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ABSTRACT

Aims. We explore the dynamical friction on a test mass in gravitational systems in the Quasi linear formulation of Modified Newtonian
Dynamics (QuMOND).
Methods. Exploiting the quasi linearity of QuMOND we derive a simple expression for the dynamical friction in akin to its Newtonian
counterpart in the standard Chandrasekhar derivation. Moreover, adopting a mean field approach based on the Liouville equation we
obtain a more rigorous (though in integral form) dynamical friction formula that can be evaluated numerically for a given choice of
the QuMOND interpolation function.
Results. Consistently with previous work, we observe that dynamical friction is stronger in MOND with respect to a baryon only
Newtonian system with the same mass distribution. This amounts to a correction of the Coulomb logarithmic factor via extra terms
proportional to the MOND radius of the system. Morover, with the aid of simple numerical experiments we confirm our theoretical
predictions and those of previous work on MOND.

Key words. Galaxies: kinematics and dynamics - Stars: kinematics and dynamics - Gravitation - Methods: analytical

1. Introduction

Modified Newtonian dynamics (hereafter MOND, Milgrom
1983) is an alternative theory of (classical) gravity originally in-
troduced to solve the missing mass problem on astrophysical and
cosmological scales without resorting to dark matter (hereafter
DM). In a Lagrangian formulation (see Bekenstein & Milgrom
1984), MOND amends to a substitution of the Poisson equation
relating the gravitational potential Φ and mass density ρ, with
the non-linear field equation

∇ ·

[
µ

(
||∇Φ||

a0

)
∇Φ

]
= 4πGρ, (1)

where the acceleration scale a0 ≈ 1.2×10−2ms−2 is a new univer-
sal constant, and the in principle unknown interpolating function
µ is monotonic with the asymptotic behavior

µ(x)→x≫1 1, µ(x) ∼x≪1 x. (2)

A widely adopted form of µ is

µ(x) =
x

1 + x
. (3)

According to the equations above, for ∇Φ ≫ a0 one recovers
the Newtonian limit and Eq. (1) reduces to the Poisson equation.

Vice versa, for ∇Φ ≪ a0 the system is in the so-called deep-
MOND limit (hereafter dMOND) and Eq. (1) becomes the p-
Laplace equation

∇ · (||∇Φ||∇Φ) = 4πa0Gρ. (4)

For a given mass density ρ the right-hand-side of the Poisson
equation and Eq. (1) are the same. One can therefore eliminate ρ
obtaining the relation

µ

(
||gM ||

a0

)
gM = gN + S (5)

between the MOND and Newtonian force fields gM and gN ,
where S ≡ ∇ × h(ρ) is a density-dependent solenoidal field that
zeros-out for systems in spherical, cylindrical or planar symme-
try, while it is typically non-zero for more general density pro-
files.

MOND has been rather successful in reproducing the kine-
matics of galaxies without the need of DM (Bugg 2015; Zhu
et al. 2023), and has proven to be a valid alternative to theΛCDM
paradigm in broad range of gravitational phenomena (Milgrom
1994; Sánchez-Salcedo & Hernandez 2007; McGaugh & Mil-
grom 2013; Sanders 2021; Bílek et al. 2021; Asencio et al. 2022;
Scarpa et al. 2022).

MOND has been extensively investigated numerically
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(Brada & Milgrom 1999; Knebe & Gibson 2004; Tiret &
Combes 2007; Nipoti et al. 2007a,b,c; Sanders 2008; Wu et al.
2009; Malekjani et al. 2009; Kroupa et al. 2022; Banik et al.
2022; Nagesh et al. 2022; Nagesh et al. 2023; Re & Di Cin-
tio 2023; Sollima et al. 2023), for collisionless mean field pro-
cesses, such for example violent relaxation and phase-mixing in
monolithic collapse, galaxy merging, vertical dynamics of disk
galaxies. Unfortunately, due to the non-linearity of the theory
(cfr. Eq. 1 and hence the absence of the superposition principle,
much less is known for what concerns the collisional processes
(see e.g. Bílek et al. 2021). For example, Ciotti & Binney (2004)
using an approach based on the fluctuations of uniform field
estimated the MOND two-body relaxation (t2b, Chandrasekhar
1941a,b) and dynamical friction (tDF , Chandrasekhar 1943a,b,c)
time scales in the dMOND limit. The outcome of this study (see
also the numerical simulations in Nipoti et al. 2008) is that a test
mass M crossing a purely baryonic system would feel a stronger
dynamical friction (hereafter, DF) force due to the encounters
with the system’s stars in MOND than in the parent Newtonian
system without DM, while would undergo an only slightly more
efficient DF than in the equivalent Newtonian system (hereafter
ENS, i.e. the baryonic plus DM system constructed such that the
potential is the same as the purely baryonic MOND model). The
Newtonian and MOND DF time scales tN

DF and tM
DF, are related

as

tM
DF =

√
2

1 + R
tN
DF, (6)

where R is the ratio of the amount of DM to baryons in the ENS.
Since in MOND collisional direct N−body simulations are

intrinsically unfeasible, results such as Eq. (6) can not be ex-
haustively explored via numerical experiments; the reason being
the absence of a MONDian expression for the force exerted by a
point-like particle. Milgrom (1986) proposed the approximated
expression for the force exchanged between two masses m1 and
m2 placed at distance r

F1,2 ≈
m1m2
√

m1 + m2

√
Ga0

r
, (7)

The latter is however valid only in the far field limit, thus making
it unusable in a direct N−body code, as it lacks a regime bridg-
ing to the Newtonian 1/r2 limit.

