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2Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France

3Laboratoire de Physique des deux Infinis IJCLab, Université Paris-Saclay, CNRS, France
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We consider, in Minkowski spacetime, higher-order Maxwell Lagrangians with terms
quadratic in the derivatives of the field strength tensor, and study their degrees of free-
dom. Using a 3+1 decomposition of these Lagrangians, we extract the kinetic matrix for the
components of the electric field, corresponding to second time derivatives of the gauge field.
If the kinetic matrix is invertible, the theory admits five degrees of freedom, namely the
usual two polarisations of a photon plus three extra degrees of freedom which are shown to
be Ostrogradski ghosts. We also classify the cases where the kinetic matrix is non-invertible
and, using analogous simple models, we argue that, even though the degeneracy conditions
reduce the number of degrees of freedom, it does not seem possible to fully eliminate all
potential Ostrogradski ghosts.

I. INTRODUCTION

In a recent article [1], we have classified a large family of higher-order Einstein-Maxwell theories
in 4 dimensions whose action S[gµν , Aµ] couples a metric tensor gµν with a U(1)-gauge field Aµ

in a non-minimal derivative way. More specifically, the corresponding Lagrangians, which are
invariant under spacetime diffeomorphisms, include terms linear in the curvature tensor Rµνρσ

and terms quadratic in the covariant derivatives of the field strength tensor Fµν = ∂µAν − ∂νAµ.
Examples of such theories can in principle be constructed from disformal transformations of the
usual Einstein-Maxwell action [2, 3].

As these Lagrangians involve second derivatives of Aµ which cannot be eliminated by integra-
tions by part in general, they could lead to potentially dangerous Ostrogradski ghosts. To avoid
this problem, one needs to look for degeneracy conditions, similar to those that have been intro-
duced in DHOST (Degenerate Higher-Order Scalar-Tensor) theories [4–7], in order to ensure that
the theory does not propagate an extra degree of freedom even though the equations of motion
are higher order. However, the problem of finding necessary and sufficient degeneracy conditions
to get rid of these extra degrees of freedom is much more complex here than in higher-derivative
scalar-tensor theories for the reason that the gauge field Aµ is a vector. For instance, while higher-
order scalar-tensor Lagrangians can lead to at most one extra degree of freedom, higher-order
Einstein-Maxwell theories could contain up to three extra degrees of freedom, which would require
more constraints to eliminate all of them.

In this article, we study the degeneracy conditions in the much simpler limit where the metric is
flat. Hence, higher-order Einstein-Maxwell theories reduce to higher-order Maxwell theories S[Aµ]
which are Lorentz and U(1)-invariant. Particular examples of such theories have already being
studied in different contexts such as the effective actions of quantum electrodynamics [8–13] and
the Bopp-Podolsky generalized electrodynamics [14–19]. Higher-order theories that lead to second-
order field equations in Minkowski spacetime reduce to the usual Maxwell theory, as implied by
the results of [20]. This result has been partially extended to arbitrary spacetime dimension in
the more recent article [21]. Here we go further by allowing equations of motion with order higher
than 2 and argue that one cannot find higher-order Maxwell theories, at most quadratic in the
derivatives of Fµν , without ghost-like degrees of freedom.

Our analysis proceed as follows. First, we decompose the most general Lagrangian in Minkowski
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with terms at most quadratic in ∂αFµν on an explicit basis of 17 elementary Lagrangians. We then
use a 3+1 decomposition, compute the kinetic Lagrangian which is quadratic in the second time
derivatives of the gauge field, and extract the corresponding 3-dimensional kinetic matrix. We
show that, when the kinetic matrix is non-degenerate, the theory admits 5 degrees of freedom: 2
of them are associated with the usual polarisations of the photon, while the remaining 3 degrees
of freedom behave as Ostrogradski ghosts.

It is interesting to note that two of these extra degrees of freedom are the Ostrogradski ghosts
associated with the usual two polarisations of Aµ while a kind of “longitudinal” mode “arises” due
to the presence of higher derivatives in the action. This is the reason why these extra degrees of
freedom are sometimes interpreted as those of a massive photon (see for e.g. [17, 18] and references
therein). Therefore, requiring the degeneracy of the kinetic matrix is necessary to preserve the
degrees of freedom of the Maxwell theory and evade the potential instabilities related to these
extra ghosts1. As expected, we show that imposing the degeneracy conditions reduces the number
of degrees of freedom. However, we argue (with the help of toy models and using explicit examples)
that, even if the kinetic matrix is degenerate, any higher-order Maxwell theory seems to always
propagate at least one Ostrogradski ghost. We illustrate this result with some examples.

The paper is organised as follows. In the next section, we present the most general class of
higher-order Maxwell Lagrangians that depend quadratically on the derivatives of the field strength
tensor, in Minkowski space. The field equations are derived and the Hamiltonian analysis of the
non-degenerate theories is carried out. The case of degenerate higher-order Maxwell theories is
investigated in section III. We classify these theories into three classes according to the rank of
their kinetic matrix. All seven theories with rank zero (corresponding to quasi-linear theories) are
constructed and it is shown that there are 3 degrees of freedom for generic coupling functions. When
the rank is one, we find that imposing some conditions on the linear piece in the second derivative
of the gauge potential reduces the number of degrees of freedom to 3 as well. The resulting subclass
of rank 1 theories can be further restricted to yield at most two degrees of freedom, one of which
being a ghost. Finally, we conclude in section IV and add some technical details in appendices.

II. HIGHER-ORDER MAXWELL THEORIES

In this section, we present the 4-dimensional Higher-Order Maxwell theories that we consider in
this work and carry out a 3+1 decomposition of their action in order to perform their Hamiltonian
analysis. This enables us not only to count the number of degrees of freedom but also to see
whether Ostrogradski ghosts are propagating in these theories.

A. Action and equations of motion

In the present work, we consider actions of the form

S[Aµ] =

∫

d4x
(

M + B
γµν,δρσ ∂γFµν ∂δFρσ

)

=

∫

d4xL , (2.1)

where Fµν denotes the field strength tensor associated with the U(1) gauge field Aµ,

Fµν = ∂µAµ − ∂νAµ . (2.2)

1 Although these instabilities could be fatal, in some situations higher order derivatives do not produce quantum
instabilities, see for example [22]. From this perspective, the theories we obtain in the following could be worth
investigating, despite their ghost-like degrees of freedom.
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While the six-index tensor B depends on the field strength tensor, the scalar function M is assumed
to depend only on the two electromagnetic scalar invariants available in four dimensions, namely

F 2 = FµνFµν , P = ∗FµνF
µν =

1

2
εµνρσF

ρσFµν , (2.3)

where ∗ denotes the Hodge dual defined from the fully anti-symmetric tensor εµνρσ in four dimen-
sions.

The above family of theories thus contains the Maxwell action as a particular case with M =
F 2/4 and B = 0. The action (2.1) can also be seen as the flat space limit of higher-order Einstein-
Maxwell theories studied in our previous paper [1]. As a consequence, we know that the tensor B

can be decomposed, without loss of generality, into 17 elementary tensors, with coefficients that
depend on the two scalars F 2 and P , as summarised in Appendix A.

The equations of motion derived from (2.1) can be written in a form similar to the vacuum
Maxwell equations ∂νF

µν = 0, namely

∂νH
µν = 0 , (2.4)

with

Hµν =
∂L

∂Fµν
− ∂α

(

∂L

∂ ∂αFµν

)

(2.5)

=
∂M

∂Fµν
+
∂Bγαβ,ξρσ

∂Fµν
∂γFαβ ∂ξFρσ − 2∂α

(

B
αµν,ξρσ∂ξFρσ

)

. (2.6)

Note that the “modified” Maxwell tensor Hµν in general does not obey the Bianchi identity

∂[λFµν] = 0 , (2.7)

satisfied by the field strength. The equations of motion (2.4) involve, in general, up to third
derivatives of Fµν , hence they are fourth order in the gauge field itself Aµ.

The action (2.1) yields higher order field equations and thus contains additional degrees of
freedom for generic couplings compared to the usual Maxwell theory which describes the dynamics
of 2 degrees of freedom associated with the 2 polarisations of the electromagnetic field. As these
extra degrees of freedom are associated with higher derivatives in the action, one can expect them
to be Ostrogradski ghosts, as we confirm below.

B. Hamiltonian decomposition of the action

Similarly to the case of higher order scalar-tensor theories (where the Lagrangian involves second
derivatives of a scalar field), the Lagrangian must be degenerate in order to evade problematic
Ostrogradski ghosts. A systematic way to identify the degrees of freedom consists in performing a
Hamiltonian analysis of the action in order to extract the constraints and see whether or not they
are sufficient to eliminate the extra degrees of freedom.

