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Abstract

The adoption of artificial intelligence (AI) across industries has led to the widespread use of

complex black-box models and interpretation tools for decision making. This paper proposes an

adversarial framework to uncover the vulnerability of permutation-based interpretation methods

for machine learning tasks, with a particular focus on partial dependence (PD) plots. This

adversarial framework modifies the original black box model to manipulate its predictions for

instances in the extrapolation domain. As a result, it produces deceptive PD plots that can

conceal discriminatory behaviors while preserving most of the original model’s predictions. This

framework can produce multiple fooled PD plots via a single model. By using real-world datasets

including an auto insurance claims dataset and COMPAS (Correctional Offender Management

Profiling for Alternative Sanctions) dataset, our results show that it is possible to intentionally

hide the discriminatory behavior of a predictor and make the black-box model appear neutral

through interpretation tools like PD plots while retaining almost all the predictions of the

original black-box model. Managerial insights for regulators and practitioners are provided

based on the findings.

1 Introduction

In recent years, industries have increasingly adopted artificial intelligence (AI), leading to the

widespread use of complex AI models. These AI applications can enhance efficiency and accuracy,

resulting in time and cost savings. However, these models often operate as “black boxes”, meaning

while we can observe their inputs and outputs, their inner workings remain opaque. This lack of

transparency has raised concerns from both regulators and consumers, especially when black-box

AI models are used in critical decision-making scenarios.

In this paper, we propose an adversarial framework to demonstrate the susceptibility of partial

dependence (PD) plots to adversarial attacks, specifically revealing how these plots can be ma-

nipulated by exploiting the extrapolation behavior of correlated features and the aggregation of

heterogeneous effects during the averaging process. This adversarial framework modifies the origi-

nal black box model to manipulate its predictions for instances in the extrapolation domain. As a

result, it produces deceptive PD plots that can conceal discriminatory behaviors while preserving

most of the original model’s predictions. Empirical insurance and COMPAS (Correctional Offender
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Management Profiling for Alternative Sanctions) datasets are applied to demonstrate the effective-

ness of this model. Our results show that it is possible to intentionally hide the discriminatory

behavior of a predictor and make the black-box model appear neutral through interpretation tools

like PD plots while retaining almost all the predictions of the original black-box model.

To gain insights into the relationships between model inputs and outputs, various interpretation

methods from the growing field of interpretable machine learning can be potentially employed to

support the application of black-box models. For example, some of these interpretation methods

have garnered attention within sectors such as insurance (Kuo & Lupton, 2020; SOA, 2021; Del-

caillau et al., 2022), credit scoring (Bücker et al., 2022; Szepannek & Lübke, 2023) or healthcare

(Mohanty & Mishra, 2022) in recent years. These methods can be broadly categorized into three

groups (SOA, 2021): 1) feature importance, 2) methods for understanding the relationships be-

tween model inputs and outputs (main effects), and 3) methods for identifying and visualizing

interaction effects. PD plots are suggested as interpretation tools by regulators (NAIC, 2020) and

practitioners (SOA, 2021) in the insurance industry. They are frequently employed in the literature

when black-box insurance models are implemented or proposed – ranging from insurance (Guel-

man, 2012; Yang et al., 2018; Lee & Lin, 2018; Xie, 2021; Henckaerts et al., 2021) to customer

churn (Lemmens & Croux, 2006; Matuszelański & Kopczewska, 2022), and criminal justice (Berk

& Bleich, 2013).

The interpretability, explainability, and transparency of black-box algorithms are commonly dis-

cussed ethical challenges across various AI principle documents (Stanford HAI, 2019, p.149). Never-

theless, the definitions and interpretations of these principles tend to vary across scientific disciplines

and among different stakeholders, including policymakers, technical standardization communities,

legal scholars, and applied AI practitioners (Panigutti et al., 2023). Specifically, the EU’s General

Data Protection Regulation (GDPR) has been interpreted by some as containing a “right to expla-

nation,” a topic which continues to spark debate regarding the legal existence and the feasibility

of such a right under the GDPR (Wachter et al., 2017; Bordt et al., 2022).

A recent regulatory development in the insurance domain is the expansion of the National As-

sociation of Insurance Commissioners’ Predictive Models White Paper (NAIC, 2022) in the US

insurance industry. It has extended its scope from primarily reviewing rate filings based on Gener-

alized Linear Models (GLMs) (NAIC, 2020) to include tree-based models like random forests and

gradient boosting machines. The White Paper provides state insurance regulators with compre-

hensive guidelines for assessing predictive models. Under these guidelines, insurers using tree-based

methods in rate filings are expected to implement interpretability plots to describe the relationship

between each predictor variable and the target variable, which could range from frequency and

severity to loss costs and expenses. Insurers should offer rational explanations for the observed

relationship, and are also recommended to obtain variable importance plots to identify significant

variables influencing the model’s outcomes.

Although stakeholders may possess a certain level of understanding regarding the limitations of
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these interpretation methods, there is often a lack of awareness regarding the inherent vulnerabilities

of these methods. A growing body of literature emphasizes the need for caution in the use of these

methods, as they can be unreliable and prone to provide misleading information. For instance,

Rudin (2019) asserts that these explanations are fundamentally flawed as they can never be fully

faithful to the original model. Hooker et al. (2021) demonstrate the vulnerability of permutation-

based interpretation methods due to the extrapolation behavior of correlated features. Molnar et

al. (2022) uncover and review the general pitfalls of model-agnostic interpretation methods.

Recent years have seen studies developing adversarial attacks of certain interpretation methods,

such as LIME, SHAP (Slack et al., 2020; Baniecki & Biecek, 2022; Laberge et al., 2022) and

partial dependence plots (Baniecki et al., 2023). Building upon this line of research, we present

the vulnerability of permutation-based interpretation methods via adversarial attacks on partial

dependence (PD) plots – a widely utilized interpretation method. There is limited existing literature

on developing an adversarial framework to fool PD plots. The only paper we could find is a recent

study by Baniecki et al. (2023). Compared to their model which relies on a poisoned dataset to

manipulate the PD plots, our framework modifies the model instead, which can achieve substantial

fooling effectiveness and allow auditors (regulators) to examine the datasets used. Our model also

extends Slack et al. (2020)’s scaffolded classifier to a scaffolded regressor framework. Notably, Slack

et al. (2020) directly used the permuted data generated by LIME or kernel SHAP in their adversarial

framework, however, our approach uses only extrapolated permuted PD data as compensating

outputs. This subset, which falls within the extrapolation domain, is less likely to be observed in

real data and represents only a portion of all permuted data generated for PD plots. This specificity

enhances the efficiency and accuracy of the fooling process, as opposed to using the entire set of

permuted data.

Our findings raise concerns about the use of permutation-based interpretation methods for machine

learning tasks that require interpretation. This is because the discriminatory behavior of a predictor

can be intentionally hidden by tools such as PD plots which make the model appear neutral while

preserving nearly all original discriminatory predictions.

The rest of the paper is organized as follows. Section 2 reviews related studies. Section 3 introduces

PD plots, discussing both their properties and limitations. Section 4 outlines our methodology for

constructing an adversarial framework designed to manipulate PD plots. Section 5 examines the

effectiveness of our framework using real-world datasets. Section 6 offers insights and recommen-

dations for regulators and practitioners. Section 7 concludes the paper.

2 Related Studies

There are very few studies on adversarial attacks on global interpretation methods applied to

tabular data, even though these methods are becoming increasingly popular in critical areas such

as insurance and credit scoring. In a related work, Baniecki et al. (2023) approached fooling PD as
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an optimization problem using genetic and gradient algorithms, with adversarial data perturbations

by supplying a poisoned dataset. Most adversarial attacks on interpretation methods involve either

perturbing the data through small changes or modifying the model itself. Our adversarial framework

can be viewed as a modification of the model and is distinctive for preserving the original model’s

predictive performance while enabling auditors to examine the input dataset.

