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Abstract. We prove that the D4 root system (the set of vertices of the regular

24-cell) is the unique optimal kissing configuration in R4, and is an optimal
spherical code. For this, we use semidefinite programming to compute an exact

optimal solution to the second level of the Lasserre hierarchy. We also improve

the upper bound for the kissing number problem in R6 to 77.
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1. Introduction

A kissing configuration in dimension n is a collection of nonoverlapping, equal-size
spheres in Rn that touch (or “kiss”) a central sphere of the same size. We will
assume the spheres have unit radius, and we identify a kissing configuration with
the set C of contact points with the central sphere. Such a set C is a spherical code
with minimal angle at least π/3. The kissing number k(n) in dimension n is the
maximum size of such a set C.

In dimension four, a kissing configuration is given by the D4 root system. This
root system may be constructed as the set of all 24 vectors in R4 with integer
coordinates and length

√
2, referred to as the roots. In this paper we normalize the

roots to have unit length. Viewed geometrically, the roots form the vertices of the
24-cell, which is one of the six regular polytopes in dimension four. The possible
inner products between distinct roots are 0, ±1/2, and −1. Hence D4 is a kissing
configuration in dimension 4 of size 24; that is, k(4) ≥ 24. In 2008, Musin showed
k(4) = 24; the D4 root system is an optimal kissing configuration [38].

In this paper, we show it is unique. More precisely, we show that the D4 root
system is the only optimal kissing configuration in dimension four up to isometry.
This implies it satisfies the stronger geometric condition of being an optimal spherical
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code: it minimizes

tmax(C) = max
x,y∈C
x ̸=y

⟨x, y⟩

over all sets C consisting of 24 points in the unit sphere S3 = {x ∈ R4 | ⟨x, x⟩ = 1}.
This is in contrast with the result by Cohn, Conway, Elkies and Kumar [7] that the
D4 root system is not universally optimal, meaning that there exists an absolutely
monotonic function f (a smooth function with all derivatives nonnegative on [−1, 1])
for which D4 does not minimize ∑

x,y∈C
x ̸=y

f(⟨x, y⟩)

over all C ⊆ S3 of size 24. In their paper, they conjecture that no universally optimal
spherical code of 24 points exists in S3. The combination of the D4 root system
being the unique optimal spherical code, but not a universally optimal spherical
code, proves this conjecture.

The kissing number problem has a rich history, going back to a discussion between
Newton and Gregory in 1694 on the correct value of k(3), which was resolved in
1953 by Schütte and Van der Waerden [49]. Currently, the value of k(n) is known
for n = 1, 2, 3, 4, 8, and 24. For background on the kissing number problem, we
refer to [45].

In 1973, Delsarte introduced the linear programming bound, which can be used
to bound the sizes of codes over finite alphabets [19]. Delsarte, Goethals, and Seidel
adapted this to the sphere, so that it can be used to compute upper bounds on k(n)
[20]. Remarkably, this bound is sharp in dimensions 8 and 24, where by a sharp
bound we mean that the optimal objective value is exactly equal to the kissing
number, without having to take the integer part. The optimal objective value is
240 in dimension 8 and 196560 in dimension 24, which coincides with the sizes of
the kissing configurations obtained by taking the shortest nonzero vectors in the
E8 root lattice and the Leech lattice Λ24 [43, 32]. This proves optimality of those
configurations, and since the bound is sharp, complementary slackness can be used
to prove uniqueness [3].

In dimension four, the Delsarte bound was used to show k(4) ≤ 25, which was
the first improvement over Coxeter’s upper bound of 26 from 1964 [42, 13]. In [1] it
was shown that the Delsarte bound cannot be used to prove k(4) = 24, and Musin’s
optimality proof for the D4 root system uses a strengthening of the Delsarte bound.
However, this strengthening does not lead to a sharp bound.

The Delsarte bound is called a two-point bound since it considers constraints
between pairs of points on the sphere. Bachoc and Vallentin developed the three-
point semidefinite programming bound for spherical codes, adapted from Schrijver’s
three-point bound for binary codes [2, 48]. The three-point bound recovers the
optimality results in dimensions 3 and 4 and improves the best-known upper bound
for the kissing number problem in many other dimensions. To compute the three-
point bound it is first reduced to a finite-dimensional problem by truncating an
inverse Fourier transform, and since its introduction in 2008, all improvements to
upper bounds on k(n) have come from increasing this truncation degree [36, 34, 31].

The numerical data (see [31, Table 6.1] for the newest results), however, suggests
that the three-point bound for the kissing number problem is not sharp in any
dimension 3 ≤ n ≤ 24 and any truncation degree, except for the cases n = 8 and
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n = 24 where the Delsarte bound is already sharp. There has been considerable
work on k-point bound generalizations of the three-point bound, but this has not
yet resulted in sharp, or even improved, bounds for the kissing number problem (or
spherical code problems in general) [39, 28, 40, 16, 37, 4].

Over the last decades, the moment/SOS approach by Lasserre and Parrilo (see
[29, 30, 44]) has become an important tool in mathematical optimization and
theoretical computer science. Applying the Lasserre hierarchy to the independent
set problem in a finite graph gives a converging hierarchy of increasingly large
semidefinite programs giving successively stronger upper bounds on the independence
number. We can think of the kissing number problem as the independent set problem
in the graph on the unit sphere Sn−1, where two distinct vertices x, y ∈ Sn−1 are
adjacent if ⟨x, y⟩ > 1/2. In [18], De Laat and Vallentin generalized this hierarchy
to infinite graphs such as these, giving a hierarchy of 2t-point bounds, where t is
the level of the hierarchy. In principle, this solves the kissing number problem in
any dimension, since this hierarchy converges in finitely many steps. In practice,
computing the levels of this hierarchy beyond the first level (which reduces to the
Delsarte linear programming bound) is challenging.

In this paper, we compute the second level of this hierarchy for spherical code
problems. We show the second level of the hierarchy is sharp for the kissing number
problem in dimension four (the upper bound is exactly 24) by computing an exact
optimal solution. We then use complementary slackness to extract a uniqueness
proof for the D4 root system from the optimal solution.

This is the first time the second level of the Lasserre hierarchy has been computed
for a spherical code problem and the first improvement over the three-point bounds
for spherical codes. Previously, the second level of the Lasserre hierarchy has been
computed for two problems on infinite graphs. Firstly, it has been computed for
energy minimization on the two-dimensional sphere [15]. The techniques used there,
however, become too expensive when going to higher dimensional spheres or further
truncation degree of the inverse Fourier transform, and computing a sharp bound
for the kissing number problem in dimension four would be prohibitively expensive
with the techniques from that paper.

In [17], De Laat, Machado, and De Muinck Keizer compute the second and third
levels of the hierarchy for the equiangular lines problem with a fixed angle θ. Here
the corresponding graph on Sn−1 has an edge between distinct points x and y if
⟨x, y⟩ ̸= ± cos θ. Although this is an infinite graph, the quotient space It/O(n),
where It is the set of independent sets of size at most t and O(n) is the orthogonal
group, is finite. Here O(n) acts on It by g{x1, . . . , xk} = {gx1, . . . , gxk}. For the
kissing number problem, the quotient space It/O(n) is infinite. Because of this,
computing the hierarchy for the kissing number problem is more involved, and in
this paper, we extend the techniques from [17] to do this.

The t-th level of the hierarchy is the optimization problem

(1.1)

minimize K(∅, ∅)
subject to K ∈ C(It × It)⪰0,

AtK(Q) ≤ −1I=1
(Q), Q ∈ I2t \ {∅}.

Here C(It ×It)⪰0 is the cone of continuous, positive kernels on It, where It inherits
its topology from Sn−1 (see [18]), 1I=1

is the indicator function of the set I=1 of
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one-element subsets of Sn−1, and

AtK(Q) =
∑

J1,J2∈It
J1∪J2=Q

K(J1, J2).

Any feasible solution K provides an upper bound on k(n); see the start of the proof
of Lemma 5.1 for the argument. Moreover, if K is feasible, then the kernel

(J1, J2) 7→
∫
O(n)

K(γJ1, γJ2) dγ

is also feasible and has the same objective value, from which it follows we may
restrict to O(n)-invariant kernels.