1. Equivalent formulation to eliminate higher derivatives

As a first step, it is convenient to replace all second-order derivatives in the action by first-order
derivatives, using the equivalent action

Seq[Fµν , Aµ, λµν ] =

∫

d4x
√−g

[

L +
1

2
λµν (Fµν − ∂µAν + ∂νAµ)

]

, (2.8)
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where the Lagrangian density L is the same as the one in (2.1),

L [Fµν ] = M + B
γµν,δρσ ∂γFµν ∂δFρσ , (2.9)

but it is now viewed as a functional of Fµν , which is a dynamical anti-symmetric tensor on its own,
a priori unrelated to the gauge field Aµ. It is only as the consequence of the equation of motion
obtained by varying the action with respect to the antisymmetric tensor λµν that Fµν turns out
to be, on-shell, the strength field associated with Aµ. Proceeding in this way enables us to recast
higher derivatives in the action as first order derivatives and then use a standard Hamiltonian
analysis.

In this formulation, the equations of motion are obtained from the variation of the action with
respect to Fµν , Aµ and λµν , yielding respectively

∂L

∂Fµν
− ∂α

(

∂L

∂∂αFµν

)

+
1

2
λµν = 0 , ∂νλ

µν = 0 , Fµν = ∂µAν − ∂νAµ . (2.10)

Taking the divergence of the first equation above enables us to eliminate the new variable λµν
(which is given by λ = −2H) and thus recover the equation (2.4), which confirms the equivalence
between the actions (2.1) and (2.8).

2. 3+1 decomposition of spacetime

Working in Minkowski coordinates, where the metric reads ηµν = diag(−1,+1,+1,+1), it is
convenient, for the 3+1 decomposition of the action, to distinguish spatial indices with latin letters
(i, j, k, · · · ) from spacetime indices denoted by greek letters (µ, ν, ρ, · · · ).

We first decompose the gauge field into Aµ = (A0, Ai) and the field strength Fµν into its electric
and magnetic components,

Ei ≡ F0i = Ȧi − ∂iA0 , Bi ≡
1

2
εijkF

jk = εijk∂
jAk , (2.11)

where εijk is the fully antisymmetric 3-dimensional symbol. Similarly, the antisymmetric tensor
λµν introduced in the action (2.8) can be decomposed into two spatial vectors,

πi = λ0i , λi =
1

2
εijkλ

jk . (2.12)

From the definitions of E and B, one can immediately write the various components of the
higher-derivative tensors ∂αFµν in terms of the electric and magnetic fields, obtaining in particular

∂0F0i = Ėi , ∂jF0i = ∂jEi , ∂kFij = εijm∂kB
m . (2.13)

For the time derivative of the spatial components or, equivalently, of the magnetic field, it is
convenient to use the Bianchi identities (2.7) to transform them into space derivatives of the
electric field so that

∂0Fij = ∂iEj − ∂jEi . (2.14)

As a consequence, no time derivatives of B remains in the action.
Substituting all the above formulas into the action (2.8), one obtains its 3+1 decomposition

which, after a few integrations by parts, takes the form

Seq =

∫

dt

∫

d3x

(

1

2
E

ijĖiĖj + G
iĖi + πiȦi − πiEi +A0G+ λiχ

i − V

)

, (2.15)
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where the symbols E , G and V are defined as follows. The kinetic matrix E and the vector field
G are given by

E
ij = 8B

00i,00j , Gi = Σp
ij ∂pE

j +Υp
ij ∂pB

j , (2.16)

with

Σpij = −8(B00i,0pj + B
00i,p0j) , Υpij = 4εjkl B

00i,pkl . (2.17)

The explicit form of the potential V is

V = V
ijkl
1 ∂iEj ∂kEl + V

ijkl
2 ∂iBj ∂kBl + V

ijkl
3 ∂iEj ∂kBl − M , (2.18)

where Vn are the following combinations of the components of B,

V
ijkl
1 = −4(B0ij,0kl + B

i0j,k0l + B
i0j,0kl + B

0ij,k0l) , (2.19)

V
ijkl
2 = −εjrs εlmn B

irs,kmn , (2.20)

V
ijkl
3 = 4 εlnm(Bi0j,knm + B

0ij,knm) . (2.21)

Finally, we see that A0 and λi are Lagrange multipliers which enforce respectively the constraints2

G = ∂iπ
i ≃ 0 , χi = Bi − εijk∂

jAk ≃ 0 . (2.22)

We recognise the Gauss contraint G which generates the U(1) gauge transformations.

3. Phase space and constraint analysis

From the 3+1 decomposition, we see that we can parametrise the phase space with the following
3 pairs of conjugate variables,

{Ei(x), π
j
E(y)} = {Bi(x), π

j
B(y)} = {Ai(x), π

j(y)} = δ(x − y) δji , (2.23)

as it is clear from (2.15) that πi and Ai are canonically conjugate variables. Since A0 and λi are
Lagrange multipliers, as noticed above, it is not necessary to introduce their conjugate momenta.

There is no time derivative of the magnetic field in the action, hence we get, in addition to the
constraints (2.22), three additional primary constraints,

ψi = πiB ≃ 0 . (2.24)

Finally, the expressions of the conjugate momenta of the electric field components are given by

πiE = E
ijĖj + G

i . (2.25)

These relations can be inverted only if the matrix of coefficients E ij is invertible, i.e. of rank 3. We
discuss this case in the next subsection. Otherwise, we obtain additional primary constraints, whose
number depends on the rank, rk(E ), of the three-dimensional kinetic matric E , whose expression
is given in Appendix B. These degenerate situations will be discussed in the next section.

2 We are using the standard notation ≃ for the weak equality, which is defined as an equality up to constraints.
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4. Non-degenerate theories

When rk(E ) = 3, the matrix E ij is invertible, and we can then express Ėi in terms of the
momenta by inverting (2.25). In this case, the total Hamiltonian is of the form

Htot =

∫

d3x

(

1

2
E

−1
ij (πiE − G

i)(πjE − G
j) + V + πiEi −A0G− λiχi + µiψi

)

, (2.26)

where E −1 denotes the inverse of E and we have introduced the new Lagrange multipliers µi to
enforce the primary constraints (2.24).

Let us discuss the different constraints. We know that the Gauss constraint is first class as it
generates the U(1) gauge symmetry. The other constraints χi and ψi satisfy the Poisson relations

{χi(x) , ψ
j(y)} = {Bi(x)− εilm∂

lAm , πjB(y)} = δ(x− y) δji , (2.27)

which shows that they form a subset of second class constraints. As a consequence, requiring the
time invariance of these constraints does not lead to new constraints, but rather enables to fix the
Lagrange multipliers λi and µi in terms of the other phase space variables. In practice, this implies
that χi and ψ

j can be set to strongly vanish, thus eliminating the pairs of variables (Bi, π
i
B), which

amounts to explicitly solve Bi in terms of Ai and to fix πiB = 0.
In conclusion, the canonical analysis is completed with 6 second class constraints and 1 first

class constraint, which results in (18−6−1×2)/2 = 5 degrees of freedom. In addition to the usual
two electromagnetic field polarisations, we now have three extra degrees of freedom. The latter
can be seen as Ostrogradski ghosts since the Hamiltonian is linear in the three momenta πi, thus
unbounded from below and from above in the three directions spanned by the πi.

Interestingly, the fact that we have second time derivatives in the action leads not only to
the emergence of the two expected Ostrogradski ghosts associated with each of the polarisations,
but also to a ghostly longitudinal mode. Somehow, the gauge degree of freedom acquires an
Ostrogradski ghost which becomes physical. Notice that this has been advocated as a mechanism
to generate a massive gauge field from the higher order self-interactions of a massless one in the
context of the Bopp-Podolsky theory, see for instance [17, 19].

In the next section, we explore the possibilities to eliminate all or some of the extra degrees of
freedom by assuming the degeneracy of the kinetic matrix, i.e. the non-invertibility of the matrix
E , leading to additional constraints in the phase space.

III. DEGENERATE HIGHER-ORDER MAXWELL THEORIES

In this section, we study degenerate higher-order Maxwell theories and explore how many ad-
ditional constraints can be obtained, thus eliminating some or all the extra degrees of freedom
identified in the previous section.

A. Quasi-linear theories: rk(E ) = 0.

We first consider the case where the kinetic matrix vanishes, i.e.