More recently, Milgrom (2010) formulated a quasi-linear
MOND theory (hereafter QuMOND) where the governing field
equation is

∇ ·

[
ν

(
||∇ΦN ||

a0

)
∇ΦN

]
= ∆ΦM , (8)

formally identical to Equation (1) where now, ΦN is the Newto-
nian potential generated by the density ρ through the usual Pois-
son equation

∆ΦN = −∇ · gN = 4πGρ. (9)

and the new interpolating function ν(y) is related to µ(x) by{
x = yν(y)
y = xµ(x)

⇒ µ(x) =
y
x
=

1
ν(y)
. (10)

The asymptotic behaviours for ν in the Newtonian and in the
dMOND limits are

ν(y)→y≫1 1, ν(y) ∼y≪1 y−1/2. (11)

We note that, Equation (8) can be rearranged as

ρ̃ = −
1

4πG
∇ · [ν(gN/a0)gN]; gN = −∇ΦN , (12)

that is, the QuMOND potential satisfies the Poisson equation for
the auxiliary density ρ̃. In practice, in QuMOND one has to eval-
uate the Newtonian potentialΦN generated by ρ, evaluate its gra-
dient and then via a non-linear algebraic step obtain the auxiliary
MOND density ρ̃ via Eq. (12) that acts as source for the potential
ΦM .

At variance with the usual MOND formulation, in its quasi-
linear formulation the interpolating function ν has a stronger ef-
fect on the form of the gravitational potential than its counterpart
µ in Eq. (1). For the usual choice (3), one obtains

ν(y) =
1
2
+

1
2

√
1 +

4
y
. (13)

We note that, QuMOND contains a sort of superposition princi-
ple for the auxiliary densities ρ̃. It is therefore tantalizing to try to
derive an expression for the DF force in this context, making use
of purely kinetic arguments as in the original derivation. In this
paper, we first discuss a simple expression of the QuMOND DF
summing the contributions of the effective densities for point-
particles of mass m interacting with a test mass, with some sim-
ple choices of ν. Moreover, we extend the mean field formula-
tion of DF, originally derived in Newtonian gravity by Kandrup
(1983) to the case of QuMOND and discuss the results of simple
numerical experiments.

2. Dynamical friction: classical approach

2.1. Newtonian case

Before tackling the QuMOND DF formula, let us briefly recall
the ingredients of the derivation of its Newtonian expression
(for a more detailed review see e.g. Binney & Tremaine 2008
or Ciotti 2021). Let us consider a test mass M travelling at vM
through an infinite background medium of particles with mass
m and (by now constant) number density n with velocity dis-
tribution function f (v). In each encounter M and a background
particle exchange a force F ≈ GMm/b2, acting for an interval
of time ∆t ≈ b/vM , where b is the impact parameter of the
dynamical collision. The associated variation of momentum is
∆p ≈ F∆t ≈ GMm/vMb. The rate of collisions of M is then

Ṅenc =
2πnbdbdx

dt
= 2πnvMbdb. (14)

From this, the velocity diffusion coefficient along the trajectory
of M can be written as

Dv =

∫
∆p2 dNenc

dt
= 2πG2M2 m2n

vM

∫
db
b
. (15)

In the Equation above, the integral in the impact parameter b
diverges for both b → 0 and b → ∞ (infrared and ultraviolet
divergence, respectively). It is however possible to impose suit-
able cut-offs bmin and bmax. This factor, after integration takes
the form of the Coulomb logarithm (in analogy with the same
quantity in plasma physics) lnΛ, where Λ = bmax/bmin.

Let us now assume that f (v), defined such that∫
f (x, v)d3xd3v = N (16)
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is the total number of particles, is position independent and
isotropic for all velocities. For such a system, the DF force per
unit mass acting on M is given as

dvM

dt
= −16π2G2ρ(M + m) lnΛ

vM

v3
M

∫ vM

0
v2 f (v)dv. (17)

In the assumption of velocity isotropy, only particles moving
slower than M contribute to its slowing down. Moreover for
M ≫ m, in Eq. (17) the factor m(M + m)n becomes Mρ, where
ρ is the background mass density.

2.2. QuMOND case

We first present a naive general expression of the MONDian DF
making use of the fact that in QuMOND

F = ν
(

Gm
a0b2

)
GMm

b2 . (18)

For each particle of the background system we define the so-
called MOND radius as

rM =

√
Gm
a0

(19)

With the same arguments of Sect. 2.1 we now find that the mo-
mentum variation of M is

∆p = ν(r2
M/b

2)GMm/vMb. (20)

The form of the collision rate factor remains unchanged, as it
is a geometric quantity. The diffusion coefficient Dv retains the
same definition as in Eq. (15), but with a different integral over
the impact parameter

Ib =

∫ bmax

bmin

ν(r2
M/b

2)2db/b. (21)

Once substituting in the DF formula, one obtains

dvM

dt
= −16π2IbG2ρ(M + m)

vM

v3
M

∫ vM

0
v2 f (v)dv. (22)

From Equation (22) above we notice immediately that the
QuMOND dynamical DF is always larger than its Newtonian
expression for the same mass distribution. This happens because
ν2 > 1, thus returning a larger factor within the integral over the
impact parameters. In addition, this is also in agreement with the
fact that in MOND theories the far field behaviour of a given
mass distribution falls off less rapidly than in Newtonian gravity,
as implied by the logarithmic trend of the MOND potential.

