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Abstract

Recent innovations from machine learning allow for data unfolding, without binning
and including correlations across many dimensions. We describe a set of known, up-
graded, and new methods for ML-based unfolding. The performance of these approaches
are evaluated on the same two datasets. We find that all techniques are capable of ac-
curately reproducing the particle-level spectra across complex observables. Given that
these approaches are conceptually diverse, they offer an exciting toolkit for a new class
of measurements that can probe the Standard Model with an unprecedented level of
detail and may enable sensitivity to new phenomena.
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1 Introduction

Particle physics experiments seek to reveal clues about the fundamental properties of particles
and their interactions. A key challenge is that predictions from quantum field theory are at
the level of partons, while experiments observe the corresponding detector signatures. Precise
and detailed simulations link these two levels [1]. They fold predictions for the hard process
through QCD effects, hadronization, and the detector response to compare with data. This
statistically powerful forward inferences approach has been widely used.

However, forward inference requires access to the data and the detector simulation. These
conditions are rarely satisfied outside of a given experiment, severely limiting the ability of the
broader community to study particle physics data. In addition, analysis of data from the high-
luminosity LHC with forward inference will require precise simulations for every hypothesis,
challenging available computing resources.

An alternative approach is unfolding. Rather than correcting predictions for the effects of
the detector, the data are adjusted to provide an estimate of their pre-detector distributions.
Since the effects described by our forward simulation are stochastic, this adjustment is per-
formed on a statistical basis. Unfolding offers important advantages, such as making data
analysis possible by a broader community and enabling an efficient combination of data from
several experiments, such as in global analyses of the Standard Model Effective Theory [2,3].

Traditional unfolding algorithms have been used extensively, successfully delivering a mul-
titude of differential cross section measurements [4–6]. The most widely-used methods are
Iterative Bayesian Unfolding [7–10], Singular Value Decomposition [11], and TUnfold [12].
However, each of these methods can only be applied to binned datasets of small dimensionality,
such that the unfolded observables and their binning have to be selected in advance.

Machine learning (ML) techniques have revolutionized unfolding by allowing for unbinned
cross sections to be measured across many dimensions [6, 13]. Where sufficient information
is unfolded, new observables can be calculated from unbinned data, long after the initial pub-
lication. The first ML-based unfolding method applied to data is OmniFold [14, 15], which
uses classifiers to reweight simulations. It has recently been applied to studies of hadronic
final states at H1 [16–19], LHCb [20], CMS [21], and STAR [22]. Alternative ML-unfolding
methods use generative networks, either for distribution mapping [23–26] or for probabilistic,
conditional generation [27–34].

The goal of this paper is to lay out and extend the landscape of ML methods. We bench-
mark a diverse set of approaches on the same datasets, to facilitate direct comparisons. Some
methods have been studied with an iterative component to mitigate the sensitivity to starting
particle-level simulations. To simplify the setup and reduce stochastic effects from iterating,
we apply all methods with only a single step. The goal is to estimate the posterior with the
starting simulation as the prior. Performing this step well is the essential component of a full
unfolding approach.

We begin with a brief introduction of the different methods for ML-based unfolding in
Sec. 2. In Sec. 3, we show how all approaches can accurately unfold from detector level to
the particle level using a Z+jets benchmark dataset. For certain theory questions it is useful to
further unfold to the parton level, treating QCD radiation as a distortion to be corrected like
detector effects. As an example of this type of unfolding, we study top quark pair production
in Sec. 4. In Sec. 5 we summarize the advantages of the different methods, to help the exper-
imental collaborations pick the method(s) best-suited for a given task. The figures shown in
App. A just combine results from the Z+jets study in Sec. 3.
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2 ML-Unfolding

We define our unfolding problem using four phase space densities, which are encoded in the
corresponding samples, in the sense of unsupervised density estimation in ML-terms. We rely
on simulated predictions at the particle/parton level, pgen(xpart), and the detector or recon-
struction (reco) level, psim(xreco). Unfolding turns the measured pdata into punfold,

pgen
unfolding inference
←−−−−−−−−−→ punfold(xpart)

simulation







y

x







unfolding

psim
forward inference
←−−−−−−−−−−→ pdata(xreco) (1)

Our simulated samples come in pairs (xpart, xreco), which can be used for unfolding. Data only
exist on the xreco level. The features of the unfolded data punfold should be determined by pdata,
but will always include a data-independent bias from the assumed pgen. The question how we
can minimize the resulting model dependence will be part of a follow-up of this study.

Established ML-techniques for unfolding rely on one of two approaches. They either
reweight simulated samples, or they generate unfolded samples from conditional probabili-
ties. We will briefly introduce both original methods [14, 27, 28], as well as a more recent
hybrid approach of mapping distributions using generative networks.

2.1 Reweighting: (b)OmniFold

The deep learning-based approach to unfolding via re-weighting is OmniFold [14, 15]. It is
based on the Neyman–Pearson lemma [35], stating that an optimally trained, calibrated clas-
sifier C will learn the likelihood ratio of the two underlying phase space distributions. If we
use a binary cross entropy (BCE) loss to distinguish between data and simulated reco-level
events, then the following combination approximates the likelihood ratio:

w(xreco)≡
pdata(xreco)
psim(xreco)

=
C(xreco)

1− C(xreco)
. (2)

OmniFold computes these classifier weights at the reco-level, and uses the paired simulated
data to pull these weights from the reco-level events to the particle-level events. The re-
weighted simulated events then define

punfold(xpart) = w(xreco) pgen(xpart) . (3)

This weight-pushing is the first step in the two-step iterative OmniFold algorithm. Because we
are leaving out the model dependence to a dedicated second study, we restrict ourselves to
this first iteration, which in the scheme of Eq.(1) looks like

pgen
classifier weights (3)
−−−−−−−−−−−−−→ punfold(xpart)

pull (2)/push weights (4)

x





y

psim
classifier weights (1)
←−−−−−−−−−−−−→ pdata(xreco) (4)

Bayesian network Bayesian versions can be derived for any deterministic neural network
with a likelihood loss [36–40]. The BNN training does not fix the network parameters, but
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allows them to learn distributions, such that sampling over the network parameters gives the
probability distribution in model space, i.e. for the network output. Based on studies for re-
gression [41, 42] and classification tasks [43], there is evidence that for a sufficiently deep
network we can assign independent Gaussians to each network parameter [38]. This effec-
tively doubles the size of the network which now learns a central prediction and the error bar
simultaneously. Even though the weights are Gaussian distributed, the final network output
is generally not a Gaussian. As we will see below, Bayesian networks can be generalized to
generative tasks [44–46].

One benefit of Bayesian networks is that they automatically include a generalized dropout
and a weight regularization [40, 47, 48], derived from Bayes’ theorem together with the like-
lihood loss. This means that BNNs are automatically protected from overtraining and an at-
tractive option for applications where the precision of the network is critical, like the classifier
reweighting in OmniFold.