E
ij = 0 . (3.1)

When this condition is satisfied, the action is said to be quasi-linear, i.e. at most linear in the
second derivative of the electromagnetic potential (which is similar to General Relativity or more
generally Lovelock-Lanczos gravity in higher dimensions).
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1. General Lagrangian for quasi-linear theories

Requiring (3.1) drastically restricts the number of independent terms in the action (2.1), as
it can be seen from the explicit expression of the kinetic matrix written in Appendix B. Instead
of 17 independent Lagrangian terms quadratic in the derivatives of the field strength, only seven
independent combinations are allowed,

S[Aµ] =

∫

d4x
(

M +
7
∑

p=1

αp Lp

)

, (3.2)

where αp are seven arbitrary functions of the two U(1)-invariants (2.3). The seven independent
combinations Lp can be chosen as

L1 = F3 −F5 = Fµν
2 ∂[σ|Fµ

σ ∂|γ]Fν
γ ,

L2 = F6 + F8 = FµνF ρσ∂[ν|Fρµ ∂|γ]Fσ
γ ,

L3 = F7 −F8 =
1

2
Fµν∂[µF

2 ∂γ]Fν
γ , (3.3)

L4 = F10 +F11 = FµνF ρσ
3 ∂[ν|Fσ

γ ∂|γ]Fµρ ,

L5 =
P 2

16
F1 −

F 2

2
F8 − 2F11 +F13 ,

L6 = F14 −F15 =
1

2
FµνF ρσ

2 ∂[µ|F
2 ∂|σ]Fνρ ,

L7 = F17 = FµνF ρσ
2 F γδ

2 ∂[ν|Fµρ ∂|δ]Fσγ ,

where the basis Lagrangians Fa are defined in equations (A9-A14) of the appendix A.
Interestingly, all the above combinations can be rewritten in the form

Lp = B
γµν,δρσ
p ∂[γ|Fµν ∂|δ]Fρσ = B

[γ|µν,|δ]ρσ
p ∂γFµν ∂δFρσ , (3.4)

with different tensors Bp. To obtain this manifestly antisymmetric expression for L3, L6 and L7,
we used the Bianchi identity (2.7), whereas for L5, we needed a dimensionally dependent identity
(see [1] for details) to rewrite it in the form

L5 = FµνF ρσ
3

(

∂[ν|Fσγ ∂|ρ]Fµ
γ + ∂[ν|Fµρ ∂|γ]Fσ

γ − 1

2
∂[ν|Fµ

γ ∂|γ]Fρσ − ∂µFρ
γ ∂νFσγ

)

. (3.5)

In the general expression (3.4), one sees that the antisymmetry property applies to the two indices
of the derivatives, which makes transparent the fact that these Lagrangians cannot give terms
quadratic in Ḟ0i, as required for quasi-linear theories.

2. Constraint analysis

We now apply the Hamiltonian analysis of the previous section to our general quasi-linear
action (3.2). Because of the condition (3.1), the theory admits, in addition to (2.22) and (2.24), 3
additional primary constraints given by

φi = πEi − Gi ≃ 0 , (3.6)

as a consequence of (2.25). The total Hamiltonian is now given by

Htot =

∫

d3x
(

V −A0G− λiχ
i + µiψ

i + νiφ
i + Eiπi

)

, (3.7)
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where we have introduced the Lagrange multipliers νi to enforce the new constraints φi ≃ 0. The
constraints χi and ψi still form a subset of second class constraints and requiring their stability
under time evolution does not lead to new constraints but, instead, fixes the Lagrange multipliers
λi and µi in terms of the phase-space variables.

Studying the time evolution of the constraints φi is more subtle. In order to compute φ̇i, we
recall that Gi is of the form (2.16) where Σp

ij and Υp
ij depend on the components of E (and also

B) but not on its derivatives. Then a direct calculation shows that

φ̇i(x) = {φi(x),Htot} = ∆ijν
j(x)− πi(x) + {φi(x), H̃} , (3.8)

where we have introduced

H̃ =

∫

d3x
(

V −A0G− λiχ
i + µiψ

i
)

(3.9)

and where ∆ij has to be understood, in general, as a differential operator acting on any vector
field νi(x) as follows,

∆ijν
j = {φi(x), φ[ν]} where φ[ν] =

∫

d3xφj(x) ν
j(x) . (3.10)

Since Gi is of the form (2.16), we see that the operator ∆ij can be decomposed into two parts,
according to

∆ij = ∆0
ij − Sp

ij ∂p , (3.11)

with

∆0
ij =

(

∂Υp
jk

∂Ei
− ∂Υp

ik

∂Ej

)

∂pB
k +

(

∂Σp
jk

∂Ei
− ∂Σp

ik

∂Ej

)

∂pE
k − ∂pΣ

p
ji , Sp

ij = Σp
ij +Σp

ji . (3.12)

Moreover, the quasi-linear theories have the nice property that Sp
ij vanishes identically. This is

a direct consequence of the antisymmetry between the derivatives (of the field strengths) in the
Lagrangian (3.4). Indeed, Σp

ij can be shown to be given by

Σp,ij = −
5
∑

p=1

αp

(

B
00i,p0j
p − B

00j,p0i
p + B

p0j,00i
p − B

p0i,00j
p

)

, (3.13)

which is antisymmetric in the indices (i, j), so that Sp
ij = 0. Hence, requiring the time invariance of

φi leads to algebraic relations between the Lagrange multipliers νi. To go further in the analysis,
we need to study the properties of the matrix ∆ij = ∆0

ij .

If ∆0
ij vanishes identically, then we get three additional (secondary) constraints

ξi = πi − {φi, H̃} ≃ 0 , (3.14)

which enable us to solve the momenta πi in terms of the other phase space variables. Thus, these
momenta disappear from the Hamiltonian which implies that there is no Ostrogradski instability.
In fact, it is easy to see that the combined maximal degeneracy conditions

E
ij = 0 , ∆ij = 0 , (3.15)
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are equivalent to the condition that the equations of motion for the gauge field Ai are (at most)
second order. Indeed, the equations of motion for Ai take the form

−E
ij
...
E j +

(

∂E kj

∂Ei
− 2

∂E ik

∂Ej
− ∂E ij

∂Ek

)

ĖjËk − 2
∂E ik

∂Bj
ḂjËk +∆ijËj +Ri = 0 , (3.16)

where

Ei = Ȧi − ∂iA0 , (3.17)

and the “rest” Ri is at most second order in Ai. Therefore, the conditions (3.15) imply that all
second and third time derivatives of Ei disappear in the equations of motion, leaving only terms
at most second order in time derivatives of Ai. As originally shown in [20] and more recently in
[21], these theories correspond to non-linear electrodynamics where Bγµν,δρσ = 0.

This result is of course consistent with the absence of extra degrees of freedom: the extra
constraints φi ≃ 0 and ξi ≃ 0 enable us to kill (at least) 3 additional degrees of freedom and then
the theory contains (at most) 2 degrees of freedom, the expected two polarisations. If some of
these extra constraints are first class or if they lead to new tertiary constraints, one could even get
1 or 0 degree freedom.

If ∆ij does not vanish then the analysis becomes more involved and it is difficult to see how one
could get enough constraints to eliminate all the extra degrees of freedom. As ∆ij is antisymmetric
and odd-dimensional, it admits one null direction, which we denote κi. This implies that the time
invariance of φi leads to a secondary constraint given by

κiφ̇i = κi
(

−πi(x) + {φi(x), H̃}
)

≃ 0 . (3.18)

This constraint enables us to solve κiπi in terms of the (regular) phase space variables. The next
step would be to impose the time invariance of this new constraint and see whether it provides
new constraints, and so on, until no new constraint appears.

If the complete Hamiltonian analysis does not provide any other constraint after (3.18), we
end up with 4 second class constraints, which leaves 3 degrees of freedom. In practice, the rest
of the analysis can become quite involved since H̃ is already complicated and the expressions of
the constraints themselves become more and more burdensome. This is why we have not tried to
pursue the analysis further. However, we do not expect to find Lagrangians where all the extra
degrees of freedom can be eliminated. Our expectation relies on an analogous toy model, studied
below, which captures the essential features (although not all) of the theories characterised by
E ij = 0 and ∆ij 6= 0.

3. A toy model for quasi-linear theories

We now introduce a toy model that retains the main features of the theories discussed above,
but without the presence of cumbersome spatial derivatives.

This analogous model describes the interactions between three point particle-like degrees of
freedom, denoted Ai for i ∈ {1, 2, 3}, and is defined by the action

Stoy[Ai] =

∫

dt
(

CiÄi − V
)

, (3.19)

where Ci and V are generic functions of the variables (Ȧi, Ai). It is equivalent to

Stoy,eq[Ei, Ai, πi] =

∫

dt
(

CiĖi − V + πi(Ȧi − Ei)
)

. (3.20)
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This model is similar to the action (2.15) with E ij = 0 (in the quasi-linear case) but it is much
simpler to analyse since it contains no spatial derivative, no magnetic field and is not U(1)-invariant.