In a notable earlier study, Slack et al. (2020) demonstrated that local interpretation methods relying

on input perturbations, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017),

can be vulnerable to adversarial attacks. These attacks exploit the use of synthetic neighborhood

data points generated by LIME or SHAP, deviating from the underlying data distribution. Building

upon this notion, our work expands on this idea by identifying and exploiting the extrapolated data

generated by PD to deceive the PD itself via an adversarial framework. Our approach can be seen as

an extension of Slack et al. (2020)’s scaffolded classifier to a scaffolded regressor framework, which

serves as the inspiration for our methodology. Apart from these, other global or local interpretation

methods for tabular data are susceptible to adversarial attacks, including global SHAP (Baniecki

& Biecek, 2022; Laberge et al., 2022) and counterfactual explanations (Slack et al., 2021).

In the broader landscape of machine learning, the existing literature on adversarial attacks of in-

terpretation tools extensively covers attacks targeting model-specific explanations. These studies

primarily focus on deep neural networks applied to image data, as evidenced by works such as Ghor-

bani et al. (2019); Dombrowski et al. (2019); Heo et al. (2019); Dimanov et al. (2020), rather than

the context of tabular data that we explore. Prior to these works, earlier studies primarily focused

on adversarial attacks targeting model predictions (Szegedy et al., 2013; Goodfellow et al., 2014).

Interestingly, adversarial examples were generated to deceive model classifications in Goodfellow et

al. (2014) by altering pixel values to fall outside the training data distribution. This exploits the

vulnerabilities of certain neural network architectures to “extrapolation” in image classification for

conducting adversarial attacks. In comparison, we exploit the extrapolation vulnerabilities of PD

plots – in a different context for permutation-based interpretation methods – to carry out adversar-

ial attacks. For a comprehensive survey on adversarial attacks on model explanations, along with

the corresponding defenses against such attacks, we direct readers to Baniecki & Biecek (2023).

3 Partial Dependence Plots

3.1 Notation and Definitions

Let y be the target variable, x be a set of predictor variables, and f̂ be a trained predictive machine

learning (ML) model, ŷ = f̂(x). The feature matrix is denoted by X, and the target vector is y.

In this paper, the superscript (i) indicates an individual observation, and the subscript j refers to

a specific featu: x
(i)
j specifies the jth feature of the ith observation. Given the observed training

data {X,y} = {x(i), y(i)}ni=1, y
(i) ∈ R and x(i) ∈ Rp, where n ∈ N is the number of observations

and p ∈ N is the number of features.
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Partial Dependence (PD) Plot: The PD plot displays the marginal effect of a feature on the

prediction (Friedman, 2001). Let XS be a feature subset of X (typically |S| = 1 or 2), denoted as

XS ⊂ {X1, . . . , Xp}, and XC be the complement subset, XS ∪XC = X. The PD function is defined

as

PDS(XS) = EXC
[f̂(XS , XC)] =

∫
f̂(XS , XC)dP(XC) (3.1)

When there is only one feature of interest Xj in S, let x
(i)
−j denote the ith row of X without the jth

feature, the above can be estimated from the training sample by

P̂Dj(xj) =
1

n

n∑
i=1

f̂(xj ,x
(i)
−j) (3.2)

The PD function calculates the average predicted outcome when the jth column of X is replaced

with the value xj . It is important to note that PD plots assume that the features in XS are

independent of the features in XC . In general, PD plots provide a global model-agnostic technique

that reveals the global relationship between a feature and the predicted output.

Marginal plots (M-plots) (Apley & Zhu, 2020) provide an alternative to PD plots by focusing

on the conditional distribution, effectively addressing extrapolation issues that may arise from

correlated features. The function of a marginal plot is defined as

MS = EXC |XS
[f̂(XS , XC)|XS = xS ] =

∫
f̂(XS , XC)dP(XC |XS = xS) (3.3)

However, a limitation of M-plots arises when a feature of interest, j, is correlated with an unplotted

feature k in X. In such cases, the M-plot for feature j show a mixed effect of both features j and

k, even if feature j has no predictive power on the target variable. For this reason, M-plots have

limited utility as tools for assessing main effects (Friedman, 2001; Apley & Zhu, 2020; Grömping,

2020).

3.2 Properties of PD Plots

Additive or Multiplicative Recovery Properties: If the dependence of f̂(X) onXS is additive:

f̂(X) = ĥS(XS) + ĥC(XC), then PDS(XS) is equal to ĥS(XS), up to an additive constant. If the

dependence of f̂(X) on XS is multiplicative: f̂(X) = ĥS(XS) · ĥC(XC), then PDS(XS) is equal to

ĥS(XS), up to an multiplicative constant factor (Friedman, 2001; Hastie et al., 2009). Marginal

plots, in comparison, do not conform to these properties. Grömping (2020) argued that PD plots

are more conceptually sound than M-plots or Accumulated Local Effect (ALE) plots – a popular

alternative to PD plots.

Causal interpretations: It is possible to derive causal interpretations from black-box models

using PD plots: PD plots estimate the causal effect of XS on Y , provided that XC satisfies the
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back-door criterion (Zhao & Hastie, 2021). Loftus et al. (2023) proposed causal dependence plots

– a causal analog of PD plot, based on the structural causal model, however, it can be a challenge

to identify the structural causal model in real-world applications.

3.3 Limitations of PD Plots

Extrapolation: PD plots, along with other perturbation-based interpretation methods, does not

account for the interaction effects among features. Consequently, when there is strong dependence

among features, these methods may yield misleading interpretation results as they extrapolate to

regions with little or no data (Hooker, 2004; Hooker et al., 2021). Furthermore, the selection of

sampling points, such as the use of equidistant grids, can exacerbate the problem of extrapolation

(Molnar et al., 2022; Krause et al., 2016).

Aggregation of Heterogeneous Effects: PD plots represent an average curve, but they can

obscure opposite behaviors present within subsets of the data. For example, a flat PDP curve may

suggest one of two scenarios: (1) the feature has no significant influence on the prediction, or (2)

different subsets of the dataset exhibit opposing trends that offset each other when calculating the

overall average (Angelini et al., 2023; Molnar et al., 2022).

Ignorance of Uncertainty: PD plot fails to consider the uncertainty in both its estimation and

model fitting. For instance, its interpretations can be misleading in situations where models are

underfitted or overfitted (Molnar et al., 2022). Instead, the uncertainty of PD plots can be estimated

on bootstrap samples for a given model to construct confidence intervals (Cafri & Bailey, 2016).

Crucially, the first two limitations – the extrapolation behavior of correlated features and the

aggregation of heterogeneous effects during the averaging process – are exploited in Section 4 to

manipulate PD plot outputs.

4 The Process of Fooling Partial Dependence Plots

In this section, we outline our methodology for constructing an adversarial framework, denoted

by a(x), which is designed to replace the original ML model f(x). Initially, we consider a simpler

scenario of manipulating a single PD plot. Building on this foundation, we expand our methodology

to simultaneously fool multiple PD plots within a unified framework.

4.1 Adversarial Framework a(x)

Our adversarial framework a(x) takes the form:

a(x) = (1− c(x)) · f(x) + c(x) · g(x). (4.1)

The model a(x) replaces the original machine learning model f(x), which aims to maintain the

prediction accuracy of the original model and generate manipulated PD plots.
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Figure 1: Adversarial Framework a(x) for Manipulating the PD Plot of Feature Xj

Here, c(x) is a classifier to distinguish between instances from the original feature space and those

from the extrapolation domain. g(x) is a function to provide specific outputs to form the desired

PD plots. The framework predicts that an instance originates from the original feature space when

c(x) = 0 and outputs the black-box prediction f(x) accordingly. Conversely, when c(x) = 1,

the instance is determined to come from the extrapolation domain, and a(x) outputs g(x) – the

compensating outputs. Broadly, the framework uses g(x) for instances in the extrapolation domain

as identified by c(x), aiming to compensate for the discriminatory performance of model f(x) on

real data when generating PD plot outputs. A simple scenario of this process is visually summarized

in Figure 1.