To reduce this to a finite-dimensional problem, we express such an O(n)-invariant
kernel K in terms of its inverse Fourier transform and truncate the series. For
each λ ∈ Zt with λ1 ≥ . . . ≥ λt ≥ 0, we define a unitary representation π : O(n) →
V and denote the space of continuous, O(n)-equivariant maps from It to V by
HomO(n)(It, V ). We refer to |λ| =

∑
i λi as the degree of π. We will construct a

family {ψλ,ℓ} of elements in this space and define the matrix Zλ(J1, J2) by

Zλ(J1, J2)ℓ1,ℓ2 = ⟨ψλ,ℓ1(J1), ψλ,ℓ2(J2)⟩,
where the inner product on V is used. For this, we use the construction by Gross
and Kunze [25] of the spaces of invariants V O(n−t) induced by the representations
of GL(t).

For each λ, let “Kλ be a positive semidefinite matrix of the same size as Zλ with
only finitely many nonzero entries. Then the kernel K : It × It → R defined by

K(J1, J2) =
∑
|λ|≤d

⟨“Kλ, Zλ(J1, J2)⟩,

is continuous, positive, and O(n)-invariant. With the right choice of representations
and families of equivariant functions, these approximate all continuous, positive,
O(n)-invariant kernels. This last statement will not be discussed in this paper, since
it is not necessary for the main result.

We have two main technical contributions. In [17], the zonal matrices Zλ are
constructed for the case where It/O(n) is finite and where there are only finitely
many pointwise constraints. In Section 2, we give a construction for infinitely many
orbits, and we give a rescaling so that the entries of Zλ(J1, J2) become polynomials
in the inner products between the vectors in J1 ∪ J2. This allows us to reduce (1.1)
to a finite-dimensional problem by truncating the inverse Fourier transform, and to
write the constraints using sums-of-squares characterizations, which means we can
use semidefinite programming to compute bounds.

Our second technical contribution concerns the computation of the zonal matrices
for t = 2. In our approach of generating the zonal matrices via representations
of O(n) by induced by GL(t), we identify additional symmetries under certain
actions of O(t) and O(n− t), and we use this to significantly reduce the amount of
computations that need to be performed; see Section 3. To obtain a sharp bound
for the kissing number problem in R4 we need the zonal matrices Zλ with |λ| ≤ 14,
and for this these reductions are essential.

Cohn and Elkies [10] gave a noncompact adaptation of the Delsarte linear
programming bound, and conjectured it gives the optimal sphere packing density
in dimensions 8 and 24. Note that for noncompact problems, such as the sphere
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packing problem, one needs a sharp bound to prove optimality. In [51], Viazovska
proved the groundbreaking result that the E8 root lattice gives an optimal sphere
packing in R8 by constructing an optimal solution to the Cohn-Elkies bound, after
which optimality of the Leech lattice Λ24 was shown similarly in [11]. Currently,
the sphere packing problem has been solved in dimensions 1, 2, 3, 8, and 24, where
the proof for the three-dimensional case used a completely different approach [26].

It is conjectured that the D4 lattice gives the optimal sphere packing in dimension
four, where optimality among lattice packings has been known since 1873 [27]. A
numerically sharp three-point bound for the lattice sphere packing problem in R4

has recently been computed in [9], but a (numerically) sharp bound for the general
sphere packing problem is not known in dimension four. Since we show the second
level of the Lasserre hierarchy is sharp for the kissing number problem in dimension
four (just as the Delsarte bound is sharp in dimension 8 and 24), one might expect
a noncompact adaptation (see also [12]) might be sharp for the sphere packing
problem in dimension four (as is the Cohn-Elkies bound in dimensions 8 and 24).
We therefore believe this might be a viable approach to solving the sphere packing
problem in dimension four.

In this paper, we focus on the four-dimensional case. The reason for this is that
computing the zonal matrices and solving the semidefinite programs is computation-
ally expensive, and we have only performed computations for |λ| ≤ 16. In the same
way as for the three-point bounds, this is the truncation degree around which the
bounds start to improve on the Delsarte bound. For the four-dimensional case of
the kissing number problem, this results in a sharp bound, but it seems that in most
other dimensions the degree is not yet high enough to get improved bounds. For the
six-dimensional case, we report a small improvement in the upper bound from 78 to
77, which is the first improvement since the introduction of the three-point bound.

The paper is organized as follows. In Section 2, we construct a system of equivari-
ant functions for which the corresponding zonal matrices consist of polynomials in
the inner products. In Section 3, we show how these zonal matrices can be computed
efficiently. In Section 4 we discuss the semidefinite programming formulation, and
in Section 5 we discuss the applications.

2. Equivariant functions and zonal matrices

2.1. Representations of the general linear group. We start by briefly recalling
some facts about the representations of the general linear group, which may be found
for instance in [22]. The irreducible representations of GL(t) are indexed by their
signature λ = (λ1, . . . , λt), which is a tuple of integers satisfying λ1 ≥ λ2 ≥ . . . ≥ λt.
The polynomial, irreducible representations are those with λt ≥ 0.

Since we consider the second level of the Lasserre hierarchy, we will require an
explicit description of the irreducible, polynomial representations of GL(t) for t = 2.
They are given by

W = Symλ2(∧2U)⊗ Symm(U),

where U = C2 is the standard representation with basis e1, e2, the signature
λ = (λ1, λ2) satisfies λ1 ≥ λ2 ≥ 0, and m = λ1 − λ2. We denote the corresponding
group homomorphism by ρ : GL(2) → GL(W ). A basis of this representation is
given by

wk = (e1 ∧ e2)λ2em−k
1 ek2 ,
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where k = 0, 1, . . . ,m. We give W the inner product such that ⟨wk1
, wk2

⟩ = δk1k2
.

With this choice, we have

⟨wk1
, ρ(A)wk2

⟩(2.1)

= det(A)λ2

m−k1∑
l=0

(
m−k2

l

)(
k2

m−k1−l

)
Al

11A
m−k2−l
21 Am−k1−l

12 A
k2−(m−k1−l)
22 .

For brevity, we shall use the notation ρ(A)k1k2
= ⟨wk1

, ρ(A)wk2
⟩. Let cj(k) denote

the number of times ej occurs in the tensor wk. Concretely, we have c1(k) =
λ2 +m− k and c2(k) = λ2 + k. For a diagonal matrix D, we have

ρ(D)wk = D
c1(k)
11 D

c1(k)
22 wk.

We will occasionally refer to the representation as ρλ when it is convenient to make
the dependence on λ explicit.

For later use, we also record here a formula for the differential dρ at the identity
I evaluated at

X =

ï
0 1
−1 0

ò
.

We have
dρ(X)wk2 = −(m− k2)wk2+1 + k2wk2−1

and hence dρ(X)k1k2
= −(m − k2)δk1,k2+1 + k2δk1,k2−1. Such a formula may be

obtained by considering a curve c(t) with c(0) = I and c′(0) = X and considering
the derivative of ρ(c(t))wk2

evaluated at 0. For more background, we again refer to
[22].

2.2. Invariants of the orthogonal group. Let n ≥ 2t. Denote by O(n,K) the
group of n× n matrices g with entries in the field K satisfying gTg = I. We see the
group O(n− t,K) as the subgroup of O(n,K) which fixes the first t standard basis
vectors. We will denote O(n,R) by O(n).

Following Gross and Kunze [25], we now define certain representations of O(n)
induced by representations of GL(t). Let (ρ,W ) be the polynomial, irreducible
representation of GL(t) with signature λ. Define the complex t× n matrix

ω =
(
It iIt 0

)
and the n× t matrix

ϵ =

Å
It
0

ã
.

For each w ∈W , define a function fw : O(n,C) →W by

(2.2) fw(γ) = ρ(ωγϵ)w.

Define the vector space of right translates of such functions by

V = span {Rgfw | g ∈ O(n,C), w ∈W} ,
where Rgfw(γ) = fw(γg). This space is a representation of O(n,C) by right
translation. A representation of O(n) is obtained by restricting O(n,C) to O(n).
We shall refer to this representation of O(n) by (π, V ).

Let Ψ: W → V be the map sending w to fw, and consider the space of invariants

V O(n−t) = {v ∈ V |π(h)v = v for all h ∈ O(n− t)}.
Since hϵ = ϵ for h ∈ O(n− t), we have Ψ(W ) ⊆ V O(n−t).
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On V , we define the inner product

⟨f1, f2⟩ =
∫
O(n)

⟨f1(γ), f2(γ)⟩ dγ.

