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Abstract. We discuss some thermodynamic properties as well as the
stability of a quantum Schwarzschild black hole, comparing the results
with those obtained within a bumblebee gravity model. In particular,
the Hawking temperature, TH , the entropy, S, the heat capacity, C, and
the Gibbs free energy, G, are computed for both cases. In addition to
that, we compute the Brown-York quasilocal energy and compare the
solution with the Schwarzschild case. We find that in both cases (quan-
tum Schwarzschild and bumblebee gravity model) the temperature, the
entropy, and the heat capacity show the same functional form, under
the replacement λ2 → ℓ and vice versa. Specifically, the temperature
is found to be lower compared to the classical (Schwarzschild) solu-
tion, whereas the entropy is computed to be larger. Moreover, the heat
capacity becomes more negative. Notably, a distinct contrast emerges
in obtaining the Gibbs free energy between these two cases, and this
distinction appears to stem from the ADM mass.

1 Introduction

In four-dimensional space-time, General Relativity (GR) stands as the sole viable the-
ory of gravity capable of satisfying two fundamental requirements: i) diffeomorphism
invariance, and ii) the strong equivalence principle [1]. Despite General Relativity’s
solid theoretical and experimental foundation, there exist compelling reasons to ex-
plore alternative theories of gravity. Firstly, from a theoretical perspective, two of the
most significant challenges that still exist in General Relativity are: i) the occurrence
of singularities [2,3], and ii) the impossibility to achieve renormalization through stan-
dard processes of quantization [4]. Secondly, from an observational point-of-view, the
existence of dark sectors in the Universe highlights the crucial need for fundamental
physics. To address the disparity between the ultraviolet (UV) and infrared (IR) sec-
tors, incorporating new physics becomes essential in order to establish a connection.
This ”new physics” could preserve the laws of gravity and might only necessitate
the inclusion of new fields, which interact with ordinary matter through gravita-

a e-mail: leonardo.balart@ufrontera.cl
b e-mail: grigorios.panotopoulos@ufrontera.cl
c e-mail: angel.rincon@ua.es

ar
X

iv
:2

40
4.

18
80

4v
1 

 [
gr

-q
c]

  2
9 

A
pr

 2
02

4



2 Will be inserted by the editor

tional force. Black holes (BHs) are of paramount importance both in classical and
quantum regimes, which makes them particularly intriguing objects in the context
of alternative theories of gravity. This notion is supported by a wealth of evidence,
often summarized in the well-known ”no-hair theorem” [5]. Black holes exhibit sev-
eral properties where classical and quantum effects coexist complexly. Among those
phenomena, Hawking radiation [6,7] holds a special place, as it has attracted a lot of
interest over decades now, despite the fact that it has not been detected yet. It plays
an important role in the multitude of effects observed in a black hole. Bekenstein-
Hawking entropy is another manifestation of the quantum properties present in black
holes. More specifically, Hawking’s entropy unifies concepts from gravitation, thermo-
dynamics, and quantum theory, and is therefore considered a gateway to the largely
unexplored field of quantum gravity. To be more precise, in the 1970s, Bekenstein [8,9]
and Hawking [6,7] proved that black holes radiate as black bodies, with characteristic
temperatures and entropies according to:

kTH =
ℏκ
2π

, SH =
Ahor

4ℏGN
. (1)

Here, k is Boltzmann’s constant, ℏ = h/2π is Planck’s constant divided by 2π, κ repre-
sents the surface gravity, and Ahor denotes the horizon’s area. Those quantities seem
to possess an intrinsically quantum-gravitational nature, as they rely on both Planck’s
constant and Newton’s constant GN . The concept of black hole thermodynamics has
a remarkable impact on our understanding of the fundamental nature of black holes,
connecting gravitational physics with quantum mechanics and thermodynamics. It
also provides a potential link between the macroscopic world of general relativity and
the microscopic world of quantum physics. However, a complete unification of these
two theories, known as quantum gravity, is still an open problem. Thermodynamics
goes beyond temperature and entropy. Since black holes have thermal properties, it
should be possible to apply the full set of thermodynamic principles, including con-
cepts such as Carnot cycles and phase transitions, to systems involving black holes.
Additional quite interesting black hole properties are, for instance: i) evaporation,
ii) heat capacity, iii) phase transitions, and iv) thermodynamic volume, to name a
few [10–13]. Later on, a groundbreaking approach emerged to further develop the fun-
damental concepts of black hole thermodynamics. This new perspective, referred to as
”black hole chemistry”, redefines black hole mass as similar to chemical enthalpy, de-
parting from the conventional notion of energy. In addition, the cosmological constant
is reinterpreted as a thermodynamic pressure [14–16].