2.2 Mapping distributions: Schrödinger Bridge and Direct Diffusion

Instead of reweighting phase-space events, we can use generative neural networks to morph
a base distribution to a target distribution. In our case, we train a network to map event
distributions from xreco to xpart based on the paired or unpaired simulated events and apply
this mapping to pdata(xreco) to generate punfold(xpart):

pgen punfold(xpart)

training

x







x







distribution mapping

psim
correspondence
←−−−−−−−−−→ pdata(xreco) (5)

As mentioned above, the trained mapping assumes that psim and pdata describe the same fea-
tures at the reco-level. Two ML-methods that we study for this task include Schrödinger
Bridges [25] and Direct Diffusion [26], see also Ref. [23] for an early study.

2.2.1 Schrödinger Bridge

Schrödinger Bridges define the transformation between particle-level events xpart ∼ pgen to
reco-level events xreco ∼ psim as a time-dependent process following a forward-time stochastic
differential equation (SDE)

d x = f (x , t)dt + g(t)dw . (6)

The drift term f controls the deterministic part of the time-evolution, g is the noise schedule,
and dw a noise infinitesimal. For such an SDE, the reverse time evolution follows the SDE

d x = [ f (x , t)− g(t)2∇ log p(x , t)]d t + g(t)dw , (7)

with the corresponding score s(x , t) = ∇ log p(x , t). To construct an unfolding, we need to
find f and g for our forward process from particle level to reco level, and then encode sθ (x , t)
in the unfolding network [49].

Constructing a forward-time SDE that transforms an arbitrary distribution into another
is much more challenging than mapping a distribution into a noise distribution with known
probability density (e.g. a Gaussian), as is the case for standard SDE-based diffusion net-
works. A framework to construct a transport plan in the general case was proposed by Erwin
Schrödinger [50]. It introduces two wave functions describing the time-dependent density as
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p(x , t) = bΨ(x , t)Ψ(x , t). By setting the drift coefficient to f = g(t)2∇ logΨ(x , t) the forward
and reverse SDEs in Eqs.(6) and (7) become

d x = g(t)2∇ logΨ(x , t)d t + g(t)dw

d x = −g(t)2∇ log bΨ(x , t)d t + g(t)dw . (8)

If the two wave-functions fulfill the coupled partial differential equations

∂Ψ(x , t)
∂ t

= −
1
2

g(t)2∆Ψ(x , t)

∂ bΨ(x , t)
∂ t

=
1
2

g(t)2∆bΨ(x , t) , (9)

with the boundary conditions

bΨ(x , t)Ψ(x , t) =

¨

pgen(x) t = 0

psim(x) t = 1 ,
(10)

then the SDEs in Eq.(8) transform particle-level events to reco-level events and vice versa.
Next, we need to find Ψ, bΨ that fulfill the conditions. The authors of Ref. [51] observe that

reverse generation following Eq.(8) does not require access to the wave functions, but only to
the score function ∇ log bΨ. For paired training data,

(x0, x1)∼ (pgen, psim) (11)

the posterior encoded in the SDEs in Eq.(8), conditioned on the respective initial and final
states, has the analytic form

q(x |x0, x1) =N (x t ;µt(x0, x1),Σt)

with µt =
σ̄2

t

σ̄2
t +σ

2
t

x0 +
σ2

t

σ̄2
t +σ

2
t

x1 and Σt =
σ2

t σ̄
2
t

σ̄2
t +σ

2
t

, (12)

denoting σ2
t =
∫ t

0 g2(τ)dτ and σ̄2
t =
∫ 1

t g2(τ)dτ. This allows for the generation of samples
from this stochastic process as x t(x0, x1) = µt +Σtε with ε ∼ N (0,1) and (x0, x1), a pair of
reco-level and particle-level events. Moreover, the score∇ log bΨ can be learned by minimizing
the loss

LSB =
­�

εθ (x t(x0, x1), t)−
x t(x0, x1)− x0

σt

�2·

t∼U([0,1]),(x0,x1)∼p(xpart,xreco)
, (13)

where x t is sampled according to Eq.(12). After training, the network unfolds by numerically
solving the reverse SDE Eq.(8) with the xreco values as the initial conditions.

We follow a slight variation, where the dynamics are reduced to a deterministic pro-
cess [51]. This can be achieved by replacing the posterior distribution Eq.(12) by its mean
and training the network to encode not the score function, but the velocity field of the reverse
process, which then takes the form of an ordinary differential equation:

d x t = vt(x t |x0)d t =
βt

σ2
t
(x t − x0)d t . (14)

For the noise schedule, we follow Ref. [25] and use g(t) =
p

β(t), with β(t) the triangular
function

β(t) =

¨

β0 + 2(β1 − β0)t 0≤ t < 1
2

β1 − 2(β1 − β0)
�

t − 1
2

� 1
2 ≤ t ≤ 1 .

(15)

with β0 = 10−5 and β1 = 10−4.
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2.2.2 Direct Diffusion

Like the Schrödinger Bridge, Direct Diffusion (DiDi) describes a time evolution between particle-
level events at t = 0 and reco-level events at t = 1. Following the Conditional Flow Matching
(CFM) [52] framework, DiDi uses an ordinary differential equation (ODE)

d x(t)
d t

= vθ (x(t), t) , (16)

with a velocity field vθ (x(t), t) encoded in a neural network. This time evolution of the in-
dividual events is related to the time evolution of the underlying density via the continuity
equation

∂ p(x , t)
∂ t

+∇x [p(x , t)vθ (x , t)] = 0 . (17)

The learning task is then to find a velocity field that transforms the density p(x , t) such that

p(x , t)→

¨

pgen(x) t → 0

psim(x) t → 1 .
(18)

Such a velocity field can be constructed by building on event-conditional velocity fields. For a
given particle-level event x0 ∼ pgen(xpart), the algorithm samples a corresponding reco-level
event x1 ∼ psim(xreco|xpart = x0), and the two are connected with a linear trajectory

x(t|x0) = (1− t)x0 + t x1→

¨

x0 t → 0

x1 ∼ p(xreco|xpart = x0) t → 1 .
(19)

Differentiating this trajectory defines the conditional velocity field

v(x(t|x0), t|x0) =
d
d t
[(1− t)x0 + t x1] = −x0 + x1 . (20)

This is not yet useful as an unfolding network, as it can only unfold to a pre-specified hard
event. The desired unconditional velocity field can be obtained via

v(x , t) =

∫

d x0

v(x , t|x0)p(x , t|x0)pgen(x0)

p(x , t)
, (21)

where p(x , t|x0) is the conditional density defined via sampling from equation (19) and p(x , t)
is obtained by integrating out the condition x0. In practice, it is sufficient to train on fixed data
pairs (xpart, xreco) instead of resampling the posterior p(xreco|xpart = x0) in each epoch. The
velocity field can be learned from data as a simple regression task with the MSE loss