By standard properties of the Haar measure, this makes V a unitary representation
of O(n). It may be shown that with the inner product chosen in Section 2.1, the
numbers

⟨Ψ(wi), π(g)Ψ(wj)⟩ =
∫
O(n)

⟨Ψ(wi)(γ),Ψ(wj)(γg)⟩ dγ

are real; see [17, Section 3].
For the main result of this paper, it is only required that V is a representation of

the orthogonal group and Ψ(W ) ⊆ V O(n−t). However, it follows from the results
in [25] that the above description is complete in the following sense. For n > 2t,
the representations of O(n) defined above are irreducible and we have equality
Ψ(W ) = V O(n−t). Moreover, all irreducible representations of O(n) with nontrivial
invariants under O(n− t) are of this form for a unique λ. For n = 2t, a complete
characterization of the irreducible representations and invariants is given in [25,
Section 8], and using this it may be shown that the description of kernels in our
approach is actually also complete in the case n = 2t. We defer the exact statement
and verification to the upcoming PhD thesis of the third-named author.

2.3. Equivariant functions. In this section, we define a family of O(n)-equivariant
functions from It to the representation V as constructed in Section 2.2. The definition
of these functions depends on the choice of representatives of the orbits of It under
the action of O(n). Let

pj({x, y}) = ⟨x, y⟩j ,

q1({x, y}) =
»

2(1 + ⟨x, y⟩),

q2({x, y}) =
»

2(1− ⟨x, y⟩).

For the orbit I=0 the representative is ∅ and for the orbit O(n)J with |J | ≥ 1 we
choose the representative

(2.3)

ßÅ
q1(J)

2
,
q2(J)

2
, 0, . . . , 0

ã
,

Å
q1(J)

2
,−q2(J)

2
, 0, . . . , 0

ã™
.

In particular, this means that the standard basis vector e1 is the representative for
the orbit I=1.

The equivariant functions will be indexed by so-called admissible tuples. If i = 0,
we call the tuple (λ, i, j, k) admissible if λ = (0, 0), j = 0, and k = 0. If i = 1, we
call the tuple admissible if λ2 = 0, j = 0, and k = 0. Finally, if i = 2, we call the
tuple admissible for any λ1 ≥ λ2 ≥ 0, j ≥ 0 and 0 ≤ k ≤ λ1 − λ2 with λ2 + k even.

For each admissible tuple (λ, i, j, k), we now define the function

ψλ,(i,j,k)(J) = ξλ,i,j,k(J)π(s(J))Ψ(wk),

where

ξλ,i,j,k(J) =


1 if i = |J | < 2,

pj(J)q1(J)
c1(k)q2(J)

c2(k) if i = |J | = 2,

0 otherwise.



8 DAVID DE LAAT, NANDO LEIJENHORST, AND WILLEM DE MUINCK KEIZER

Here s : It → O(n) is a function such that s(J)R = J , where R is the orbit
representative of the orbit O(n)J . To such a function s we shall refer as a section.
Once the orbit representatives are fixed, the construction of the functions does not
depend on the choice of the section s.

Let us give a brief motivation for these formulae. Firstly, the subscript i indicates
the connected component I=i on which the equivariant function is not identically
zero. The space I=i is homeomorphic to a quotient of I=i/O(n)×O(n)/O(n− i).
For i = 2, the first factor is homeomorphic to an interval and the second factor
to a Stiefel manifold. The function pj may be viewed as a function on the factor
I=2/O(n) and π(s(J))Ψ(wk) as a function on the factor O(n)/O(n − 2). These
functions are then multiplied to obtain functions on the whole space. The functions
q1 and q2 serve two purposes. Namely, they will ensure that we have compatibility
with the additional quotient concerning the endpoints of I=2/O(n), and that we
obtain polynomial expressions.

Lemma 2.1. For admissible (λ, i, j, k), the function ψλ,(i,j,k) is equivariant.

Proof. Since ψλ,(i,j,k) is supported on I=i, and since the action of O(n) on I2
preserves the cardinality of the sets, we only need to show equivariance for the
restriction of ψλ,(i,j,k) to I=i. Let J be an element in I=i and let R be the orbit
representative of O(n)J . For g ∈ O(n), we have s(gJ)R = gJ and gs(J)R = gJ , so
s(gJ) = gs(J)h for some h in the stabilizer subgroup StabO(n)(R). Hence,

ψλ,(i,j,k)(gJ) = ξλ,i,j,k(gJ)π(s(gJ))Ψ(wk)

= ξλ,i,j,k(J)π(gs(J)h)Ψ(wk)

= ξλ,i,j,k(J)π(g)π(s(J))π(h)Ψ(wk).

We will complete the proof by showing that unless ψλ,(i,j,k)(J) and ψλ,(i,j,k)(gJ)
are both zero, π(h)Ψ(wk) = Ψ(wk), which shows

ψλ,(i,j,k)(gJ) = π(g)ψλ,(i,j,k)(J).

For this, we consider the cases i = 0, 1, 2 separately. The i = 0 case is immediate
since I=0 consists of a single element, and since λ = 0, V is one dimensional. If
i = 1, then k = 0, and the stabilizer subgroup of O(n) with respect to R is O(n− 1).
By formula (2.1), the dependence of ρ(ωγhϵ)w0 on ωγhϵ is only in the first column,
which is equal to the first column of ωγϵ, so

π(h)Ψ(w0)(γ) = ρ(ωγhϵ)w0 = ρ(ωγϵ)w0 = Ψ(w0)(γ).

If i = 2 and the points in J are not antipodal, then the stabilizer subgroup of O(n)
with respect to R is S2 ×O(n− 2), where S2 is the two-element group generated by
the matrix r which maps e2 to −e2 and fixes the orthogonal complement of e2. By
construction (see Section 2.2), we have π(h)Ψ(wk) = Ψ(wk) for h ∈ O(n− 2). The
matrix ωγrϵ is the same as ωγϵ, except that the second column gets multiplied by −1.
Since λ2+k is even, it follows again from formula (2.1) that ρ(ωγrϵ)wk = ρ(ωγϵ)wk,
and thus that π(r)Ψ(wk)(γ) = Ψ(wk)(γ) holds.

If i = 2 and the points in J are antipodal, then the stabilizer subgroup is
O(n− 1) and q1(J) = 0. If c1(k) > 0, then q1(J)

c1(k) = 0, so both ψλ,(i,j,k)(J) and
ψλ,(i,j,k)(gJ) are zero. If c1(k) = 0, then λ2 = 0 and k = λ1, and according to
(2.1), ρ(ωγhϵ)wk only depends on the second column of ωγhϵ, which is equal to the
second column of ωγϵ, so

π(h)Ψ(wk)(γ) = ρ(ωγhϵ)wk = ρ(ωγϵ)wk = Ψ(wk)(γ). □
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2.4. Zonal matrices. We now define the zonal matrix Zλ by

Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2) = ⟨ψλ,(i1,j1,k1)(J1), ψλ,(i2,j2,k2)(J2)⟩,

where the rows and columns range over all admissible tuples. It follows from
equivariance of the function ψλ,(i,j,k) and unitarity of the inner product that the
zonal matrices are O(n) invariant.

In the remainder of this section, we use invariant theory to give a short argument
showing that the entries of the zonal matrices are polynomials in the inner products
between the vectors in J1 ∪ J2. Note that this fact also follows from the direct
construction in terms of inner products as given in Section 3.

Lemma 2.2. Let (λ, i, j, k) be admissible. For fixed w ∈W , the expression

⟨w,ψλ,(i,j,k)({x1, . . . , xi})(γ)⟩

is a polynomial in the entries of the orthogonal matrix γ and the vectors x1, . . . , xi.

Proof. Given the choice of representatives, we have that for J = {x1}, the first
column of s(J) is equal to x1, for J = {x1, x2} with ⟨x1, x2⟩ ≠ ±1, the first column
of s(J) is (x1 + x2)/q1(J) and the second column is either (x1 − x2)/q2(J) or
(x2 − x1)/q2(J), and for J = {x1,−x1} the second column of s(J) is either x1
or −x1. By the choice of admissible tuples, it will turn out that the resulting
expressions do not depend on the sign of the second column.