We now evaluate Equation (22) for a simple choice of ν.
Knowing that ν has the asymptotic trends given in Eq. (11) we
start with a simplified form

ν(y) = 1 + 1/
√

y, (23)

that is essentially the sum of the Newtonian and the deep MOND
régimes. In terms of µ, Eq. (23) corresponds to µ(x) = 1 +
(1 −

√
1 + 4x)/2x. For such a choice, the correction factor is

ν(r2
M/b

2) = 1 + b/rM, and the integral on the impact parameters
becomes

Ib = ln
bmax

bmin
+ 2

bmax − bmin

rM
+

b2
max − b2

min

2r2
M

=

� lnΛ + 2
bmax

rM
+

b2
max

2r2
M

; (24)

where we assumed bmin ≪ rM in the last equality. We note that,
the maximum impact parameter bmax in the context of Newto-
nian gravity is usually assumed to be some (arbitrary) scale dis-
tance1 of the system at hand. In the original derivation of Chan-
drasekhar (1943a), where the system is infinite, the definition
of bmax remains somewhat unclear. Some authors (see e.g. Van
Albada & Szomoru 2020 and references therein) typically take
bmax of the order of the average inter-particle distance. Hereby,
we follow the same assumption noting that for a star of a so-
lar mass the MOND radius rM is roughly 103 AU, much smaller
than the typical scale radius of a galaxy, but comparable to the
mean inter-particle distance among stars. This established, the
QuMOND DF then becomes(

dvM

dt

)
≈ − 16π2

lnΛ + b2
max

2r2
M

+ 2
bmax

rM

×
×G2ρ(M + m)

vM

v3
M

∫ vM

0
v2 f (v)dv. (25)

In practice, at first order in QuMOND each particle behaves as a
point-like source exerting the usual Newtonian 1/r potential plus
an infinitely extended ”phantom DM" halo whose contribution
depends on the specific form of ν. Following this approach, the
calculations as shown in Appendix A leads to the same expres-
sion of Eq. (25). We note that Equation (25) differs from what
one would obtain using the simple derivation of t2b in Sect. 2
of Ciotti & Binney 2004 that is proportional to the crossing time
tcross = 1/

√
Gρ to evaluate the dynamical friction time scale with

the Spitzer (1987) relation tDF = 2t2bm/(m+M). This is because
their expression of t2b makes use of the force (7), assuming im-
plicitly the dMOND regime.

Unlike the usual MOND interpolating function µ(x), the
form of the QuMOND function ν(y) affects the behaviour of the
MONDian force field. Adopting the commonly used Eq. (13)
(see Kroupa et al. 2022), the DF expression becomes

dvM

dt
≈ − 16π2

lnΛ + b2
max

2r2
M

+
bmax

rM
−

1
2

ln
bmax

rM
−

2 + ln 2
4

×
×G2ρ(M + m)

vM

v3
M

∫ vM

0
v2 f (v)dv.

(26)

The explicit derivation is given in Appendix B below.
Noteworthy, we observe in both cases that the MOND cor-

rection is proportional to a function of the only bmax/rM(
dvM

dt

)
QuMOND

−

(
dvM

dt

)
Newt
∝

b2
max

2r2
M

+ 2
bmax

rM
,

b2
max

2r2
M

+
bmax

rM
−

1
2

ln
bmax

rM
−

1
2
. (27)

The same term b2
max/2r2

M always dominates the MOND correc-
tion of DF, regardless of the exact form of ν, while the smaller
terms are affected by the particular choice. Recently some au-
thors (see e.g. Lelli et al. 2017) proposed an expression for ν
supported by observational data proportional to the form of ra-
dial acceleration relation. However, its functional form is rather
complex thus making the explicit evaluation of Eq. (22) particu-
larly cumbersome.

As an example, in Figure 1 we show for M ≈ 2m the ratio
1 Such cutoff length in neutral plasma physics is unequivocally con-
strained by the Debye length, see Spitzer (1965)
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Fig. 1. Ratio of the QuMOND correction factor X to the standard
Coulomb logarithm as function of the stellar density. The dependence
on the local velocity dispersion σ is color coded.

of the corrective QuMOND term X = b2
max/2r2

M + bmax/rM −

1/2 ln(bmax/rM) − (2 + ln 2)/4 of Eq. (26) with the standard
Coulomb logarithm as function of the stellar density, where we
have assumed bmax = (ρ/M⊙)−1/3 and bmin = G(M + m)/σ2,
where σ (colour-coded in Figure) is the local velocity disper-
sion (see e.g. Binney & Tremaine 2008). It is evident that for an
isolated baryon only system the DF in QuMOND is augmented
(up to a factor ≈ 50) at low density, comparable to the typi-
cal intra-galactic density of 10−1 stars per pc3, with respect to
the Newtonian case. Vice versa and as expected, in denser sys-
tems/regions the QuMOND correction is negligible, in particular
for large values of the velocity dispersion σ.

3. Mean field approach

A more rigorous evaluation of the DF expression can be car-
ried out using the mean field formalism developed by Kandrup
(1983) (see also Gilbert 1968 and Kandrup 1980) in the context
of Newtonian gravity that can be applied to any kind of long-
range force, not necessarily obeying the superposition principle.