The manipulated PD function for the jth feature after adversarial attacks can be expressed as:

P̂D
adv

j (xj) =
1

n

n∑
i=1

â(xj ,x
(i)
−j) (4.2)

=
1

n

 n∑
i=1

f̂(xj ,x
(i)
−j) · (1− ĉ(xj ,x

(i)
−j)) +

n∑
i=1

ĝ(xj ,x
(i)
−j) · ĉ(xj ,x

(i)
−j)

 (4.3)

We simplify this expression to:

P̂D
adv

j (xj) = (1− λ̂j(xj))ρ̂j(xj) + λ̂j(xj)γ̂j(xj), (4.4)

where λj(xj) represents the proportion of permuted data identified as belonging to the extrapolation

domain by ĉ(x) for feature j at value xj . The term ρj(xj) is the conditional PD function, which

serves as an approximation of Mj(xj) in (3.3), capturing the global relationship between the feature

and the predicted output, considering non-extrapolation data only. γj(xj) denote the compensating

output from model g for feature Xj at value xj , when attempting to fool one PD plot at a time.
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We have g(xj ,x
(i)
−j) = γj(xj). These components are estimated as follows:

λ̂j(xj) =
1

n

n∑
i=1

ĉ(xj ,x
(i)
−j) (4.5)

ρ̂j(xj) =
1

n− nλ̂j(xj)

n∑
i=1

f̂(xj ,x
(i)
−j) · (1− ĉ(xj ,x

(i)
−j)) (4.6)

Given these, if PD
adv
j (xj) denotes the desired PD output set by modelers (attackers) for feature

Xj at value xj we derive:

g(xj ,x
(i)
−j) = γ̂j(xj) =

PD
adv
j (xj)− (1− λ̂j(xj))ρ̂j(xj)

λ̂j(xj)
. (4.7)

In the following subsections, we discuss how to construct c(x) and g(x) and apply the adversarial

framework to fool single and multiple PD plots.

4.2 Construct the Classifier c(x)

To build the adversarial framework, we commence with the construction of classifier c(x) to distin-

guish between instances from the original feature space and those from the extrapolation domain.

To construct such a classifier, we first generate an augmenting sample X̃ = {x̃(i)}ñi=1 following the

approach proposed by Hooker & Rosset (2012), complementing the training of c(x) with original

data X. Let P(x̃) denote the joint (generative) feature distribution to generate X̃, and set it as a

uniform distribution based on the empirical range of the training data:

P(x̃) = P(x̃;X) =

p∏
j=1

U(min
i
(x

(i)
j ) < x̃j < max

i
(x

(i)
j )), (4.8)

where U(a, b) represents a uniform marginal distribution ranging from a to b, and min(x
(i)
j ) and

max(x
(i)
j ) denote the minimum and maximum values of the jth feature in the training sample. In

other words, each feature X̃j in X̃ is independently generated from the uniform marginal distribu-

tion of individual features.

The proposal of uniform P(x̃) was introduced by Hooker & Rosset (2012) for a different objective,

aiming to provide regularization in regions of sparse data to control the model’s extrapolation

behavior and improve its prediction performance. In our study, the augmenting sample X̃ is drawn

randomly and independently among features according to the uniform P(x̃). This process disrupts
the dependence among features in the augmenting sample, leading to extrapolation. Subsequently,

we combine the real data and augmenting (uniform) data, denoted as X ∪ X̃, and assign labels

c(x) = 0 to instances in X and c(x) = 1 to instances in X̃. The classifier c(x) is trained using

the combined dataset X ∪ X̃ along with their corresponding labels to differentiate between real
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and uniform data. This approach enables c(x) to learn the interrelationships within the real data

X, thus effectively distinguishing instances that originate from the feature space defined by the

training set from those in the extrapolation domain.

Our classifier c(x) shares similarities with the out-of-distribution (OOD) classifier in Slack et al.

(2020), which directly used the permuted data generated by LIME or kernel SHAP as their aug-

menting data. However, our approach diverges from directly using permuted data used in generating

PD plots to construct c(x) for the following reasons: firstly, we do not treat all permuted PD data

as instances of extrapolation1; secondly, our adversarial framework a(x) uses only extrapolated

permuted PD data as compensating outputs, rather than using all permuted PD data, thereby

enhancing the efficiency and accuracy of the fooling process.

4.3 Apply the Adversarial Framework to Fool One PD Plot

Now we have constructed our adversarial framework in Equation 4.1 after constructing c(x) and

g(x) in previous subsections. In this subsection, we introduce the process of implementing the

adversarial attack to fool one PD plot at a time.

Let us denote the set of grid values which we will use to plot P̂Dj(xj) by Vj = {v1j , v2j , ..., v
mj

j },
where mj is the number of grid points and each vpj (p ∈ {1, 2, . . . ,mj}) represents a specific grid

value in Vj . For each vpj ∈ Vj , we create a permuted dataset by replacing the jth feature in all

training data points with vpj . The set of all permuted datasets is then represented as:

Pj =

{(
x
(i)

[j→vpj ]
, y(i)

)}n,mj

i=1,p=1

Here, x
(i)

[j→vpj ]
represents the feature vector of the i th instance with the jth feature replaced by vpj ,

done for all n instances and all m grid values. For the experimental results presented in Section 5,

we carefully select grid values that are directly drawn from the training dataset, ensuring that each

Vj is an observed value, thereby avoiding extrapolation within the range of the training data. This

approach ensures that our algorithm’s effectiveness is not artificially enhanced by extrapolated grid

values. For further discussions and implementation details on this aspect, please refer to footnote

1 and Appendix C.

The process for manipulating a single PD plot is summarized in Algorithm 1. For each permuted

observation where the jth feature is set to a specific value, the model ĉ(x) determines if it originates

1We believe that the effective fooling of LIME (as compared to kernel SHAP) as observed in Slack et al. (2020)
can be partially attributed to the fact that some permuted data used by LIME involve extrapolation within the
training data range (e.g., if the feature ‘age’ consists only of integer values in all training data, while the permuted
data include non-integer ages). This occurs because LIME is implemented by randomly perturbing the feature values
of the original instance, which explains why directly using the permuted data works in Slack’s approach. However,
the fooling effectiveness of our algorithm does not benefit from this aspect (i.e., the term “permutation” does not
refer to exactly the same thing in LIME and PD plots). For more details on the implementation of our algorithm,
refer to Appendix C.
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Algorithm 1 Fooling One Partial Dependence Plot

Input: Training data X, feature of interest Xj , grid values Vj , permuted PD data Pj , target

PD outputs PD
adv
j , trained ML model f̂(x).

Output: Manipulated PD outputs P̂D
adv

j (vpj ) for each vpj ∈ Vj

1: Generate augmenting sample X̃
2: Label each x ∈ X ∪ X̃ with lc = 0 if x ∈ X, and lc = 1 if x ∈ X̃.
3: Train classifier c(x) using Dc = {(x, lc) | x ∈ X ∪ X̃, lc ∈ {0, 1}}.
4: for each vpj ∈ Vj do

5: Estimate λ̂j(v
p
j ) using Pj and ĉ(x)

6: Estimate ρ̂j(v
p
j ) using Pj , ĉ(x) and f̂(x)

7: Estimate γ̂j(v
p
j ) using PD

adv
j (vpj ), λ̂j(v

p
j ) and ρ̂j(v

p
j )

8: end for
9: for each vpj ∈ Vj do

10: Initialize an empty list A to store â(x) predictions at value vpj

11: for each x ∈ Pj where x
(i)
j = vpj do

12: â(x) =

{
f̂(x) if ĉ(x) = 0

ĝ(x) = γ̂j(v
p
j ) if ĉ(x) = 1

13: Add â(x) to A
14: end for
15: Output P̂D

adv

j (vpj ) = average of A
16: end for

from real data or extrapolation domain. If ĉ(x) predicts the observation as real data, the output will

remain as the black-box model’s output f(x); if it is predicted as extrapolation, the output switches

to a predetermined value γ̂j(xj), based on the value of feature j. This procedure is formulated in

(4.1) and illustrated in Figure 1. The same process applies when making predictions on the test

data, and the goal is for our adversarial algorithm a(x) to retain as many predictions of f(x) as

possible.