We prove the lemma for each i separately. For i = 0, the expression is a constant.
If i = 1, then λ2 = j = k = 0, and we have

⟨w,ψλ,(1,0,0)({x1})⟩ = ξλ,1,0,0({x1})⟨w, π(s({x1}))Ψ(wk)(γ)⟩.

Here ξλ,1,0,0({x1}) = 1 and

⟨w, π(s({x1}))Ψ(w0)(γ)⟩ = ⟨w, ρ(ωγs({x1})ϵ)w0⟩.

From the expression (2.1) for the matrix coefficients of ρ, it follows that the right-
hand side is a polynomial in the entries in the first column of ωγs({x1})ϵ, which is
a polynomial in the entries of γ and x1.

Now let i = 2 and set J = {x1, x2}. We will show that

(2.4) ψλ,(i,j,k)(J) = ⟨x1, x2⟩jρ(ωγ
[
x1 + x2 x1 − x2

]
)wk.

For ⟨x1, x2⟩ ≠ ±1, we then have

ψλ,(i,j,k)(J) = ξλ,i,j,k(J)π(s(J))Ψ(wk)

= pj(J)q1(J)
c1(k)q2(J)

c2(k)ρ
Ä
ωγ
î
x1+x2

q1(J)
x1−x2

q2(J)

óä
wk.

Here we used that the expression does not depend on the sign of the second column
since λ2 + k is even, i.e., we have

ρ
(
ωγ

[
u v

])
wk = ρ

(
ωγ

[
u −v

])
wk

for all orthonormal u and v. Since

ρ
Ä
ωγ
î
x1+x2

q1(J)
x1−x2

q2(J)

óä
= ρ(ωγ

[
x1 + x2 x1 − x2

]
)ρ

Åï
1/q1(J) 0

0 1/q2(J)

òã
it follows that identity (2.4) holds whenever ⟨x1, x2⟩ ≠ ±1.
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We will show (2.4) also holds for the case x1 = −x2. We have

ψλ,(i,j,k)(J) = ξλ,i,j,k(J)π(s(J))Ψ(wk)

= pj(J)q1(J)
c1(k)q2(J)

c2(k)ρ(ωγs(J)ϵ)wk.

We may now substitute s(J)ϵ with
[
c x1

]
for any unit vector c orthogonal to x1,

to obtain

ψλ,(i,j,k)(J) = ⟨x1, x2⟩j0c1(k)2c2(k)ρ
(
ωg

[
c x1

])
wk

= ⟨x1, x2⟩jρ
(
ωγ

[
c x1

])
ρ

Åï
0 0
0 2

òã
wk

= ⟨x1, x2⟩jρ(ωγ
[
x1 + x2 x1 − x2

]
)wk.

A similar argument can be used to show (2.4) holds for the case x1 = x2. Together
this shows

⟨w,ψλ,(i,j,k)({x1, x2})(γ)⟩
is a polynomial in the entries of γ, x1, and x2. □

Proposition 2.3. Fix i1 and i2 and let J1 = {x1, . . . , xi1} and J2 = {y1, . . . , yi2}.
For admissible tuples (λ, i1, j1, k1) and (λ, i2, j2, k2),

Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2)

is a polynomial in the inner products between the vectors x1, . . . , xi1 , y1, . . . , yi2 .

Proof. By the definition of the inner product on V we have

Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2) =

∫
O(n)

⟨ψλ,(i1,j1,k1)(J1)(γ), ψλ,(i2,j2,k2)(J2)(γ)⟩ dγ.

Since the vectors w0, . . . , wλ1−λ2 form an orthonormal basis of W , this is equal to∫
O(n)

λ1−λ2∑
l=0

⟨ψλ,(i1,j1,k1)(J1)(γ), wl⟩⟨wl, ψλ,(i2,j2,k2)(J2)(γ)⟩ dγ.

By Lemma 2.2, this is a polynomial in the entries of the vectors x1, . . . , xi1 , y1, . . . , yi2 .
By Lemma 2.1, the functions ψλ,(i1,j1,k1) and ψλ,(i2,j2,k2) are equivariant, so by

unitarity of the inner product on V it follows that

Zλ(gJ1, gJ2)(i1,j1,k1),(i2,j2,k2) = Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2)

for all g ∈ O(n). In other words, this is an O(n)-invariant polynomial in the
vectors x1, . . . , xi1 , y1, . . . , yi2 . By invariant theory (see, e.g., [22, §F.1]), it follows
that Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2) is a polynomial in the inner products between these
vectors. □

3. Efficient computation of the zonal matrices

In this section, we explain how we compute the zonal matrices from Section 2.
Throughout we assume t = 2, but we will sometimes write t instead of 2 to make
explicit the dependence on t. Compared to the construction of the zonal matrices in
[17], we give a much more efficient approach, which is crucial to be able to perform
computations with the truncation degree required to get a sharp bound for the D4

root system.
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We have

Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2)

=

∫
O(n)

⟨ψλ,(i1,j1,k1)(J1)(γ), ψλ,(i2,j2,k2)(J2)(γ)⟩ dγ

= ξλ,i1,j1,k1
(J1)ξλ,i2,j2,k2

(J2)

∫
O(n)

⟨ρ(ωγs(J1)ϵ)wk1
, ρ(ωγs(J2)ϵ)wk2

⟩ dγ

= ξλ,i1,j1,k1
(J1)ξλ,i2,j2,k2

(J2)P (s(J1)
Ts(J2)),

where we define

(3.1) P (S) =

∫
O(n)

⟨ρ(ωγϵ)wk1 , ρ(ωγSϵ)wk2⟩ dγ.

Here P (S) is a polynomial in the entries of the n× n matrix S, and the main focus
of this section is the efficient computation of this polynomial.

3.1. Additional symmetries. To compute P (S) using the matrix entries of ρ, one
could directly use the expression

P (S) =

m∑
l=0

∫
O(n)

⟨ρ(ωγϵ)wk1 , wl⟩⟨wl, ρ(ωγSϵ)wk2⟩ dγ,

where m = λ1 − λ2. In this section, we describe additional symmetries under the
action of the circle group O(2), which allows us to compute this more efficiently.

Denote by ρλ the representation of GL(2) with signature λ. For any matrix M ,
we have ρλ(M) = det(M)λ2ρ(m,0)(M), and hence

P (S) =

∫
O(n)

⟨ρλ(ωγϵ)wk1 , ρλ(ωγSϵ)wk2⟩ dγ

=

∫
O(n)

det(ωγϵ)λ2⟨ρ(m,0)(ωγϵ)wk1
, ρ(m,0)(ωγSϵ)wk2

⟩det(ωγSϵ)λ2 dγ,

where A denotes the entrywise complex conjugate of A. We introduce some notation
to conveniently describe and manipulate expressions such as the one above. We will
refer to the representation ρ(m,0) as ρ in this section. Let α = (α1, . . . , αλ2) be a
vector with

αi = (αi1, αi2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}.
and let e be the vector with ei = (1, 2) for all i. We also define the matrices A = ωγϵ
and B = ωγSϵ. Denote by [α] the orbit of α under the action of the symmetric
group Sλ2

on the λ2 components. For such α and 0 ≤ l1, l2 ≤ m we consider the
following polynomial in the entries of S:

(3.2) Jl1,l2,[α] =

∫
O(n)

det(Ā)λ2ρ(A)∗k1,l1ρ(B)l2,k2

λ2∏
i=1

Bαi1,1Bαi2,2 dγ.

where ρ∗ is the adjoint of ρ.
For each signature λ that we need and each 0 ≤ k1, k2 ≤ m, we will show there

are coefficients cl1,k2,[σ], independent of S and k1, such that

(3.3) Jl1,l1,[σ] = cl1,k2,[σ]J0,0,[e]
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for all 0 ≤ l1 ≤ m and σ ∈ {(1, 2), (2, 1)}λ2 . We will compute these coefficients by
solving a linear system for each λ and k2. By expanding both the inner product
and the determinant involving B, the polynomial P (S) may then be computed as

P (S) =
∑
l1,σ

(−1)s(σ)Jl1,l1,[σ].

where the sum is over 0 ≤ l1 ≤ m and all tuples σ ∈ {(1, 2), (2, 1)}λ2 , and s(σ) is
the number of times the pair (2, 1) occurs in σ. By grouping terms and using (3.3)
we can write this as

P (S) = J0,0,[e]
∑
l1,[σ]

(−1)s(σ)
Ç
λ2
s(σ)

å
cl1,k2,[σ].