Let us consider the usual system of N equal mass m (field)
particles, with coordinates ri and momenta pi = mvi de-
scribed by the (time-dependent) phase-space distribution func-
tion2 F (r,p; t); and a test particle M with coordinate r0 = R
and momentum p0 = P = MvM that perturbs the initial phase-
space distribution F0. In virtue of the Third Law of Dynamics,
such perturbation corresponds to the force decelerating the test
mass M. We assume the field particles to be statistically uncorre-
lated in their initial state with Maxwellian velocity distribution.
Moreover, we also take the limit of infinite, homogeneous dis-
tribution of field particles. In his original work, Kandrup (1983)
initially assumes an external potential Φ confining the system;
see Appendix C below. We note that, MOND systems with self-
consistent gravitational field gin embedded in an external gravi-
tational field gext are prone to the so-called external field effect
(hereafter EFE). The latter implies that for gin < a0 < gext the
2 Note that, F is not the one particle distribution function f (r, v) en-
tering the collisionless Boltzmann equation, but rather the phase-space
distribution of a 6N degrees of freedom Hamiltonian system entering
the Liouville equation.

system is purely Newtonian, while for gin < gext < a0 the system
behaves as a Newtonian model with rescaled gravitational con-
stant G′ = Ga0/gext.

Under the assumptions given above, as usual, the average
number density of particles n = N/Vol should be taken constant
as N,Vol → ∞. The dynamical friction force Ffr

0 can be there-
fore obtained simply as ⟨F tot

0 ⟩F .
In the same fashion of the special relativistic extensions of

DF (see e.g. Syer 1994 and Chiari & Di Cintio 2023) we shift to
the frame of reference of M such that r̂, p̂. The linear evolution
operator for F takes the form Ḟ (r̂i, p̂i; t) = −iL[F ]. See Eqs.
(C.7) and (C.9) in the Appendix below for its explicit expres-
sion.

The linear formulation of the evolution equation is allowed
since MOND (and therefore QuMOND), although non-linear, is
still a Lagrangian and local3 theory. At this stage, it is not neces-
sary to consider explicitly the Bekenstein & Milgrom (1984) (or
Milgrom 2010) Langrangian, since it is enough to consider the
particle’s energies.

The significant difference with respect to the Newtonian case
explored in Kandrup (1983) is that in MOND one cannot substi-
tute the potentials in a form

Wi =
∑
j,i

Wi j(|ri − r j|), (28)

due to the non-linearity of MOND implied by the absence of a
Superposition principle. Such potentials however can be rather
calculated in the QuMOND formalism (8).

A general expression for the DF force on the test particle can
be written formally as

Ffr
0 = −β

∫
dΣF0

 N∑
j=1

Ftot
i

 ∫ t

0
dτGL(τ→ t)

 N∑
i=1

vi · Ftot
i

 ,
(29)

where GL is the Greenian of the operator L and dΣ = d3Nrd3Np
is the differential element in phase space. The details of the
derivation are discussed in Appendix C.

We now sketch the main simplifying hypotheses needed to
perform practically the integrals in Eq. (29). Assuming that the
system under consideration has a finite memory (as implied by
its ergodicity), we can replace the time integration in τ on the
finite interval [0; t] with an integration extended over the semi-
infinite interval [0;∞). Moreover, making use of the standard
linear trajectory approximation (see e.g. Ter Haar 1977, see also
Syer 1994), allows to simplify GL(τ → t)[Q] � Q(t − τ). The
latter is the most delicate step of the present calculation, since
in this approximation the effects of the different field particles
decouple that is in principle not valid in a non-linear theory.

Under the assumptions listed above, the DF force formula
becomes

M
dvM

dt
= Ffr

0 � −
3(GM)2ρ

⟨v2⟩

∫
vα f (v)d3v

∫ ∞

0
dτ

×

∫
d3sν

 r2
M

|s − ṽτ|2

 sα − ṽατ
|s − ṽ1τ|3

ν

 r2
M

s2

 s
s3 , (30)

where ṽ = v−V. At this stage, the problem is reduced to solving
a three dimensional integral for a given choice of the QuMOND

3 MOND is local in the sense that the density at point ξ equals a dif-
ferential operator acting on the potential in ξ. Vice versa, for the case
of 1/rα forces with α , 2, obeying the superposition principle this is
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Fig. 2. Evolution of the galactocentric radius rg for a star cluster or-
biting through a dwarf galaxy in Newtonian gravity (green curve) and
QuMOND (blue curve). The thin black line marks the case without dy-
namical friction.

interpolation function ν.
Equation (30) in the Newtonian limit (i.e. ν → 1) can be

solved by an integration by parts applying

∇ ·
s
s3 = −4πδ3(s) (31)

and

v ·
s − ṽτ
|s − ṽ1τ|3

= ∇ ·
v

|s − ṽ1τ|
, (32)

so that one has∫ (
v ·

s − ṽτ
|s − ṽ1τ|3

)
s
s3 d3s = 4π

v
ṽτ
. (33)

Here the term ṽτ = b is the standard impact parameter (see again
Binney & Tremaine 2008), and thus the integral∫ ∞

0

dτ
τ
=

∫ ∞

0

db
b

(34)

returns the usual Coulomb logarithm (see e.g. Kalnajs 1972),
while the integral in d3v is rewritten as in the Newtonian case,
therefore yielding Eq. (17).

The QuMOND case is, even for the simple form of ν given
in Eq. (23), is plagued by its intrinsic complexity. Analogously
to the naive formula (22) we notice the presence of two factors ν.
In this mean field formalism the arguments for the two functions
ν in (30) are however slightly different. From such difference
−τṽ one recovers the logarithmic term in τ, as well as any ad-
ditional QuMOND terms. At variance with the Newtonian case,
which requires some cutoff only for the integral over dτ, in the
QuMOND DF formula (30) the integral over d3s is also diverg-
ing. Therefore needing a cutoff at bmax. This yields terms of the
form bmax/rM and b2

max/r
2
M, substantially in agreement with the

simplified approach performed in Sect. 2.2.

not true (Stein 1970). In practice, for such general long-range interac-
tions, density and potential are related only via integral relation over
the whole domain occupied by the system (Di Cintio & Ciotti 2011; Di
Cintio et al. 2013).