To further simplify the action (3.20), one can add the boundary term
∫

dt
dJ

dt
such that

∂J

∂E3
= −C3 , (3.21)

where J is a function of (Ei, Ai). In this way, we can formally eliminate C3, up to a redefinition of
C1, C2 and V . Hence, without loss of generality, we can replace the action (3.20) by the following
one,

Stoy[Ei, Ai, πi] =

∫

dt
(

C1Ė1 + C2Ė2 − V + π1(Ȧ1 − E1) + π2(Ȧ2 − E2)
)

, (3.22)

where now Ci and V are generic functions of the variables (E1, E2), (A1, A2, A3) and Ȧ3.
As in the full theory, we get two primary constraints associated with the momenta πE1

and πE2
,

canonical conjugates of E1 and E2 respectively:

φ1 = πE1
− C1 ≃ 0 , φ2 = πE2

− C2 ≃ 0 . (3.23)

The conjugate momentum of A3 is given by

π3 =
∂C1

∂Ȧ3

Ė1 +
∂C2

∂Ȧ3

Ė2 +
∂V

∂Ȧ3

. (3.24)

The condition ∆ij 6= 0 translates here into

∆12 = {φ1, φ2} =
∂C2

∂E1
− ∂C1

∂E2
6= 0 . (3.25)

Therefore, requiring the time invariance of the constraints φi cannot lead to secondary constraints.
Hence, the only way to get another constraint is to require that (3.24) is also a primary con-

straint, which means that π3 should not depend on velocities. This is the case if the Ci do not
depend on Ȧ3 and if V is linear in Ȧ3. This corresponds to an initial action of the form

Stoy =

∫

dt
(

C1 Ä1 + C2 Ä2 + C3 Ȧ3 −W
)

, (3.26)

or, equivalently,

Stoy,eq =

∫

dt
(

C1 Ė1 + C2 Ė2 + C3 Ȧ3 −W + π1(Ȧ1 − E1) + π2(Ȧ2 − E2)
)

, (3.27)

where Ci and W do not depend on Ȧ3. This leads to a new primary constraint π3 − C3 ≃ 0, but
it turns out that this eliminates a regular degree of freedom, instead of one of the extra degrees of
freedom. Indeed, the change of variable

A3 −→ Ã3(A3, Ȧ1, Ȧ2, A1, A2) such that
∂Ã3

∂A3
= C3 , (3.28)

transforms the action (3.26) into

Stoy =

∫

dt
(

C̃1 Ä1 + C̃2 Ä2 − W̃
)

, (3.29)

up to boundary terms. There is no need to go further to understand that the theory propagates
Ostrogradski ghosts [23]. We expect a similar scenario to happen when considering the full theory.

As a conclusion, this toy model strongly suggests that, when rk(E ) = 0, the only way to avoid
Ostrogradki ghosts is to require second order equations of motion, i.e. ∆ij = 0. In this case, there
are no higher order terms in the quasi-linear Lagrangian (3.2), which means that αp = 0 and the
Lagrangian reduces to the non-linear electrodynamics term M .
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B. Degenerate theories: rk(E ) = 1

We now examine the case where E is still not invertible but non zero. Let us start by considering
the case rk(E ) = 1. The theories satisfying this condition are classified in Appendix C 1. Given
our previous result regarding quasi-linear theories, which propagates at most 3 degrees of freedom,
it is clear that we need to make additional restrictions for higher ranks to ensure as many or fewer
degrees of freedom. Thus, in the following, we are going to restrict our study to theories involving
overall only one component of the second time derivative of the gauge field.

1. Higher-order Maxwell theories with rk(E ) = 1

As shown in C1, the higher-order Maxwell Lagrangians whose kinetic and linear parts are non-
trivial but involve only one component of the second time derivative gauge field can be written in
the form

L = −1

2
(Λgµν +ΥFµν

2 ) ∂µΞ ∂νΞ + M , (3.30)

where M , Λ, Ξ and Υ are functions of the two invariants (A2) or, equivalently, of the two combi-
nations

X =
1

2
(E2 −B2) , Y = ~E · ~B , (3.31)

which we will prefer in this subsection3. For simplicity, let us start by assuming that Υ = 0. Instead
of using the equivalent formulation (2.8), it is simpler here to consider the following equivalent
action

Seq[Aµ, φ, λ] =

∫

d4x

[

−1

2
Λ(X,Y ) ∂µφ∂

µφ+ M (X,Y ) + λ(φ− Ξ(X,Y ))

]

≡
∫

d4xL , (3.32)

where X and Y depend on the gauge field Aµ itself. We have added the two scalars λ and φ in
order to eliminate second derivatives of Aµ.

For the Hamiltonian analysis, we proceed as usual and start by parametrising the phase space
by the following six pairs of conjugate variables

{Ai, πi} , {A0, π0} , {φ, πφ} , {λ, πλ} . (3.33)

The conjugate momenta are computed from the action (3.32), giving

πλ = 0 , π0 = 0 , πφ = Λφ̇ , πi =
∂L

∂Ȧi
≡ Li = LXEi + LYBi , (3.34)

with LX = ∂L/∂X and LY = ∂L/∂Y . We immediately get two primary constraints:

πλ ≃ 0 , π0 ≃ 0 . (3.35)

3 As showed in the appendix C, the terms involving time derivatives of Ei are of the form LĖ = 1

2
(E iĖi)

2 + γ E iĖi ,

where E i is a linear combination of Ei and Bi while γ is a function of X, Y and B2. The theory leads to two
primary constraints C1 = E × B · πE and C2 = E⊥ · πE , where E⊥ belongs to the plane (E,B) and normal to E .
The two constraints weakly commute and thus generate two secondary constraints. Without more constraints, the
theory would contain 3 degrees of freedom. In the rest of the section, we follow a simpler method to further study
the constraints.
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If the last two expressions in (3.34) can be inverted, thus allowing to express the velocities φ̇
and Ȧi in terms of the momenta πφ and πi, then there is no further primary constraint and the
total Hamiltonian takes the form

H0[πi, πφ, Ai, φ, λ] +

∫

d3x
(

−A0 ∂iπ
i + µ0π0 + µλπλ

)

, (3.36)

where µ0 and µλ are Lagrange multipliers which enforce the primary constraints. As expected,
requiring the time stability of π0 ≃ 0 leads to the Gauss constraint G = ∂iπ

i ≃ 0: these two
constraints are first class and they are the generators of the gauge symmetry. The stability under
time evolution of πλ ≃ 0 leads to a secondary constraint as well, that we denote S ≃ 0, which
depends on λ (in general) as shown in Appendix C. These two constraints do not commute, they are
second class and the Dirac analysis stops there. Finally, the theory propagates 3 degrees of freedom,
one more than the usual two polarisations. This extra degree of freedom is an Ostrogradski ghost.

If, by contrast, the last two expressions in (3.34) cannot be inverted, i.e. if they form a de-
generate system, then there exists at least one additional primary constraint and one can hope to
eliminate more degrees of freedom. This degeneracy is equivalent to the degeneracy of the kinetic
matrix, which reads

K =









∂2L

∂φ̇∂φ̇

∂2L

∂φ̇∂Ei

∂2L

∂φ̇∂Ei

∂2L

∂Ej∂Ei









. (3.37)

As shown in the appendix C 3, the above kinetic matrix turns out to be degenerate only if LX = 0.
As a consequence, the theory (3.32) is degenerate when

Λ(X,Y ) = Λ(Y ) , Ξ(X,Y ) = Ξ(Y ) , M (X,Y ) = M (Y ) . (3.38)

When Υ 6= 0, the expression of the kinetic matrix (3.37) is more involved and one finds that
the kinetic matrix cannot be degenerate if there is a non-trivial Υ, as discussed in Appendix C3.

2. Existence of an Ostrogradski ghost

Let us now study the theories satisfying (3.38). Because of the simple relation

L = −1

2
Λ ∂µΞ ∂

µΞ + M = −1

2
ΛΞ′2 ∂µY ∂

µY + M , (3.39)

we can fix Ξ = Y without loss of generality. We prefer to work with the associated equivalent
action

Seq[Aµ, φ, λ] =

∫

d4x

(

−1

2
Λ(φ) ∂µφ∂

µφ+ M (φ) + λ(φ− Y )

)

, (3.40)

which admits 5 primary constraints: the first two relations in (3.34) as well as

χi = πi + λBi ≃ 0, where Bi = εijk∂
jAk . (3.41)

The total Hamiltonian is then given by

Htot = H0 +

∫

d3x
(

µ0π0 + µλπλ + µiχi

)

, (3.42)
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where we have added to the canonical Hamiltonian

H0 =

∫

d3x

(

π2φ
2Λ(φ)

+
Λ(φ)

2
∂iφ∂

iφ− M (φ)− λφ−A0∂iπ
i

)

, (3.43)

the primary constraints with their respective Lagrange multipliers.
The next step consists in computing the time evolution of these primary constraints. As usual,

π0 ≃ 0 leads to the Gauss constraint and both constraints, associated with the U(1) gauge sym-
metry, are first class. Computing the time evolution of the other primary constraints requires the
calculation of their Poisson brackets, which are given by

{χi, χj} = εijk ∂
kλ , {χi, πλ} = Bi . (3.44)

The associated Dirac matrix ∆[χ] whose coefficients are defined by the Poisson brackets, i.e.
(∆[χ])µν = {χµ, χν} (using the notation χ0 ≡ πλ for convenience) is a 4× 4 antisymmetric matrix,
whose determinant is

det(∆[χ]) = (Bi ∂iλ)
2 . (3.45)

Since ∆[χ] is invertible generically, requiring the time stability of these constraints determines the
Lagrange multipliers µi and µλ and therefore does not lead to new constraints.