In summary, for fixed λ, k1 and k2, we need to compute only one integral of the
form (3.2) using this approach.

We now show how to compute these coefficients. For g ∈ O(t), we may substitute
γ with (g ⊕ g ⊕ In−2t) γ, and this leaves the expression Jl1,l2,[α] invariant by the
invariance property of the Haar measure of O(n). We have ω(g⊕ g⊕ In−2t)γ = gωγ
and hence we may substitute gA for A and gB for B. This gives

(3.4) Jl1,l2,[α] =
∑

l3,l4,[β]

det(ḡ)λ2ρ(ḡ)l1,l3Jl3,l4,[β]ρ(g)l2,l4
∑
ζ∈[β]

λ2∏
i=1

gαi1,ζi1gαi2,ζi2 ,

We now phrase this in terms of a representation.
Recall that the representation Symλ2(∧2U) ∼= C is given by multiplication by

det(g)λ2 . Also recall the representation on End(W ) given by

g ·M = ρ(g)Mρ(g)∗.

For this representation, a basis is given by wl1 ⊗ w∗
l2
. Finally, let U = C2 be the

representation with the standard action of O(2) and consider the representation

(ϕ, Symλ2(U⊗2)). The vectors

e[β] =

λ2∏
i=1

eβi1
⊗ eβi2

form a basis. We consider the inner product such that this basis is orthonormal.
We then consider the dual representation ϕ(g∗)∗. We have

ϕ(g∗)e[α] =

λ2∏
i=1

g∗eαi1
⊗ g∗eαi2

=
∑
[β]

∑
ζ∈[β]

λ2∏
i=1

gαi1,ζi1gαi2,ζi2eβ

and hence

⟨eα, ϕ(g∗)∗eβ⟩ = ⟨ϕ(g∗)eα, eβ⟩ =
∑
ζ∈[β]

λ2∏
i=1

gαi1,ζi1gαi2,ζi2 .

Tensoring the above representations gives the representation

(Φ,Symλ2(∧2U)⊗ End(W )⊗ Symλ2(U⊗2))
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and a basis is given by el1,l2,[α] = wl1 ⊗ w∗
l2
⊗ e[α]. We get

(3.5) ⟨el1,l2,[α],Φ(g)el3,l4,[β]⟩ = det(g)λ2ρ(g)l1,l3ρ(g)l2,l4
∑
ζ∈[β]

λ2∏
i=1

gαi1,ζi1gαi2,ζi2 .

Using (3.4) and (3.5) we have

Φ(g)
∑

l3,l4,[β]

Jl3,l4,[β]el3,l3,[β]

=
∑

l1,l2,[α]

∑
l3,l4,[β]

Jl3,l4,[β]⟨el1,l2,[α],Φ(g)el3,l4,[β]⟩el1,l2,[α]

=
∑

l1,l2,[α]

∑
l3,l4,[β]

det(ḡ)λ2ρ(ḡ)l1,l3Jl3,l4,[β]ρ(g)l2,l4
∑
ζ∈[β]

λ2∏
i=1

gαi1,ζi1gαi2,ζi2el1,l2,[α]

=
∑

l1,l2,[α]

Jl1,l2,[α]el1,l2,[α].

Defining

J =
∑

l1,l2,[α]

Jl1,l2,αel1,l2,[α],

this equation is expressed as Φ(g)J = J for all g ∈ O(2). Using the exponential
map, this is equivalent to the condition dΦ(X)J = 0, where

X =

ï
0 1
−1 0

ò
,

and Φ(g0)J = J , where g0 is an orthogonal matrix with det(g0) = −1. This follows
from the fact that X spans the Lie algebra so(2). The additional condition with g0
comes from the fact that the equation has to hold for all orthogonal matrices and
not merely for the special orthogonal matrices.

We now write out the system dΦ(X)J = 0 in components. Let g(t) be a curve
of special orthogonal matrices such that g(0) = I and g′(0) = X. To obtain the
components of dΦ(X), we plug g(t) into (3.5) and take the derivative. Using the
product rule, one obtains

⟨el1,l2,[α], dΦ(X)el3,l4,[β]⟩
= dρ(X)l1,l3δl2,l4δ[α],[β] + δl1,l3dρ(X)l2,l4δ[α],[β] + δl1,l3δl2,l4G

′(0),

where we have defined

G(t) =
∑
ζ∈[β]

λ2∏
i=1

g(t)αi1,ζi1g(t)αi2,ζi2 .

A formula for dρ(X) can be found in Section 2.1. One may further verify that each
term of G′(0) is zero unless αij and ζij differ for exactly one ij, in which case the
term equals Xαij ,ζij . Together this gives explicit formulas for the linear constraints
on the coefficients Jl1,l2,[α] arising from dΦ(X)J = 0.

We now work out the condition Φ(g0)J = J . For this, we let dj(α) be the total
number of occurrences of j in α. Recall the signature of ρ is (m, 0), so that we have
c1(l) = m− l and c2(l) = l.

Lemma 3.1. If λ2 + c2(l1) + c2(l2) + d2(α) is odd, then Jl1,l2,[α] = 0.
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Proof. Let g0 =

ï
1 0
0 −1

ò
. We then have

⟨el1,l2,[α],Φ(g0)el3,l4,[β]⟩ = δl1,l3δl2,l4δ[α],[β](−1)λ2+c2(l1)+c2(l2)+d2(α)

and hence from J = Φ(g0)J we obtain

Jl1,l2,[α] = (−1)λ2+c2(l1)+c2(l2)+d2(α)Jl1,l2,[α]. □

We give additional conditions under which Jl1,l2,[α] vanishes.

Lemma 3.2. Let j ∈ {1, 2}. If cj(l1) + λ2 − (cj(l2) + dj(α)) ̸= 0, then Jl1,l2,[α] = 0.

Proof. Let R(θ) be the matrix rotating the j and j + t rows of γ byï
cos(θ) − sin(θ)
sin(θ) cos(θ)

ò
.

We then have ωR(θ) = A(θ)ω, where A(θ) is the diagonal matrix with eiθ at the
jth diagonal entry and 1 at the other diagonal entry. The matrix R(θ) is orthogonal
and by a similar argument as before we may substitute ω with A(θ)ω. We then
obtain that Jl1,l2,[α] is equal to∑

l3,l4,[β]

det(A(θ))λ2ρ(A(θ))l1,l3Jl3,l4,[β]ρ(A(θ))l2,l4

λ2∏
i=1

A(θ)αi1βi1
A(θ)αi2βi2

.

Working this out gives

Jl1,l2,[α] = e−iθ(cj(l1)+λ2−(cj(l2)+dj(α)))Jl1,l2,[α].

Since this equation holds for all θ, we have Jl1,l2,[α] = 0. □

We thus have the system dΦ(X)J = 0 and certain components of J vanish due
to Lemmas 3.1 and 3.2. As a final step, which is necessary to ensure the solution
space is one-dimensional, we add the following relations. By expanding into the
monomials B11, B12, B21, and B22, there are coefficients al2,k2,[α],µ such that

ρ(B)l2,k2

λ2∏
i=1

Bαi1,1Bαi2,2 =
∑
µ

al2,k2,[α],µB
µ.

With

Kl1,µ =

∫
O(n)

det(Ā)λ2ρ(A)∗k1,l1B
µ dγ

we have

Jl1,l2,[α] =
∑
µ

al2,k2,[α],µKl1,µ.

We now enlarge the linear system by introducing new variables for the Kl1,µ, and for
each l1, l2, and α we add the above constraint on the variables Jl1,l2,[α] and Kl1,µ.

Finally, we project the linear space satisfying all of the above relations to the
space

span{el1,l1,[σ] | 0 ≤ l1 ≤ m, σ ∈ {(1, 2), (2, 1)}λ2}.
For this we consider the homogeneous linear system given by the constraints discussed
above. We order the columns so that the variables corresponding to Jl1,l1,[σ] are at
the end, and J0,0,[e] corresponds to the final column. Then we perform row reduction
using rational arithmetic and find that the final column is the only free variable



OPTIMALITY AND UNIQUENESS OF THE D4 ROOT SYSTEM 15

among the columns corresponding to the variables Jl1,l1,[σ]. From this, we find the
coefficients cl1,k2,[σ] for which (3.3) holds.