Black holes in general relativity have been studied extensively, mainly in the
(1+3)-dimensional case, but also in (1+2)-dimensional version or extensions such
as (1+4) (higher dimensional) gravity.

As already mentioned before, General Relativity has some problems, for example:
i) the singularity problem and ii) the incompatibility with quantum mechanics. In
this sense, it becomes natural that a modification of general relativity is needed. In
fact, we have striking examples of theories beyond General Relativity, for example,
one of the most natural modifications is the well-known Brans-Dicke theory. In this
theory, Newton’s constant is coupled to a scalar field which is non-minimally coupled
to the Ricci scalar [17–21]. Another relevant example is asymptotically safe (AS)
gravity. Such a theory aims at obtaining a consistent and predictive quantum theory
of the gravitational field [22–24]. To summarize, there are several journeys available
to promote classical gravitation to quantum gravity incorporating quantum effects if
we become more flexible regarding the requirements of the theory. Some examples
that could be mentioned here are the following i) the improved formalism [25–43]
ii) the variational parameter settings [44–46] iii) scale-dependent gravity [47–65]. In
the present article, we shall explore a newly discovered black hole that is inspired
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by loop quantum gravity [72]. As claimed by the authors, that solution represents
an asymptotically flat region, and it describes an exterior domain. Additional studies
related to quantum black holes within the framework of loop quantum gravity can be
found in references, such as [73–77].

In this work, our presentation is structured as follows: After this introductory
section, we provide some contextual background on the quantum black hole model
in Section (2), where we introduce the metric and other necessary components to
ensure the self-completeness of the article. Subsequently, in Section (3), we explore
the black hole thermodynamics of this quantum model by calculating: i) the Hawking
temperature, denoted as TH , ii) the entropy, represented as S, iii) the heat capacity,
labeled as C, and iv) the Gibbs free energy, identified as G. In Section (4), we conduct
a comparison with Schwarzschild-like black holes in the bumblebee model. Then,
in Section (5), we compute the Quasilocal energy. The final section is dedicated to
summarizing our findings. Throughout this work, we shall be using the mostly positive
metric signature {−,+,+,+}, and we employ geometrical units where GN = c = ℏ =
1.

2 Quantum Black Hole and Metric Tensor

Loop quantum gravity predicts a quantized spacetime, potentially resolving the sin-
gularities that are present in General Relativity [66]. In the same spirit, it is natural
to expect a resolution of such singularities, or at least alleviate the situation [67–69],
within the framework of loop quantum gravity. Nonetheless, a comprehensive quan-
tum depiction of regions near a singularity remains elusive, necessitating the utiliza-
tion of effective descriptions to incorporate quantum corrections. In order to keep
the paper as self-complete as possible, we shall include some details about the novel
space-time to be used along with this manuscript.