This completes the Dirac analysis, which has given 2 first class constraints (π0 ≃ 0 and G ≃ 0)
and 4 second class constraints (χi ≃ 0 and πλ ≃ 0). Since we started with a 12-dimensional phase
space (3.33), we conclude that the theory contains 2 degrees of freedom. The extra degree of
freedom can be seen as an Ostrogradski ghost, since the Hamiltonian (3.43) is linear in λ, thus
unbounded neither from above nor from below.

In summary, degenerate theories with rk(E ) = 1, and linear part in Ė in the same direction as
the image of E , usually contains 3 degrees of freedom. With some restrictions for the Lagrangian
(3.38), it is possible to eliminate one more, but it eliminates a safe degree of freedom, leaving an
Ostrogradski ghost in the theory and a single polarisation.

C. Partially degenerate theories: rk(E ) = 2.

Let us finally discuss the case rk(E ) = 2. It is instructive to introduce an analogous toy model,
such as

S2[Ei, Ai, πi] =

∫

dt

(

1

2
E1 Ė

2
1 +

1

2
E2 Ė

2
2 + Ci Ėi − V + πi(Ȧi − Ei)

)

, (3.46)

which mimics some of the properties of the full theory. For simplicity, we assume V to be quadratic
in the variable E3. We note that the term proportional to Ė3 can be eliminated by adding to the
action a boundary term

∫

dt Ċ such that the function C satisfies ∂C/∂E3 = −C3. We thus assume
that C3 = 0 in the following.

The part of the Lagrangian that involves time derivatives is thus of the form

∫

dt

[

1

2

(

E1 Ė
2
1 + E2 Ė

2
2 + A Ȧ2

3

)

+ C1 Ė1 + C2 Ė2 + C3 Ȧ3

]

, (3.47)

as there are no higher derivatives of A3. If A 6= 0, there are no constraints and the theory contains
Ostrogradski ghosts. If A = 0, there exists a constraint on the conjugate momentum of A3, but
such a constraint cannot lead to the elimination of Ostrogradski ghosts. On the contrary, it leads
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to the elimination of a regular degree of freedom. This simple analysis supports the idea that there
is no healthy theory when rk(E ) = 2.

To illustrate this, let us consider the simple example

L = −1

2
Λ1(X,Y ) ∂µX ∂µX − 1

2
Λ2(X,Y ) ∂µY ∂

µY + M (X,Y ) , (3.48)

where Λ1, Λ2 and M are arbitrary functions of (X,Y ). The kinetic matrix can be read immediately
and corresponds to

Eij =
1

2
(Λ1EiEj + Λ2BiBj) , (3.49)

which is manifestly a matrix of rank 2.
To count and analyse its degrees of freedom, we proceed as usual and introduce the equivalent

Lagrangian

Leq = −1

2
Λ1(φ1, φ2) ∂µφ1 ∂

µφ1 − 1

2
Λ2(φ1, φ2) ∂µφ2 ∂

µφ2

+ M (φ1, φ2) + λ1(φ1 −X) + λ2(φ2 − Y ) . (3.50)

The parametrisation of the phase space is similar to the previous case (3.33) with the difference
that we now have two scalar fields φ1 and φ2 and two Lagrange multipliers, λ1 and λ2, which gives
a 16-dimensional phase space. One can identify three obvious primary constraints,

π0 ≃ 0 , πλ1
≃ 0 , πλ2

≃ 0 . (3.51)

Moreover, the kinetic matrix is diagonal, since

∂2Leq

∂φ̇a ∂φ̇b
= Λa δab ,

∂2Leq

∂Ei ∂Ej
= −λ1 δij ,

∂2Leq

∂φ̇a ∂Ei

= 0 , (3.52)

and therefore invertible if Λ1,2 6= 0, which means that there is no further primary constraint.
The rest of the analysis is straightforward: π0 ≃ 0, together with the Gauss constraint, suppress
four phase space degrees of freedom, while the two other primary constraints lead to two secondary
constraints, the four of them being second class and eliminating four phase space degrees of freedom.
We thus end up with an 8-dimensional phase space, corresponding to 4 degrees of freedom: the
usual two polarisations of the electromagnetic field and two extra degrees of freedom, which behave
as Ostrogradski ghosts.

IV. CONCLUSION

To summarise, we have studied the most general higher-order Maxwell action (2.1) quadratic
in ∂αFµν and we provided strong indications that they all propagate Ostrogradski ghosts unless
they reduce to a non-linear Maxwell theory (where the tensor B = 0 vanishes identically). Even
though the gauge field has several components Aµ, one cannot combine them to absorb higher
derivatives into a redefinition of variables, which is the case in higher-order scalar-tensor theories for
instance. This result is very similar to what has been observed for higher-order metric theories (in
4 dimensions) which have been shown to propagate extra degrees of freedom (which are generically
Ostrogradski ghosts) as well, unless they reduce to the Einstein-Hilbert action with a cosmological
constant [24].
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We have studied this problem according to the rank of the 3-dimensional kinetic matrix E which
is obtained by performing a 3+1 decomposition of the action (2.15). When rk(E ) = 3, the theory is
non-degenerate and admits 5 degrees of freedom: the usual two polarisations of the electromagnetic
field and three Ostrograski ghosts. When rk(E ) < 3, the theory is more complicated to analyse
(at least at the Hamiltonian level) and we often introduced simpler toy models whose properties
mimic some of the main properties of the full theory. We saw that the primary constraints coming
from the fact that E is degenerate are not sufficient to get rid of all the Ostrograski ghosts.

More precisely, we saw that quasi-linear theories, i.e. imposing rk(E ) = 0, enables to eliminate
all but one of the Ostrogradski ghost. It would be interesting to understand whether these theories
can be recast as non-linear scalar-vector theories, with phantom kinetic term for the additional
mode, as it is the case in the usual Ostrogradski model. Without further assumptions, theories
with rk(E ) > 0 would a fortiori contain more additional degrees of freedom than the previous cases.
Thus, we imposed for rk(E ) = 1 the additional assumption that the linear term in Ėi be in the
same direction as the kinetic term. As we saw, this yields a family of theories parametrised by 3
functions of the electromagnetic invariants, with at most 3 degrees of freedom. Imposing further
that these functions depend solely on P = ∗FµνF

µν , reduces the number of degrees of freedom to at
most two, one of which, if it exists, being a ghost. Although the existence of ghosts usually imply
some instabilities, it is not completely clear at this stage how such instability would manifest itself,
so that a deeper understanding of degenerate higher-order Maxwell theories seems important.

Finally, it would be interesting to extend our analysis to higher-order Yang-Mills theory in flat
space, and to U(1) theories in curved space-times, i.e. to the quadratic higher-order Einstein-
Maxwell theories which have been classified in [1]. In particular, following the example of scalar-
tensor theories [4], it should be possible to systematically investigate the degeneracy conditions
and degrees of freedom of these higher-order degenerate gauge theories.
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Appendix A: Higher Order Einstein-Maxwell theories

In this appendix, we recall some results of [1] where we considered higher-order Einstein-Maxwell
theories. The corresponding action is linear in the Riemann tensor Rµνρσ and quadratic in the
covariant derivatives ∇αFµν of the strength field, i.e.

S[gµν , Aµ] =

∫

d4x
√−g

(

M +
1

4
A

µνρσRµνρσ + B
γµν,δρσ∇γFµν∇δFρσ

)

, (A1)

where M is a scalar function which depends on the two electromagnetic invariants available in four
dimensions,

F 2 = FµνFµν , P = ∗FµνF
µν =

1

2
εµνρσF

ρσFµν , (A2)

where ∗ denotes the Hodge dual defined from the Levi-Civita tensor εµνρσ in four dimensions.
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The tensors A µνρσ and Bγµν,δρσ are constructed from products of the metric gµν and the field
strength Fµν , i.e.