4.4 Construct g(x) to Fool Multiple PD Plots

In practice, modelers may wish to fool multiple PD plots. However, independent manipulation of

each PD plot could lead to inconsistent model predictions: if an observation is identified by ĉ(x) as

extrapolation, we need to select which feature’s compensating outputs to use. To address this, we

introduce a unified g(x) model designed to ensure consistent prediction outputs while manipulating

q PD plots simultaneously, where 1 < q ≤ p. Unlike the case of manipulating a single PD plot, we

augment g with a specialized classifier c1(x), which is trained with q+1 class responses to allocate

the appropriate compensating outputs to each PD plot accurately. The set of all potential classes

for c1(x) is denoted as G = {G1, G2, . . . , Gq, Gno}, including a base class Gno for real instances and

classes G1 to Gq corresponding to each of the q features targeted for manipulation. To train c1(x)

we use the real data X along with the permuted PD data for the q targeted features identified as
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extrapolation by ĉ(x), where target labels are given by which feature (or none) were permuted in

producing each datum.

For clarity, we use k to denote the predicted index of the classifier c1(x) among the q + 1 classes,

distinct from index j for all p features in X, such that ĉ1(x) = Gk, Gk ∈ G. For a permuted

observation g(xj ,x
(i)
−j) classified by c1(x) as belonging to class Gk, the output of model g is then

given by

g(x) =

 γk(xk) if ĉ1(x) = Gk

f(x) if ĉ1(x) = Gno.
(4.9)

We thus divide the extrapolation part of feature space into regions associated with permuting each

feature of interest. We anticipate that permuting different features leads to little overlap in the

extrapolation region and can form adversarial function γk independently. Note that our framework

has a two-step classifier: first applying c(x) and then c1(x). This is to ensure that f(x) remains

unperturbed on the original data distribution – we will revert to the original model if either classifier

tells us to. The process of fooling two plots is illustrated in Figure 2. Notably, in the scenario of

fooling multiple PD plots, only c(x) continues to affect the accuracy of a(x) – the predictions

retained of a(x) from f(x). The inclusion of c1(x) only affects the stability or uncertainty of a(x)

(how P̂D
adv

j (xj) deviates from PD
adv
j (xj)).

4.5 Apply the Adversarial Framework to Fool Multiple PD Plots

As summarized in Algorithm 1, let Xk represent an additional targeted feature for manipulation.

We define Vk = {v1k, v2k, ..., v
mk
k } as the set of grid values corresponding to this feature. The

process for manipulating two PD plots within a unified g(x) model is outlined in Algorithm 2

and depicted in Figure 2, noting that our framework can be readily adapted for fooling multiple

PD plots. In comparison, Algorithm 2 leverages compensating outputs derived from Algorithm 1,

and the integration of c1(x) in Algorithm 2 introduces additional variability into the fooling process

compared to Algorithm 1.

In summary, our framework employs extrapolated predictions identified by c(x) to compensate for

the discriminatory performance of model f(x) on real data. It maintains the performance of f(x)

while concealing biases in the predictions on real data, rendering the framework seemingly neutral

when interpreting the results through PD plots. Conceptually, we can regard the entire process as

a unified black-box model, even though it involves the sequential construction of separate models.

Instead of aggregating all model outputs as in (4.1), an alternative approach is to retrain f(x)

incorporating extrapolated permuted instances with their corresponding compensating outputs in

the final step, but we note that this yields less fine control over the resulting predictions and partial

dependence plots.
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Algorithm 2 Fooling Two Partial Dependence Plots Using a Single g(x) Model

Input: Training data X, features of interest Xj , Xk, grid values Vj , Vk, permuted PD data

Pj ,Pk, target PD outputs PD
adv
j ,PD

adv
k , trained ML model f̂(x).

Output: Manipulated PD outputs P̂D
adv

j (vpj ) for each vpj ∈ Vj , P̂D
adv

k (vpk) for each vpk ∈ Vk

1: Perform steps 1-7 from Algorithm 1 for both features Xj and Xk to estimate λ̂j , ρ̂j , γ̂j for each

vpj ∈ Vj and λ̂k, ρ̂k, γ̂k for each vpk ∈ Vk.
2: Label each x ∈ X ∨ (x ∈ Pj ∪Pk ∧ ĉ(x) = 1) with lg = 0 if x ∈ X, lg = 1 if x ∈ Pj ∧ ĉ(x) = 1,

and lg = 2 if x ∈ Pk ∧ ĉ(x) = 1.
3: Train classifier c1(x) using Dg = {(x, lg) | x ∈ X ∨ (x ∈ Pj ∪ Pk ∧ ĉ(x) = 1), lg ∈ {0, 1, 2}}.
4: for each vpj ∈ Vj do
5: Initialize an empty list A to store â(x) predictions at value vpj

6: for each x ∈ Pj where x
(i)
j = vpj do

7: â(x) =


f̂(x) if ĉ(x) = 0 ∨ (ĉ(x) = 1 ∧ ĉ1(x) = 0)

ĝ(x) = γ̂j(v
p
j ) if ĉ(x) = 1 ∧ ĉ1(x) = 1

ĝ(x) = γ̂k(x
(i)
k ) if ĉ(x) = 1 ∧ ĉ1(x) = 2 (interpolate or extrapolate if needed)

8: Add â(x) to A
9: end for

10: Output P̂D
adv

j (vpj ) = average of A
11: end for
12: Perform steps 4-11 to compute and output manipulated PD outputs P̂D

adv

k (vpk) for each vpk ∈ Vk.
Note: When ĉ1(x) incorrectly identifies extrapolation to another feature, the compensating
output g(x) may require interpolation or extrapolation for continuous features not directly
included in Vk (or Vj when fooling Xk).

5 Experimental Results

5.1 Insurance Data

This study evaluates the performance of our algorithm on real-world insurance datasets. We used

the pg17trainpol and pg17trainclaim datasets, which were obtained from the R package CAS-

datasets (Dutang & Charpentier, 2020) and used for the 2017 pricing game of the French institute of

Actuaries. The data underwent preprocessing following the methodology proposed by Havrylenko

& Heger (2022). Using this insurance dataset, we construct a model to predict claim frequency,

denoted as f(x). In this model, we use the number of claims (claim nb) as the target variable.

We also selected 14 features as explanatory variables. For details of the variables and summary

statistics of the dataset, please refer to Appendix A.1.

Our study focuses on the driver’s age (drv age1) as the first focal variable for adversarial attack,

which is highly correlated with other time or experience-related variables, including a strong cor-

relation with the age of the driving license (drv age lic1). Younger drivers typically possess a

shorter driving history and therefore cannot be experienced, while older drivers are less likely to

have learned to drive at a late age and are thus unlikely to be amateurs, as shown in Figure 3.

12



Figure 2: Adversarial Framework a(x) for Manipulating the PD Plots of Features X1 and X2

In addition to exploring the driver’s age, we also examine the vehicle value (vh value) as a secondary

focal variable for adversarial attack, which is known to be correlated with other essential vehicle

characteristics. This choice allows us to demonstrate that our algorithm effectively manipulates

PD plots of multiple features simultaneously using Algorithm 2 (see Appendix E.1 for results using

Algorithm 1). Additionally, the target PD outputs are set as a flat line at the average predictions,

PD
adv
j (vpj ) = f̂avg(x) for each vpj ∈ Vj . The choice of a flat target line is illustrative and can be

easily extended to various targeted manipulations. For instance, we could perform a surgical-like

manipulation on the PD plot for age, specifically targeting older ages, and only slightly adjust its

PD values.

Figure 3: Relationship Between Driver’s Age and Age of Driving License in the Insurance Dataset

The classifier c(x) was constructed using the Keras package in R with a neural network architecture

that comprises four fully connected layers with 40, 20, 10, and 1 units, respectively, and uses the

rectified linear unit (ReLU) activation function. Likewise, the classifier g(x) was implemented with
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a similar neural network architecture but was trained based on permuted PD data. During the

training of our neural networks, we employed techniques such as dropout and batch normalization

to mitigate overfitting and enhance overall performance. The specifics of all neural network models

trained in Section 5 are detailed in Appendix D.2. The black-box insurance model f(x) employed

extreme gradient boosting (XGBoost) for claim frequency prediction. To optimize the performance

of XGBoost, hyperparameters were carefully selected through a grid search approach with details

provided in Appendix D.1. Figures 4 and 5 showcase the resulting PD plots of the driver’s age and

the vehicle’s value. It is important to note that the grid values for vh value were chosen based on

the quantiles of the feature’s distribution, rather than using equally spaced points. Notably, our

adversarial attacks have proven to be effective, as is visually evident from the observed results.