LDiDi =



[vθ ((1− t)x0 + t x1, t)− (x1 − x0)]
2�

t∼U([0,1]),(x0,x1)∼p(xpart,xreco)
. (22)

Once the network is trained, a reco-level event x1 ∼ p(xreco) can be transferred by numerically
solving the coresponding ODE in Eq.(16)

x0 = x1 −
∫ 1

0

vθ (x(t), t)d t . (23)
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Unpaired DiDi The starting premise of most unfolding methods is that the forward model
p(xreco|xpart) is known, within uncertainty. There may be cases where it is not known [24]
and instead of pairs (xpart, xreco), we only have access to the marginals {xpart}, {xreco}. There
is no unique solution to this problem even if the detector response is deterministic; however,
we can proceed by assuming that the function corresponds to the optimal transport map. We
consider a variation of DiDi for this configuration by droping the pairing information between
training events [26]. This can be achieved by modifying the conditional trajectory so that x1
is sampled independently of x0, so Eq.(19) becomes

x(t|x0) = (1− t)x0 + t x1→

¨

x0 t → 0

x1 ∼ p(xreco) t → 1 .
(24)

The loss function is

LDiDi-U =



[vθ ((1− t)x0 + t x1, t)− (x1 − x0)]
2�

t∼U([0,1]),x0∼p(xpart),x1∼p(xreco)
. (25)

During training we now sample events independently of each other, and the learned map will
be purely determined by the network and its training.

Bayesian network Because the distribution mapping loss function does not have a straight-
forward interpretation as a likelihood, it cannot be simply transformed into a Bayesian network
from first principles. However, we can add the relevant features of a Bayesian network, as for
the CFM [26,46]. This includes Bayesian layers, Gaussian distributions of all or some network
parameters, and a KL-term regularizing the network parameters towards a Gaussian prior,

LB-CFM =
¬

LCFM

¶

θ∼q(θ )
+ cKL[q(θ ), p(θ )] . (26)

The factor c balances the deterministic loss with the Bayesian-inspired regularization. If the
network loss follows from a likelihood, this factor is fixed by Bayes’ theorem. In all other
cases it is a hyperparameter. We have checked that the network performance as well as the
extracted posteriors are stable when varying c over several orders of magnitudes, suggesting
that the learned weight distribution corresponds to an inherent property of the setup.

2.3 Generative unfolding: cINN, Transfermer, CFM, TraCFM, Latent Diffusion

Generative unfolding uses conditional generative networks to learn the conditional probability
describing the inverse simulation pmodel(xpart|xreco),

pgen punfold(xpart)

paired data

x





y

x







pmodel(xpart|xreco)

psim
correspondence
←−−−−−−−−−→ pdata(xreco) (27)

Building a forward surrogate network (p(xreco|xpart)) uses the same data and has nearly the
same setup as going backwards ((p(xpart|xreco))). The usual assumption of unfolding is that
the detector response is universal, which breaks the symmetry of the forward and backwards
networks via Bayes’ theorem,

p(xpart|xreco) = p(xreco|xpart)
p(xpart)

p(xreco)
. (28)

8
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For the forward simulation, we assume that the condition on xpart does not induce a significant
prior for the generated psim. For the inverse simulation, this prior dependence is relevant and it
formally implies that there is no notion of unfolding single events, even though the generative
unfolding tools provide the corresponding conditional probabilities.

Technically, we start from a simple latent distribution, where the generative network trans-
forms the required phase space distribution,

z ∼ platent(z) −→ xpart ∼ pmodel(xpart|xreco) . (29)

The phase space distribution of an unfolded dataset is then given as

punfold(xpart) =

∫

d xreco pmodel(xpart|xreco) pdata(xreco) . (30)

This approach is based on posterior distributions for individual events, which means that we
can also take single measured events and run them through the model any number of times.
A key ingredient to unfolding with generative networks [27] is to either train this network
with a likelihood loss [28], like for the cINN, or to guarantee the probabilistic interpretation
through the mathematical setup, like in the CFM.

2.3.1 Conditional INN

The original generative network used for unfolding is a normalizing flow [53] in its conditional
invertible neural network (cINN) variant [54, 55]. It defines the mapping between the latent
and phase space as an invertible function, conditioned on the reco-level event,

z ∼ platent(z)
Gθ (z;xreco)→
←−−−−−→
← G−1

θ
(xpart;xreco)

xpart ∼ pmodel(xpart|xreco) . (31)

The bijection form allows us to write down the learned density as

pmodel(xpart|xreco) = platent(G
−1
θ (xpart; xreco))

�

�

�

�

�

det
∂ G−1
θ
(xpart; xreco)

∂ xpart

�

�

�

�

�

. (32)

Having access to the network likelihood enables us to use it directly as loss function and train
via maximum likelihood estimation

LcINN = −



log pmodel(xpart|xreco)
�

(x0,x1)∼p(xpart,xreco)
. (33)

This approach requires a bijective map that is flexible enough to model complex transforma-
tions, while still allowing for efficient computation of the Jacobian determinant. We employ
coupling blocks [55], but replace the affine coupling blocks with the more flexible rational
quadratic spline blocks [56].

Transformer-cINN We also consider a transformer extension to the standard cINN [57]. The
architecture translates a sequence of reco-level momenta into a sequence of particle-level mo-
menta. A transformer network encodes the correlations between all event dimensions at parti-
cle level as well as their correlation with the reco-level event. A small 1D-cINN then generates
the hard-level momenta conditioned on the transformer output. To guarantee invertibility and
a tractable Jacobian, the likelihood and the generation process are factorized autoregressively

pmodel(xpart|xreco) =
n
∏

i=1

pmodel(x
(i)
part|c(x

(0)
part, . . . , x (i−1)

part , xreco)) . (34)

9
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The product in Eq.(34) covers all dimensions at particle level. The function c is learned by the
transformer to encode the information about the reco-level momenta as well as the already
generated hard-level momenta. The one-dimensional conditional densities are encoded in
the cINN. Note that in contrast to Ref. [57], this so-called transfermer is autoregressive in
individual one-dimensional components, instead of in the four momenta grouped by particles.