4. Numerical experiments

To clarify the different behaviour of DF in the QuMOND and
Newtonian gravity model of a given star system, it is instruc-
tive perform a simple numerical experiment in a set-up such that
in Newtonian gravity with DM the friction on the test object M
would be negligible while the gravitational field of the parent
system is in the MONDian regime g ≪ a0 over a broad interval
of radii.

We consider a M = 102M⊙ star cluster moving through a
dwarf galaxy with stellar mass M∗ = 2 × 105M⊙ and scale ra-
dius rs = 0.8 kpc (parameters compatible to those of the Draco
ultrafaint dwarf galaxy, Mashchenko et al. 2006), with stellar
distribution given by

ρ∗(r) =
3

4π
Mirs

(r + rs)4 , (35)

corresponding to a Dehnen (1993) γ−model for γ = 0. The as-
sociated QuMOND gravitational potential given by Eq. (8) is
by construction identical to the potential exerted by a Newtonian
system with stellar density (35) plus a DM halo with ρDM = ρ̃−ρ∗
(cfr. Eq. 12). By contrast, the DF force experienced by M is dif-
ferent in the two paradigms -Newtonian and MOND- being Eq.
(17) with ρDM + ρ∗ in lieu of ρ in the first case4 and Eq. (26) in
the second.

Using the numerical approach discussed in Appendix D, see
also Pasquato & Di Cintio (2020); Di Cintio et al. (2020); Di
Cintio & Casetti (2022), we integrated different orbits under
the effect of the same gravitational field and the two different
DF expressions, in the assumption of local Maxwellian approx-
imation (i.e. at all radii the velocity distribution is an isotropic
Maxwell-Boltzmann with velocity dispersion approximated by
σ =

√
2||Φ||). In Figure 2 we show the evolution of the galacto-

centric distance rg of M over 12 Gyr for an orbit of initial ellip-
ticity e = 0.49. The green and blue curves mark the Newtonian
and QuMOND simulations, respectively, while the black curve
is the unperturbed orbit in the static potential of the model. We
observe that, while the Newtonian DF only minimally alters the
orbit of M at around 9 Gyr, in QuMOND, the test particle suffers
a rather strong orbital decay with pergalactic radius falling from
≈ 1.63 kpc down to ≈ 1.2 kpc at 12 Gyr. This is remarkably
in agreement with the analytical estimates of Ciotti & Binney
(2004), that predicted a MOND inspiral time for an object con-
siderably more massive than a star to the central regions of a
Draco-like system of less than a Hubble time, much shorter than
its Newtonian analog and argued that this could be the reason
behind the absence of star clusters in similar dwarf galaxies.

5. Conclusions

We have investigated the dynamical friction in the Quasi linear
formulation of MOND. Using a simple dimensional analysis we
find that the expression for the MONDian DF is augmented with
respect to its Newtonian counterpart of a factor proportional to
the MOND radius of a typical stellar mass rM. Such additional
term becomes relevant when the maximum impact parameter
(proportional to the average interparticle distance, Spitzer 1987)
bmax ≫ rM, cfr. Eqs. (25,26). In practice, in a dense star cluster or
in galactic nuclei where the mean stellar density is such that the

4 We recall that, at equipartition in a multimass system (e.g. stars and
elementary particle sized DM), when the test mass M is much larger
than the mean mass ⟨m⟩ the prefactor of Eq. (17) is dominated by M
times the total mass density, see e.g. Ciotti (2021).
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typical inter-stellar distance is always smaller than rM, the DF
is always purely Newtonian. Vice versa, in low density systems,
such as ultrafaint Dwarf galaxies (Simon 2019) the bmax/rM cor-
rection is always of the order of the Coulomb logarithm, thus en-
hancing the (stellar) DF for a system where in principle it should
be negligible. In addition we find that, the explicit form of the
QuMOND correction is dependent on the specific choice of the
interpolating function ν. However, the strength of the enhancing
term does not vary significantly for such different forms of ν.

In additions, we have extended the mean field treatment
of DF, pioneered by Kandrup (1983) in the Newtonian case
to QuMOND. In this framework, alternative to the fluctuation-
based approach by Ciotti & Binney (2004), we recovered an in-
tegral expression that contains the usual dependence on ν. Unfor-
tunately, the explicit evaluation of the DF force, becomes rapidly
cumbersome (at variance with the simpler Newtonian case) even
in the dMOND limit, one is therefore forced to integrate Eq. (30)
numerically. Some specific cases will be presented and discussed
elsewhere. Working out in QuMOND the two-body relaxation
time (and therefore the DF coefficient of Eq. 6 via the relation
tDF = 2t2bm/M) with the fluctuation approach in Fourier space
of Ciotti & Binney (2004), though in principle possible, as it
would imply a double application of the classical Poisson equa-
tion and a single non-linear algebraic step is hindered by the im-
plicit relation between the Fourier transform of the QuMOND
potential and the associated auxiliary density ρ̃.