For this evaluation, we divided the pg17trainpol and pg17trainclaim datasets into five folds. In

each iteration, we assigned four folds of the data for training the adversarial framework and reserved

the remaining one fold for testing purposes. The resulting PD plots of the driver’s age and the

vehicle’s value calculated using the testing set are displayed in Figures 4 and 5, respectively, under

the condition that fold 1 is held out, and the threshold of c(x) is set to 0.5. Our adversarial attacks

have exhibited remarkable effectiveness, clearly evident from the visual analysis of the obtained

results.

Figure 4: PD Plots for Age before Attack (Left) and after Attack (Right), Insurance Data

Effect of Different Thresholds for c(x)

In our adversarial framework, there exists an inevitable trade-off between the combined true positive

rate of c(x) and c1(x), which measures how closely a(x) retain the performance of f(x), and the

accuracy of attack, measuring the effectiveness of adversarial attacks on PD plots. In our evaluation,

we assess the impact of this trade-off on the hold-out test set by varying different thresholds for

c(x). A lower threshold results in more data being labeled as extrapolation by c(x), enhancing the

efficiency and accuracy of the fooling process but at the cost of reducing the proportion of f(x)

retained by a(x). We define metrics for both true positive rate (TPR) and accuracy of attack as
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Figure 5: PD Plots for Vehicle Value before Attack (Left) and after Attack (Right), Insurance Data

Figure 6: TPR versus Accuracy of Attack across Thresholds {0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95} (la-
beled next to the lines) for PD Plots of Age, Insurance Data

Figure 7: TPR versus Accuracy of Attack across Thresholds {0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95} (la-
beled next to the lines) for PD Plots of Vehicle Value, Insurance Data
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follows:

True Positive Rate (TPR) =
1

|Xtest|
∑

x∈Xtest

(
I(ĉ(x) = 0) + I(ĉ(x) = 1 ∧ ĉ1(x) = Gno)

)
(5.1)

Accuracy of Attack = 1−
∥P̂D

adv

j (vpj )− PD
adv
j (vpj )∥

∥P̂D
orig

j (vpj )− PD
adv
j (vpj )∥

(5.2)

Here, Xtest refers to the hold-out test set. The true positive rate is defined as the proportion

of data identified as non-extrapolation by either c(x) or c1(x), indicating that the proportion of

f(x) outputs are accurately preserved in a(x). The accuracy of the attack measures the average

difference between the PD values estimated by the adversarial model and the desired PD values,

scaled by the difference between the original PD values and the desired PD values. Higher values

of these measures indicate higher proportion of f(x) retained in a(x) or more accurate fooling

outcomes. The results, based on the tracks of five folds, are presented in Figures 6 and 7. Notably,

a generally decreasing trend is observed, highlighting the trade-off between TPR and accuracy of

attack for both the PD plots of age and vehicle value. We attribute the increasing pattern, as seen

in Figure 6 when thresholds shift from 0.5 to 0.7, to the fact that age is less significant in modeling,

resulting in less accurate manipulated PD plots.

5.2 COMPAS Data

Figure 8: PD Plots for Age before Attack (Left) and after Attack (Right), COMPAS Data

We further evaluate our framework using the COMPAS dataset (Angwin et al., 2016), a popular

fairness dataset in fair machine learning literature. This dataset comprises criminal offenders

screened in Florida, U.S., during 2013–2014. The response variable, two year recid, indicates

whether a person recidivated within two years after the screening, while sex and race are considered

sensitive attributes and the remaining variables serve as predictors. We use the COMPAS data

from the fairML R package, which follows the preprocessing steps outlined in Komiyama et al.

(2018). Variables, summary statistics, and modeling details for the COMPAS dataset used are
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Figure 9: PD Plots for Race before Attack (Left) and after Attack (Right), COMPAS Data

Figure 10: TPR versus Accuracy of Attack across Thresholds {0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95} (la-
beled next to the lines) for PD Plots of Age, COMPAS Data

Figure 11: TPR versus Accuracy of Attack across Thresholds {0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95} (la-
beled next to the lines) for PD Plots of Race, COMPAS Data
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presented in Appendix A.2 and Appendix D.2.

In our modeling of f(x) and a(x), we intentionally include sex and race to present an example

of manipulating a categorical feature. Our study primarily focuses on age and race as our focal

variables, and we use Algorithm 2 to manipulate their PD plots within a unified framework. Similar

to the insurance data, we set the target PD outputs as a flat line. Figures 8 and 9 illustrate that

older individuals and those of Asian and Native American descent exhibit a lower probability of

reoffending. We construct the classifiers c(x) and g(x) using a process similar to that employed for

the insurance data. In the case of the COMPAS data, f(x) is trained using a neural network archi-

tecture similar to that of c(x) and g(x). Remarkably, our model maintains strong performance as

demonstrated in Figures 10 and 11, even though the sample size of the COMPAS data (5,836 versus

100,000) is smaller compared to the insurance data and the highest Pearson correlation between

the focal variable age and the remaining variables is much smaller (-0.579891 versus 0.920605).

For reference, an examination of the correlation matrix for all features used in the auto insurance

claims and COMPAS datasets is presented in Appendix B.

5.3 A Simulated Example

As the fooling procedure depends on the interrelationships among features, it is necessary to explore

whether only high correlations can facilitate effective fooling. We present a simulated example to

demonstrate that an accumulation of weak correlations among features is sufficient for the attacks.

The response variable is generated by

y(i) = x
(i)
1 + x

(i)
2 + x

(i)
3 + x

(i)
4 + x

(i)
5 + 0 · x(i)6 + ϵ(i) (5.3)

where ϵ(i) ∼ N(0, 0.52) adds noise to the process and x6 is set to have no influence on y. The

features {Xj}6j=1 are normally distributed with mean 0 and standard deviation 1, and a correlation

of 0.3 between each pair. Neural networks were used to construct c(x) and f(x), but this time, the

threshold of c(x) is also optimized and fixed at 0.955 after assigning different weights to the two

classes during the training of c(x), as the training data of c(x) is highly imbalanced. Predictions

of c(x) for correctly classifying real data hold more significance than on uniform data. Figure 12

shows the scatter plot between the generated X1 and X2, where the correlation of 0.3 is hardly

distinguishable by the eye.

We set the target PD outputs as a flat line for X1 and an increasing line with a slope of 2 for

X6. The entire process is performed five times on five-fold validation data. The average TPR

retained across five folds is 92.09%, and the PD plots of features X1 and X6 before and after the

attacks are displayed in Figures 13 and 14. The observed curvature in the manipulated PD plots

can be attributed to the relatively high misclassification errors of c1(x), indicating the challenge in

identifying extrapolations for feature values near their mean. Our adversarial framework maintains

effectiveness, despite the presence of only weakly correlated features in the data.
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Figure 12: Scatter Plot of Simulated X1 and X2

Figure 13: PD Plots for X1 before Attack (Left) and after Attack (Right), Simulated Data

Figure 14: PD Plots for X6 before Attack (Left) and after Attack (Right), Simulated Data

In Figure 15, we explore the permutation feature importance (PFI) of our adversarial algorithm

a(x) as a by-product of our adversarial attacks on PD plots. Before the attack, features X1 to

X5 demonstrate roughly equal importance in f(x) as we expected. After the attacks targeting
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Figure 15: Permutation Feature Importance for f(x) before Attack (Left) and a(x) after Attack
(Right), Simulated Data. The grey lines represent the range from the 10th to the 90th percentile
of PFI estimates across fifty runs, with median values indicated by black dots.

X1 and X6, the importance of X6 significantly increases, whereas X1 shows a reduced importance

relative to the other features. Additionally, the PFI estimates show increased variability post-

attack, attributed to the use of extreme compensating outputs in our fooling algorithm. A similar

analysis of PFI for the insurance and COMPAS datasets is presented in Appendix E.2.