A
µνρσ = (FIFJ )

µνρσ , B
γµν,δρσ = (FIFJFK)γµνδρσ , (A3)

where the indices on the matrices FI are such that,

Fµν
I = (F I)µν , I ∈ {0, 1, 2, 3} , (A4)

where F0 = g.
By definition, the symmetries of A µνρσ and Bγµν,δρσ are respectively those of the Riemann

tensor Rµνρσ and of the product of the two covariant derivatives ∇γFµν∇δFρσ. They have been
fully classified up to the Bianchi identity,

∇µFνρ +∇νFρµ +∇ρFµν = 0 , (A5)

to dimensionally dependent identities (DDIs) and to boundary terms in [1].
The decomposition of the action (A1) into terms linear in the Riemann tensor and terms

quadratic in the covariant derivatives of Fµν is not unique as one could transform terms of the
first kind into terms of second kind (and vice versa) using integrations by parts. We found a basis
such that A µνρσ can be decomposed according to

A
µνρσRµνρσ =

3
∑

n=1

αn Rn (A6)

where the elementary Lagrangians Rn can be chosen as follows

R0 ≡ R , R1 ≡ FµνF σρRµνσρ , R2 ≡ Fµν
2 Rµν , (A7)

while the functions An depend on the two invariants (F 2, P ) defined above (A2).
The tensors Bγµν,δρσ are much more complicated to classify because not only we have to take

into account an important number of dimensionally dependent identities but also boundary terms
in order to carefully analyse the equivalences between such terms. Given the basis of the Riemann
type elementary Lagrangians (A7), we found that the most general tensor Bγµν,δρσ entering in the
action above (A1) can be decomposed into a 18-dimensional basis,

B
γµν,δρσ ∇γFµν∇δFρσ =

18
∑

n=1

βnFn , (A8)

where βn are still functions of the two invariants (F 2, P ). This classification have been done in [1]
and an explicit choice for the basis elements Fn has been proposed. In this basis, the elementary
Lagrangians can be classified according to their weight, i.e. the number of derivatives minus the
four of ∇F∇F . There is one Lagrangian of weight 0,

F1 = ∇µF
µσ∇νFσ

ν , (A9)

7 Lagrangians of weight 2,

F2 = Fµν
2 ∇νFρσ∇σFµ

ρ , F3 = Fµν
2 ∇σFγν∇γFµ

σ , F4 = Fµν
2 ∇νFµγ∇σF

γσ ,

F5 = Fµν
2 ∇σFµ

σ∇γF
γ
ν , F6 = FµνF ρσ∇σFγν∇γFµρ ,

F7 = FµνF ρσ∇νFµγ∇σFρ
γ , F8 = FµνF ρσ∇µFνρ∇γFσ

γ , (A10)
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1 Lagrangian of weight 3,

F9 = FµνF ρσ
2 ∇µFνρ∇γFσ

γ , (A11)

6 Lagrangians of weight 4,

F10 = FµνF ρσ
3 ∇νFσγ∇γFµρ , F11 = FµνF ρσ

3 ∇µFνρ∇γFσ
γ ,

F12 = Fµν
2 F ρσ

2 ∇νFγµ∇σFρ
γ , F13 = Fµν

2 F ρσ
2 ∇µFνρ∇γFσ

γ ,

F14 = FµνF ρσF γδ
2 ∇µFνρ∇δFσγ , F15 = FµνF ρσF γδ

2 ∇νFµγ∇σFρδ , (A12)

2 Lagrangians of weight 5,

F16 = Fµν
2 F ρσ

3 ∇µFνρ∇γFσ
γ , F17 = FµνF ρσ

2 F γδ
2 ∇νFµρ∇δFσγ , (A13)

and one last Lagrangian of weight 6,

F18 = FµνF ρσ
2 F γδ

3 ∇νFµγ∇σFρδ . (A14)

When the space-time is flat, the Riemann curvature vanishes and the tensors A µνρσ thus become
irrelevant. Furthermore, the term F2 in the previous basis becomes redundant because it can
be shown to be equivalent (up to boundary terms) to a combination of the other elementary
Lagrangians and the term FµνF ρσ

3 Rµνρσ which obviously vanishes when the metric is flat, as it can
be seen from Eq. (6.8) of [1] .

Appendix B: Kinetic Matrix in the flat case

One can explicitly compute the kinetic matrix (2.16) which can be shown to decompose as
follows,

E
ij = E1B

iBj + E2E
iEj + E3E

(iBj) + E4h
ij + E5B

(iΠj) + E6E
(iΠj) , (B1)

where we have defined the Poynting vector Πi = (E ×B)i = εijkE
jBk. The coefficients EI depend

on the functions βn introduced in the Lagrangian (A8), according to

E1 =
1

2

(

F 2 − 2B2
)

β12 − (β3 + β5) ,

E2 = − (β3 + β5 − β6 + β7 + β8) +
F 2

4

(

2 (−β10 + β11 + β13 + β14 + β15)− F 2β18
)

,

−B2

(

β12 + β14 + β15 −
F 2

2
β18

)

,

E3 = E.B

(

1

2

(

β10 − β11 −B2β18
)

+ β12 − β13 +
F 2

4
β18

)

,

E4 = −β1 +B2

(

β3 − β4 + β5 +
F 2

2
β12

)

+
F 2

4

(

2β4 + F 2β12
)

+ (E.B)2 (−β12 + β13) ,

E5 =
1

2
E.B β16 ,

E6 =
1

4

(

2β9 − F 2β16
)

.

(B2)

Notice that we have used P = −4E · B but we have kept F 2. Let us also remark that we could
have replaced hij by its expression in terms of ΠiΠj in order to express E ij in the six-dimensional
basis of 3× 3 symmetric matrices associated with the vectorial basis {E,B,Π}.
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Appendix C: More on the analysis of theories with rk(E ) = 1

In this appendix, we study in more details theories such that rk(E ) = 1. We first propose a
classification of these theories (with supplementary conditions that we are going to describe below)
and then give more details on their constraint analysis.

1. Classification of theories with rk(E ) = 1

Requiring that the kinetic matrix (B1) has rank 1 amounts to find two vectors of the form

V = v1E + v2B + v3E×B (C1)

such that E ijVj = 0. This results in the following system of equations,









E4 +E.BE3 + E2E2 E.BE2 +B2E3

(

B2E2 − (E.B)2
)

E6

E.BE1 + E2E3 E4 +B2E1 + E.BE3

(

B2E2 − (E.B)2
)

E5

E.BE5 + E2E6 B2E5 + E.BE6 E4













v1
v2
v3



 = 0 . (C2)

It is convenient to write the previous matrix in the form
(

~Z1, ~Z2, ~Z3

)

where the vectors ~Zi are

obviously proportional to each other as the matrix is of rank 1. Thus, all the determinants of the
minors of the matrix should vanish. For instance

det

(

W12 W32

W13 W33

)

= E2
E3E4 −

E.B

B2
(E.BE3 + E4)E4 +

(

(E.B)2 −B2E2
)2 E5E6

B2
= 0 , (C3)

where we introduced the following vectors for simplicity,

~W1 = ~Z1 −
E.B

B2
~Z2 , ~W2 = ~Z1 −

E2

E.B
~Z2 , ~W3 = ~Z3 . (C4)

All these equations are viewed as polynomials of B2 whose “coefficients” are in fact functions of
X and E.B which must vanish.

Imposing all these conditions fixes 7 functions among the 17 available ones. Hence, the resulting
theory can be written as a sum of the 7 quasi-linear Lagrangians (of vanishing rank) and a 3-
functions-family of theories with non-vanishing kinetic term, i.e.