Interestingly, simple numerical integration of a test parti-
cle in a QuMOND and its Newtonian equivalent system evi-
dence that dynamical friction acts in a different way in the two
paradigms, being considerably stronger in the first if the model
is in a deep MOND regime (such as for DM-dominated dwarf
galaxies). We stress the fact however that, in MOND one can not
simply add a semi-analytic DF force to a mean field potential ob-
tained solving numerically Eq. (1) for a given density (either im-
posed extrapolated from particles position), in the same fashion
as Alessandrini et al. (2014); Arca-Sedda & Capuzzo-Dolcetta
(2014); Di Cintio & Casetti (2022). and therefore our simple
numerical estimates could possibly overestimate the MONDian
DF. Using the quasi-linear formulation of MOND could in prin-
ciple allow to incorporate the contribution of DF (and possi-
bly density fluctuations on a scale smaller than the particle-
resolution) adding it before evaluating ρ̃ to solve Eq. (8) (see
Di Cintio 2023). In conclusion, it is also important to recall that,
as a consequence of the EFE, in systems with gint < gext < a0,
the dynamics essentially Newtonian with a rescaled G. In those
cases, the DF force would be given by Eq. (17) augmented by
the multiplicative factor (a0/gext)2, and thus a full mean field
QuMOND treatment including the DF expression discussed in
Sect. 3 is valid only for a isolated system.
Acknowledgements. We express gratitude to Jan Pflamm-Altenburg, Pavel
Kroupa and Luca Ciotti for the useful discussions at an early stage of this work.
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Appendix A: Effective Dark Matter halos

Combining Equations (9) and (8), we evaluate the equivalent
matter distribution from Eq. (12) as

ρ̃ = −
1

4πG
∇ · g = −

1
4πG
∇ ·

[
ν(|gN |/a0)gN

]
. (A.1)

For a point particle, the density becomes ρ(r) = mδ3(r), so that
gN(r) = −Gm/r3r, and

ρ̃ = −
1

4πG
∇ ·

[
−

Gm
r3 rν

(
Gm
a0r2

)]
=

m
4π
∇ ·

 r
r3 ν

 r2
M

r2

 (A.2)

Substituting the simple interpolation (23), we then find

ρ̃ =
m
4π
∇ ·

( r
r3

)
+

m
4πrM

∇ ·

( r
r2

)
= mδ3(r) +

m
4πrMr2 , (A.3)

where the first term here is the real point particle, and the second
one represents its phantom dark matter halo ρpDM = ρ̃ − ρ. Its
cumulative mass function is

mDM(r) =
∫

m
4πrMr2 4πr2dr = m

r
rM
. (A.4)

Following the approach of Chandrasekhar, the impulsive force
generated by the particle and its effective DM halo is then

F =
GMm(b)

b2 =
GMm

b2 +
GMm
rMb

. (A.5)

The associated momentum variation is ∆p = Fb/vM =

GMm/vM

(
b−1 + r−1

M

)
and then the diffusion coefficient becomes

Dv =

∫
∆p22πnvMddb = 2πG2M2 m2n

vM

∫ (
1
b
+

1
rM

)2

bdb.

(A.6)

Keeping in mind that bm ≪ rM < bmax, the integral can be evalu-
ated as ≈ lnΛ + 2bmax/rM + b2

max/2r2
M. The QuMOND DF force

is then

dvM

dt
= −2ρ(M + m)Dv

N(|v| < vM)
v2

M

vM =

= −16π2
lnΛ + 2

bmax

rM
+

b2
max

2r2
M

G2ρ(M + m)
vM

v3
M

∫ vM

0
v2 f (v)dv.

(A.7)

Appendix B: Explicit choice of QuMOND
interpolating function

If the usual choice (13) of the QuMOND interpolating function
ν is used in Eq. (22), we have

ν(r2
M/b

2) =
1
2
+

√
1
4
+

b2

rM
⇒ ν(b)2 =

1
2
+

1
2

√
1 + 4

b2

r2
M

+
b2

r2
M

.

(B.1)

In the Equation above, unfortunately, we can not take the usual
approximation for small or large impact parameters b, since the
integral runs from bmin < rM to bmax > rM. Vary large values of
bmax (say of the order of the system size), return an important
contribution already in the Newtonian case, in the form of large
values of logΛ. This must also hold true a fortiori in MOND, as

in the far-field the forces decay as 1/r rather than 1/r2. There-
fore, we can not expand ν to low order terms in b/rM.

We must then solve the exact integral
∫
ν(b)2db/b, where the

square root term yields∫ √
1 + 4b2/r2

M
db
b
=

∫ √
1 + x2

x
dx =

=
√

1 + x2 − arctanh(
√

1 + x2) + const. =

=
√

1 + x2 −
1
2

ln

√
x2 + 1 + 1
√

x2 + 1 − 1
+

(
const −

π

2
i
)
,

(B.2)

where x = 2b/rM. Evaluating Eq. (B.2) for x = 2bmin/rM → 0
returns approximately

(1 + x2/2) −
1
2

ln
1 + 1

(1 + x2/2) − 1
= ln

bmin

rM
+ 1, (B.3)

while for x = 2bmax/rM → ∞ becomes asymptotically(
x +

1
2x

)
−

1
2

ln
x + 1
x − 1

= 2
bmax

rM
. (B.4)

The integral (B.2) is∫ √
1 + 4b2/r2

M
db
b
∼ 2

bmax

rM
− ln

bmin

rM
− 1. (B.5)

The integral over the impact parameters is then evaluated as

Ib =
1
2

∫
db
b
+

1
2

∫ √
1 + 4b2/r2

M
db
b
+

1
r2

M

∫
bdb =

∼
1
2

ln
bmax

bmin
+

bmax

rM
−

1
2

ln
bmin

rM
−

1
2
+

b2
max

2r2
M

=

= lnΛ +
b2

max

2r2
M

+
bmax

rM
−

1
2

ln
bmax

rM
−

1
2
. (B.6)