6 Insights for Regulators and Practitioners

When to use interpretation tools for black-box models? There are three primary approaches

for practitioners to develop interpretable AI models (EIOPA, 2021): 1) Use traditional interpretable

models like Generalized Linear Models (GLMs) or Generalized Additive Models (GAMs); 2) Adopt

a hybrid approach by leveraging black-box models solely for feature engineering; 3) Implement

black-box models while supplementing them with interpretable tools. We argue that resorting to

the third strategy—relying on interpretation methods to explain black-box models—should only

be considered if accuracy is critical and the interpretation requirement is relatively low in the

application context. Not just PD plots, but all interpretation tools have pitfalls. Practitioners

should avoid the overuse of black-box models if interpretable models can achieve the same level of

model performance (Rudin, 2019). In certain contexts, alternatives like GAMs can provide similar

predictive accuracy as complex black-box models while offering greater interpretability (Lou et al.,

2013; Caruana et al., 2015).

How to mitigate adversarial attacks on PD plots? First, enhance PD plots with the addition

of Individual Conditional Expectation (ICE) curves (Grömping, 2020; Molnar et al., 2022), which

are first proposed by Goldstein et al. (2015). Mathematically, an ICE curve for a feature j for the

ith observation is defined as:

ICE
(i)
j (xj) = f̂(xj ,x

(i)
−j) (6.1)
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Essentially, a PD curve in (3.2) is the average of n ICE curves in (6.1) (see Appendix F for further

discussion on ICE plots). As illustrated in Figure 16, integrating ICE curves with the PD curve

for age helps identify anomalies post-attack, although this is effective only when all ICE plots are

shown. It is important to note that the 10th and 90th percentile curves do not reveal the attack

to nearly the same extent. Additionally, it may also be possible to vary our naive attack to make

these plots less visually apparent.

Second, prior to applying interpretation methods, carefully assess the dependencies between features

in the data (Molnar et al., 2022). For example, NAIC (2022) suggests that regulators obtain a

correlation matrix for all predictor variables (see also SOA (2021)).

Third, to address interpretability concerns and maintain transparency, practitioners may consider

using traditional interpretable models like GLMs or GAMs if the benefits of adopting black-box

models are not substantial (Rudin, 2019). GAMs can also be used to approximate the f(x) in

a manner similar to (4.2) and discrepancies between GAMs and their corresponding PDPs may

provide reasons to suspect an attack.

Fourth, practitioners may adopt a hybrid approach that leverages black-box models solely for

feature engineering (EIOPA, 2021).

Figure 16: PD Plots (in Red, same as in Figure 8) for Age with ICE Curves (in Blue) Before
(Left) and After (Right) Attack, Including 10th and 90th Percentiles of ICE Curves (in Black) and
Compensating Outputs γ̂age (in Green), COMPAS Data

How to use PD plots responsibly in practice? We advise against employing PD plots as

a means to validate the fairness or non-discrimination of sensitive attributes. This is particularly

important in adversarial scenarios as characterized by Bordt et al. (2022), where the stakehold-

ers providing and utilizing interpretation methods have opposing interests and incentives. For

instance, while age may be legitimately used, it remains a sensitive variable in black-box modeling,

with persistent concerns over its impact on distinct age groups. Our empirical evidence suggests

that discriminatory tendencies based on age, especially towards the elderly or youth, can be in-

tentionally hidden, making the model appear neutral through tools like PD plots while preserving
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nearly all predictions of the original black-box models. Additionally, practitioners should be aware

of PD plots’ limitations in interpreting black-box models. We advocate for the use of multiple

interpretation tools to achieve a more holistic understanding of the model’s feature effects. For a

detailed exploration of alternatives to PD plots, we refer readers to Appendix F.

7 Conclusions

Potential Impacts of the Work: Our framework can be extended to fool permutation-based

feature importance. By constructing g(x) to reply on some legitimate factors, we can conceal the

significant impact of a sensitive variable Xj previously in f(x). However, it is difficult to pre-define

the target of the desired feature importance value for Xj as we did for PD plots. Permutation-

based feature importance can be employed in regulatory fairness checks to assess whether the

model assigns significant importance to controversial variables, such as race or sex, in making

predictions (a concern analogous to the one presented by Heo et al. (2019)). A real regulatory

example of feature importance can be found in California’s private passenger automobile insurance

regulation (California Code of Regulations, Title 10, Section 2632.5), which stipulates that three

mandatory rating variables must carry greater weight in pricing compared to other optional rating

variables. Our adversarial framework can potentially hide the significant importance of optional

rating variables used and satisfy the regulatory requirements.

Limitations of the Work: First, Our adversarial framework relies on the assumption that the

target feature is not independent of other features in the dataset. Although this assumption might

not universally hold, it is often plausible in data-rich contexts. As illustrated in our simulated

example, our framework remains efficient even with weak feature correlations among features.

Second, the success of the attacks is contingent on the level of information available to both attackers

and defenders. We make the assumption that attackers (practitioners) have access to all relevant

information, while defenders (regulators) have limited information, such as not being able to inspect

the underlying codes. Third, there exists a possibility that the compensatory output, denoted by

γj(x), could potentially fall outside the expected domain or range. Fourth, when attempting

to fool multiple PD plots, the compensatory output for each feature is set independently before

constructing the classifier c1(x). Though it is feasible to calculate these estimates post-training of

c1(x) to incorporate its uncertainty estimation, this approach is notably more complex.

A Datasets Used

A.1 Data Preparation for Insurance Data

As mentioned in the main text, the data preprocessing was conducted in accordance with the

methodology proposed by Havrylenko & Heger (2022). The steps include:

1. For the claims dataset pg17trainclaim, calculate the sum of claim numbers grouped by
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id client, id vehicle, and id year for each row.

2. Merge the pg17trainclaim dataset with the pg17trainpol dataset using id client,

id vehicle, and id year as keys.

3. Replace NA values in claim nb with zero.

4. Filter out observations where the age of the driving license (drv age lic1) is less than the

driver’s age (drv age1) minus 17.

5. Remove observations with NA values in vh age.

6. Impute mean values for zero entries in vh value and vh weight, based on vh make and

vh model categories.

7. Reduce the 101 categories of vh make to 18 by merging those with similar average responses,

applying k-means clustering for the aggregation. Label this newly aggregated feature as

vh makenew.

Following these preprocessing steps, the merged dataset comprises 99,918 observations. Due to the

absence of exposure information in the dataset, we introduce the feature annual exposure and

assume an equal exposure value of 1 for all observations. Below is a list of all features available in

the insurance dataset:

’ data . frame ’ : 99918 obs . o f 31 v a r i a b l e s :

$ pol bonus : num 0 .5 0 .5 0 .5 0 . 5 0 .5 0 .5 0 . 5 0 . 5 0 .64 0 .5 . . .

$ po l cove rage : Factor w/ 4 l e v e l s ”Maxi ” ,”Median1 ” , . . : 1 1 1 3 1 2 1 1 3 1 . . .

$ po l du ra t i on : i n t 29 3 2 22 16 5 5 2 5 26 . . .

$ p o l s i t d u r a t i o n : i n t 9 1 2 1 4 1 3 2 1 6 . . .

$ po l pay f r e q : Factor w/ 4 l e v e l s ”Biannual ” ,”Monthly ” , . . : 1 1 4 4 1 2 1 1 2 1 . . .

$ pol payd : Factor w/ 2 l e v e l s ”No” ,”Yes ” : 1 1 1 1 1 1 1 1 1 1 . . .

$ po l usage : Factor w/ 4 l e v e l s ”Al lTr ips ” ,” P r o f e s s i o n a l ” , . . : 3 3 4 4 3 4 3 3 4 4 . . .

$ po l i n s e e c od e : Factor w/ 17794 l e v e l s ”01001” , ”01004” , . . : 6424 17569 17550 15522 6911 14819 6914 6498 16274 14572 . . .

$ drv drv2 : Factor w/ 2 l e v e l s ”No” ,”Yes ” : 1 1 1 2 2 1 1 1 1 2 . . .

$ drv age1 : i n t 85 69 37 81 62 68 77 64 38 59 . . .

$ drv age2 : i n t 0 0 0 21 68 0 0 0 0 33 . . .

$ drv sex1 : Factor w/ 2 l e v e l s ”F” ,”M” : 2 2 2 2 1 2 2 2 2 2 . . .