We start by rewriting a spherically symmetric space-time employing the Ashtekar
new variables, see [69] for more details. Here, Ea

i represents the set of triads, which
are the canonical variables in LQG, and their corresponding SO(3) connections Ai

a. In
the spherically symmetric case only three pairs of canonical variables remain, namely
{η, P η, Aϕ, E

ϕ, Ax, E
x}. Note that a polar set of variables is chosen, and that x is

used since it is not necessarily described by the conventional radial coordinate [70].
Alternatively, it has been shown that one may define the gauge invariant variables
Ki as a function of the connections Ai and η, i.e. a more convenient variable can
be defined. The latter implies that Ex,Kx and Eϕ,Kϕ represent the canonically
conjugated pairs. The diffeomorphism invariance of General Relativity is based on
four constraints, the first of which is the Hamiltonian H, while the other three ones
result from the diffeomorphism constraint D. For this particular case we can write
down the quantities as follows:

H =− Ẽϕ

2
√
Ẽx

(
1 + K̃2

ϕ

)
− 2
√

ẼxK̃xK̃ϕ +
1

8
√
ẼxẼϕ

((
Ẽx
)′)2

−

√
Ẽx

2
(
Ẽϕ
)2 (Ẽx

)′ (
Ẽϕ
)′

+

√
Ẽx

2Ẽϕ

(
Ẽx
)′′

,

(2)

D =
(
Ẽx
)′

K̃x + Ẽϕ
(
K̃ϕ

)′
. (3)

The meaning of the notation is as follows: i) the prime represents the derivative

with respect to x, ii) Ẽi are the symmetry reduced triad components, and finally,
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iii) K̃i represent the conjugated momenta with i = {x, ϕ}. Note that the holonomies
of the connection have well-defined operators in loop quantum gravity. This is the
reason why a polymerization procedure is needed (see [71] for more details). Roughly
speaking, the idea is to replace the variables by an exponential form. In the case
where real variables are involved, a convenient replacement is of the form

x̃ → sin (λx)

λ
(4)

where the last parameters have the usual meaning, i.e. i) x is the variable and ii) λ is
the polymerization parameter. For the construction, the classical theory is recovered
taking the limit λ → 0. It should be noted that λ, i.e. the polymerization parameter,
is directly related to the length of the loop along which the holonomy is computed,
since this is responsible for the space-time discretization. It is important to emphasize
that anomalies might occur when using the previous substitution, as the modified
constraint algebra typically does not close. Alternatively, both Kϕ and Eϕ can be

replaced by K̃ϕ and Ẽϕ via the following changes:

K̃ϕ → sin (λKϕ)

λ
(5)

Ẽϕ → Eϕ

cos (λKϕ)
(6)

and thus a theory free of anomalies [72] may be obtained. On the one hand, the
canonical transformation is bijective while cos (λKϕ) ̸= 0 and the dynamical content
of the theory is equivalent to that obtained in GR. On the other hand, the case
cos (λKϕ) = 0 may be physically relevant (i.e., introduce new physics). Since the
Hamiltonian constraint diverges there, a regularization is considered.

The procedure for obtaining the concrete space-time can be consulted, as men-
tioned before, in [72], but at this point it is clear that just taking a simplified chart
{t, x} = {t̃, r̃} and setting Ex = r̃2 and Kϕ = 0 we are able to obtain the appro-
priate space-time. In what follows, we shall introduce an effective quantum-corrected
Schwarzschild space-time originally discussed in Ref. [72, 78]. As the discussion from
the mathematical point of view is too involved, we shall spear the technical details
here, and we refer the interested reader to [72,78].

Assuming the most general form of a static, spherically symmetric line element,
we can write down the following expression

ds2 = −f(r)dt2 + h(r)−1dr2 + r2dΩ2 . (7)

characterized by two different metric functions, where

dΩ2 = dθ2 + sin2 θ dϕ2 (8)

is the metric tensor of the two-dimensional unit sphere, while the metric functions
are found to be

f(r) = 1− 2m

r
(9)

h(r) = g(r)f(r) (10)

g(r) = 1− r0
r

. (11)

where the parameter r0, with dimensions of length, is due to quantum effects, and it
is given by

r0 = 2m

(
λ2

1 + λ2

)
. (12)
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Regarding the radial metric function, h(r), the algebraic equation h(r) = 0 admits
two roots located at r+ = 2m and r− = r0. Please take note that the parameter m
cannot be identified with the mass of the black hole. This distinction arises due to
the existence of various geometric definitions of mass in this scenario, none of which
are, in general, mutually interchangeable.