2.3.2 Conditional Flow Matching

As an alternative generative network, we employ a diffusion approach called Conditional Flow
Matching (CFM) [46, 52]. The mathematical structure is the same as for the DiDi network
introduced in Sec. 2.2.2. The key difference here is that the CFM now samples from a Gaussian
latent distribution, conditional on a reco-level event, Eq.(29). This means the time-evolving
density is conditional and interpolates between the boundary conditions

p(x , t|xreco)→

¨

p(xpart|xreco) t → 0

N (x; 0, 1) t → 1 ,
(35)

while the ODE now reads

d x(t)
d t

≡ vθ (x(t), t|xreco) . (36)

The information about the reco-level event to unfold is no longer encoded in the initial con-
dition of the ODE, but in an additional input to the network that predicts the velocity field.
Again we start with paired training data, x0 ∼ p(xpart) and x1 ∼ p(xreco|xpart = x0), and define
a simple conditional trajectory towards Gaussian noise,

x(t|x0, xreco) = (1− t)x0 + tε→

¨

x0 t → 0

ε∼N (0, 1) t → 1 .
(37)

The conditional velocity field is defined via the derivative of the trajectory

v(x(t|x0, xreco), t|x0, xreco) =
d
d t
[(1− t)x0 + tε] = −x0 + ε . (38)

The rest of the derivation follows analogously to the DiDi derivation. The loss function is given
by the MSE

LCFM =



[vθ ((1− t)x0 + tε, t, x1)− (ε− x0)]
2�

t∼U([0,1]),(x0,x1)∼p(xpart,xreco),ε∼N
. (39)

After training, the CFM can unfold by sampling from the latent noise distribution and solv-
ing the ODE in Eq.(36) conditioned on the reco-level event we want to unfold. The crucial
difference to DiDi is that this procedure allows us to unfold the same reco-level event re-
peatedly, each time from different noise as starting point, to sample the posterior distribution
pmodel(xpart|xreco).

Transformer-CFM The velocity field can be encoded in any type of neural network, in that
sense CFMs do not impose any architectural constraints. While linear layers already achieve
high precision [26, 46], we find that when dealing with complex correlations employing a
Transformer network further improves results [57], similar to the INN vs Transfermer case.

Our TraCFM architecture encoding v(xpart, t|xreco) is shown in Fig. 1. Its inputs are the
reco-level event, the intermediate noisy diffusion state xpart(t) and the time t. First, each of
the reco-level and particle-level dimensions is individually mapped into a higher-dimensional

10
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x (1)reco
... x (nr )

reco

Em
b ...

Em
b

Transformer-Encoder

Self-Attention
Reco-level correlations

x (1)part(t) ... x
(np)
part (t) t

Em
b ...

Em
b

Transformer-Decoder

Self-Attention
Part-level correlations

Cross-Attention
Combinatorics

Li
ne

ar ...

Li
ne

ar

�

v(1)(c(1), t), ... , v(n)(c(np), t)
�

v(xpart(t), t|xreco) =

c(1) c(np)

Figure 1: TraCFM architecture, combining the CFM generator with a Transformer
encoder-decoder combination to improve combinatorics.

embedding space. This is done by concatenating the kinematic variable with its one-hot-
encoded position and filling with zeros up to the specified embedding dimension [57]. For the
particle-level dimensions we also concatenate the time t to the vector before filling with zeros.
We experimented with more sophisticated embedding strategies, but found no performance
improvements. The reco-level embeddings are then fed to the transformer encoder, which
encodes the correlations among them using a self-attention mechanism. The transformer de-
coder does the same for the particle-level dimensions. Finally, the updated embeddings are
fed to a cross-attention block that learns to resolve the combinatorics between reco-level and
particle-level objects and outputs a final condition c(i) for each particle-level dimension. A
single linear layer, shared between all dimensions, maps this condition together with the time
t to the individual velocity field components.

To unfold, we start with a sample from the latent distribution as xpart(t = 1) = ε∼N (0, 1)
and solve the ODE Eq. (36) numerically. Notice that the transformer encoder has no time
dependence, so we do not need to recalculate it at every function call.

Bayesian generative network The concept of Bayesian networks can be applied to genera-
tive networks by assigning an uncertainty to the learned underlying phase space density. This
way, the network learns an underlying density to sample from, and an uncertainty on this
density which it can report as an error of the unit-weight of each generated event [44, 45].
Because the loss of the normalizing flow is a maximized likelihood, the relation between the
likelihood loss and the regularizing KL-divergence can be derived from Bayes’ theorem. As an
approximation to the full posterior, the error bars reported by Bayesian networks are a learned
approximation to the true uncertainty on the phase space density.
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2.3.3 Latent Variational Diffusion

To reduce the disparity between different parameterizations of the set of observables and to
enable a more robust network, Latent Variational Diffusion [33] introduces a Variational Au-
toencoder to initially map observables from particle/parton phase space to a latent space. This
particle encoder learns the mapping

xpart → z = ENCODERpart(xpart) ∈ RDLatent . (40)

It is implemented as a deep feed-forward network. This latent space can be fine-tuned for
the diffusion step, allowing enhanced control over the generation process before mapping the
result back to the observables.

To accommodate variable-length reco-level objects, an additional detector encoder maps
them to a fixed-length latent vector

xreco → w= ENCODERreco(xreco) ∈ RDLatent . (41)

It utilizes a deep feed-forward network for fixed-length inputs and a transformer encoder for
variable-length inputs.

These latent observables provide the inputs for a conditional variational diffusion net-
work [58]. VLD employs a continuous- time, variance-preserving, stochastic diffusion process
with a noise-prediction parameterization for the score function. The governing stochastic dif-
ferential equations are

dz = f (zt , t) d t + g(t) dw (VLD Forward SDE)

dz =
�

f (zt , t)− g2(t)sθ (z, w, t)
�

d t + dw̄ (VLD Reverse SDE) (42)

The drift and diffusion terms are parameterized through a learnable noise schedule γφ(t),
which controls the diffusion rate. It is encoded in a monotonically increasing deep network as
a function of t,

f (z, t) = −
1
2

�

d
d t

log
�

1+ eγφ(t)
�

�

z

g(t) =

√

√ d
d t

log
�

1+ eγφ(t)
�

. (43)

This simplifies the forward process to a time-dependent normal distribution, controlled by
γφ(t), now interpreted as the logarithmic signal-to-noise ratio.

zt ∼N
�

σ(−γφ(t)) z,σ(γφ(t)) I
�

where σ(x) =

√

√ 1
1+ e−x

. (44)

The diffusion score is parameterized via a noise-prediction network,

sθ (z, w, t) =
ε̂θ (zt , w, t)
σ(−γφ(t))

, (45)

trained to predict the sampled noise used to generate the forward sample from the diffusion
process [33, 58]. It is implemented as a deep feed-forward network, concatenating the three
inputs before processing.

Finally, a decoder transforms the initial noisy latent particle representation back into phase
space observables,

z0 → x̂part = DECODER(z0) . (46)

12
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It is again implemented as a deep feed-forward network and outputs real-valued estimates of
the observables.

