (9)

The Nadaraya-Watson Kernel regression over (X,Y ) is defined as [12]:

f̂(Y ) =

∑n
j=1 K

(
Y−Yj

h

)
Xj∑n

j=1 K
(

Y−Yj

h

) . (10)

Here h is a positive number referred to as the bandwidth. Essentially, f̂ represents a local average

of Y based on the kernel K. The choice of the kernel and of the parameter h have been the

subject of extensive research in statistical learning. It has been shown that estimators using

different kernels have similar performance in terms of estimation loss E
[
(X − f̂(Y ))2

]
, while

the choice of the bandwidth, which controls the smoothing, is of greater significance [39]. But
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X f̂ (n)(Z, .)Encoder Decoder Training

Y

U

(a) Training phase

Ỹ

Inference ˆ̃X = f̂ (n)(Z, Ỹ )

(b) Inference phase

Figure 1: Coding scheme for regression, with one training phase (a) over the learning sequence

Z = (U,Y) which provides a predictor f̂ (n)(Z, .), and one inference phase (b) which consists

of applying the predictor on new samples Ỹ .

our theoretical results are generic and will apply to different kernels K and to a range of values

for h.

III. CODING SCHEME FOR REGRESSION

In this section, we describe the coding setup we consider for regression, with one training

phase and one inference phase. We then introduce the generalization error used to evaluate the

regression performance and provide formal definitions of the considered coding scheme.

A. Training and inference phases

Regression, as a standard supervised learning problem, comprises one training phase and one

inference phase, as shown in Figure 1. A training sequence Z = (U ,Y ) ∈ Zn of length n is

built using the available side information Y and a coded representation of X , denoted as U . The

training phase aims to estimate the function f on Z from either parametric or non-parametric

regression. It provides a sequence of functions, called predictors, denoted as f̂ (n) : Zn×R → R.

It is important to mention that the training sequence involves the coded sequence U because the

decoder does not have direct access to X . Therefore, (7) and (10) need to be updated so as to

account for U , as will be described in Section IV.

Next, we use X̃ and Ỹ to denote random variables from the inference phase, where the pair

(X̃, Ỹ ) follows the same probability distribution PXY of the pair (X, Y ) while being independent

from it. At the inference phase, the decoder uses the predictor f̂ (n) to produce estimates of X̃
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as ˆ̃X = f̂ (n)(Z, Ỹ ). It is worth noting that this does not require any data transmission, since

the side information Ỹ is already available to the decoder. Therefore, this paper investigates the

coding scheme for the training phase only, while the performance of this scheme is evaluated

over the inference phase with the generalization error.

B. Generalization error

Usually, the performance of a lossy source coding scheme is evaluated from a distortion

measure. Since here the objective of the receiver is also to learn a regression function, we need

to consider additional metrics relevant for the regression problem. For that purpose, we use the

notions of expected loss and generalization error already considered in [3].

A quadratic loss function ℓ : R2 → R defined as ℓ(x, x̂) = (x−x̂)2 is considered. The expected

loss L is defined as:

L(f) = E [ℓ(X, f(Y ))] . (11)

For a given regression problem, let F represents the set of regression functions of the form

f : R → R, with a predefined form (parametric regression) or free of specific assumptions (non-

parametric regression). For instance, for polynomial regression, F is the set of all polynomial

functions of a fixed order k. The minimum expected loss L⋆ is then given by:

L⋆(F) = inf
f∈F

L(f). (12)

Next, the generalization error is defined as:

G(f̂ (n),Z) = EX̃Ỹ

[
ℓ
(
X̃, f̂ (n)(Z, Ỹ )

)
| Z
]
. (13)

The generalization error defined in (13) is a random variable due to the conditioning on Z. There-

fore, in what follows, we will also resort to the expected generalization error EZ

[
G
(
f̂ (n),Z

)]
.

The minimum expected loss defined in (12) is reached for the function f ⋆ that minimizes

the quantity E [ℓ(X, f ⋆(Y ))] over the space of functions F . However, there is no guarantee that

this optimal function f ⋆ can be estimated exactly from the training sequence Z. Therefore, the

generalization error measures the average quadratic loss which can be achieved for a specific

training sequence Z and for a given predictor f̂ (n)(Z, ·). The generalization error is evaluated as

the expectation over the distribution PX̃Ỹ of the MSE between the symbol X̃ and the estimated

symbol ˆ̃X = f̂ (n)(Z, Ỹ ). In our case, we assume that (X̃, Ỹ ) follows the same distribution as

(X, Y ), but (13) would also apply otherwise.
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In addition, by bias-variance decomposition, it can be shown that the expected generalization

error EZ

[
G
(
f̂ (n),Z

)]
is lower bounded as

L⋆(F) ≤ EZ

[
G
(
f̂ (n),Z

)]
. (14)

Therefore, the difference δ = EZ

[
G
(
f̂ (n),Z

)]
−L⋆(F) is a crucial quantity for characterizing

the performance of a regression coding scheme. This is why our rate-generalization error regions

defined in the next section will be expressed with this quantity.

C. Coding scheme

In [28], we introduced a coding scheme which was initially dedicated to the linear regression

problem, by adapting definitions from [3]. But this scheme is actually generic enough to be

adopted for any type of parametric regression, and for non-parametric regression as well. This

is why we restate it here.

Definition 1. A regression scheme at rate R is defined by a sequence {(en, dn, R, tn)} with an

encoder en : X n −→ J1,MnK, a decoder dn : Yn× J1,MnK → Un, and a learner tn : Yn×Un →

F , such that

lim sup
n→∞

logMn

n
≤ R.

Definition 2. An (n,M,G) code for the sequence {(en, dn, R, tn)} is a code with |en| = Mn

such that

E
[
G(f̂ (n),Z)

]
≤ G and lim sup

n→∞

logMn

n
≤ R. (15)

Definition 3. A pair (R, δ) is said to be achievable if an (n,M,G)−code exists such that

lim sup
n→∞

EZ

[
G(f̂ (n),Z)

]
≤ L∗(F) + δ. (16)

As discussed in the previous section and similar to the definition used in [3], the achievable

region is defined in terms of the gap between EZ

[
G(f̂ (n))

]
and L∗(F).

In this paper, we also consider the case where the decoder may either want to reconstruct

the source X , or perform regression. In this case, the reconstruction task is evaluated with the

standard quadratic distortion measure d(x, x̂) = (x − x̂)2, where x̂ is the reconstruction of x

at the decoder. We further define the coding scheme with both reconstruction and regression

constraints as follows.
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Definition 4. An (n,M,D,G) code for the sequence {(en, dn, R, tn)} is a code with |en| = M

such that

E
[
d(X, X̂)

]
≤ D , E

[
G(f̂ (n),Z)

]
≤ G , and

logMn

n
≤ R. (17)

We now provide definitions for the finite-length analysis of the coding schemes.

Definition 5. An (n,M,G, ε) code for the sequence {(en, dn, R, tn)} and ε ∈ (0, 1) is a code

with |en| = Mn such that

P
[
G(f̂ (n),Z) ≥ G

]
≤ ε and

logM

n
≤ R. (18)

Definition 6. For fixed G and block-length n, the finite block-length rate-loss function with

excess loss ε is defined by:

R(n,G, ε) = inf
R
{∃ (n,M,G, ε) code}. (19)

Definition 7. An (n,M,D,G, ε) code for the sequence {(en, dn, R, tn)} and ε ∈ (0, 1) is a code

with |en| = M such that

P
[{

d(X, X̂) ≥ D
}

∪
{
G(f̂ (n),Z) ≥ G

}]
≤ ε (20a)

logM

n
≤ R. (20b)

Definition 8. For fixed D, G and block-length n, the finite block-length rate-distortion-generalization

error functions with excess loss ε is defined by:

R(n,D,G, ε) = inf
R
{∃ (n,M,D,G, ε) code}. (21)

Definitions 1 to 3 will be used for the asymptotic analysis of Section IV, and are similar to

what was initially introduced in [3] and later considered in [28]. On the other hand, Definitions 4

to 8 did not appear in [3], and will serve to investigate the trade-off between data reconstruction

and regression, as well as for the finite block-length analysis in Section V.