$ drv sex2 : Factor w/ 3 l e v e l s ”” ,”F” ,”M” : 1 1 1 2 3 1 1 1 1 2 . . .

$ d r v a g e l i c 1 : i n t 62 39 18 54 37 40 55 37 19 41 . . .

$ d r v a g e l i c 2 : i n t 0 0 0 3 48 0 0 0 0 15 . . .

$ vh age : i n t 10 4 11 16 11 14 7 11 9 6 . . .

$ vh cy l : i n t 1587 2149 1991 1781 1598 1769 1870 1595 1997 1997 . . .

$ vh din : i n t 98 170 150 90 108 60 108 101 109 90 . . .

$ vh f u e l : Factor w/ 3 l e v e l s ” D i e s e l ” ,” Gaso l ine ” , . . : 2 1 2 2 2 1 1 2 1 1 . . .
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$ vh make : Factor w/ 101 l e v e l s ”ACL” ,”ALFA ROMEO” , . . : 71 60 16 98 76 71 76 7 71 71 . . .

$ vh model : Factor w/ 1023 l e v e l s ”+4” ,”10” ,”100” , . . : 75 311 1014 514 599 40 599 214 76 725 . . .

$ vh s a l e b e g i n : i n t 10 4 12 18 13 28 10 16 9 9 . . .

$ vh sa l e end : i n t 9 2 11 15 11 18 6 13 7 7 . . .

$ vh speed : i n t 182 229 210 180 195 155 193 191 183 163 . . .

$ vh type : Factor w/ 2 l e v e l s ”Commercial ” ,”Tourism ” : 2 2 2 2 2 2 2 2 2 2 . . .

$ vh value : num 20700 34250 28661 14407 16770 . . .

$ vh weight : num 1210 1510 1270 1020 1230 . . .

$ c la im nb : num 0 0 0 0 0 0 0 0 1 0 . . .

$ claim amount : num NA NA NA NA NA . . .

$ vh makenew : Factor w/ 18 l e v e l s ”Group 1” ,”Group 1 0 ” , . . : 2 7 15 15 1 2 1 7 2 2 . . .

$ annual exposure : num 1 1 1 1 1 1 1 1 1 1 . . .

Please note that the accuracy of f(x) does not directly impact the effectiveness of our fool-

ing algorithm. For demonstration purposes, we construct a claim frequency model, denoted as

f(x), using the insurance dataset. Besides annual exposure and claim nb as target or offset

variables, we have selected 14 features for the model. These include four policy characteristics

(pol bonus, pol coverage, pol duration, pol sit duration), three primary policyholder char-

acteristics (drv age1, drv sex1, drv age lic1), and seven vehicle characteristics (vh age, vh cyl,

vh din, vh fuel, vh speed, vh value, vh makenew). Table 1 lists the variables used in the insur-

ance dataset, with descriptions extracted from Dutang & Charpentier (2019).

A.2 COMPAS Data

As mentioned in the main text, we directly use the COMPAS data from the fairML R package,

which follows the preprocessing steps outlined in Komiyama et al. (2018). The dataset comprises

5,855 observations. Below is a list of all features available in the COMPAS dataset:

’ data . frame ’ : 5855 obs . o f 16 v a r i a b l e s :

$ age : num 69 34 24 44 41 39 21 27 23 37 . . .

$ j u v f e l c o u n t : num 0 0 0 0 0 0 0 0 0 0 . . .

$ d e c i l e s c o r e : num 1 3 4 1 6 1 3 4 6 1 . . .

$ juv misd count : num 0 0 0 0 0 0 0 0 0 0 . . .

$ j uv o the r count : num 0 0 1 0 0 0 0 0 0 0 . . .

$ v d e c i l e s c o r e : num 1 1 3 1 2 1 5 4 4 1 . . .

$ p r i o r s c oun t : num 0 0 4 0 14 0 1 0 3 0 . . .

$ sex : Factor w/ 2 l e v e l s ”Female ” ,”Male ” : 2 2 2 2 2 1 2 2 2 1 . . .

$ two yea r r e c i d : Factor w/ 2 l e v e l s ”No” ,”Yes ” : 1 2 2 1 2 1 2 1 2 1 . . .

$ race : Factor w/ 6 l e v e l s ”Afr ican−American ” , . . : 6 1 1 6 3 3 3 3 1 3 . . .

$ c j a i l i n : num 0.801 0 .784 0 .791 0 .811 0 .818 . . .

$ c j a i l o u t : num 0.801 0 .785 0 .791 0 .811 0 .818 . . .
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Variable Name Description

Response Variables
claim nb The claim number.

Explanatory Variables
pol bonus The policy bonus (French no-claim discount).
pol coverage The coverage category, including 4 types : Mini, Median1,

Median2 and Maxi, in this order.
pol duration The policy duration.
pol sit duration The policy current endorsement (situation) duration.

drv age1 The driver age of the 1st driver. This is a focal variable for
adversarial attacks.

drv sex1 The driver sex of the 1st driver.
drv age lic1 The age of the driving license of the 1st driver.

vh age The vehicle age.
vh cyl The engine cylinder displacement.
vh din A representation of the motor power.
vh fuel The vehicle fuel type.
vh speed The vehicle maximum speed (km/h), as stated by the man-

ufacturer.
vh value The vehicle’s value (replacement value). This is a focal

variable for adversarial attacks.
vh makenew The vehicle carmaker, which are reduced from 101 cate-

gories to 18 categories by merging those with similar aver-
age responses.

Table 1: Variables Used in f(x) for the Insurance Data

$ c o f f e n s e d a t e : num 0.801 0 .784 0 .791 0 .811 0 .818 . . .

$ s c r e en i ng da t e : num 0.801 0 .785 0 .791 0 .811 0 .818 . . .

$ i n cus tody : num 0.829 0 .784 0 .796 0 .811 0 .821 . . .

$ out custody : num 0.83 0 .785 0 .796 0 .811 0 .823 . . .

In addition, descriptions for variables in the COMPAS dataset are provided in Table 2, extracted

from the fairML R package.

B Correlations of Features within Datasets Used

Our adversarial framework relies on the assumption that the target feature is not independent of

other features in the dataset. In this section, we use Spearman’s rank correlation to present and

examine the correlation matrix for all features used in the auto insurance claims and COMPAS

datasets. For nominal variables, we approximate correlations by transforming the data into ordinal

form, reordering categories based on their respective risk levels. This transformation applies to
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Variable Name Description

Response Variable
two year recid A factor with two levels ”Yes” and ”No” (if the person has

recidivated within two years).

Explanatory Variables
sex A factor with levels ”Female” and ”Male”. This is a focal

variable for adversarial attacks.
race A factor encoding the race of the person. This is a focal

variable for adversarial attacks.
juv fel count The number of juvenile felonies.
decile score The decile of the COMPAS score.
juv misd count The number of juvenile misdemeanors.
juv other count The number of prior juvenile convictions that are not con-

sidered either felonies or misdemeanors.
v decile score The predicted decile of the COMPAS score.
priors count The number of prior crimes committed.
c jail in The date in which the person entered jail (normalized be-

tween 0 and 1).
c jail out The date in which the person was released from jail (nor-

malized between 0 and 1).
c offense date The date the offense was committed.
screening date The date in which the person was screened (normalized be-

tween 0 and 1).
in custody The date in which the person was placed in custody (nor-

malized between 0 and 1).
out custody The date in which the person was released from custody

(normalized between 0 and 1).

Table 2: Variables Used in f(x) for the COMPAS Data

pol coverage, vh fuel, and vh makenew in the insurance data, and race in the COMPAS data.

As depicted in Figure 17 for the insurance data, the driver’s age (drv age1) shows the highest corre-

lation with the age of the driving license (drv age lic1), followed by the policy bonus (pol bonus)

and the policy duration (pol duration). Furthermore, the vehicle characteristic variables exhibit

mutual correlations.
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Figure 17: Correlation Matrix for the Insurance Data

For the COMPAS data, as depicted in Figure 18, it is expected that some date-related features ex-

hibit high correlations amongst themselves (c jail in, c jail out, c offense date, screening date,

in custody, out custody). The variable v decile score, a continuous variable containing the

predicted decile of the COMPAS score, shows the most significant correlation with age.
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Figure 18: Correlation Matrix for COMPAS Data

C More Implementation Details of Adversarial Framework a(x)

In this work, our training data is split into five-folds, and each time, four of the folds are combined

as the training data, and the remaining fold is the testing data.