3.2. Real parts. As shown in Section 3.1, to compute the zonal matrices we need
to compute the quantity

J0,0,[e] =

∫
O(n)

det(ωγϵ)λ2ρ(ωγϵ)∗k1,0ρ(ωγSϵ)0,k2
((ωγSϵ)1,1(ωγSϵ)2,2)

λ2 dγ.

In this section we will show that for λ1 > 0, this is equal to

(3.6) 2

∫
O(n)

R
(
det(ωγϵ)λ2ρ(ωγϵ)∗k1,0

)
R
(
ρ(ωγSϵ)0,k2

((ωγSϵ)1,1(ωγSϵ)2,2)
λ2
)
dγ,

where R(z) denotes the real part of z ∈ C. This yields a factor two speedup in the
most expensive part of the generation of the zonal matrices.

For a matrix M and a vector a of natural numbers of the same size, let us adapt
the notation

Ma =
∏
i,j

M
ai,j

i,j .

By multilinearity and the formula for the matrix coefficients of the representations
of GL(2), it suffices to show

(3.7)

∫
O(n)

(ωγϵ)a(ωγSϵ)b dγ = 2

∫
O(n)

R ((ωγϵ)a)R
(
(ωγSϵ)b

)
dγ

for all a, b ∈ N2×2 with |a| = |b| = |λ|.
To show this, we introduce the variables R11, R12, R21, and R22, the matrices

R+
k =

[
Rk1I2 Rk2I2 0

]
,

and the vectors Rk =
[
Rk1 Rk2

]
for k = 1, 2. We then consider the polynomial∫

O(n)

(R+
1 γϵ)

a(R+
2 γSϵ)

b dγ =
∑

|u|=|v|=|λ|

Iu,vR
u
1R

v
2(3.8)

=
∑

|s|=2|λ|

∑
u+v=s

|u|=|v|=|λ|

Iu,vR
u1
11R

u2
12R

v1
21R

v2
22,

where the real numbers Iu,v are obtained by working out brackets and gathering
terms.

Substituting R11 = 1, R12 = −i, R21 = 1 and R22 = i gives the left-hand side
of (3.7), which is a real number by [17, Section 3]. So the sum over all terms with
u2 + v2 odd vanishes. Since |s| is even, u1 + v1 is restricted to be even too. We
reparametrize the sum and obtain that the left-hand side of (3.7) is given by

(3.9)
∑

|s|=|λ|

(−1)s2
∑

u+v=2s
|u|=|v|=|λ|

(−1)u2Iu,v.

A similar reasoning shows that the right-hand side of (3.7) is equal to

2
∑

|s|=|λ|

(−1)s2
∑

u+v=2s
u2 even

|u|=|v|=|λ|

Iu,v.
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We now substitute R1 = R2 in (3.8) to obtain the polynomial
(3.10)∫

O(n)

(R+
1 γϵ)

a(R+
1 γSϵ)

b dγ =
∑

|u|=|v|=|λ|

Iu,vR
u
1R

v
1 =

∑
|s|=2|λ|

∑
u+v=s

|u|=|v|=|λ|

Iu,vR
s
1.

Similarly as before, we may substitute γ with (g ⊕ g ⊕ In−2t) γ, and this leaves the
polynomial (3.10) invariant by the invariance property of the Haar measure of O(n).
We have R+

1 (g ⊕ g ⊕ In−2t) γ = gR+
1 γ. Hence polynomial (3.10) is a polynomial in

R2
11 +R2

12 by invariant theory. Since it is also a homogeneous polynomial of total
degree 2|λ|, it must be linearly proportional to the polynomial

(3.11)
(
R2

11 +R2
12

)|λ|
.

Hence the s which occur in the sum in (3.10) must have even entries, and the
polynomial (3.10) may be written as∑

|s|=|λ|

∑
u+v=2s

|u|=|v|=|λ|

Iu,vR
2s
1 =

∑
|s|=|λ|

csR
2s
1 .

Furthermore, since it must be linearly proportional to (3.11), we have

cs =

Ç
|λ|
s2

å
c0

by the binomial theorem. We now rearrange terms to obtain∑
u+v=2s

(−1)u2Iu,v =
∑

u+v=2s
u2 even

(−1)u2Iu,v +
∑

u+v=2s
u2 odd

(−1)u2Iu,v

= 2
∑

u+v=2s
u2 even

(−1)u2Iu,v −
∑

u+v=2s

Iu,v

= 2
∑

u+v=2s
u2 even

(−1)u2Iu,v − cs,

where in each sum we implicitly assume |u| = |v| = |λ|. Using (3.9), we now see
that we may write the left-hand side of (3.7) as∑

|s|=|λ|

(−1)s2
∑

u+v=2s

(−1)u2Iu,v = 2
∑

|s|=|λ|

(−1)s2
∑

u+v=2s
u2 even

Iu,v −
∑

|s|=|λ|

(−1)s2cs

= 2
∑

|s|=|λ|

(−1)s2
∑

u+v=2s
u2 even

Iu,v,

since ∑
|s|=|λ|

(−1)s2cs = c0

|λ|∑
s2=0

Ç
|λ|
s2

å
(−1)s2 = c0(1− 1)|λ| = 0

whenever |λ| > 0. Recall that the sum over even u2 equals the integral of the
product of the real parts. Hence we have shown equation (3.7), which is what we
wanted to show.
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3.3. Computational aspects. In this section, we describe how to efficiently com-
pute

Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2)

as a polynomial in the inner products between the vectors in J1 ∪ J2.
Recall

P (S) =

∫
O(n)

⟨ρ(ωγϵ)wk1
, ρ(ωγSϵ)wk2

⟩ dγ.

Since (λ, i1, j1, k1) is admissible, we have

ρ(ωγhϵ)wk1
= ρ(ωγϵ)wk1

for all h ∈ O(n − i1), where as before we view h as a matrix in O(n) fixing the
first i1 coordinates. By the invariance property of the Haar measure, we have
P (hS) = P (S) for all h ∈ O(n− i1). Write

S =

ï
S1

S2

ò
,

where S1 is of size i1 × n and S2 of size (n− i1)× n. Using invariant theory (see,
e.g., [22, §F.1]) we see that P must be a polynomial in the entries of S1 and the
inner products between the columns of S2. Furthermore, it follows from formula
(2.1) for the matrix coefficients of ρ that only the entries from the first i2 columns
of S1 are used, since the tuple (λ, i2, j2, k2) is admissible.

Consider the ideal J generated by the entries of STS − I and the monomials
Si,j for i > i1 + j. We will describe a procedure to obtain from P a polynomial p in
the entries of the top-left i1 × i2 block of S such that the difference lies in J . Since
Si,j ∈ J for i > i1 + j, we may remove terms with such Si,j as the first step of the
procedure. By the invariance property of P , we then obtain a polynomial of the
form

(3.12)
∑

α,a,b,c

Cα,a,b,c(S1)
α(S3,1)

2a(S3,1S3,2)
b(S2

3,2 + S2
4,2)

c

for some C, α, a, b, and c and the difference with P lies in J . In (3.12) we replace
every occurrence of (S4,2)

2 with 1− (S2,2)
2− (S1,2)

2− (S3,2)
2, then every occurrence

of S3,1S3,2 with −S2,1S2,2 − S1,1S1,2, and finally every occurrence of (S3,1)
2 with

1− (S2,1)
2 − (S1,1)

2. Since all steps of the procedure may be performed by adding
elements of J , this procedure ends with a polynomial p in the top-left i1× i2 entries
of S such that P − p ∈ J .

Since s(J1)
Ts(J2) is orthogonal, there exists an element h ∈ O(n− i1) such that

(hS)i,j = 0 for i > i1 + j. Then

P (s(J1)
Ts(J2)) = P (hs(J1)

Ts(J2)) = p(hs(J1)
Ts(J2)) = p(s(J1)

Ts(J2)),

where the second equality holds because hs(J1)
Ts(J2) lies in the vanishing locus

of J . The expressions in the top-left i1 × i2 block of s(J1)
Ts(J2) involve fractions

with denominators q1(J) and q2(J). We now describe how we avoid working with
intermediate symbolic expressions.