IV. ASYMPTOTIC ANALYSIS

In [3, Theorem 3.3], it is shown that, when considering a quadratic loss function, the expected

generalization error can be lower and upper bounded as follows:

L⋆(F)
1
2 ≤ lim sup

n→∞
E
[
G(f̂ (n),Z)

1
2

]
≤ L⋆(F)

1
2 + 2DX|Y (R)1/2, (22)
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where DX|Y (R) represents the conditional distortion-rate function [40]. It is worth noting that

for regression problems considering the quadratic loss function, we have

L(f̂) = σ2 + E
[(

f̂(Y )− f(Y )
)2]

≥ σ2, (23)

with equality iff f̂ = f . So the minimum expected loss defined in (12) is given by L⋆(F) = σ2.

In this section, we propose a coding scheme which improves over the upper bound in (22), both

for parametric and non-parametric regression.

A. Achievable rate-generalization error regions

The next two Theorems provide the rate-generalization error regions which can achieved for

both parametric regression and kernel regression.

Theorem 1 (Parametric regression). Given any rate R > 0, the pair (R, 0) is achievable for

parametric regression with quadratic loss, for sources (X, Y ) following the model in (6).

This Theorem generalizes results we obtained in [28], [29] (linear and polynomial regression),

to any type of parametric regression described by (6). It states that the minimum generalization

error L⋆(F) can be achieved with arbitrary rate R, as long as the length n of the training

sequence is large enough. Therefore, Theorem 1 improves over the result of [3] by eliminating

the term DX|Y (R) in the upper bound in (22). This makes our result tight in the sense that the

upper bound equates the lower bound L⋆(F) for any rate R > 0.

Theorem 2 (Kernel regression). Under the following conditions:

i. Y is bounded almost surely

ii. the probability density function pY is continuously differentiable and positively lower bounded,

iii. the regression function f is twice continuously differentiable, i.e. f ′, and f ′′ exist,

iv. h = hn is a deterministic sequence such that when n → ∞, the bandwidth h satisfies h → 0

and nh → ∞,

given any rate R > 0, the pair (R, 0) is asymptotically achievable for the kernel regression with

quadratic loss.

Like for parametric regression, the previous Theorem states that kernel regression over the

pair (U ,Y ) can asymptotically achieve the same performance as when applied on original data

(X,Y ). In fact, in the case of kernel regression, we will show that the generalization error
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can be divided into three parts: a first part for the intrinsic noise N given by the term σ2, a

second and third part related to the bias and the variance of the estimator. We show that the last

two terms go to 0 as n goes to infinity because of condition iv in Theorem 2, in particular. In

addition, the proof for the rate-generalization error region for kernel regression differs from the

case of parametric regression, given that in the later case no prior assumption on the regression

function is considered. But the conclusion is still that the gap EZ

[
G
(
f̂ (n),Z

)]
−L⋆(F) tends

to 0 as n goes to infinity. We leave for future works the investigation of other methods, like

local polynomial regression, which could further reduce the bias for finite n.

B. Proof of Theorem 1 and Theorem 2

We now briefly describe the achievability scheme that is considered in the proofs of Theorem 1

and Theorem 2. We then provide expressions as well as convergence analysis of the generalization

error for both parametric and kernel regression, since those constitute our technical contribution

for the asymptotic case.

In our considered achievability scheme, we make use of a Gaussian test channel described

by U = α(X + Φ), where Φ ∼ N (0, σ2
Φ) is independent of X . The parameters α and σΦ

are constant and depend on the distributions of X and Y . We then consider the achievability

scheme proposed by Draper in [33] for Wyner-Ziv coding in the case where the distribution

PXY is unknown. This scheme is based on quantization and binning, and provides a criterion

on empirical information density for debinning. We also use this criterion, but do not consider

the incremental coding strategy of [33] which is not necessary here as the coding rate is fixed

given that σ2 is known. This scheme is described into details in Appendix B. The results of [33]

show that the sequence U can be reconstructed by the decoder with vanishing error probability

as n tends to infinity. We next demonstrate that the Gaussian test channel allows us to achieve

the optimal rate-generalization error region for both parametric regression and kernel regression,

by expressing the generalization error in both cases.

1) Convergence analysis of the generalization error in Theorem 1: For the parametric regres-

sion model described in (6), the OLS estimator applied over the pair (U ,Y ) is given by

β̂ = α−1(Y ⋆Y ⋆T )−1Y ⋆U , (24)

and it has the following properties:

E
[
β̂
]
= β and C

[
β̂|Y

]
=

1

α2
σ2
U |Y (Y

⋆Y ⋆T )−1. (25)
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Note that this differs from what was defined in (7) and (8) since the decoder has no direct access

to X . From (13) and (24), the generalization error can be expressed as

G(f̂ (n),Z) = EX̃Ỹ

[
[β − β̂]T Ỹ ⋆Ỹ ⋆T [β − β̂] +N2|Z

]
= [β − β̂]TEỸ

[
Ỹ ⋆Ỹ ⋆T

]
[β − β̂] + σ2,

(26)

where Ỹ ⋆ = [h0(Ỹ ), ..., hk−1(Ỹ )]T refers to the vector composed of hi(Ỹ ), ∀i ∈ J0, k−1K inde-

pendent from Y . By defining Σ̃ = EỸ

[
Ỹ ⋆Ỹ ⋆T

]
and Σ = 1

n
Y ⋆Y ⋆T , the expected generalization

error can be expressed as

EZ

[
G(f̂ (n),Z)

]
= σ2 + E

[
1

n
(Σ−1Y ⋆(N +Φ))T Σ̃

1

n
(Σ−1Y ⋆(N +Φ))

]
= σ2 +

σ2 + σ2
Φ

n
E
[
Tr
(
Σ̃Σ−1

)]
(27)

≤ σ2 +
σ2 + σ2

Φ

n
E

[
kλmax(Σ̃)

λmin(Σ̃)− ||Σ̃−Σ||

]
(28)

≤ σ2 +
σ2 + σ2

Φ

n
E

[
kλmax(Σ̃)

λmin(Σ̃)

]
(29)

≤ σ2 +
σ2 + σ2

Φ

n
kC, (30)

where C = λmax(Σ̃)

λmin(Σ̃)
is a constant. When n → ∞, the generalization error EZ

[
G(f̂ (n),Z)

]
converges to σ2, which completes the convergence analysis of Theorem 1.

2) Convergence analysis of the generalization error in Theorem 2: Given the fact that the

kernel regression is applied on the pair (U ,Y ), and according to the Gaussian test channel

U = α(X + Φ), (10) can be rewritten as:

f̂(y) =

∑n
i=1 K(y−yi

h
)ui

α∑n
i=1 K(y−yi

h
)
. (31)

We now provide the main key steps of the convergence analysis of the generalization error.

The details of the derivation are provided in Appendix C. For a given pair (x̃, ỹ), the so-called

test error can be expressed as:

EZ

[
(f̂ (n)(ỹ,Z)− f(ỹ))2

]
= b2n(ỹ) + Vn(ỹ), (32)
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where bn(ỹ) = E
[
f̂ (n)(ỹ,Z)− f(ỹ)

]
is the bias and Vn(ỹ) = V

[
f̂ (n)(ỹ,Z)

]
is the variance of

the estimator f̂ (n) with respect to the training sequence Z. The expected generalization error is

then given by

EZ

[
G(f̂ (n),Z)

]
= EX̃ỸZ

[
(f̂ (n)(Ỹ ,Z)− X̃)2

]
(33)

= σ2+

∫
b2n(ỹ)pY (ỹ)dỹ +

∫
Vn(ỹ)pY (ỹ)dỹ. (34)

For a given ỹ, by analyzing the convergence of the numerator and the denominator of f̂(y) in

(31), it is shown in Appendix C that

bn(ỹ) =
h2

2

(
2
f ′(ỹ)p′Y (ỹ)

pY (ỹ)
+ f ′′(ỹ)

)∫
R
u2K(u)du+ o(h2), (35)

Vn(ỹ) =
(σ2 + σ2

Φ)

pY (ỹ)nh

∫
R
K2(u)du+ o

(
1

nh

)
. (36)

Finally, as n → ∞, h → 0 and nh → 0 (by condition iv in Theorem 2), EZ

[
G(f̂ (n),Z)

]
in

(33) tends to σ2.