All networks are trained in a end-to-end fashion using a unified loss which allows the
encoders and decoders to fine-tune the latent space to the diffusion process, while accurately
reconstructing the observables. We use a standard normal distrbution as the prior over the
final noisy latent vector, p(z1)∼N (0, I). The denoising network, γφ(t), is trained to minimize
the variance of the following loss term, while all other networks are trained to minimize its
expectation value:

LVLD = KL[q(z1|x), p(z1)] (Prior Loss)

+
¬

∥DECODER(z0)− x∥2
2

¶

q(z0|x)
(Reconstruction Loss)

+
¬

γ′φ(t)∥ε− ε̂θ (z, w, t)∥2
2

¶

ε∼N (0,I),t∼U(0,1)
(Denoising Loss) (47)
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3 Detector unfolding: Z+jets

3.1 Data and preprocessing

As a first test case for the various ML-Unfolding methods we use a new, bigger version of the
public dataset from Ref. [14], now available at Ref. [59]*. The events describe

pp→ Z + jets (48)

production at
p

s = 14 TeV, simulated with Pythia 8.244 [61] with Tune 26. In contrast to
the original dataset, detector effects are now simulated with the updated Delphes 3.5.0 [62],
and the CMS tune, that uses particle flow reconstruction. The jets are clustered using all
particle flow objects available at detector level and all stable non-neutrino truth particles at
particle level. Jets are defined by the anti-kT algorithm [63] with R= 0.4, as implemented in
FastJet 3.3.2 [64]. The dataset contains around 24M simulated events, 20M for training and
4M for testing.

We focus on six observables describing the leading jet: mass m, width τ(β=1)
1 , multiplicity

N , soft-drop [65, 66] mass ρ = m2
SD/p

2
T and momentum fraction zg using zcut = 0.1 and

β = 0, and the N -subjettiness ratio τ21 = τ
(β=1)
2 /τ

(β=1)
1 [67]. For 0.8% of the events we map

an undefined jet groomed mass logρ or N-subjettiness ratio τ21 to zero.
The distributions are shown in Fig. 2. We apply a dedicated preprocessing to the jet multi-

plicity and the groomed momentum fraction. The jet multiplicity is an integer feature, which
forces the network to interpolate, so we smooth the distribution by adding uniform noise
u ∼ U[−0.5,0.5). This preprocessing can be inverted. The groomed momentum fraction fea-
tures a discrete peak at zg = 0 and sharp cuts at zg = 0.1 and 0.5. We move the peak to
zg = 0.097 and add uniform noise u ∼ U[0, 0.003). Next, we take the logarithm to make the
distribution more uniform. We then shift and scale the distribution to stretch from −1 to +1

*For a comparison with classical unfolding methods, we refer to Refs. [14] and [60].
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Figure 2: Subjet distributions for the Z+jets dataset, at the particle level, and at the
reco level.
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and take the inverse error function to transform its shape to an approximate normal distribu-
tion. Finally, all six observables are standardized by subtracting the means and dividing by the
standard deviations.

Also in Fig. 2, we show the effect of the detector simulation. They are most significant
for the jet multiplicity, the groomed jet mass, and the N -subjettiness ratio. All these shifts are
driven by the finite energy threshold of the detector.

3.2 Reweighting

As in Sec. 2, we start with the OmniFold reweighting on the Z+jets dataset. We then introduce
the Bayesian version (bOmniFold) and compare their performance. We train both networks
for two different unfolding tasks. First, we evaluate their performance on the same dataset as
the other generative networks, splitting it in two halves, but adding noise to one of them as
described below. Then, we go back to the previous Pythia dataset and task the classifiers with
learning the likelihood ratio between Pythia and Herwig. We use this ratio to reweight Herwig
onto Pythia.

3.2.1 Training on Pythia with added noise

For this section, we employ the combination of Pythia with the updated Delphes version. We
merge the training and test sets with 24.3M events, of which we use 10.9M for training, 1.2M
for validation, and 12.2M for testing. In each of these splits, we label half of the events as
Pythia 1 and the other half as Pythia 2. The classifier has to learn to reweight Pythia 1 onto
Pythia 2.

If we train (b)Omnifold on this task, it will just learn a constant classifier value of 0.5, so
we add Gaussian noise ϵ ∼ N (0, 1) to each of the raw features before preprocessing, scaled
by the standard deviation of the respective feature σx and an additional custom factor f to
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Figure 3: Unfolded distributions from event reweighting using OmniFold and bOm-
niFold. The bOmniFold error bar is based on drawing 20 Bayesian samples. For
OmniFold the error bar represents the bin-wise statistical uncertainty.
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m [GeV] w N

OmniFold 0.59098 / 0.12493 / 13.72203 0.01001 / 1.62601 / 2.99618 0.67919 / 0.03034 / 18.47942
bOmniFold 0.37180 / 0.14208 / 9.89718 0.00542 / 1.64286 / 2.24587 0.22693 / 0.02176 / 4.97982

logρ zg τ21

OmniFold 0.40320 / 0.72494 / 15.60005 0.01550 / 15.30356 / 4.81947 0.00931 / 0.02746 / 1.40143
bOmniFold 0.12501 / 0.67605 / 5.59003 0.01109 / 15.27470 / 4.51572 0.00956 / 0.02183 / 1.54405

Table 1: Metrics evaluating the performance of the different unfolding networks,
for each of the one-dimensional kinematic distributions. We show the Wasserstein
1-distance (×10), the triangular distance (×1000), and the energy distance (×1000).

modify the relative importance of the noise,

x → x̃ = x + f ·σxϵ with ϵ ∼N (0, 1) , (49)

where we use f = 0.1.
We train OmniFold (13k parameters) and its Bayesian-network counter part bOmniFold

(2×13k parameters) with identical settings for 30 epochs. The unfolded distributions are
shown in Fig. 3. While this reweighting task might not be realistic, it defines an illustrative
benchmark for the performance of an unfolding network. For each of the one-dimensional
kinematic distributions, the agreement between the unfolded and true particle-level events is
at the per-cent level or better. The only exceptions are sparsely populated tails with too little
training data, or sharp features with limited resolution. The differences between the OmniFold
and bOmniFold results are even smaller. A selection of summary statistics are presented in
Tab. 1, where we show the Wasserstein 1-distance, the triangular distance, and the energy
distance for the six kinematic observables. The two methods were not separately optimized,
we just started with a generic Omnifold setup and supplemented it with the Bayesian network
features. Uncertainties on the statistics are not included in these illustrative metrics.

For the uncertainties, we see that it tends to cover the deviation of the unfolded distribu-
tions from the truth target towards increasingly sparse tails. Far in the tails, where there is too
little training data altogether, the networks learn neither the density nor an error bar on it.
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Figure 4: BCE losses during training for 500 epochs for Omnifold (green) and bOm-
nifold (red), for Herwig-to-Pythia reweighting.
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Figure 5: Weight distribution (clipped at 200) in the training set for Herwig-to-Pythia
reweighting: OmniFold (left) vs bOmniFold (right). For each network we histogram
the weights for the Herwig and Pythia data points.