Appendix C: Further details on the mean field
approach

For the system of N + 1 particles considered in Section 3 de-
scribed by the distribution function F (r,p; t) the average of a
given phase-space observable Q, taken with respect to said dis-
tribution function is

⟨Q⟩F (t) :=
∫
F (r,p; t)Q(r,p)dΣ. (C.1)

where dΣ = d3Nrd3Np is the differential phase-space element.
The initial configurationF0 is perturbed by the passage of the

(N+1)-th particle, (our usual test particle). In virtue of the Third
Law of Dynamics, this corresponds to the force decelerating the
test particle once the force due to the unperturbed configuration
F0 is subtracted

F f r
0 = ⟨F

tot
0 ⟩F − ⟨F

tot
0 ⟩F0 , F tot

0 = −

N∑
i=1

F tot
i . (C.2)

The field particles are assumed statistically uncorrelated in their
initial state F0(r,p) =

∏N
i=1 f (ri,pi). We also assume their ve-

locity distribution to be a Maxwellian

f (ri,pi) = N f1(ri)e−βp
2
i /2mi , (C.3)
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with temperature β and normalizationN . The distribution of the
spatial coordinates is chosen such that the field particles are lim-
ited within a certain volume, therefore it can be also expressed
as f1(ri) = e−βmiΦi(ri) with an efficient potential Φi.

For our purposes, we will f1 as the limit of an infinite, ho-
mogeneous distribution of field particles. Such homogeneous
distribution on a finite volume Vol ⊆ R3 is given for f1(ri) =

1
|Vol|χVol(ri), i.e. when Φi has the profile of a rigid box. The av-
erage number density of particles can be then defined as n =
N/|Vol|. In the limit of an infinite homogeneous system, this pa-
rameters should be taken constant as N, |Vol| → ∞. The unper-
turbed force ⟨F tot

0 ⟩F0 vanishes, so that the dynamical friction F f r
0

can be obtained simply as ⟨F tot
0 ⟩F .

The field particles evolves following the time-dependent
Hamiltonian

H(r,p; t) =
N∑

i=1

p2
i

2mi
+

N∑
i=1

Wi(r). (C.4)

As discussed in Sect. (3) one can not make the usual substitution
Wi =

∑
j,i Wi j(|ri − r j|), with Wi j(r) = −Gmim j/r, as in MOND

the Superposition Principle does not hold. The potentials should
be rather expressed in using the QuMOND formalism (8), so that

−∇Wi = miν

(
|gNi|

a0

)
gNi, s.t. −

∑
j,i

∇Wi j = m jgNi. (C.5)

As a consequence, it is useless to define the forces between cou-
ples of particles F( j→ i) = −∂ri Wi j(|ri−r j|) = −F(i→ j), given
that the total QuMOND force on the i−th particle is not simply
Ftot

i ,
∑

j,0 F( j → i). The force Ftot
i can be calculated instead,

only as

Ftot
i = −∂ri Wi(r), (C.6)

where Wi(r) is given by the nonlinear QuMOND formula (C.5).
The evolution Equation is therefore expressed as

Ḟ = −

N∑
i=1

pi

mi
·
∂F

∂ri
−

N∑
i=1

Ftot
i ·
∂F

∂pi
:= −iL[F ]. (C.7)

In the equation above the sums arise from those in the Hamilto-
nian (C.4). In practice, the meaning of Eq. (C.7) is just that the
position of each field particle evolves according to the velocity
at each instant, as well as the momentum follows the total force.

Following Kandrup (1983), it is useful to change the phase-
space coordinates by taking the test particle’s reference

r̂i := ri − R(t) + R(0), p̂i := pi − P(t). (C.8)

The evolution operator for F hence takes the form

Ḟ (r̂i, p̂i; t) = −iL[F ] +
N∑

i=1

Ṗ(t) ·
∂F

∂pi
:= −iL[F ], (C.9)

where Ṗ acts as an apparent force on the i-th particle. Except for
this, in this frame the forces do not change F̂ tot

i ≡ F tot
i , since even

in MOND they depend only on the respective particles positions.
Moreover, it is useful to define the perturbation F̃ (t) := F (t)−F0
of the distribution function so that

⟨Q⟩F = ⟨Q⟩F0 + ⟨Q⟩F̃ (C.10)

for any quantity Q. This will be used for evaluating Eq. (C.2), so
that F f r

0 = ⟨F
tot
0 ⟩F̃ . The distribution function F̃ evolves as

˙̃
F = −iL[F̃ ] + βF0(r,p)

N∑
i=1

[
p̂i

mi
+ V(t)

]
·

[
F tot

i + mi
∂Φ̂i

∂r̂i
(t)

]
,

(C.11)

where again p̂i/mi + V(t) = pi/mi, and the term ∂Φ̂i/∂r̂i van-
ishes in the infinite, homogeneous limit. In principle, keeping
the contribution of Φ̂ would allow one to investigate in a self-
consistent fashion the MOND EFE, see Sect. 3. At this point,
Equation (C.11) can be rewritten in its simpler form

˙̃
F = −iL[F̃ ] + βF0

N∑
i=1

pi · gMOND
i . (C.12)

Its solution can thus be formally expressed as

F̃ (t) = βF0

∫ t

0
dτGL(τ→ t)

 N∑
i=1

pi · gi

 (C.13)

with the Greenian GL of the operatorL. After all the substitution
we have a formal, general expression for the dynamical friction
on the test particle in the form

F f r
0 =

∫
dΣFtot

0 F̃ =

∫
dΣFtot

0 βF0

∫ t

0
dτGL(τ→ t)