C. Comparison with existing works

First, we point out that authors in [41] also proposed a Gaussian approximation of the

quantization error under which the MSE of an estimator (not dedicated to regression) applied

to compressed data is equivalent to the same estimator when applied to a corrupted version of

data by a Gaussian noise. This is in line with our achievable scheme.

We now comment on our improvement of the upper bound of Raginsky in [3]. First of all,

the results of [3] are stated for a generic loss function ℓ which can then be specified for various

learning problems including regression or classification. In [3], the empirical loss L̂X,Y (f) for

a certain function f is defined as

L̂X,Y (f) =
1

n

n∑
i=1

ℓ(f(Xi), Yi), (37)

and the difference between L̂X,Y (f) and L̂U ,Y (f) is upper bounded as

sup
f

|L̂X,Y (f)− L̂U ,Y (f)| ≤ η(d(U ,X)), (38)

where d is a distortion measure and η is a concave continuous function. Taking the expectation

of (38) as well as further mathematical manipulation lead to the upper bound on the generalization

error in (22), especially given that E[d(U ,X)] = DX|Y . But in our case, expressing for instance
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the generalization error for parametric regression with quadratic loss and with the OLS estimator

defined in (24) gives that the term E [d(U ,X)] (which is σ2
Φ in (30)) is multiplied by a factor

1/n and therefore vanishes as n goes to infinity. This is why we get that the generalization error

converges to the minimum expected loss σ2. As a result, the upper bound of [3] is not tight in

our setup, but on the other hand it applies to a larger range of learning problems.

In addition, consider an alternative regression problem that is to infer a function g such that

U = α(g(Y ) + N) + Φ, with Φ ∼ N (0,DX|Y ). For this alternative problem, the minimum

expected loss (12) expressed for L(g) = E[ℓ(g(U), Y )] would be given by σ2+DX|Y , and hence

we would retrieve the upper bound of (22). But here, since the target is to estimate the function

f such that Y = f(X) + N , it turns out that the minimum expected loss σ2 can be achieved,

despite applying regression on the pair (U ,Y ).

D. Regression-reconstruction trade-off

Consider the achievability scheme described in Section IV-B for conventional Wyner-Ziv

coding for reconstruction. This scheme achieves the Wyner-Ziv rate-distortion function provided

in [42], that is RWZ(D) = inf I(X;U |Y ) where the inf is taken over pU |X(u|x) and is such that

the Markov chain X ↔ U ↔ Y holds. Given that we consider this same achievability scheme

in our proofs of Theorem 1 and Theorem 2, we can formulate a rate-distortion-generalization

error function as follows:

R (D,G) = inf

p(u | x) :

E
[
d(X, X̂)

]
≤ D

E
[
G(f̂ (n),Z)

]
≤ G

I(X;U |Y ). (39)

The next Corollary investigates the trade-off in R(D,G) between the two constraints E
[
d(X, X̂)

]
≤

D and E
[
G(f̂ (n),Z)

]
≤ G.

Corollary 1 (Asymptotic trade-off for parametric and kernel regression). For a pair of sources

(X, Y ) modeled from (5), and for some non-negative constants D and G ≥ σ2, we have

R(D,G) = RWZ(D) (40)

for both parametric and kernel regression.
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Proof. See Appendix D. ■

This results shows that the previous achievability scheme which minimizes the generaliza-

tion error for regression can also achieve the optimal Wyner-Ziv rate-distortion function for

reconstruction. Therefore, asymptotically there is no trade-off in terms of coding rate between

reconstruction and regression. Note that this result differs from existing ones in the literature,

which show that there is a trade-off between data reconstruction and other specific tasks, such

as in the distortion-perception problem [31], for semantic communications [19], [20], [30], for

parameter estimation [21], and for hypothesis testing [22].

The next section provides finite block-length rate-generalization error regions, and also inves-

tigates the trade-off between regression and reconstruction at finite length.

V. FINITE BLOCK-LENGTH ANALYSIS

The non-asymptotic source coding problem with a distortion constraint and without side infor-

mation was first investigated in [34], [43] using the notions of information density and dispersion

region. This non-asymptotic analysis was also extended to the case with side information at the

decoder in [36]. The main idea behind these analysis is to approximate the distribution of error

events by the Berry-Esséen Theorem and to bound the resulting approximation error. In this

section, we extend these tools so as to also treat the regression problem. Especially, in finite

block-length analysis, the excess probability ϵ which appears in Definition 5 plays a crucial role

as not all the codewords satisfy the generalization error constraint.

In what follows, we directly address the source coding problem with the two objectives of

data reconstruction and regression, and investigate the trade-off between these two tasks. The

proposed analysis applies to both parametric and kernel regression.

A. Definitions

Let us consider the following four sets:

Tp(γp) := {(u, y) : ι (u, y) ≥ γp} , (41)

Tc(γc) := {(u, x) : ι (u, x) ≤ γc} , (42)

Td(D) := {(x, x̂) : d(x, x̂) ≤ D} , (43)

Tg(G) :=
{
(u,y) : EX̃Ỹ

[
ℓ(X̃, f̂ (n)(z, Ỹ ))

]
≤ G

}
, (44)
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where ι is the information density defined in (2), γp, γc are predefined thresholds, and G,D

are the generalization error and distortion constraint, respectively. The first three sets already

appeared in [36] for the conventional setup of data reconstruction with side information, while

we introduce the last one specifically for the analysis of the generalization error of the regression

problem.

Accordingly, we define the information-density-distortion-generalization error vector as fol-

lows:

i(X,U ,Y , X̂) :=


−ι (U, Y )

ι(U,X)

d(X, X̂)

EX̃Ỹ

[
ℓ(X̃, f̂ (n)(Z, Ỹ )

]

 , (45)

where U represents the full training sequence of length n, while U refers to one variable within

this sequence. The same applies for Y and Y . Taking the expectation over the distribution

PXUY X̂ of this vector gives

J(i) := E
[
i(X,U ,Y , X̂)

]
=


−I(U ;Y )

I(U ;X)

E
[
d(X, X̂)

]
EZX̃Ỹ

[
ℓ(X̃, f̂ (n)(Z, Ỹ )

]

, (46)

where the sum of the first two components provides the Wyner-Ziv coding rate. The covariance

matrix of this vector is defined as

V = C
(
i(X,U ,Y , X̂)

)
. (47)

Let V ∈ R4×4 be a positive-semi-definite matrix. Given a Gaussian random vector B ∼ N (0,V ),

the dispersion region is defined with respect to the covariance matrix as [44]

S (V , ε) := {b ∈ R4 : Pr(B ≤ b) ≥ 1− ε}. (48)

B. Non-asymptotic regions

The non-asymptotic achievability regions can be obtained by the method of channel resolv-

ability [45], [46], or by mutual covering lemmas proposed in [47]. In our case, we consider the

former analysis and its extension to the case with side information [36]. In our proofs, we adapt

the analysis of [36] by further considering the regression problem through the generalization
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error, and by taking into consideration the fourth set Tg(G) in (44). This led to the following

two Theorems.

Theorem 3 (Non-asymptotic achievable code). For arbitrary constants γp, γc, D,G ≥ 0, and

positive integer N, there exists an (n,M,D,G, ε) code satisfying

ε ≤ PXUY X̂

[
(u, y) ∈ Tp(γp)

c ∪ (u, x) ∈ Tc(γc)
c ∪ (x, x̂) ∈ Td(D)c ∪ (u,y) ∈ Tg(G)c

]
+

N

2γp |M|
+

1

2

√
2γc

N
. (49)

Proof. The proof is provided in appendix E. ■

By choosing γp = log N
|Mn| + log n and γc = logN − log n, and by applying Theorem 3

together with the multidimensional Berry-Esséen Theorem, we derive the achievable second-

order rate-distortion-generalization error region as follows.