3 Thermodynamic Quantities

Here we consider two ways of finding the Hawking temperature of the black hole
under consideration. First, we can calculate the temperature using the expression for
surface gravity, that is

TH =
κ

2π
=

1

4π

∂rf(r+)√
f(r+)h(r+)−1

=
1

8πm

1√
1 + λ2

. (13)

We can also compute the Hawking temperature if we consider the expression based
on the tunneling formalism given in Ref. [79]

TH =
1

4π

√
∂rf(r+)∂rh(r+) =

1

8πm

1√
1 + λ2

. (14)

Notice that we can write

TH =
1

8πm

(
1− λ2

2
+

3λ4

8
+O(λ6)

)
(15)

and we can see that in the classical limit the Hawking temperature of the Schwarzschild
black hole T0 ≡ 1/(8πm) is recovered.

From the temperature, we can obtain the entropy

S =

∫
dm

TH
= πr2+

√
1 + λ2 , (16)

where S0 ≡ πr2+ is the entropy of the Schwarzschild black hole.
As is the case with the Hawking temperature, we can perform an expansion around

small values of λ to examine how the classical solution is altered. In other words, we
can analyze the modifications to the classical solution by expanding with respect to
small λ values. Thus we have

S = πr2+

(
1 +

λ2

2
− λ4

8
+O

(
λ6
))

. (17)

The heat capacity is calculated with the following expression

C = TH

(
∂S

∂TH

)
= TH

(
∂S
∂r+

)
(

∂TH

∂r+

) , (18)

from which it follows
C = −2πr2+

√
1 + λ2 . (19)

Note that C0 = −2πr2+ is the heat capacity of Schwarzschild solution. As occurred in
the previous expression, we can expand for small values of λ and we obtain

C = −2πr2+

(
1 +

λ2

2
− λ4

8
+O

(
λ6
))

. (20)
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Fig. 1. Hawking temperature, T ≡ TH , and Bekenstein-Hawking entropy, S ≡ SH , for
the quantum black hole for different values of the parameter λ. First row: Exact Hawking
temperature against the horizon (left) and Approximated Hawking temperature against the
horizon (right). Second row: Exact Bekenstein-Hawking entropy against the horizon (left)
and Approximated Bekenstein-Hawking entropy against the horizon (right).

The Gibbs free energy is

G = MADM − THS =
r+
2

(
3

2
− 1

1 + λ2

)
. (21)

In the limit λ → 0, G is recovered for the Schwarzschild black hole, which is G0 ≡
r+/4. As we proceed before, taking an expansion around a small value of λ we find
the expression:

G =
r+
4

(
1 + 2λ2 − 2λ4 +O(λ6)

)
, (22)

where the ADM mass of the asymptotically flat spacetime is given by (see appendix
for further details):

MADM =
1 + 2λ2

1 + λ2
m . (23)

The correction coming from the weak-λ contribution is given as

MADM = m
(
1 + λ2 − λ4 +O(λ5)

)
. (24)

In this case, we do not have a standard Smarr formula since the mass of Komar
(see for example Ref. [80]) for the model presented in Eq. (7) is

MK = m

√
1− r0

r
. (25)



Will be inserted by the editor 7

λ = 0.0
λ = 0.5
λ = 1.0

0 2 4 6 8
-600

-500

-400

-300

-200

-100

0

rH

C
H

λ = 0.0
λ = 0.2
λ = 0.4

0 2 4 6 8

-400

-300

-200

-100

0

rH

C
H

λ = 0.0
λ = 0.5
λ = 1.0

0 2 4 6 8

0

1

2

3

4

rH

G
H

λ = 0.0
λ = 0.2
λ = 0.4

0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

2.5

rH

G
H

Fig. 2. Heat Capacity, C ≡ CH , and Gibbs free energy, G ≡ GH , for the quantum black
hole for different values of the parameter λ. First row: Exact Heat capacity against the
horizon (left) and Approximated Heat capacity entropy against the horizon (right). Second
row: Exact Gibbs free energy against the horizon (left) and Approximated Gibbs free energy
against the horizon (right).