3.2.2 Reweighting Herwig onto Pythia

For a more realistic (b)OmniFold task, we go back to the original Pythia dataset, for which we
also have a Herwig [68] version with the same version of Delphes, as introduced in Ref. [14].
We train (b)OmniFold for 500 epochs on 2M events, and test on 664k events [25].

First, we show the losses as a function of the training in Fig 4. This comparison shows
the challenge of the classifier training, which rapidly overtrains after about 20 epochs. This
behavior does not appear in the previous study with noisy Pythia events and is due to the
smaller training data for the Herwig reweighting. For large numbers of training epochs, the
loss on the validation dataset indicates a decreasing performance due to overtraining. For ap-
plications which require an LHC-level of precision such overtraining may become a problem.
It can be avoided, for instance, using regularization techniques, such as dropout. Both of these
mechanisms are part of the Bayesian network architecture, in case of the regularization with
a strength given by Bayes’ theorem. In Fig. 4 we see that the bOmniFold training continues to
improve even after a large number of epochs, with no overtraining. Interestingly, bOmniFold
has larger epoch-to-epoch fluctuations and has a worse minimum validation loss than Omni-
Fold, but does not show signs of overtraining. This illustrates a potential tradeoff between
accuracy and stability.

As before, the unfolded observables agree well between OmniFold and bOmniFold. Be-
cause of the difference between the training data, or prior, and the data we then unfold, the
true particle-level distributions are not exactly reproduced, and this model uncertainty is not
intended to be covered by the Bayesian error estimate.

An interesting feature of the bOmniFold training is that it has suppressed tails in the weight
distribution with respect to OmniFold, as shown in Fig. 5, even though both networks learn
the same reweighting map. Large and small weights lead to undesired statistical dilution of
the dataset and it will be interesting to explore in the future the interplay between statistical
dilution and accuracy.

3.3 Mapping distributions

The same subjet unfolding can be tackled with distribution mapping, using the Schrödinger
Bridge and Direct Diffusion, both introduced in Sec. 2.2.1. The implementation of the Schrödin-
ger Bridge follows the original Pytorch [69] implementation [25]. The noise prediction net-
work is implemented using a fully connected architecture with additional skip connections,
specifically using six RESNET [70] blocks, with each residual layer connected to the output of
a single MLP through a skip connection. The Bayesian version replaces the original MLPs. The
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Figure 6: Unfolded distributions from distribution mapping, using the Schrödinger
Bridge and DiDi. The Bayesian error bars are based on drawing 50 samples.

training uses the Adam [71] optimizer. The total number of trainable parameters is around
2M split equally between the mean and and standard deviation of the trainable weights.

During data generation, we sample using the the MAP prediction, i.e. fix every network
weight at the learned mean. Uncertainties are derived by sampling 50 times from the learned
weight distributions. In Fig. 6, we quantify the agreement between the unfolded and truth
one-dimensional kinematic distributions. The unfolding performance can be compared to the
noisy reweighting benchmark in Fig. 3. The agreement between unfolded and truth-level ob-
servables is still precise to the per-cent level. Notably, the largest deviations from the truth
distribution occur in the low-statistics edges, while the bulks of the distributions are well de-
scribed by the generative mapping, and the deviations from the truth are well covered by the
Bayesian uncertainty.

An alternative method for the same tasks is Direct Diffusion. We encode the velocity field
in a standard Bayesian MLP, after not seeing better results with more advanced networks.
Again, we implement the network in Pytorch, train it using the Adam optimizer, use the MAP
prediction, and draw 50 Bayesian weight samples to estimate the uncertainties. We use the
same setup for paired and unpaired DiDi. The only difference is the reshuffling of the reco-
particle pairings at the beginning of each epoch in the unpaired setting. The network size
comes to about 3M parameters, 1.5M weights each associated with the mean and the standard
deviation.

The results are compared to the Schrödinger Bridge in Fig. 6. Both variants of Direct
Diffusion learn the observables with per-cent precision over the entire phase space, and better
than that in the well-sampled bulk. For the central prediction, the paired training data makes
the unfolding slightly more precise and more stable.

A difference between paired and unpaired DiDi is that the latter might be slightly less stable
and learns significantly larger Bayesian uncertainties. This is consistent over several trainings.
At the level of kinematic distribution we do not observe any shortcoming for unfolding through
distribution matching, and the difference between paired and unpaired training data is minor.
We will come back to the conceptual difference in Sec. 3.5.
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Figure 7: Unfolded distributions from conditional generation, using cINN, CFM and
VLD. For cINN and CFM, the Bayesian errors are based on drawing 50 samples, and
the MAP estimate is obtained by unfolding each event 30 times. For VLD, we show
the bin-wise mean and standard deviation of 33 unfoldings.

3.4 Generative unfolding

The third unfolding method we study is based on learned conditional probabilities, as defined
in the statistical description of unfolding. It relies on paired training data. Differences appear
when we vary the generative network architecture used. We skip the original GAN implemen-
tation [27], because more modern generative networks have been shown to learn phase space
distributions more precisely [45,46]. The cINN [28] is implemented in PyTorch [69] and uses
the FrEIA library [72] with RQS coupling blocks. By default, we use its Bayesian version [44],
which tracks the uncertainty in the learned phase space density as variations of unit event
weights. Our CFM [46] encodes the velocity field in the same linear layer architecture as DiDi,
including the Bayesian version. Predictions are obtained by unfolding each event 30 times
with the MAP weights, and the uncertainties are obtained from drawing 50 sets of weights
from the Bayesian network.

VLD is implemented and trained using the same JAX codebase released alongside Ref. [33].
Observables are first pre-processed so that each marginal distribution follows a standard nor-
mal via a quantile transform. Predictions are generated using the DPM++multi-step solver [73]
with 1000 inference steps and the learned schedule. Uncertainty is estimated by sampling each
unfolding 33 times using a different seed for generating the prior noise.

In Fig. 7 we show the results from the cINN, CFM, and VLD. As for the (b)OmniFold
reweighting and the distribution matching, all kinematic distributions are reproduced at the
per-cent level or better. While the performance of the cINN and the CFM are very similar, the
VLD approach shows slightly larger deviations from the target distributions.

3.5 Learned event migration

For the generative network methods, it can be instructive to examine the learned map between
reco events and truth events. In the top panels of Fig. 8 we start with the migration described
by the paired events from the forward detector simulation. We show three of the kinematic
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distributions defined in Fig. 2. The results for the other distributions lead to the same con-
clusions. For the jet mass, the multiplicity, and τ21 we see that the optimal transport defined
by the detector is quite noisy. While for the jet mass most events form a diagonal with little
bias, the jet multiplicity shows a linear correlation with a non-trivial slope, and τ21 indicates
a saturation effect in the forward direction xpart → xreco, such that τ21(xreco) does not reach
one.

In the next row we show the results from the Schrödinger Bridge, which is similar, but
slightly noisier than DiDi trained on paired events, shown in the third row. Using paired events,
these generative networks learn a very efficient diagonal transport map, with a spread that is
more narrow than the actual detector. The main features of the detector truth are reproduced
well.