Theorem 4 (Second-order coding rate). For every 0 < ε < 1, and n sufficiently large, the

(n, ε)-rate-distortion-generalization error function satisfies:

R(n, ε,D,G) ≤ inf

{
M

(
J +

S (V , ε)√
n

+
2 log n

n
14

)}
, (50)

with M = [1 1 0 0].

Proof. The proof is provided in appendix F. ■

The previous result is not a straightforward extension of the proofs in [36] as we introduce

the generalization error term in the information-density-distortion-generalization error vector

i. Especially, the vector i depends on the full sequence Z (it is not single-letter anymore),

because the generalization error depends on the full training sequence. Therefore, the Berry-

Esséen Theorem needs to be applied by conditioning on the other n− 1 training samples.

Finally, the bound in Theorem 4 is composed by two parts. The vector J corresponds to the

asymptotic result of Section IV-D, while the other terms provide the non-asymptotic penalty

introduced by the Gaussian approximation.

C. Non-asymptotic trade-off

As in the asymptotic regime, we now investigate the trade-off between distortion and gener-

alization error. To proceed, we further investigate the dispersion region to explore the relation

between regression and reconstruction.
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Corollary 2 (Non-asymptotic trade-off for parametric and kernel regression). For a finite se-

quence (X,Y ) following the model in (5), 0 < ε < 1 and n sufficiently large, there exists an

achievable rate-distortion-generalization error region such that

Rb(n,G,D, ε) > max{Rb(n,G, ε), Rb(n,D, ε)}, (51)

where Rb(·) denotes the minimum achievable rate introduced by the right hand side of (50).

Proof. The proof is provided in Appendix G. ■

The previous result shows that for the considered achievability scheme, there is no trade-

off in terms of coding rate between the distortion and the generalization error. In order to

prove Corollary 2, we first showed that the terms d(X, X̂) and EX̃Ỹ

[
ℓ(X̃, f̂ (n)(Z, Ỹ )

]
in (45)

are decorrelated, which turns into conditional independence with respect to the first two terms

of the matrix, due to the Gaussian approximation from the Berry-Esséen Theorem. However,

there is no guarantee that we can achieve the minimum for both criterion in finite block-length

because of the excess probability constraint. Note also that this result is specific to the considered

achievable coding scheme. However, the approach of analyzing the correlation between terms

in the information-density vector could be applied to other achievability schemes. Finally, the

analysis in Appendix G highly depends on the Gaussian test channel we have chosen: the

assumption that quantization error Φ and the system noise N are independent from the source

X and Y plays a vital role in the calculation of the correlation.

VI. NUMERICAL RESULTS

In this section, we provide numerical evaluations of the finite-length achievable rate-distortion-

generalization error regions provided in Section V. As a particular case, we consider that X and

Y follow a polynomial relation defined by X = βTY ∗ + N , where β = [2, 1, 1]T , Y ∗ =

[Y 0, Y 1, Y 2], σ = 1, and Y is uniformly distributed over [−1, 1]. We provide the finite-length

achievable regions obtained from Theorem 4 for both parametric and non-parametric kernel

regression. In the latter case, we consider a Gaussian kernel, and the bandwidth hn for different

block-length n is set as hn =
(

(σ2+σ2
Φ)C2

C1
n
)− 1

5
. This value is known to be optimal in the

asymptotic regime [12], but it might be sub-optimal for minimizing the expected generalization

error at finite length.

In both parametric and kernel regressions, the covariance matrix V defined in equation (47) has

to be estimated. To do so, we sample information-density-distortion-generalization error vectors
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(a) Rate-generalization error region for polynomial

regression labeled on the block-length n and the excess

loss probability ε.

(b) Distortion-generalization error region for polynomial

regression on the block-length n, the excess loss

probability ε and rate R.

(c) Rate-generalization error region for kernel regression

labeled on the block-length n and the excess loss

probability ε.

(d) Distortion-generalization error region for kernel

regression on the block-length n, the excess loss

probability ε and rate R.

Figure 2: Non-asymptotic rate-distortion-generalization error region

i in (45) by first generating n samples of X and Y , and then calculating the four components

of the vector. In order to do so, we need the following prior results:
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The probability density function of U : by the Theorem of variable change, for β2 > 0 and

β2
1 + 4β2(w − β0) ≥ 0, we can show that the distribution of W = βTY ⋆ is given by:

PW (w) =



1√
β2
1+4β2(w−β0)

|y1(w)| ≤ 1 and |y2(w)| ≤ 1,

1

2
√

β2
1+4β2(w−β0)

|y1(w)| ≤ 1 or |y2(w)| ≤ 1,

0 otherwise,

where y1 =
−β1−

√
β2
1+4β2(w−β0)

2β2
, y2 =

−β1+
√

β2
1+4β2(w−β0)

2β2
. The probability density function of

U = α(W +N + Φ) can then be expressed as

PU(u) =
1

α
√
2π(σ2 + σ2

Φ)

∫ ∞

−∞
PW (w)e

− ( uα−w)2

2(σ2+σ2
Φ
)dw, (52)

which can be evaluated numerically;

The conditional distribution of (U |X) and (U |Y ): by the test channel defined in Sec-

tion IV-B, we have (U |Y ) ∼ N (0, α2(σ2 + σ2
Φ)) and (U |X) ∼ N (0, α2σ2

Φ).

Then, the main steps of the numerical evaluation of the covariance matrix V are as follows:

1) Generate n samples of X, Y and U , according to the Gaussian test channel defined in

Section IV-B

2) For each sample (u, x, y), the information densities ι(x;u) and ι(u; y) are obtained with

(2);

3) The distortion is calculated by:

d(x, x̂) = (x̂− x)2 . (53)

4) The generalization error G(f̂ (n),Z) is given by (13), where the expectation is estimated with

N⋆ = 500 samples for kernel regression, and is directly calculated by (26) for parametric

regression.

5) Repeat steps 1) to 4) N⋆ = 500 times to get numerical estimation of the covariance matrix

(47).

Then the achievable region is obtained by Theorem 4.

In addition, Figures 2a and 2c show the boundaries of the rate-generalization error regions for

polynomial and kernel regressions, considering different block-length n and excess probability

ε. In both cases, we observe that the achievable regions converges to the asymptotic one as n

increases, and we also observe that lower rates can be achieved if higher excess probabilities
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are allowed. Figures 2b and 2d illustrate the distortion-generalization error region for coding

rates R = 0.3 bit/symbol and R = 1 bit/symbol. The regions are consistent with our Corollary 2

which states that the decorelation between the distortion and the generalization error results in

the absence of trade-off between the two criterions. In addition, we observe that both distortion

and generalization error decrease with the coding rate R.

Finally, for fixed rate R and excess probability ϵ, we see that the generalization error of OLS

estimator converges faster than the generalization error of kernel estimators, which is consistent

with the different convergence rates of these two types of regression. Especially it is shown in [12]

that for kernel regression, the optimal h is of order O
(
n− 1

5

)
and that the expected generalization

error decreases to the minimum expected loss σ2 at rate O
(
n− 4

5

)
. On the opposite, in parametric

methods, the generalization error decreases to σ2 at rate O (n−1). The slower rate O
(
n− 4

5

)
is

the price of using non-parametric methods.

VII. CONCLUSION

In this article, we investigated regression under the generalization error criterion within the

framework of goal-oriented communications. Our information-theoretic analysis provided rate-

generalization error regions for parametric regression and kernel regression in both asymptotic

and non-asymptotic regimes. We improved upon existing bounds [3] in the asymptotic regime,

demonstrating convergence of generalization error to the minimum expected loss. In the non-

asymptotic regime, we relied on the finite-length tools introduced in [36] and extended these

tools to our regression problems. We further investigated the trade-off between regression and

reconstruction, and as a key finding of our research, we showed that, in both cases (asymptotic

and non-asymptotic), there is no trade-off between reconstruction and regression. A posterior

remark of this result is that for both reconstruction and regression, we used the same test-

channel. The established optimality of this test channel in infinite block-length further solidified

our findings. The converse in the non-asymptotic regime remains an open question, inviting

further exploration in future works.