From formula (2.1) for the matrix coefficients of the representation ρ of GL(2), it
follows that every monomial in the expansion of (3.1) contains c1(k2) variables from
the first column of S and c2(k2) variables from the second column of S. Furthermore,
in each step of the procedure to obtain p from P , the number of variables in each
monomial from a given column stays the same or drops by an even number. This
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shows that in each monomial in p(S), the number of variables from column l, where
l = 1, 2, is at most cl(k2), and differs from this by an even number.

Swapping k1 and k2, transposing S, and performing the same procedure as above
gives a polynomial p̃(S) in the top-left i1 × i2 block of S such that P and p̃ are the
same as functions on O(n). Now, for each monomial in p̃(S) the number of variables
from row l, with l = 1, 2, is at most cl(k1), and differs from this by an even number.
When we think of the polynomials p(S) and p̃(S) as functions in the top-left i1 × i2
coordinates, they agree on an open set, and hence the polynomials are identical.
This shows that in each monomial in p(S) the number of variables from row l, with
l = 1, 2, is also at most cl(k1), and differs from this by an even number.

As discussed in the proof of Lemma 2.2, the (l1, l1) entry, with 1 ≤ l1, l1 ≤ 2, of
s(J1)

Ts(J2) has denominator ql1(Jl1)ql1(Jl1). To obtain the zonal matrix entry, we
may replace each monomial Sa in p(S) with

ξλ,i1,j1,k1(J1)ξλ,i2,j2,k2(J2)(s(J1)
Ts(J2))

a

= q1(J1)
c1(k1)q2(J1)

c2(k1)q1(J2)
c1(k2)q2(J2)

c2(k2)(s(J1)
Ts(J2))

a,

and by the properties of p as discussed above, this is a polynomial in the entries of
the vectors in J1 ∪ J2. From this we can easily read of the polynomial in terms of
the inner products between these vectors.

We now describe additional techniques to speed up the implementation. By
Section 3.1 and 3.2, the integrand of P (S) may be replaced by the product of

(3.13) R(det(ωγϵ)ρ(ωγϵ)∗k1,0)

and

(3.14) R(ρ(ωγSϵ)0,k2
((ωγSϵ)1,1(ωγSϵ)2,2)

λ2).

The integration over O(n) and the substitution procedure described above may be
swapped. We first compute (3.14) explicitly as a polynomial in the variables Si,j

with i ≤ i1 + j and j ≤ i2 and the top-left 2t× 2t block of γ. We then perform the
above substitution procedure. Since by the above, we know that after integration
over O(n) all terms with variables from S2 will vanish, we remove those terms. This
gives a polynomial in the top-left i1 × i2 block of S and the top-left 2t× 2t block of
γ.

Whenever
∑

i aij or
∑

i aji is odd for any j, we have∫
O(n)

γa dγ = 0.

This means that we do not have to work out the product of the whole polynomial
(3.14) with (3.13). Instead, we only multiply terms that produce monomials in γ
which do not immediately vanish. We then integrate each monomial in γ using the
recursion formulas of [24]. This enables us to explicitly compute p(S), from which
we obtain the zonal matrix entry as explained above.

4. Semidefinite programming formulation

Let d1 ≤ d2 ≤ δ be positive integers with δ even. In our application to the D4

root system, we use d1 = 14 and d2 = δ = 16.

In the semidefinite program, we optimize over positive semidefinite matrices “Kλ.
Here the rows and columns are indexed by tuples (i, j, k) for which (λ, i, j, k) is
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admissible (see Section 2.3) and |λ|+ 2j ≤ d2, and we similarly restrict the rows
and columns of Zλ. Let

K(J1, J2) =
∑

|λ|≤d1

⟨“Kλ, Zλ(J1, J2)⟩.

It follows from Proposition 2.3 that A2K(Q) is a polynomial in the inner products
between the vectors in Q. Using Section 3, we can find polynomials p1, . . . , p4 in 0,
1, 3, and 6 variables, such that

p1 = A2K({x1}),
p2(⟨x1, x2⟩) = A2K({x1, x2}),

p3(⟨x1, x2⟩, ⟨x1, x3⟩, ⟨x2, x3⟩) = A2K({x1, x2, x3}),
p4(⟨x1, x2⟩, ⟨x1, x3⟩, . . . , ⟨x3, x4⟩) = A2K({x1, . . . , x4}).

Here p3 is S3-invariant and p4 is S4-invariant, where S3 acts by permuting variables
and the action of S4 is such that

p4(⟨xσ(1), xσ(2)⟩, ⟨xσ(1), xσ(3)⟩, . . . , ⟨xσ(3), xσ(4)⟩)
= p4(⟨x1, x2⟩, ⟨x1, x3⟩, . . . , ⟨x3, x4⟩).

for all σ ∈ S4. Note that the polynomials p1, . . . , p4 are of degree at most d2, and

their coefficients depend linearly on the entries of the matrices “Kλ.
The Fourier truncated version of (1.1) can be formulated as the following semi-

definite program with polynomial inequality constraints:

(4.1)

minimize (“K0)(0,0,0),(0,0,0)

subject to “Kλ ⪰ 0, |λ| ≤ d1,

p1 ≤ −1,

p2(u) ≤ 0, u ∈ [−1, cos θ],

p3(u1, u2, u3) ≤ 0, (u1, u2, u3) ∈ ∆3,

p4(u1, . . . , u6) ≤ 0, (u1, . . . , u6) ∈ ∆4.

Let

G3 =

Ñ
1 u1 u2
u1 1 u3
u2 u3 1

é
and G4 =

Ü
1 u1 u2 u3
u1 1 u4 u5
u2 u4 1 u6
u3 u5 u6 1

ê
.

The semialgebraic set ∆i consists of all u ∈ R(
i
2) with (uj + 1)(cos θ − uj) ≥ 0 for

all 1 ≤ j ≤
(
i
2

)
and for which the determinants of all principal submatrices of size

at least 3 of Gi are nonnegative.
We can now use sum-of-squares polynomials to relax this further to a semidefinite

program. For the two-point constraint, for instance, we can use Lukács result (see,
e.g., [46]) to replace the condition p2(u) ≤ 0 for u ∈ [−1, cos θ] by

(4.2) p2(u) + s0(u) + (u+ 1)(cos θ − u)s1(u) ≡ 0,

where s0 and s1 are sum-of-squares polynomials of degree δ and δ − 2, respectively.
Let ml(u) be a vector whose entries form a basis for the polynomials up to degree l.
We can write

sk(u) = ⟨mδ/2−k(u)mδ/2−k(u)
T,Mk⟩,
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whereMk is a positive semidefinite matrix. In this way, we can replace the two-point
polynomial inequality constraint by two positive semidefinite matrices and several
linear constraints that enforce the polynomial identity (4.2).

We can do something similar for the three-point and four-point constraints.
Suppose ∆i = {u : gk(u) ≥ 0, k = 1, . . . , l}, then we relax the polynomial inequality
constraint to the identity

pi(u) +

l∑
k=0

rk(u)gk(u) ≡ 0,

where we set g0(u) = 1 and rk(u) is a sum-of-squares polynomial of degree at most
δ − deg(gk). By Putinar’s theorem [47] (see also [35, Chapter 13]), this relaxation
converges to the original polynomial constraint when δ → ∞.

In the resulting semidefinite program, the positive semidefinite matrix variables
for the four-point constraint will be far larger than any other matrix in the program.
For this reason, exploiting the symmetries in the polynomials is essential.

If a semialgebraic set is invariant under the action of a group, then there exists a
description in terms of invariant polynomials [5]. Let

{q1, . . . , ql}
be an orbit of the polynomials describing ∆i under the action of Si. Then we can
replace the polynomials in this orbit by the Si-invariant polynomials∑

B⊆{1,...,l}
|B|=b

∏
k∈B

qk

for b = 1, . . . , l; see, e.g., [34, 31] for the proof.
We may now assume the sum-of-squares polynomials for the three-point and

four-point constraints are also invariant under the given action of the symmetric
groups S3 and S4. This means that instead of using one large positive semidefinite
matrix, we can use several smaller positive semidefinite matrices to model each
sum-of-squares polynomial [23]. To do this explicitly we follow [31, Section 4].