If we evaluate it in r+ we get

MH =
m√

1 + λ2
. (26)

In this way, MH ̸= 2THS and rather it is fulfilled that

MH =
2√

1 + λ2
THS . (27)

To make the last expression more transparent, we invite the reader to check if: i) we
use (14) and (16) to construct the product THS, and ii) we use (26) as the value of
MH , we can remove m and trivially identify the effective Smarr law for this quantum
Schwarzchild black hole.

We can notice that quantum effects lead to different outcomes when calculating
the mass of the system using either the Komar formulation or the ADM mass, unlike
what happens classically. In the case of the ADM mass, as seen in Eq. (23), we
note an increase in the total gravitational contribution compared to the classical
scenario, a “gravitational anti-screening” effect. Conversely, when considering the
Komar integral, we find that the Komar mass matches the classical mass m as r → ∞.
However, at the event horizon, the result is lower than that of the classical case,
as shown in Eq. (26), a “gravitational screening” effect. Additionally, in the Smarr
formula that we have derived, the result of the product of temperature and entropy
yields the same value as in the classical case. However, as we mentioned, the Komar
mass at the event horizon decreases compared to its classical counterpart.
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4 Comparison with Schwarzschild-like black holes in bumblebee
model

A bumblebee gravity model is an extended gravitational model including Lorentz-
violating terms. The model is described by the action [81]

IB =

∫
d4xLB , (28)

where the Lagrangian density is given by

LB =
√
−g

(
R

16π
+

1

16π
ξBµBνRµν − 1

4
BµνB

µν − V (Bµ) + LM

)
, (29)

with LM being the Lagrangian density of matter content, the vector field Bµ is the
Lorentz-violating bumblebee field, while Bµν = ∂µBν − ∂νBµ is the corresponding
field strength, and ξ is the coupling of Bµ to gravity. Finally, the potential V is chosen
such that it provides a non-vanishing vacuum expectation value for Bµ, which could
have the following general functional form [81]

V = V (BµB
µ ± b2) (30)

where b2 is a positive real constant.
For vacuum solutions, where the matter stress-energy tensor vanishes, and assum-

ing that the vector field remains frozen in its vacuum expectation value, Bµ = bµ, the
solution to the field equations for the metric tensor is found to be [81]

ds2 = −f(r)dt2 + h(r)−1dr2 + r2dΩ2 . (31)

where

f(r) = 1− 2m

r
, (32)

h(r) = g(r)f(r), (33)

and
g(r) = (1 + ℓ)−1 . (34)

where the notation ℓ = ξb2 is used.
Following Ref. [82] we can obtain the same thermodynamic quantities as above.

The Hawking temperature in this case is computed to be

TH =
1

8πm

1√
1 + ℓ

, (35)

and in the approximation ℓ ≪ 1 we get

TH =
1

8πm

(
1− ℓ

2
+

3ℓ2

8
+O(ℓ3)

)
. (36)

From the temperature we can obtain the entropy

S =

∫
dm

TH
= πr2+

√
1 + ℓ . (37)

The heat capacity is
C = −2πr2+

√
1 + ℓ , (38)
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In this case the modifications are due to a matter-bumblebee coupling term unlike
what happens with the quantum Schwarzschild black hole.

Unlike the quantum Schwarzschild model, in this case the metric is not asymp-
totically flat, so the definition for computing the ADM mass does not apply [83].

From the Ref. [80] or [83] we can get the Komar mass

MK = MH =
m√
1 + ℓ

. (39)

So here we do not find a standard Smarr formula either, but rather the following
expression

MH =
2√
1 + ℓ

THS . (40)

Again, as we observed for Eq. (27), here also when calculating the product of
entropy and mass we obtain the same value as in the classical case. However, the
Komar mass at the horizon is smaller than its classical counterpart. In this case, unlike
the quantum Schwarzschild black hole, we are dealing with an extended gravitational
model based on the coupling of a bumblebee vector field to gravity. The parameter l
is related to the constant coupling of the vector field and its magnitude is associated
with the effects of Lorentz symmetry violation in nature. Consequently, the observed
decrease in the Komar mass evaluated at the horizon, compared to the classical case,
represents a manifestation of Lorentz symmetry breaking.