APPENDIX A

PRELIMINARY THEOREMS

Here we restate the channel resovability problem [48, Chapitre 6] and related definitions used

in [36]. The statements of [36] apply for discrete source, and this appendix generalizes them to
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arbitrary distributions.

A. Smoothing of a distribution

Denote P(X ) as the set of all probability distributions on a measurable space (X ,B (X )), and

let P ′(X ) be the set of all sub-normalized non-negative functions (not necessarily a probability

measure). Note that if P ∈ P ′(X ) is normalized then P ∈ P(X ). For a subset T ⊂ X , the

smoothed sub-normalized function P̄X of PX is defined as, ∀A ∈ B (X )

P̄X(A) =

∫
A

1[x ∈ T ]pX(x)dx. (54)

For two functions P,Q ∈ P ′(X ), the variational distance between P and Q is:

dTV (P,Q) = sup
A∈B(X )

|P (A)−Q(A)| , (55)

and it has the following property.

Lemma 1 (Property of variational distance [36]). For a distribution P ∈ P(X ) and a sub-

normalized measure Q ∈ P ′(X ), and any subset Γ of X ,

P (Γ) ≤ Q(Γ) + dTV (P,Q) +
1−Q(X )

2
. (56)

Hence the variational distance between the original distribution and a smoothed one is

dTV (P, P̄ ) =
P (T c)

2
, (57)

where T c stands for the complementary set of T . For a channel PU |X : X → U a subset

T ⊂ X × U , and the event B ∈ B (U) and x ∈ X , the smoothed conditional function P̄U |X is

defined by

P̄U |X(B|X = x) =

∫
B

1[(u, x) ∈ T ]pU |X(u|x)du. (58)

B. Channel resolvability and identification code

Let us consider a channel PU |X and an input distribution PX . In the channel resolvability

problem, we choose M elements in the input set X , i.e., a codebook C = {x1, x2, ..., xM}, such

that the output distribution PU expressed from the input distribution PX as

PU(B) =

∫
B

∫
X
pX(x)pU |X(u|x)dudx (59)
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is close enough to the output distribution PU ′(B) obtained when the input is assumed to be

uniformly distributed [45], [46], i.e.

PU ′(B) =

∫
B

M∑
i=1

1[x = xi]

M
pU |X(u|x)du, (60)

where we suppose the channel PU |X is absolutely continuous. By the soft covering lemma from

[46, Corollary 7.2] and [45, Lemma 2], the following result states that

Corollary 3 (Lemma 25 of [36]). Let T = Tc(γc) defined in (42), for any γc ≥ 0, we have

EC
[
dTV (P̄U , P̄U ′)

]
≤ ∆(γc, PUX)

2
√
M

, (61)

with ∆(γc, PUX) =

√
EUX

[
dPU|X(u|x)
dPU (u)

1[(u, x) ∈ Tc(γc)]
]
.

APPENDIX B

GAUSSIAN TEST CHANNEL AND CODING SCHEME

Consider the test channel U = α(X + Φ) defined in Section IV-B. Since we assume that the

function f and the joint distribution PXY are unknown in both the encoder and the decoder,

we employ the achievable scheme proposed in [33] based on the method of types and binning.

However, compared to [33], no incremental transmission is needed since we suppose that the

noise variance σ2 is known. Therefore, the test channel parameters as well as the binning rate

are fixed. In fact, by setting

α =
σ2 −D

σ2
and σ2

Φ =
Dσ2

σ2 −D
(62)

the distortion constraint E
[
d(X, X̂)

]
≤ D can be achieved for Gaussian source [42]. Thus the

variable-rate scheme in [33] becomes a fixed rate coding scheme. However, we need to keep the

prefix transmission of types applied by Draper [33] since the joint distribution PXY is unknown.

This scheme works as follows:

1) The codebook is formed by generating randomly 2nR1 sequences u, which are uniformly

distributed into 2nR bins, with R1 > R.

2) The encoder identifies a sequence u which is typical with x, and transmits the index of

the bin to which u belongs.

3) At the decoder, a typicality test is performed between the side information y and all the

sequences in the bins, allowing a sequence û to be extracted from the bin.
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Draper shows in [33] that the probability of debinning error can be made as small as desired if the

block length n is large enough. In addition, given that D < σ2
x and (X | Y ) is Gaussian, we will

show that the rate-distortion function Rb(D) = 1
2
log
(
1 + σ2

σ2
Φ

)
is achievable for EXU [d(X,U)] ≤

D, where D is a function of σ2
Φ. Next, in our proof, we need to express the generalization error for

regression, and to analyze its convergence with respect to n. In our proofs, this analysis is specific

to the considered regression problem, parametric or non-parametric. For parametric regression,

this analysis is provided in Section IV-B. For kernel regression, the analysis is provided in the

next Appendix.

APPENDIX C

PROOF OF THEOREM 2

Consider the definition of f̂(y) in equation (31). For a given ỹ, for ∀i ∈ J1, nK, note that

Ui

α
= f(Yi) +Ni + Φi = f(ỹ) + (f(Yi)− f(ỹ)) + (Ni + Φi). (63)

Therefore,

1

nh

n∑
i=1

K

(
ỹ − Yi

h

)
Ui

α
=

1

nh

n∑
i=1

K

(
ỹ − Yi

h

)
f(ỹ) +

1

nh

n∑
i=1

K

(
ỹ − Yi

h

)
(f(Yi)− f(ỹ))

+
1

nh

n∑
i=1

K

(
ỹ − Yi

h

)
(Ni + Φi)

= p̂Y (ỹ)f(ỹ) + m̂1(ỹ) + m̂2(ỹ) (64)

where p̂Y (ỹ) = 1
nh

∑n
i=1K

(
ỹ−Yi

h

)
is the kernel density estimation of ỹ from observation Y

[12], m̂1(ỹ) =
1
nh

∑n
i=1 K

(
ỹ−Yi

h

)
(f(Yi)− f(ỹ)) and m̂2(ỹ) =

1
nh

∑n
i=1K

(
ỹ−Yi

h

)
(Ni +Φi). The

analysis of the asymptotic distribution of the kernel estimator f̂(ỹ) is based on [38], which relies

on the analysis of the numerator and the denominator of (31).

First, for m̂2(ỹ), we have that EY ΦN [m̂2(ỹ)] = 0, and its variance can be expressed as:

V [m̂2(ỹ)] = V

[
1

nh

n∑
i=1

K

(
ỹ − Yi

h

)
(Ni + Φi)

]
(65)

=
σ2 + σ2

Φ

nh2

∫
K2

(
ỹ − y

h

)
pY (y)dy (66)

=
σ2 + σ2

Φ

nh

∫
K2(u)pY (ỹ + uh)du (67)

=
σ2 + σ2

Φ

nh

∫
K2(u) (pY (ỹ) + p′Y (ỹ)uh+ o(h)) du (68)
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=
(σ2 + σ2

Φ)p(ỹ)

nh

∫
K2(u)du+ o

(
1

nh

)
(69)

where (67) follows from a change of variable, and (68) comes from a Taylor approximation of

pY (ỹ + uh) when h → 0.

Also, following the same derivation as in [38], for m̂1(ỹ), we show that

E [m̂1(ỹ)] =
h2

2
(2f ′(ỹ)p′Y (ỹ) + f ′′(ỹ)pY (ỹ))

∫
u2K(u)du+ o(h2) (70)

and V [m̂1(ỹ)] = O(h
n
) , which is negligible compared to the variance of m̂2(ỹ). From (64) to

(70), the central limit theorem is applied to obtain that as h → 0 and nh → ∞, we have

m̂1(ỹ)
p−→ h2

2
(2f ′(ỹ)p′Y (ỹ) + f ′′(ỹ)pY (ỹ))

∫
u2K(u)du (71)

m̂2(ỹ)
d−→ N

(
0,

(σ2 + σ2
Φ)pY (ỹ)

nh

∫
K2(u)du

)
(72)

where
p−→ denotes the convergence in probability and d−→ denotes the convergence in distribution.