S[Aµ] =

∫

d4x
(

M +
7
∑

p=1

αp Lp + L
)

, (C5)

where the quasi-linear theories are defined by (3.3) while the part with a non-vanishing kinetic
terms can be written in the form,

L = ξ21 (γ1F8 + γ2F15)− 4ξ1ξ2 (γ1F11 + γ2F18) + ξ22 (γ1F1 + γ2F2) (C6)

with

F1 = 2 (E.B)2
(

F 2F1 + 2 (F4 + F5 −F8)− F 2
(

F 2F8 + 4F11

))

,

F2 = −4 (E.B)4 F1 + 2 (E.B)2
(

F 2 (F4 + F8) + 2 (2F11 + F12 −F15)
)

− F 2
(

F 2F15 + 4F18

)

,
(C7)

where γm and ξm, with m = 1, 2, are functions of the electromagnetic (EM) invariant. Notice that
one out of the two functions γ1 and γ2 is redundant.
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It is straightforward to obtain the kinetic term of this model,

L = −
(

γ1 + γ2E
2
)

(

(ξ1 + ξ2F2)E
iĖi − 2ξ2E.BB

iĖi

)2
+ Llin + Lpot (C8)

where Llin and Lpot are respectively linear in the velocities and without velocities. In order to
guarantee the absence of Ostrogradski ghosts associated with the two components of the velocity
which are absent from the kinetic term, we impose these to be absent from the linear term as well,
which implies that Llin is of the form

Llin ∝ Ėi

(

(ξ1 + ξ2F2)E
i − 2ξ2E.BB

i
)

. (C9)

Let us present an explicit 3-parameter family of theories which satisfy the required properties4,

L =
1

16

(

ξ1∂µF
2 + ξ2∂µF4

)

(γ1g
µν + γ2F

µν
2 )

(

ξ1∂νF
2 + ξ2∂νF4

)

(C10)

where

F4 =
1

4

(

P 2 + 2
(

F 2
)2
)

. (C11)

We see that both conditions (C8) and (C9) are satisfied. As a consequence, we obtain the most
general theory5 which can be equivalently reformulated as (3.30),

L = −1

2
(Λgµν +ΥFµν

2 ) ∂µΞ ∂νΞ + M , (C12)

where M , Λ, Ξ and Υ are functions of the two invariants (A2) or, equivalently, of the two combi-
nations

X =
1

2
(E2 −B2) , Y = ~E · ~B , (C13)

Finally, notice that many other theories admitting a rank 1 exist, but they involve higher powers
of ∂F . For instance, it is possible to generate a rank 1 quartic theory applying the following non-
invertible transformations to the Maxwell action, Aµ −→ Aµ + P∂νF

2, while applying it on the
other invariant P yields a quadratic quasi-linear theory classified by (3.3). More generally, it is
clear that the square of any theory with rank 0 is a theory with rank 1.

4 It is not simple to classify theories with this property. One of the reasons is that there are boundary terms relating
this linear term to the potential and we should take all of these into account. For example, it is clear that the
velocity in Ė.∂×B can be traded for spatial derivatives of the electric field using the Bianchi identity. Moreover, as
they involve a time derivative, these boundary terms must be covariant. As shown in [1], there are 5 independent
such terms in four-dimensions. It is quite cumbersome and not particularly illuminating to obtain the conditions
that the theories must satisfy from this perspective.

5 The independence of these terms implies that this theory is the one we look for. Indeed, this independence can
be understood from the following argument : the dimensionally dependent identities in four dimensions impose
that there are two independent EM scalars, so that F 2 and F4, and thus also ∂µF

2 and ∂µF4 can be considered
independent. Given the high symmetry in L, there are no more dimensional identities that could be used to reduce
these 3 terms. It is clear that instead of choosing a basis of EM invariants {F 2, F4}, it is possible to consider
alternatively {X,Y }, where X and Y are two different functions of the invariants.
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2. Constraint analysis

We consider theories whose dynamics is governed by the action (3.30), or equivalently (3.32),
where we fix Υ = 0 for simplicity,

Seq[Aµ, φ, λ] =

∫

d4x

[

−1

2
Λ(X,Y ) ∂µφ∂

µφ+ M (X,Y ) + λ(φ− Ξ(X,Y ))

]

. (C14)

All the notations have already been introduced in the paper. We have started the analysis in
section IIIB 1 but we have not given neither the form of the canonical Hamiltonian H0 in (3.36)
nor the expression of the secondary constraint S ≃ 0 which comes when one study the stability of
the primary constraint πλ ≃ 0. Here, we fill this gap.

a. Completing the canonical analysis

In order to compute the canonical Hamiltonian H0, we assume that the theory is not degenerate
in the photon sector which means that the relation

πi = LXEi + LYBi , (C15)

is invertible and then one can express the “velocities” Ei in terms of the momenta πi. In general,
such an inversion cannot be done explicitely and one obtains an implicit expression for Ei,

Ei = Ui(πj , πφ) . (C16)

At this stage, one can compute the canonical Hamiltonian which is given by

H0 =

∫

d3x

[

πiUi +
π2φ
2Λ

+
1

2
Λ(∂iφ)

2 − M − λ(φ− Ξ)

]

. (C17)

Notice that the Hamiltonian should be defined with a canonical term πiȦi instead of πiUi =
πi(Ȧi − ∂iA0). However, the term πi∂iA0 leads (after an integration by parts) to the Gauss
constraint which has already been taken into account in the expression of the total Hamiltonian
(3.36).

Now Λ, Ξ and M (and also Ui) are viewed as functions of the momenta and they also depend
on λ because the function L in (C16) depends on λ. Therefore, requiring the stability under time
evolution of the primary constraint πλ ≃ 0 leads to a secondary constraint S ≃ 0 where

S =
δH0

δλ
= πi∂λUi +

(

−
π2φ
2Λ2

+
1

2
(∂iφ)

2

)

∂λΛ− ∂λM + λ∂λΞ+ Ξ− φ . (C18)

Using the property

∂λΛ =
∂Λ

∂Ei
∂λUi = (ΛXE

i + ΛYB
i)∂λUi , (C19)

that holds also for the functions Ξ and M , we immediately see that

S =
(

πi −QXE
i − LYB

i
)

∂λUi + Ξ− φ = Ξ− φ , (C20)

where we have used the expression of πi (C15). As expected, we recover that requiring the stability
under time evolution of πλ ≃ 0 leads to the constraint Ξ − φ ≃ 0 which is the Euler-Lagrangian
equation for λ. The main difference is that now Ξ is viewed as a function of the momenta and no
more on the velocities. When one inverts (C15), one gets (C16) where Ui depends non trivially on
λ. As a consequence, S depends non trivially on λ and then the Dirac analysis closes here, as we
claim in in section IIIB 1.
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b. An alternative analysis

The previous class of theories with rk(E ) = 1 can be alternatively described by an action of the
form
∫

d4x

[

−1

2
(Λ1(X,Y )∂µX + Λ2(X,Y )∂µY ) (Λ1(X,Y )∂µX + Λ2(X,Y )∂µY ) + M (X,Y )

]

(C21)

where the functions Λ1 and Λ2 are related to the functions Λ and Ξ entering in (3.30) by

Λ2
1 = ΛΞ2

X , Λ2
2 = ΛΞ2

Y , (C22)

i.e. we have assumed that Λ > 0 (which is natural if one wants to avoid ghosts).
This new action is equivalent to

∫

d4x

[

−1

2
(Λ1∂µφ1 + Λ2∂µφ2) (Λ1∂

µφ1 + Λ2∂
µφ2) + M + λ1(φ1 −X) + λ2(φ2 − Y )

]

(C23)

where now the Λ1, Λ2 and M are viewed as function of the scalar fields φ1 and φ2.
Its analysis is similar to the previous one. We start with a parametrisation of the phase space

in terms of the following pairs of conjugate variables

{Ai, πj} = δij , {A0, π0} = 1 , {φa, πφa
} = 1 , {λa, πλa

} = 1 , (C24)

where a ∈ {1, 2}. The only non-trivial momenta are given by,

πi = −λ1Ei − λ2Bi , πφa
= Λa(Λ1φ̇1 + Λ2φ̇2) . (C25)

Therefore the theory admits the following primary constraints,

π0 ≃ 0 , πλa
≃ 0 , χ = Λ2πφ1

− Λ1πφ2
≃ 0 . (C26)

At this stage, one can compute the total Hamiltonian which takes a form similar to (3.36),

H0 +

∫

d3x
(

−A0 ∂iπ
i + µ0π0 + µλa

πλa
+ µχχ

)

, (C27)

where the Lagrange multipliers µ0, µλa
and µχ enforce the primary constraints while the canonical

Hamiltonian is given by

H0 =

∫

d3x

[

π2φ1

2Λ2
1

+
1

2
(Λ1∂iφ1 + Λ2∂iφ2)

2 − π2 + 2λ2π ·B + (λ21 + λ22)B
2

2λ1
− λ1φ1 − λ2φ2

]

.

Requiring the stability of π0 leads, as usual, to the Gauss G ≃ 0 constraint and both are first class.
Following the same method as in the previous subsection, we can show that studying the stability

under time evolution of the two constraints πλa
≃ 0 leads to the expected two secondary constraints

Sa ≃ 0 with,

S1 = φ1 −X = φ1 −
π2 + 2λ2π ·B + (λ22 − λ21)B

2

2λ21
, (C28)

S2 = φ2 − Y = φ2 +
π ·B + λ2B

2

λ1
. (C29)
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Taken together, πλa
and Sa form a set of second class constraints as their corresponding Dirac

matrix is invertible. In other words, we can use these four constraints to eliminate λa and their
momenta by expressing them in terms of the remaining phase space variables.

Finally, we are left with the constraint χ ≃ 0 whose stability leads to a secondary constraint
ψ ≃ 0 and, in general, the Dirac analysis stops here. Hence, the theory admits 2 first class
constraints and three pairs of second class constraints. As we started with 8 pairs of variables in
the phase space, we conclude that the theory admits 3×2 physical degrees of freedom in the phase
space. This is consistent of the result of the analysis of the theory when formulated in terms of
the action (3.32).