Both expressions (27) and (40), derived at the event horizon, depend similarly on
the parameters λ and l in their respective models. However, it is important to highlight
the following distinctions: while the quantum Schwarzschild black hole originates
from the quantization of spacetime, the other model arises from the coupling of a
bumblebee field to gravity. Moreover, the fact that metric for the bumblebee model
is not asymptotically flat reflects that the Komar mass does not coincide with m as
r → ∞, unlike the previous model. That is, if we assume the Komar mass as the total
mass, then in the first case an observer very far from the quantum black hole will not
perceive quantum effects if the Komar integral is considered to measure them, unlike
what would be perceived if the bumblebee model is considered, as we can see from
eq. (39)

5 Quasilocal Energy

In addition to the identities that can be obtained in the context of the laws of BH
thermodynamics, there is another identity that also relates quantities evaluated at the
event horizon and at infinity which is based on the Brown-York quasilocal energy [84],
namely

E(rh)− E(∞) = MH . (41)

Here MH is the Komar mass evaluated at r+ and the expression for the Brown-York
quasilocal energy is given by [85]

E(r) =
1

8π

∫
B

(k − k0)
√
σ d2x , (42)

where B is the 2-dimensional spherical surface, k is the trace of the extrinsic curvature
of B, σ is the determinant of the metric of B and k0 is a reference term.

If we consider the metric element given in Eq. (7) and choose a Minkowski space-
time as a reference, we obtain that quasilocal energy for a r ≥ r+ is

E(r) = r − r
√
h(r) . (43)
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In particular, for the quantum Schwarzschild black hole we get

E(r) = r −
√

(r − 2m) [r + (r − 2m)λ2]

1 + λ2
, (44)

and
E(r+) = r+ = 2m , (45)

E(∞) =
1 + 2λ2

1 + λ2
m . (46)

Note that E(∞) is equal to MADM as expected for an asymptotically flat spacetime
according to Refs. [85, 86].

From Eqs. (45) and (46) it can be obtained that

E(r+)− E(∞) =
m

1 + λ2
. (47)

As we previously obtained the Komar mass on the horizon r+ is

MH =
m√

1 + λ2
. (48)

From the above, the following relation is obtained√
1 + λ2 (E(r+)− E(∞)) = MH , (49)

which differs from the relationship given in Eq. (41). However, the quantum black
hole model satisfies a more general identity given in Ref. [87]. When g00 ̸= −(g11)

−1,
g22 = r2 and g33 = r2 sin2 θ the following identity can be written

E(r+)− E(∞) = e−δ(r+)MH . (50)

Here, if we adopt the notation of the line element provided by Eq. (7) then

e2δ(r+) =
f(r+)

h(r+)
. (51)

For the quantum Schwarzschild model it is found that

e−δ(r+) =
1√

1 + λ2
. (52)

Thus in this case relation (50) is equivalent to relation (49).
In order to compute the quasilocal energy for the bumblebee model we consider as

reference an asymptotically non-flat spacetime determined by the metric function (33)
with (34). Thus we obtain

E(r) = r

(√
1

1 + ℓ
−
√

1− 2m/r

1 + ℓ

)
, (53)

and from here follows

E(r+) =
2m√
1 + ℓ

, (54)