By the property of kernel density estimation [12], it can be shown that p̂Y
p−→ pY . Next, the

kernel function (10) can be expressed as :

f̂(ỹ) = f(ỹ) +
m̂1(ỹ)

p̂Y (ỹ)
+

m̂2(ỹ)

p̂Y (ỹ)
(73)

By equation (71) to (73), we have the bias and variance in (35) and (36). By Slutsky’s

theorem [49], we have :

m̂1(ỹ) + m̂2(ỹ)

p̂Y (ỹ)

d−→ N
(
E [m̂1(ỹ]

pY (ỹ)
,
V [m̂2(ỹ]

pY (ỹ)

)
. (74)

Hence

f̂(ỹ)− f(ỹ)
d−→ N

(
bn(ỹ), Vn(ỹ)

2
)
. (75)

where bn(ỹ), Vn(ỹ) are defined in (35), (36). According to (33), the generalisation error can be

expressed as:

EZ

[
G(f̂ (n),Z)

]
= σ2 +

h4

4
C1 +

σ2 + σ2
Φ

nh
C2 + o

(
1

nh

)
+ o(h4) (76)

where C1 =
∫ (

2
f ′(y)p′Y (y)

pY (y)
+ f ′′(y)

)2
dy
(∫

u2K(u)du
)2 and C2 =

∫
1

pY (y)
dy
∫
K2(u)du. Recall

that the asymptotic generalization error with uncompressed observations (X,Y ) is [12]

EXY

[
G(f̂ (n),XY )

]
= σ2 +

h4

4
C1 +

σ2

nh
C2 + o

(
1

nh

)
+ o(h4) (77)

which indicates that asymptotically, the regression performed on coded data can achieve the

same performance than that the one performed on original data.
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APPENDIX D

PROOF OF COROLLARY 1

We first consider the conditional setup where the side information Y is available to both

the encoder and the decoder. In this case, for (X|Y ) ∼ N (0, σ2), the optimal conditional rate-

distortion function is [40]

RX|Y (D) =
1

2
log

(
σ2

D

)
, (78)

We now show that when the same relation between X and Y holds, i.e. (X|Y ) ∼ N (0, σ2),

but the side information is only available at the decoder, the Wyner-Ziv rate-distortion function

RWZ(D) is equal to the conditional one RX|Y (D). Using the test channel provided in previous

section U = α(X + Φ) with α = σ2−D
σ2 and σ2

Φ = Dσ2

σ2−D
, together with the scheme proposed

in [33], the intermediate variable U can be recovered without error as the block-length tends

to infinity. By considering the minimum mean square error estimator for the reconstruction X̂

of X , it can be show that E
[
(X − X̂)2

]
= (α − 1)2σ2 + α2σ2

Φ. Replacing α and σΦ by their

expression leads to E
[
(X − X̂)2

]
= D.

Second, the binning rate in [33] can be expressed as

I(X;U)− I(Y ;U) = h(U |Y )− h(U |X)

=
1

2
log

(
σ2 + σ2

Φ

σ2
Φ

)
(79)

where h(·) denotes the differential entropy and the last equality comes from the fact that under

the previous test channel both (U |Y ) and (U |X) follow a Gaussian distribution. By replacing σ2
Φ

in the previous expression, we obtain RWZ(D) = RX|Y (D), the optimal rate for reconstruction.

Then by Theorem 1, for any positive RWZ(D), the pair (RWZ(D), 0) is also achievable for the

generalization error using the same scheme. In other words, it states that R(D,G) = RWZ(D)

for all G ≥ σ2. This indicates that the Gaussian test channel is also optimal in our regression

setup as long as the conditional distribution of (X|Y ) is Gaussian, whatever the distribution of

Y .

APPENDIX E

PROOF OF THEOREM 3

This proof follows the channel resolvability type code of [36] for the Wyner-Ziv problem.

We adapt it so as to also account for the generalization error in the information-density vector

April 30, 2024 DRAFT



30

defined in (45). Some preliminary results for channel resolvability and identification code were

provided in Appendix A.

Code construction: The encoder uses a stochastic map PI|X : X → I. It generates i ∈ I

according to PI|X . Then the encoder sends i by random binning κ : I → M. It means for every

i ∈ I, it is independently and uniformly assigned to a random bin m ∈ M. For given m ∈ M

and y ∈ Y , the decoder finds the unique index i ∈ I such that κ(i) = m, and

(ui, y) ∈ Tp(γp). (80)

As mentioned in the channel resolvability problem in Appendix A, the stochastic map PI|X is

constructed such that the joint distribution PÎX is indistinguishable from PIX′ , where for any

measurable E ∈ P(I)× B(X )

PIX′(E) =

∫
E

|I|∑
i

1[ui = u]

|I|
pX|U(x|u)dx, (81)

and PIX′ is the joint distribution of the couple (I,X ′), where X ′ is the random variable that

induces the probability measure PX|U when U is chosen uniformly in the codebook
{
u1, · · ·u|I|

}
.

Then the decoder has two objectives: i) performing the regression according to U and Y to

obtain a function f̂ , and ii) reconstruction of X . In both cases, a decoder error occurs if there

is no i satisfying (80) or if there is more than one such i satisfying (80).

Let Î be random index chosen by the encoder via the stochastic map PI|X . The joint distribution

of (Î , X) is given by

PÎX = PXPI|X . (82)

And the joint distribution of (Î , X, Y, X̂, G) is given by

PÎXY X̂ = PÎXPY |XPX̂|UY . (83)

Note that here the generalization error is fully determined by the sequence U and Y . The

smoothed versions P̄ÎX and P̄ÎXY X̂ are given by

P̄ÎX(E) =

∫
E

|I|∑
i

1[(ui, x) ∈ Tc(γc)]pX(x)pI|X(i|x)dx (84)

P̄ÎXY X̂ = P̄ÎXPY |XPX̂|UY . (85)

Pe,n(D,G) = P
[{

d(X, X̂) ≥ D
}

∪
{
G(f̂ (n),Z) ≥ G

}]
from Definition 7. This error proba-

bility is bounded away from 0 if at least of one of the following error events occurs:

E0 := {(u,y) /∈ Tg(G)} , (86)

April 30, 2024 DRAFT



31

E1 := {(x, x̂) /∈ Td(D)} , (87)

E2 := {(ui, y) /∈ Tp(γp)} , (88)

E3 := {∃ i′ ̸= i s.t. κ(i′) = κ(i), (ui′ , y) ∈ Tp(γp)}. (89)

For fixed codebook C, following the same step as in [36], the excess probability is thus upper

bounded by :

PÎXY X̂(E0 ∪ E1 ∪ E2 ∪ E3)

≤P̄IX′Y X̂(E0 ∪ E1 ∪ E2) + P̄IX′Y X̂(E3) + dTV (PÎX , P̄IX′)

+
1− P̄IX′Y X̂(I × X × Y × X̂ )

2
(90)

Next, the excess probability Pe,n(D,G) is averaged over the random coding function κ and

the random codebook C can be upper bounded as

EκEC[Pe,n(D,G)]

≤EκEC [PÎXY X̂(E0 ∪ E1 ∪ E2 ∪ E3)]

≤EC
[
P̄IX′Y X̂(E0 ∪ E1 ∪ E2)

]
+ EκEC

[
P̄IX′Y X̂(E3)

]
+ EC

[
dTV (PÎX , P̄IX′)

]
+ EC

[
1− P̄IX′Y X̂(I × X × Y × X̂ )

2

]
. (91)

The expectation of the first term can be expressed as:

EC
[
PIX′Y X̂

[
(ui, x) ∈ Tc(γc) ∩

(
E0 ∪ E1 ∪ E2

)]]
(92)

= PXUY X̂

[
(u, x) ∈ Tc(γc) ∩

(
E0 ∪ E1 ∪ E2

)]
.