C.1 The Training of c(x)

The training process of c(x) involves generating an augmenting sample X̃, which, as outlined in the

main text, is drawn randomly and independently among features according to the uniform P(x̃).
The number of observations in X̃ is 30 times the sample size of the insurance data, and 100 times

for both the COMPAS and simulated data. Specifically, for each row in X̃:

• For categorical variables, each feature value x̃
(i)
j is randomly generated from all possible

categories of the respective feature.

• For numerical features, each feature value x̃
(i)
j is randomly generated from all unique values

observed within the feature in the training data (for instance, the vehicle value in the insurance

data).
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This approach to generating numerical features is specifically designed to avoid the issue of extrap-

olation within the range of the training data, ensuring that any unobserved values not present in

X are excluded. Consequently, c(x) is constructed to avoid relying on the unique value of a feature

for distinguishing between uniform and real data.

C.2 The Selection of Grid Values for PD Plots

For the continuous feature (vh value in the insurance data), the grid values are selected based on

quantiles of the feature distribution, instead of using equally spaced points. This approach ensures

that the grid points align with the data’s distribution. For categorical or discrete features, we

employ all available categories or unique values to construct the PD plot.

D Training of f(x), c(x) and g(x) Models

D.1 Training of XGBoost Models

Table 3: XGBoost Hyperparameter Optimization

Hyperparameter Values Optimal Value

max depth 2, 3, 4, 5 3
eta 0.01, 0.05, 0.1 0.01
gamma 0, 0.1, 0.5 0
subsample 0.6, 0.8, 1 0.8
colsample bytree 0.6, 0.8, 1 0.8
min child weight 1, 3, 5 1

For the claim count model f(x) applied to insurance data, we fit the XGBoost model, using the

xgboost package (Chen et al., 2022) in R. Hyperparameter tuning was performed via grid search,

with the optimal parameters detailed in Table 3. It is important to note that the accuracy of f(x)

does not directly impact the effectiveness of our adversarial framework a(x).

D.2 Training of Neural Network Models

Table 4: Summary of Neural Network Architectures

Dataset Model Structure (Nodes
per Layer)

Techniques Activation Functions

Insurance c(x) [40, 20, 10, 1] Batch Norm, Dropout (0.2) ReLU (Output: Sigmoid)
Insurance g(x) [40, 20, 10, 3] Batch Norm, Dropout (0.2) ReLU (Output: Softmax)
COMPAS c(x) [40, 10, 1] Batch Norm, Dropout (0.2) ReLU (Output: Sigmoid)
COMPAS g(x) [40, 10, 3] Batch Norm, Dropout (0.2) ReLU (Output: Softmax)
COMPAS f(x) [40, 10, 1] Batch Norm, Dropout (0.2) ReLU (Output: Sigmoid)
Simulated c(x) [20, 10, 1] Batch Norm, Dropout (0.2) ReLU (Output: Sigmoid)
Simulated g(x) [20, 10, 3] Batch Norm, Dropout (0.2) ReLU (Output: Softmax)
Simulated f(x) [20, 10, 1] None ReLU (Output: Linear)
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The neural network models were trained using the keras and tensorflow packages in R. Training

of each neural network model starts with a smaller, commonly used model architecture, gradually

incorporating additional features and enhancements. For further tuning strategies, we direct inter-

ested readers to Godbole et al. (2023). A summary of the neural network models’ architecture is

presented in Table 4. Moreover, techniques such as early stopping and learning rate scheduling are

employed to mitigate overfitting and enhance model performance.

E Other Experimental Results

E.1 Experimental Results Using Algorithm 1

In this appendix, we present the experimental results for the insurance and COMPAS datasets

using Algorithm 1 in Figures 19 to 22. Generally, Algorithm 2 does not show significantly poorer

performance in terms of stability for the chosen fold and threshold (i.e., holding out fold 1 and

setting the threshold of c(x) to 0.5). The marginally better performance of Algorithm 2 on the

COMPAS data is likely due to the errors in ĝc(x) accidentally compensating for the errors in

estimating ρ̂j , λ̂j and γ̂j .

Figure 19: PD Plots for Age after Attack Using Algorithm 1 (Left) and Algorithm 2 (Right), pg17
Data

E.2 Permutation Feature Importance (PFI) for Insurance and COMPAS Data

In this appendix, we present the permutation feature importance of our fooling algorithm for the

insurance and COMPAS datasets in Figures 23 and 24.

F Alternatives to PD Plots

In this appendix, we present several alternatives to PD plots aimed at addressing their limitations.

Individual Conditional Expectation (ICE) plots: ICE plots (Goldstein et al., 2015) offer a
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Figure 20: PD Plots for Vehicle Value after Attack Using Algorithm 1 (Left) and Algorithm 2
(Right), pg17 Data

Figure 21: PD Plots for Age after Attack Using Algorithm 1 (Left) and Algorithm 2 (Right),
COMPAS Data

more detailed view by breaking down the averages of PD plots into individual observations. Each

ICE curve represents the conditional relationship between a range of Xj values (where |S| = 1) and

f̂ while keeping other features XC fixed. Mathematically, it is defined as:

ICE
(i)
j (x) = f̂(x

(i)
j = x,x

(i)
C ) (F.1)

It should be noted that a PD curve (PDj(x)) is essentially the average of n ICE curves. ICE plots

are useful for identifying heterogeneity in relationships, demonstrating how different subgroups or

individual data points respond to changes in the predictor variable. Moreover, similar ICE curves

can be grouped to avoid ICE plots overplotting and offer a version of regional PD plots, thereby

facilitating the identification of regions with less confounded feature effects (Britton, 2019; Zhang

et al., 2021; Herbinger et al., 2022).
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Figure 22: PD Plots for Race after Attack Using Algorithm 1 (Left) and Algorithm 2 (Right),
COMPAS Data

Figure 23: Permutation Feature Importance for f(x) before Attack (Left) and a(x) after Attack
(Right), Insurance Data. The grey lines represent the range from the 10th to the 90th percentile
of PFI estimates across fifty runs, with median values indicated by black dots.

Accumulated Local Effect (ALE) plots: ALE plots (Apley & Zhu, 2020) average the local

changes in the predictions and accumulate them across a grid of intervals. Similar to M-plots, ALE

plots use conditional distributions P(XC |XS = xS) rather than marginal distributions P(XC) to

mitigate the extrapolation issues present in PD plots. However, ALE plots can avoid the omitted

nuisance variable bias, a limitation affecting the usefulness of M-plots. It is important to note that

the interpretations of ALE plots are only locally valid within each interval.

In addition, compared to the recovery properties of PD plots, ALE plots adhere to additive f̂

regardless of the correlation between XS and XC , and they adhere to multiplicative f̂ when XS

and XC are independent (Apley & Zhu, 2020).

Functional ANOVA Decomposition: The concept of functional ANOVA decomposition as

introduced by (Hooker, 2007) is another avenue associated with PD plots. The PD function’s
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Figure 24: Permutation Feature Importance for f(x) before Attack (Left) and a(x) after Attack
(Right), COMPAS Data. The grey lines represent the range from the 10th to the 90th percentile
of PFI estimates across fifty runs, with median values indicated by black dots.

counterparts can be derived by estimating fj(xj) and f−j(x−j) to minimize the following expression:∫
(f(x)− fj(xj)− f−j(x−j))

2p(x)dx (F.2)

Here, fj(xj) represents the individual effect for feature Xj , f−j(x−j) denotes an unknown function

for all features except feature Xj , and p(x) represents the feature distribution. See also Hiabu

et al. (2023). It is worth noting that accurate estimation can be challenging, especially in high-

dimensional settings.

Confidence Intervals of PD Plots: Alternatively, we can derive the confidence intervals of PD

plots on bootstrap samples (for example, see Cafri & Bailey (2016)). Molnar et al. (2021) suggested

computing the confidence bands for PD plots by refitting models multiple times, thereby accounting

for model variance.
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