E(∞) =
m√
1 + ℓ

. (55)
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Therefore the identity (41) is satisfied in this case.
From Eq. (53) we can calculate the total energy of the black hole, that is, we

can evaluate the quasilocal energy in r → ∞ to obtain the physical mass. Usually
when the total energy of the system is calculated under the Brown-York prescription,
to remove divergences its value must be normalized with a reference spacetime. In
cases where spacetimes that are asymptotically non-flat are considered, one chooses a
non-flat geometry as a reference to obtain a finite value for the quasilocal energy. In
particular for the black hole model coupled with a bumblebee field, we consider the
functions gtt and grr defined in Eqs. (33) and (34) as non-flat geometry by setting
m = 0. It can be checked in this case that if the reference geometry is not considered
or if a flat spacetime is set as reference, a divergence is obtained. Other examples
of asymptotically non-flat spacetime are found in the literature, one of them is the
black hole with a global monopole (e.g. see [84]), where if the mass is calculated with
the Brown-York prescription, one also finds a mass scaled by factor that depends on
a constant parameter of the model. Without being the same conceptually or mathe-
matically, in the case of the field bumblebee coupled to the black hole there is also a
global effect on spacetime, as seen in Eq. (55).

On the other hand, in the quantum black hole, where the reference geometry is
flat, we obtain the mass (46), so at first glance we could consider that the quantum
effect that manifests itself with the presence of the parameter λ is a global effect, as
in the case of gravitation with bumblebee field. But in this case it should rather be
interpreted as a quantum correction to the mass of the black hole. So here one could
think that the quantum effect that manifests by the parameter λ is intrinsic to the
presence of a mass.

6 Conclusions

Summarizing our work, we have explored the black hole thermodynamics of a novel
quantum black hole model inspired by loop quantum gravity in a four-dimensional
space-time with a vanishing cosmological constant. Specifically, we have investigated
the alterations in temperature, entropy, heat capacity, and Gibbs free energy com-
pared to their classical counterparts (when λ = 0). Furthermore, we recalculated these
quantities in the context of bumblebee gravity for the purpose of comparison. Notably,
we observed that the temperature, entropy, and heat capacity exhibit similarity under
the replacement λ2 → ℓ. Additionally, we noted a discrepancy in obtaining the Gibbs
free energies between the quantum black hole scenario and the bumblebee gravity
case. A difference is also presented between the form of the identity in the context
of quasilocal energy that each model satisfies. These discrepancies are related to the
asymptotic behavior of each spacetime.

Moreover, it should be mentioned that this quantum black hole model affects the
thermodynamic quantities in a non-trivial way. For example, note that the Hawking
temperature is corrected by the factor 1/

√
1 + λ2, which implies that in this case TH

is lower compared to the classical case. So such a change in the Hawking temperature
could suggest that the mass should be rescaled by this factor (i.e, m → m

√
1 + λ2),

but after calculating MH (see (26)) it becomes clear that quantum corrections, al-
though subtle, modify the thermodynamic parameters in a different manner, since
MH = m/

√
1 + λ2 instead of MH = m

√
1 + λ2. Also note that the ADM mass is in-

creased by the additional term λ2/(1+λ2)m, which is absent in the classical solution.
More importantly, the prefactor of the ADM mass is (1 + 2λ2)/(1 + λ2), making this
correction significantly non-trivial.

Finally, as far as the quasilocal energy is concerned, the basic identity E(rh) −
E(∞) = MH is satisfied in the case of the bumblebee gravity model, where the
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geometry is asymptotically non-flat. On the contrary, in the case of the quantum
black hole, which is asymptotically flat, the basic identity is not satisfied, a fact that
may be interpreted as a quantum correction to the mass of the black hole.

Appendix

From Ref. [88] we can use the following expression for the ADM mass

MADM =
1

16π
lim
r→∞

∫ 3∑
i,j=1

(gij,i − gii,j)n
jdA , (56)

where the integral is over a sphere of constant r =
√
(x1)2 + (x2)2 + (x3)2, nj = xj/r

and dA is the surface element.
Here, the spatial component of the metric for large values of r is given by

gij =

[
1 +

2m

r

(
1 + 2λ2

1 + λ2

)
+O

(
1

r2

)]
δij . (57)

Then

gij,i − gii,j = −2∂j

[
2m

r

(
1 + 2λ2

1 + λ2

)
+O

(
1

r2

)]
. (58)

Consequently

MADM =
−1

8π

∫
∂r

[
2m

r

(
1 + 2λ2

1 + λ2

)]
dA = m

(
1 + 2λ2

1 + λ2

)
. (59)
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