For the three last terms as proved in [36], we can prove that the second term in (91) is upper

bounded as:

EκEC
[
P̄IX′Y (E3)

]
=EκEC

[ ∫
UXY

∑
i

1 [(ui, x) ∈ Tc(γc)]

|I|
× 1[∃i′ ̸= i s.t.κ(i′) = κ(i), (ui′ , y) ∈ Tp(γp)]

pX|U(x|u)pY |X(y|x)dxdy
]

(93)

≤EκEC

[ ∫
UXY

∑
i

1 [(ui, x) ∈ Tc(γc)]

|I|
|I|
∑
i′ ̸=i

1[κ(i′) = κ(i)]× 1[(ui′ , y) ∈ Tp(γp)]

|I|
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pX|U(x|u)pY |X(y|x)dxdy
]

(94)

≤ |I|
|M|

∫
UXY

1 [(u, x) ∈ Tc(γc)] pXY U(x, y, u)dxdydu

∫
U
1[(u, y) ∈ Tp(γp)]pU(u)du (95)

≤ |I|
|M|

∫
UY

1[(u, y) ∈ Tp(γp)]pU(u)pY (y)dudy (96)

≤ |I|
2γp |M|

, (97)

where (95) comes from the fact that Eκ [1[κ(i
′) = κ(i)]] ≤ 1

|M| . The third term can be upper

bounded as

EC[dTV (PÎX , P̄IX′)]

≤EC[dTV (PÎX , P̄ÎX)] + EC[dTV (P̄ÎX , P̄IX′)] (98)

≤PUX((u, x) /∈ Tc(γc))

2
+

∆(γc, PUX)

2
√
|I|

≤PUX((u, x) /∈ Tc(γc))

2
+

1

2

√
2γc

|I|
. (99)

The expectation of the last term can be evaluated as :

EC

[
1− P̄IX′Y X̂(I × X × Y × X̂ )

]
(100)

=1− EC

[ ∫
XYX̂U

∑
i

1[ui = u]× 1 [(u, x) ∈ Tc(γc)]

|I|
.

pX|U(x|u)pY |X(y|x)pX̂|UY (x̂|u, y)dxdydx̂du
]

(101)

=PUX [(u, x) /∈ Tc(γc)] . (102)

Combining the results above provides the upper bound

ε ≤ PXUY X̂ [(u, y) ∈ Tp(γp)
c ∪ (u, x) ∈ Tc(γc)

c

∪(x, x̂) ∈ Td(D)c ∪ (u,y) ∈ Tg(G)c] +
N

2γp|M|
+

1

2

√
2γc

N
. (103)

APPENDIX F

PROOF OF THEOREM 4

The proof is based on a Gaussian approximation using the following multi-dimensional Berry-

Esséen theorem.
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Theorem 5 (Multidimensional Berry-Esséen theorem [50]). Let U 1,U 2, ...,Un be independent

random vectors in Rk with zero mean. Let Sn = 1√
n
(U 1 + ... + Un) and C [Sn] = V > 0.

Consider a Gaussian random vector B ∼ N (0,V ), then for all n ∈ N, we have

sup
C∈Ck

|PSn [C]− PBn [C] | ≤ O

(
1√
n

)
(104)

where Ck is the family of all convex Borel measurable subsets of Rk.

As mentioned earlier, the components of the information-density-distortion-generalization error

vector defined in (45) are not independent, since the generalization error EX̃Ỹ

[
ℓ(X̃, f̂ (n)(Z, Ỹ ))

]
depends on the full sequence Z, while the other components only depend on a random occurrence

of U, Y . Therefore, let us consider the conditional information-density-distortion-generalization

error vector rewritten as follow:

ji(Ui, Xi, Yi, X̂i|Z−i) =


−ι(ui, yi)

ι(xi, ui)

d(xi, x̂i)

EX̃Ỹ

[
ℓ(X̃, f̂ (n)(ui, yi, Ỹ ))|Z−i

]

 (105)

where Z−i = [ui−1,un
i+1,y

i−1,yn
i+1]. Given that U and Y are independent random variables,

let Z⋆ = Z−i ∼ PUn−1Y n−1 . Its expectation J(Z⋆) can be expressed as

J(Z⋆) = E[ji(Ui, Xi, Yi, X̂i|Z−i)] =


−I(U ;Y )

I(U ;X)

EXX̂

[
d(X, X̂)

]
EZX̃Ỹ

[
ℓ(X̃, f̂ (n)(U ,Y , Ỹ )|Z−i

]

 . (106)

Let γp = log |In|
|Mn| + log n, where Mn = {1, · · · ,Mn}, and γc = log |In| − log n, using (103)

allows us to show that there exists a code such that

Pe,n(G,D) ≤ PXUY X̂ [(u, y) ∈ Tp(γp)
c ∪ (u, x) ∈ Tc(γc)

c

∪(x, x̂) ∈ Td(D)c ∪ (u,y) ∈ Tg(G)c] +
1

n
+

1

2
√
n

(107)

≤ EZ∗

P


n∑
i


−ι(ui, yi)

ι(xi, ui)

d(xi, x̂i)

EX̃,Ỹ

[
ℓ(X̃, f̂ (n)(ui, yi, Ỹ ))|Z−i

]

 ≥


log |Mn|

|In|

log |In|

nD

nL

− logn



+
1

n
+

1

2
√
n

(108)
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= EZ∗

P


n∑
i

[ji − J(Z⋆)] ≥


log |Mn|

|In|

log |In|

nD

nL

− nJ(Z⋆)− logn



+
1

n
+

1

2
√
n
. (109)

Let

b̃|Z∗ =
√
n




1
n
log |Mn|

|In|
1
n
log |In|

D

L

− J(Z⋆)−
2 logn

n

 , (110)

where logn
n

denotes the vector logn
n

14 with same size as vector J . We have

1− Pe(n, L,D) (111)

≥ PZ∗

[
P

[
1√
n

n∑
i

[ji − J(Z⋆)] ≤ b̃|Z∗ +
logn
√
n

]]
− 1

n
− 1

2
√
n

(112)

= EZ∗

[
PJi|Z∗

[
1√
n

n∑
i

[ji − J ] ≤ b̃|Z∗ +
logn
√
n

]]
− 1

n
− 1

2
√
n

(113)

≥ PZ∗

[
PB|Z∗

[
B|Z∗ ≤ b̃|Z∗ +

logn
√
n

]]
−O

(
1√
n

)
(114)

= EZ∗

[
PB|Z∗

[
B|Z∗ ≤ b̃|Z∗

]]
+O

(
logn
√
n

)
(115)

= EB

[
B ≤ b̃

]
+O

(
logn
√
n

)
(116)

≥ 1− ϵ, (117)

which indicates that

b̃ = EZ∗

[
b̃|Z∗

]
=

√
n




1
n
log |Mn|

|In|
1
n
log |In|

D

L

− EZ∗ [J ]−
2 logn

n

 ∈ S (V , ϵ) (118)

where S (V , ϵ) is the dispersion region defined in (48). This completes the proof.
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APPENDIX G

PROOF OF COROLLARY 2

As shown in Theorem 4, the bound for the second order coding rate is mainly affected by the

dispersion region of i(X,U ,Y , X̂), and especially by its covariance matrix. In what follows,

we aim to show that

Cov
(
d(X, X̂), G(f̂ (n),Z)

)
= 0, (119)

which means that the distortion and the generalization error are uncorrelated. Here we provide

the proof for both parametric regression with OLS estimator and kernel regression. Since X, X̂

are i.i.d., without loss of generality, we consider d(X, X̂) = d(X1, X̂1).