3. Degeneracy of the kinetic matrix in the case rk(E ) = 1

The kinetic matrix associated with the rank 1 theory (3.30) is given by

K =









∂2L

∂φ̇∂φ̇

∂2L

∂φ̇∂Ei

∂2L

∂φ̇∂Ei

∂2L

∂Ej∂Ei









=

(

Λ φ̇Λi

φ̇Λj Li
j

)

(C30)

where

Λi = ΛXEi + ΛYBi , (C31)

Lij = LXδij + LXXEiEj + LY YBiBj + LXY (EiBj + EjBi) , (C32)

and indices are lowered and raised with the Kronecker delta δji .
The kinetic matrix is degenerate if it admits at least one null direction t(v0, Vi). Because of

the covariance, we know that the “spatial” component of V can be decomposed according to (C1).
Then, the condition KV = 0 decomposes into a single equation for v3

LXv3 = 0 , (C33)

and a more involved system of equations for (v0, v1, v2),





Λ φ̇(2XΛX + Y ΛY +B2ΛX) φ̇(Y ΛX +B2ΛY )

φ̇ΛX QX + 2XQXX + Y LXY +B2LXX Y LXX +B2LXY

φ̇ΛY Y LY Y + 2XLXY +B2LXY LX + Y LXY +B2LY Y









v0
v1
v2



 = 0 , (C34)

where we have used the relations E2 = 2X +B2 to eliminate the terms E2 from these equations.
If LX = 0, the kinematic matrix is clearly degenerate and admits at least one nul direction

defined by v0 = 0 and V = E×B.
Another possibility is that the sub-system (C34) is itself degenerate and therefore admits a non

trivial solution. This happens if the associated three dimensional matrix (C34) has a vanishing
determinant which can be expanded as follows

Det = (C0
0 + C2

0B
2 +C4

0B
4) + φ̇2(C0

2 + C2
2B

2 + C4
2B

4) , (C35)

where the functions Cn
p (X,Y ) can be expressed in terms of Λ, L and their derivatives with respect

to X and Y . As a consequence, requiring the degeneracy leads to the 6 relations

Cn
p (X,Y ) = 0 , p ∈ {0, 2} , n ∈ {0, 2, 4} , (C36)
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which is a system of non linear partial differential equations. Interestingly, the relation C4
0 = 0 is

particularly simple and reduces to the Monge-Ampère equation for the function L,

LXXLY Y − L2
XY = 0 , (C37)

assuming that Λ 6= 0. This equation is reminiscent from the fact that the kinetic matrix is nothing
but a Hessian matrix. When one substitutes this relation into C2

0 , one obtains

LX (LXX + LY Y ) = 0 , (C38)

which leads to two branches of solutions a priori. If we assume that LX = 0, then all the remaining
conditions Cn

p (X,Y ) = 0 can be shown to be trivially satisfied. In the second branch, the condition
LXX +LY Y = 0 together with the Monge-Ampère equation (C37) leads to the fact that he Hessian
matrix of the function L vanishes identically, i.e. LXX = LY Y = LXY = 0. When one substitutes
these conditions into C0

0 (X,Y ) = 0, one gets LX = 0 and all the remaining conditions Cn
p (X,Y ) = 0

are satisfied as in the first branch.

When Υ 6= 0, the expression of the kinetic matrix (3.37) is more involved. Hence the conditions
for it to be degenerate are also more complicated but it is possible to check that the kinetic matrix
cannot be degenerate if there is a non-trivial Υ.

Let us give an argument to explain this result. First we compute the momenta which are now
given by,

πφ = (M + 2XΥ +B2Υ)φ̇−Υ(E ·B×∂φ) , (C39)

πi = Li − [Υi(E ·B×∂φ)−Υ(B×∂φ)i] φ̇− 1

2
Υi(E · ∂φ)2 −Υ(E · ∂φ) ∂iφ . (C40)

If we proceed as we did above, we express φ̇ in terms of πφ and we substitute its expression into
πi. Then, we notice that the momenta πi involve, the following three components of E

E · B , E · B×∂φ , E · ∂φ . (C41)

Therefore, even if Υ and L depends only on Y , we could in principle express three independent
components of E in terms of the momenta which would make the system invertible and thus the
kinetic matrix non-degenerate.

[1] A. Colléaux, D. Langlois, and K. Noui, “Classification of generalised higher-order Einstein-Maxwell
Lagrangians,” 2312.14814.

[2] A. De Felice and A. Naruko, “On metric transformations with a U(1) gauge field,” Phys. Rev. D 101

(2020), no. 8 084044, 1911.10960.
[3] A. E. Gumrukcuoglu and R. Namba, “Role of matter in gravitation: going beyond the

Einstein-Maxwell theory,” Phys. Rev. D 100 (2019) 124064, 1907.12292.
[4] D. Langlois and K. Noui, “Degenerate higher derivative theories beyond Horndeski: Evading the

Ostrogradski instability,” Journal of Cosmology and Astroparticle Physics 2016 (Feb., 2016) 034–034,
1510.06930.

[5] D. Langlois and K. Noui, “Hamiltonian analysis of higher derivative scalar-tensor theories,” JCAP

1607 (2016), no. 07 016, 1512.06820.
[6] J. B. Achour, D. Langlois, and K. Noui, “Degenerate higher order scalar-tensor theories beyond

Horndeski and disformal transformations,” Physical Review D 93 (June, 2016) 124005, 1602.08398.
[7] J. B. Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui, and G. Tasinato, “Degenerate higher

order scalar-tensor theories beyond Horndeski up to cubic order,” Journal of High Energy Physics

2016 (Dec., 2016) 100, 1608.08135.

https://arxiv.org/abs/2312.14814
https://arxiv.org/abs/1911.10960
https://arxiv.org/abs/1907.12292
https://arxiv.org/abs/1510.06930
https://arxiv.org/abs/1512.06820
https://arxiv.org/abs/1602.08398
https://arxiv.org/abs/1608.08135


24

[8] H. W. Lee, P. Y. Pac, and H. K. Shin, “Derivative expansions in quantum electrodynamics,” Phys.

Rev. D 40 (1989) 4202–4205.
[9] D. Cangemi, E. D’Hoker, and G. V. Dunne, “Derivative expansion of the effective action and vacuum

instability for QED in (2+1)-dimensions,” Phys. Rev. D 51 (1995) R2513–R2516, hep-th/9409113.
[10] V. P. Gusynin and I. A. Shovkovy, “Derivative expansion of the effective action for QED in

(2+1)-dimensions and (3+1)-dimensions,” J. Math. Phys. 40 (1999) 5406–5439, hep-th/9804143.
[11] V. P. Gusynin and I. A. Shovkovy, “Derivative expansion for the one loop effective Lagrangian in

QED,” Can. J. Phys. 74 (1996) 282–289, hep-ph/9509383.
[12] J. Navarro-Salas and S. Pla, “(F ,G)-summed form of the QED effective action,” Phys. Rev. D 103

(2021), no. 8 L081702, 2011.09743.
[13] F. Karbstein, “Heisenberg-Euler effective action in slowly varying electric field inhomogeneities of

Lorentzian shape,” Phys. Rev. D 95 (2017), no. 7 076015, 1703.08017.
[14] F. Bopp, “Eine lineare theorie des elektrons,” Annalen der Physik 430 (1940), no. 5 345–384.
[15] B. Podolsky, “A Generalized Electrodynamics Part I-Non-Quantum,” Phys. Rev. 62 (1942) 68–71.
[16] R. Bufalo, B. M. Pimentel, and G. E. R. Zambrano, “Path Integral Quantization of Generalized

Quantum Electrodynamics,” Phys. Rev. D 83 (2011) 045007, 1008.3181.
[17] B. El-Bennich, G. Ramos-Zambrano, and E. Rojas, “Podolsky propagator in the gap and bound-state

equations,” Phys. Rev. D 103 (2021), no. 7 076008, 2010.15993.
[18] R. R. Cuzinatto, E. M. de Morais, L. G. Medeiros, C. Naldoni de Souza, and B. M. Pimentel, “de

Broglie-Proca and Bopp-Podolsky massive photon gases in cosmology,” EPL 118 (2017), no. 1 19001,
1611.00877.

[19] C.-R. Ji, A. T. Suzuki, J. H. O. Sales, and R. Thibes, “Pauli–Villars regularization elucidated in
Bopp–Podolsky’s generalized electrodynamics,” Eur. Phys. J. C 79 (2019), no. 10 871, 1902.07632.

[20] G. W. Horndeski, “Conservation of Charge and the Einstein-Maxwell Field Equations,” J. Math.

Phys. 17 (1976) 1980–1987.
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