Next, we see that the unpaired DiDi network again learns an efficient transport map, but
with a significantly broader spread than the same network trained on paired events. The
reason is that ignoring the event pairing leads to a noisier training, but again reproducing
the main features of the detector. We emphasize that unpaired training seems to bring DiDi-
like implementations closer to describing the actual detector, but this is an artifact in that
the detector mapping is noisier than the optimal transports from distribution mapping, and
training on unpaired samples is also noisier, but the two are not positively related.

Finally, we show the transport learned by the conditional CFM networks. Not shown are the
corresponding cINN and VLD results, which are visually identical to the CFM results. The con-
ditional generative models indeed learn the correct detector transport from the paired events,
indicating that conditional generative networks indeed encode the conditional probabilities
from Eq.(27).
Finally, there is the question if the learned distributions have failure modes that cannot be
seen from the marginal distributions. To answer it, we systematically search for mis-matched
correlations using a trained classifier between the true training events and the same number
of unfolded events. The different methods give ROC-AUC values in the range of 0.500-0.55.
Especially for the cINN and CFM networks the AUC is consistent with 1/2, with a tiny number
of statistical outliers. This indicates that despite the different transport maps shown in Fig. 8,
all of the networks faithfully reproduce the target distribution with percent level precision.
Remaining differences exist, but they are consistent with noise and cannot be traced back to a
mis-modeled feature in the underlying phase space density.
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Figure 8: Migration maps for three representative distributions. From the top:
forward detector simulation, Schrödinger Bridge, paired DiDi, unpaired DiDi, and
CFM/cINN/VLD, which are all looking identical. The bin contents are normalized
such that each row sums to one.
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4 Unfolding to parton level: top pairs

4.1 Data

As a second benchmark we apply ML-methods to top quark pair production, unfolding from
reco-level to parton level, i.e. the level of the top quarks and their decay products from the hard
scattering, before undergoing hadronization. While more physics assumptions/approxima-
tions are required for this type of unfolding, it is often performed by ATLAS and CMS [74–81].
Parton-level results are extremely useful, for instance, to combine measurements into a global
analysis [2,3], extract SM parameters [81,82], or to compare new theory predictions without
requiring these to be matched to parton showering programs [83].

The task is to map reco-level 4-momenta to parton-level 4-momenta defined by the 2→ 2
scattering and subsequent decays, in our case [33]

qq̄/g g → t t̄ → (bℓ+νℓ) (b̄qq) with ℓ= e,µ , q = u, d, s, c , (50)

plus the charge-conjugated process. The events are simulated with Madgraph5 3.4.2 [84] atp
s = 13 TeV and with a top quark mass mt = 173 GeV. One of the W bosons decays leptonically,

the other hadronically. Showering and hadronization are simulated with Pythia 8.306 [61],
and detector effects with Delphes 3.5.0 [62] with the standard CMS card. We again recon-
struct jets using the anti-kT algorithm [63], now with R = 0.5 and a pT -dependent b-tagging
efficiency. Leptons and jets are subject to the acceptance cuts pT > 25 GeV and |η|< 0.25. We
only keep events with exactly one lepton, at least 2 b-tagged jets, and at least two more jets.

This second benchmark process is technically more challenging than the Z+jets unfolding
in terms of the six subjet observables, because of the higher phase space dimensionality and
because we can no longer directly match reco-level and parton-level observables. To recon-
struct the hard scattering, the network has to learn the non-trivial combinatorics as well as
complex correlations reflected in the intermediate mass peaks. We focus on a comparison of
the different generative unfolding methods, which reproduce the forward simulation in their
event-wise migration, but are most challenging from an ML-perspective. As before, we post-
pone the important question of model dependence to a later paper.

4.2 Generative unfolding

As a first attempt, we employ a straightforward phase space parametrization for the six top
decay products,

(pT,bℓ ,ηbℓ ,φbℓ , pT,ℓ,ηℓ,φℓ, pT,ν,ην,φν)

(pT,bh
,ηbh

,φbh
, mq1

, pT,q1
,ηq1

,φq1
, pT,q2

,ηq2
,φq2

) . (51)

The lepton masses are common to all events, and we set them to zero at the level of our simu-
lations. The bottom jets are generated with a common finite bottom mass. For the remaining
jets, we have to keep track of the charm mass in the corresponding charm jets. This leads to a
binary degree of freedom, in addition to the 18 standard phase space dimensions.

While at parton level all events have the same number of particles, at reco level we see
a variable number of jets. Jets are produced in top and W -decays, but also in initial-state
and final-state radiation, multi-parton interactions, underlying event, or pileup. Their number
also strongly depends on the acceptance cuts. Naively, these additional jets are not expected
to carry information on the hard process. However, they can sometimes cause events to pass
selections by replacing top decay jets which do not pass the acceptance cuts, or lead to chal-
lenging event reconstruction due to jet combinatorics [57]. This means we cannot just ignore
them.
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Figure 9: Unfolded top pair distributions from conditional generation using the naive
phase space parametrization of Eq.(51). For the Bayesian cINN, Transfermer, CFM
and TraCFM the error bars are based on drawing 50 samples. For the VLD the error
bars are given by unfolding each event 128 times and showing the bin-wise mean
and standard deviation.

While the standard cINN and CFM require a fixed-dimensionality condition, their trans-
former variants can handle variable dimensionality. Alternatively, we could employ an embed-
ding network to overcome this limitation. Testing the impact of additional jets on our specific
unfolding task with the Transfermer and TraCFM networks, we find that they do not bene-
fit from additional reco-level jets significantly. Consequently, we restrict ourselves to a fixed
maximum number of particles at reco-level for these networks. The particles we include in an
ordered vector are the lepton, the missing transverse momentum, the two leading b-jets, and
the two leading light-flavor jets. VLD does naturally includes all jets in an un-ordered fashion.
The masses and transverse momenta of the particles are log-scaled before feeding them to the
network.

We again use an RQS-cINN implementation from the FrEIA library [72], in the last block
we replace the linear layers with Bayesian layers to track the network uncertainties. The CFM
encodes the velocity in a standard MLP network. The time t is embedded to a higher dimension
using a random Fourier feature encoding [85] before being concatenated to the other network
inputs, as we found that this improves results in higher-dimensional tasks. Following [86]
we only make the last network layer Bayesian, as too many Bayesian weights can make the
training of large networks unstable. For the two Transformer-based networks we employ the
standard PyTorch Transformer implementation. The attention blocks are then followed by
a single Bayesian RQS block or a single Bayesian linear layer for the Transfermer and the
TraCFM respectively. For the TraCFM we employ the same time embedding as for the CFM
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and concatenate the encoded time to the transformer output before feeding it to the final
layer.