A. Parametric regression

The covariance term (119) can be expressed as:

Cov
(
d(X1, X̂1), G(f̂ (n),Z)

)
= E

[
G(f̂ (n),Z)d(X1, X̂1)

]
− E

[
G(f̂ (n),Z)

]
E
[
d(X1, X̂1)

]
(120)

with

E
[
G(f̂ (n),Z)

]
E
[
d(X1, X̂1)

]
=

(
σ2 +

σ2 + σ2
Φ

n
E
[
Tr
(
Σ̃Σ−1

)])
E
[
d(X1, X̂1)

]
(121)

and

E
[
G(f̂ (n),Z)d(X1, X̂1)

]
(122)

= σ2E
[
d(X1, X̂1)

]
+ E

[
[β − β̂]TEỸ

[
Ỹ Ỹ

T
]
[β − β̂]d(X1, X̂1)

]
(123)

= σ2E
[
d(X1, X̂1)

]
+

1

n2
EY

[
tr
(
Σ̃Σ−1Y ENΦ

[
(N +Φ)d(X1, X̂1)(N +Φ)T

]
Y TΣ−1

)]
(124)

= σ2E
[
d(X1, X̂1)

]
+

σ2σ2
ϕ

n2
E
[

tr
(
Σ̃Σ−1Y Y TΣ−1

)]
(125)

= σ2E
[
d(X1, X̂1)

]
+

σ2σ2
ϕ

n
E
[

tr
(
Σ̃Σ−1

)]
(126)

where (125) follows from the fact that ENΦ

[
(N +Φ)d(X1, X̂1)(N +Φ)T

]
remains the same

for all i ∈ J1, nK. Using the fact that σ2σ2
ϕ = (σ2 + σ2

ϕ)E
[
d(X1, X̂1)

]
completes the proof for

the parametric case.
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B. Kernel regression

For kernel regression, we express:

EX̃ỸZ

[
G(f̂ (n),Z)

]
EZ

[
d(X1, X̂1)

]
(127)

=
(
σ2 + EỸ

[
f 2
(
Ỹ
)]

+ EỸZ

[
f̂ (n)2(Ỹ )

]
−2EỸ

[
f (ỹ)EZ

[
f̂ (n) (ỹ)

] ∣∣∣Ỹ = ỹ
])

EZ

[
d(X1, X̂1)

]
,

and

EX̃ỸZ

[
G(f̂ (n),Z)d(X1, X̂1)

]
(128)

= σ2EZ

[
d(X1, X̂1)

]
+ EỸ

[
f 2(Ỹ )

]
EZ

[
d(X1, X̂1)

]
+ EỸ

[
EZ

[
f̂ (n)2(ỹ)d(X1, X̂1)

] ∣∣∣Ỹ = ỹ
]

(129)

− 2EỸ

[
f(ỹ)EZ

[
f̂ (n)(ỹ)d(X1, X̂1)

] ∣∣∣Ỹ = ỹ
]

(130)

For the last term, we have

EZ

[
f̂ (n)(ỹ)d(X1, X̂1)

]
(131)

= f(ỹ)EZ

[
d(X1, X̂1)

]
+ EY

[
m̂1(ỹ)

p̂(ỹ)

]
ENΦ

[
d(X1, X̂1)

]
+ EY NΦ

[
m̂2(ỹ)d(X1, X̂1)

p̂Y (ỹ)

]
(132)

= f(ỹ)EZ

[
d(X1, X̂1)

]
+ EY

[
m̂1(ỹ)

p̂Y (ỹ)

]
ENΦ

[
d(X1, X̂1)

]
+

n∑
i=1

EY

[
K( ỹ−Yi

h
)

nhp̂(ỹ)

]
ENΦ

[
(Ni + Φi))d(X1, X̂1)

]
(133)

= f(ỹ)EZ

[
d(X1, X̂1)

]
+ EY

[
m̂1(ỹ)

p̂Y (ỹ)

]
ENΦ

[
d(X1, X̂1)

]
(134)

= EZ

[
f̂ (n)(ỹ)

]
EZ

[
d(X1, X̂1)

]
, (135)

where (132) comes from the fact that d(X1, X̂1) is independent from p̂Y (ỹ) since N and Φ are in-

dependent from Y . In addition, (134) is because for all i ∈ J1, nK, ENΦ

[
(Ni + Φi))d(X1, X̂1)

]
=

0.

Then for the third term (129), we have

EZ

[
f̂ (n)2(ỹ)d(X1, X̂1)

]
(136)

= E

[
f 2(ỹ) +

(
m̂1(ỹ)

p̂Y (ỹ)

)2

+ 2
f(ỹ)m̂1(ỹ)

p̂Y (ỹ)

]
E
[
d(X1, X̂1)

]
(137)
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+ E
[(

2
f(ỹ)m̂2(ỹ)

p̂Y (ỹ)
+ 2

m̂1(ỹ)m̂2(ỹ)

p̂Y (ỹ)

)
d(X1, X̂1)

]
(138)

+ E

[(
m̂2(ỹ)

p̂Y (ỹ)

)2

d(X1, X̂1)

]
(139)

where (137) is obtained from the same arguments as for (132), and the second part equals to

zero because of equation (134). The last part (139) can be developped as

EZ

[(
m̂2(ỹ)

p̂Y (ỹ)

)2

d(X1, X̂1)

]
(140)

=
1

n2h2
EY NΦ

 n∑
i=1

(
K( ỹ−Yi

h
)(Ni + Φi)

p̂Y (ỹ)

)2

d(X1, X̂1)

 (141)

=
1

n2h2
EY

 n∑
i=1

(
K( ỹ−Yi

h
)

p̂Y (ỹ)

)2
ENΦ

[
(Ni + Φi)

2 ((α− 1)Nj + αΦj)
2] (142)

=
σ2 + σ2

Φ

n2h2
EY

 n∑
i=1

(
K( ỹ−Yi

h
)

p̂Y (ỹ)

)2
EZ

[
d(X1, X̂1)

]
(143)

= EZ

[(
m̂2(ỹ)

p̂Y (ỹ)

)2
]
EZ

[
d(X1, X̂1)

]
(144)

with (143) is obtained from the same arguments as for (125).

This gives

EỸ

[
f(ỹ)EZ

[
f̂ (n)(ỹ)d(X1, X̂1)

∣∣∣Ỹ = ỹ
]]

=EỸZ

[
f(ỹ)f̂ (n)(ỹ)

]
EZ

[
d(X1, X̂1)

]
, (145)

therefore

EX̃ỸZ

[
G(f̂ (n),Z)d(X, X̂)

]
=EX̃ỸZ

[
G(f̂ (n),Z)

]
EZ

[
d(X, X̂)

]
, (146)

and Cov
(
d(X, X̂), G(f̂ (n),Z)

)
= 0.

Denote Rb(n,D,G, ε) as the infimum introduced by Theorem 4 for the rate-distortion-generalization

error function, Rb(n,D, ε) and Rb(n,G, ε) for the rate-distortion function and rate-generalization

error function, respectively. Consider the vector B = [B1, B2, B3, B4]
T defined in (48), by the

achivability of Rb(n,D, ε) and Rb(n,G, ε), we have :

PB1B2B3 [B1 ≤ b1, B2 ≤ b2, B3 ≤ D] = 1− ε, (147)
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PB1B2B4 [B1 ≤ b′1, B2 ≤ b′2, B4 ≤ G] = 1− ε (148)

with Rb(n,D, ε) = I(X;U) − I(U ;Y ) + b1 + b2 + O
(
logn
n

)
and Rb(n,G, ε) = I(X;U) −

I(U ;Y ) + b′1 + b′2 +O
(
logn
n

)
.

Consider firstly Rb(n,D, ε) ≥ Rb(n,G, ε) and Rb = max{Rb(n,D, ε), Rb(n,G, ε)}, we have

PB [B1 ≤ b1, B2 ≤ b2, B3 ≤ D,B4 ≤ G] (149)

=P [B1 ≤ b1, B2 ≤ b2]P [B3 ≤ D|B1 ≤ b1, B2 ≤ b2]P [B4 ≤ G|B1 ≤ b1, B2 ≤ b2] (150)

=P [B1 ≤ b1, B2 ≤ b2, B3 ≤ D]P [B4 ≤ G|B1 ≤ b1, B2 ≤ b2] (151)

=(1− ε)P [B4 ≤ G|B1 ≤ b1, B2 ≤ b2] (152)

<1− ε, (153)

where (150) follows the fact that uncorrelation of Gaussian variables indicates independence,

(153) is because the cumulative density function of Gaussian source is smaller than 1.

The same analysis applies for the case Rb(n,G, ε) ≤ Rb(n,D, ε). It implies that in order to

ensure the same excess probability, a higher rate Rb(n,D,G, ε) is necessary by the approximation

of Berry-Esséen Theorem, that is

Rb(n,D,G, ε) > max{Rb(n,D, ε), Rb(n,G, ε)} (154)

This completes the proof.
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