This symmetry reduction involves the irreducible, unitary representations of S3

and S4. Although the irreducible, unitary representations we use involve irrational
numbers, the irrationalities cancel in the final formulation, and the semidefinite
program we obtain is rational whenever cos θ is rational.

5. Applications to spherical codes

The results in this section depend on the proofs and verification code available
at [14], including instructions on how to run the verification script. There we also
make available the code we used for generating the proofs.

5.1. Optimality and uniqueness of the D4 root system. In this section,
we prove that the D4 root system is the unique optimal kissing configuration in
dimension four and is an optimal spherical code.

For this we first compute a numerically optimal solution to (4.1) with n = 4 and
θ = π/3. To get a sharp bound, we use d1 = 14 and d2 = δ = 16 for the truncation
of the inverse Fourier transform and the sums-of-squares degrees. The resulting
semidefinite program is large, and to solve it the use of the semidefinite programming
solver from [31] is essential. This solver supports arbitrary precision floating-point
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arithmetic and exploits the low-rank structure of the constraint matrices arising
from enforcing the polynomial constraints through sampling at a unisolvent set [33].
We compute the optimal solution to 40 digits of precision using 256-bit floating-point
arithmetic. This takes about two weeks on 8 cores of a modern computer equipped
with 128GB of working memory.

The next step is to round the numerical solution to an exact optimal solution.
Since the dimension of the optimal face is lower than the dimension of the space
given by the affine constraints, simply projecting the numerically optimal solution
into the affine space does not work: the resulting matrix variables will generally not
be positive semidefinite. Instead, we use the recently developed rounding heuristic
from [8]. This method gives a major speedup over the rounding heuristic developed
in [21], which is crucial for the size of semidefinite program we consider here.

Although a semidefinite program defined over the rationals does not necessarily
admit a rational optimal solution (see, e.g., [41]), this is the case here, and the
rounding procedure finds a rational optimal solution within 4 hours. This gives an
exact feasible solution K with objective value K(∅, ∅) = 24.

To verify that the exact solution is indeed feasible we check that the matrices
are positive semidefinite by computing the Cholesky factorizations in rigorous ball
arithmetic, and we check that the affine constraints hold in rational arithmetic. As
part of the verification procedure, the zonal matrices Zλ need to be constructed,
which takes less than two days on a modern computer. The remainder of the
verification procedure takes about an hour.

We obtain optimality as a spherical code as a consequence of the univariate
polynomial p2 corresponding to A2K|I=2

having finitely many roots. A similar
argument could have been used if a polynomial truncation of the Bachoc-Vallentin
three-point bound had been sharp. In that case, however, it would have been
immediate that the two-point constraint has finitely many roots (see [8, Section
3]), but for a truncation of the second level of the Lasserre hierarchy it is unclear
whether p2 can be identically zero when the bound is sharp.

Using Sturm sequences we can verify that p2 has roots ±1, ±1/2, and 0 in the
interval [−1, 1]. That is, for distinct x, y ∈ S3, A2K({x, y}) = 0 if and only if
⟨x, y⟩ ∈ {−1,±1/2, 0}. In the remainder of this section, we use this fact to show
the D4 root system is the unique optimal kissing configuration up to isometry and
is an optimal spherical code.

Lemma 5.1. If C ⊆ S3 is a subset of size 24 with minimal angle at least π/3, then

⟨x, y⟩ ∈ {−1,−1/2, 0, 1/2}
for all distinct x, y ∈ C.

Proof. Let K be the exact solution discussed above. By positivity of K and by the
linear constraints

A2K(Q) ≤ −1I=1
(Q), Q ∈ I4 \ {∅},

we have
0 ≤

∑
J1,J2∈I2
J1,J2⊆C

K(J1, J2) =
∑
Q∈I4
Q⊆C

A2K(Q) ≤ K(∅, ∅)− |C|.

Since |C| = 24, equality holds throughout, so in particular, A2K(Q) = 0 for
all Q ⊆ C with |Q| ≤ 4. As mentioned above, for distinct x, y ∈ S3, we have
A2K({x, y}) = 0 if and only if ⟨x, y⟩ ∈ {−1,±1/2, 0}, which proves the lemma. □
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This shows the D4 root system corresponds to an optimal spherical code: among
the 24-point subsets of S3, the minimal distance between distinct points is as large
as possible.

Theorem 5.2. The D4 root system is an optimal spherical code.

Proof. If there were a spherical code C of cardinality 24 with smallest angle strictly
larger than π/3, then any small enough perturbation of C would correspond to a
kissing configuration of size 24, which contradicts with Lemma 5.1. □

Theorem 5.3. The D4 root system is the unique optimal kissing configuration in
R4 up to isometry.

Proof. Let C ⊆ S3 be an optimal kissing configuration in R4. We first verify that
C is a root system.

(1) The vectors in C must span R4, since otherwise C would give a kissing
configuration in R3 of size 24.

(2) Since C is a subset of the unit sphere, the only scalar multiples of α ∈ C
can be α and −α.

(3) Let α, β ∈ C and consider the reflection β′ = β − 2⟨α, β⟩α of β through the
hyperplane orthogonal to α. By Lemma 5.1, it follows that

⟨β′, γ⟩ ∈ {±1,±1/2, 0}

for every γ ∈ C. So, β′ must be in C by optimality of C.
(4) By Lemma 5.1, for α, β ∈ C, the value 2⟨α, β⟩ is an integer. In other words,

the reflection of β through the hyperplane orthogonal to α is obtained by
subtracting an integer multiple of α from β.

Hence, the set C is a root system in R4.
The irreducible root systems have been classified, and the only irreducible root

systems where all vectors have the same length are Aj , Dj , E6, E7, and E8; see, for
instance, [50, Table 4.1]. Since all roots in C have the same length, it must be a
direct sum of these irreducible root systems. In other words,

C =

k⊕
i=1

Φi

for some k and root systems Φ1, . . . ,Φk, where each Φk is isomorphic to Aj , Dj ,
E6, E7, or E8.

Let us assume that D4 does not occur in the decomposition. By considering the
dimensions, the summands must be isomorphic to Aj with 1 ≤ j ≤ 4 and Dj with
1 ≤ j ≤ 3. We denote by r the total number of roots occurring in C, by ri the
number of roots of Φi, and by di the rank of Φi. For Aj we have rj/dj = j + 1 and
for Dj we have rj/dj = 2(j − 1). Hence, we have ri/di < 6 for the root systems
which occur in the decomposition. Furthermore, since the span of C is R4, we have∑

i=1 di = 4. We then have

r =

k∑
i=1

ri =

k∑
i=1

ri
di
di < 6

∑
i=1

di = 24.

Since the number of roots in C is equal to 24, this gives a contradiction. Hence, C
is D4 up to orthogonal transformations. □
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We sketch an alternative proof of Theorem 5.3 which does not rely on the
classification of irreducible root systems. Consider an optimal spherical code. As
argued in the above proof, the code is antipodal. Now [6, Proposition 3.12] implies
that the corresponding set of 12 lines is the union of 3 orthonormal bases, with lines
in different bases not orthogonal. Choose one of these bases to define coordinates.
The basis elements and their negatives give 8 points. By Lemma 5.1, the remaining
16 must have ±1/2 in every coordinate. The only possibility is to have every such
point, and so the resulting configuration is unique.

5.2. New bound in dimension six. We also computed the second level of the
hierarchy with the parameters d1 = 14 and d2 = δ = 16 for the kissing number
problem in dimensions 5, 6, 7, 10, 12, and 16. In dimension 6 this gives k(6) ≤ 77,
which improves on the previously best-known upper bound of k(6) ≤ 78 obtained
using the three-point bound [2]. As mentioned in the introduction, the degrees for
which we perform computations are not yet high enough to get improvements in
the other dimensions.

In dimension 6, this does not give a sharp bound, so that the optimal objective
value and optimal solution potentially require high algebraic degree or bit size. This
means the rounding procedure from [8] may not be able to find an exact feasible
solution here. Therefore, we solve the problem as a feasibility problem, where we
add the constraint that the objective K(∅, ∅) is equal to 77.85. Since this is strictly
larger than the numerically computed optimal objective, the solver will return a
strictly feasible solution (a feasible solution where all matrix variables are positive
definite), from which it is easy to extract an exact feasible solution. This gives a
rigorous proof of k(6) ≤ 77.
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