 N∑
i=1

vi · F∗i

 =
= −β

∫
dΣF0

 N∑
j=1

Ftot
i

 ∫ t

0
dτGL(τ→ t)

 N∑
i=1

vi · F∗i

 ,
(C.14)

where F∗i = Ftot
i + mi∂Φ̂i/∂r̂i becomes Ftot

i in the infinite homo-
geneous system limit. Here we have exploited the fact that the
full set of N + 1 particles is a closed, classic dynamical system,
so that

∑N
i=0 Ftot

i = 0.
In order to perform the integrals appearing in Eqs. (C.14),

we now make some simplifying hypotheses. First of all, we per-
form the infinite homogeneous limit. Second, if the system has
only a finite memory, we can replace the integration of τ on [0; t]
with an integration of [0;∞). Moreover, we make use of the stan-
dard linear trajectory approximation, which allows to simplify
GL(τ → t)[Q] � Q(t − τ). Under these approximations, the DF
force becomes

F f r
0 � −β

∫
dΣF0

 N∑
j=1

Ftot
j (t)

 ∫ ∞

0
dτ

 N∑
i=1

vi(t − τ) · Ftot
i (t − τ)

 .
(C.15)

This can be further simplified since ⟨FiF j⟩ = 0 for the off-
diagonal combinations i , j, since the field particles are by def-
inition statistically uncorrelated. We are then left with

F f r
0 � −β

∫
dΣF0

N∑
i=1

Ftot
i (t)

∫ ∞

0
dτvi(t − τ) · Ftot

i (t − τ) =

= −β

∫ ∞

0
dτ

〈 N∑
i=1

Ftot
i (t)

(
vi(t − τ) · Ftot

i (t − τ)
)〉
F0

=

= −β

∫ ∞

0
dτN

〈
Ftot

1 (t)
(
v1(t − τ) · Ftot

1 (t − τ)
)〉
F0
.

(C.16)
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Note that, the last step is justified only if the N field particles
have all the same mass m, so that they are statistically equivalent
in the initial phase-space distribution. Averaging F0 for the i =
1 particle, practically means that only the f (r1,p1) distribution
function is relevant, hence

〈
Ftot

1

(
v1 · Ftot

1

)〉
F0
=

∫
mgM

1

(
mv1 · gM

1

) N∏
i=1

f (ri,pi)d3Nrd3Np =

= m2
∫

gM
1

(
v1 · gM

1

)
f (r1,p1)d3r1d3p1 =

= m2
∫

d3r1

∫
d3v1

n
N

f (v1)gM
1

(
v1 · gM

1

)
=

= m2 n
N

[∫
vα f (v)d3v

] [∫
gαM

1 gM
1 d3r1

]
,

(C.17)

where f (v1) = Ne−βmv2
1 is again the Maxwellian velocity distri-

bution. The mean square speed is thus given by ⟨v2⟩ = 3/mβ that
can be substituted to obtain

F f r
0 � −

3n
m⟨v2⟩

m2
∫ ∞

0
dτ

[∫
vα f (v)d3v

] [∫
gαM

1 (t − τ)gM
1 (t)d3r1

]
=

� −
3ρG2M2

⟨v2⟩

∫ ∞

0
dτ

∫
vα f (v)d3v

×

∫
d3sν

 r2
M

|s − ṽτ|2

 sα − ṽατ
|s − ṽ1τ|3

ν

 r2
M

s2

 s
s3 ,

(C.18)

since gM
1 (s, t) = GMν

(
GM/a0s2

)
s/s3 and s(t − τ) � s − ṽ1τ,

being ṽ = v − V.

Appendix D: Numerical methods

The dynamics of a particle confined by a static potential Φ under
the combined effect of force fluctuations and friction is given by
the Langevin type equations

d2r
dt2 = −∇Φr − νr,vv + δF; v =

dr
dt
. (D.1)

In the most general case the DF coefficient ν depends explicitly
on the position and velocity through the phase-space distribution
of the embedding system (also sourcing the potential Φ) and δF
is a fluctuating force per unit mass with distribution and ampli-
tude connected to ν via a fluctuation-dissipation relation. For the
systems of interest (Newtonian or MOND) we solve Eq. (D.1)
using the Mannella (2004) scheme

x′ = x(t + ∆t/2) = x(t) +
∆t
2

v(t)

v(t + ∆t) = c2

[
c1v(t) + ∆t∇Φ(x′) + d1F̃(x′)

]
x(t + ∆t) = x′ +

∆t
2

v(t + ∆t), (D.2)

written here for simplicity for a 1D system and fixed time step
∆t, where the coefficients c1, c2 and d1 are given by

c1 = 1 −
η∆t
2

; c2 =
1

1 + η∆t/2
; d1 =

√
2ζη∆t. (D.3)

In the equations above F̃ is sampled from a norm 1 Gaussian and
ζ in the case of a delta correlated noise is fixed by the standard
deviation of the distribution of F as

⟨F(x, t)F(x, t′)⟩ = 2ηζδ(t − t′). (D.4)

In practice, if such distribution is unknown one takes, following
Kandrup et al. (2000) one could assume ζ = E where E is the
instantaneous relative (positive) energy per unit mass of the test
particle along the orbit. In the simulations discussed in this paper
the contribution of the fluctuating term is artificially set to 0 as it
would be negligible for the type of gravitational systems under
consideration. Note that, if ν = ζ = 0 Eqs. (D.2) simply become
the standard Verlet second order scheme in the drift-kick-drift
form.
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