The results for the cINN, its Transfermer variant, the CFM, and its TraCFM variant along
with VLD are shown in Fig. 9. We have checked that all generative networks reproduce the
kinematics of the top decay products at the percent level. Generally, we find that the lepton
and neutrino kinematics are learned slightly better than the quark kinematics. As shown in the
top rows, the correlations describing the intermediate particles are not learned as well. For the
resonances, all networks struggle. Because they only require to correlate two independent 4-
momenta, the W -peaks are learned a little better than the top peaks. Also, the leptonic decay
is learned better than the hadronic decay. Altogether, the Transformer-enhanced networks
perform better than the CFM, which in turn beats the cINN.

4.3 Generative unfolding using physics

To solve the problems with intermediate on-shell propagators, we employ the dedicated top-
mass parametrization proposed in Ref. [32]. It directly predicts the top and W -kinematics and
makes the simpler decay kinematics accessible via correlations. As the phase space basis we
choose the top 4-momentum in the lab frame, three components of the W 4-momentum in the
top rest frame, and two (three for the hadronic case) components of the first W -decay product
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Figure 10: Unfolded top pair distributions from conditional generation using the ded-
icated phase space parametrization of Eq.(52). For the Bayesian cINN, Transfermer,
CFM and TraCFM the error bars are based on drawing 50 amples. For the VLD the
error bars are given by unfolding each event 32 times and showing the bin-wise mean
and standard deviation.
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top pair events. The corresponding AUC values are 0.53 for the VLD, 0.51 for the
CFM and 0.501 for the TraCFM.

in the W rest frame,

(mt , pL
T,t ,η

L
t ,φL

t , mW ,ηT
W ,φT

W , ηW
ℓ ,φW

ℓ )

(mt , pL
T,t ,η

L
t ,φL

t , mW ,ηT
W ,φT

W , mq1
,ηW

q1
,φW

q1
) . (52)

The superscripts L, T, W denote the rest frames. We then employ a Breit-Wigner mapping using
the mass values in the event generator

p
2 ∗ erfinv
�

2
π

arctan(m−mpeak)
�

, (53)

to turn the sharp mass peaks into a Gaussian-like shape.
The results with this paramerization are shown in Fig. 10. We drop the cINN and focus on

the better CFM implementations. Now that the intermediate masses are directly predicted by
the networks, we reproduce them within a few percent. The kinematics of the decay particles,
now correlations between the directly predicted dimensions, are also faithfully modeled. Be-
cause the learning task has become easier, the difference between the CFM and the TraCFM is
smaller. So physics helps, as it tends to.

Similar to Sec. 3.5, we again train a classifier to distinguish the generated events from
the training data truth. Following Eq.(2) this classifier can be turned into a re-weighting
function w(x), evaluated for each data point in phase space. In Fig. 11 we show the distribution
of learned classifier weights for the three generative unfoldings. In this case, we see that
while the one-dimensional kinematic distributions look similarly good in Fig. 10, there a are
significant differences in the precision with which the generative network reproduce the multi-
dimensional target distributions. The fact that all weight distributions are peaked around
w ≈ 1 and that the tails on the parton-level training and generated datasets are identical
indicates that there is no definite failure mode [87]. On the other hand, the level of agreement
is significantly improved, going from the VLD to the CFM, and then adding the transformer
feature of the TraCFM to encode combinatorics [57]. For the latter, we again reach the percent-
level precision we got used to for the Z+jets detector unfolding in Sec. 3.
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5 Outlook

Machine learning is changing the face of LHC physics, and one of the most exciting develop-
ments is that it enables unbinned, high-dimensional, precise unfolding. This includes detector
unfolding as well as inverting the first-principle simulations to the parton level. There exist
three different ML-methods and tools for such an unfolding, (i) event reweighting or Omni-
Fold, (ii) mapping distributions, and (iii) conditional generative unfolding. All these methods
have been developed to a level, where they are ready to be further studied for use by the LHC
experiments. In this paper, we give an overview of the different methods and correspond-
ing tools, including an update to the most recent neural network architectures and a rough
comparison of the strengths of the different methods.

Our first task is to unfold detector effects for a set of six subjet observables in Z+jets
production. Here, reweighting-based unfolding, a supervised classification task, reproduces
all true particle-level distributions and defines a precision benchmark shown in Fig. 3. A new
Bayesian variant of OmniFold might provide complementary strengths to the existing method.

Alternatively, distribution mapping can be trained on matched events efficiently. We found
that the (Bayesian) Schrödinger Bridge and Direct Diffusion implementations consistently pro-
vide high performance, shown in Fig. 6. Alternatively, distribution mapping can be trained on
unmatched data, which limits its ability to reproduce the actual detector effects, but can be
useful when one is missing matched training data.

Third, unfolding by learning and sampling conditional inverse probabilities is ideally suited
to model complex detector effects, but also the most challenging network architecture. We
have compared a series of tools, including invertible networks without and with a transformer
encoding, as well as diffusion networks without and with a transformer, and with an enhanced
latent representation. In Fig. 7 we have shown that the conditional generative tools match the
precision of distribution mapping. In addition, we have shown to which level the different
methods learn the event migration or optimal transport defined by the forward detector sim-
ulation, rather than an abstract mapping defined by the network architecture.

Finally, we have applied our unfolding methods and tools to invert t t̄ events to the hard
process of top pair production with subsequent decays. Here, correlations pose a serious chal-
lenge, specifically the intermediate mass peaks. We have found that they can be learned pre-
cisely once we represent the phase space in a physics-inspired kinematic basis, as can be seen
in Fig. 10. In addition to the physics pre-processing, the combination of a diffusion model with
a transformer guaranteed the best performance among the conditional generative unfolding
networks.

Altogether, we have shown a multitude of different methods and tools for ML- unfolding,
with dedicated individual strengths.† All of them are ready to be studied further in the context
of LHC analyses. Their complementarity is a strength for building confidence in advanced tools
for high-dimensional cross section measurements.

†Many of the codes used in this paper will be made publicly available, together with a set of tutorials accompa-
nying Ref. [40].

26

https://github.com/heidelberg-hepml/ml-tutorials


SciPost Physics Submission

Acknowledgements

We would like to thank Sofia Palacios Schweitzer for her crucial contributions to DiDi-unfolding
and Bogdan Malaescu for many enlightening discussions on unfolding. TP and AB would like
to thank the Baden-Württemberg-Stiftung for financing through the program Internationale
Spitzenforschung, project Uncertainties — Teaching AI its Limits (BWST_IF2020-010). The
Heidelberg group is supported by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under grant 396021762 – TRR 257 Particle Physics Phenomenology after
the Higgs Discovery and through Germany’s Excellence Strategy EXC 2181/1 – 390900948
(the Heidelberg STRUCTURES Excellence Cluster). SD, VM, and BN are supported by the U.S.
Department of Energy (DOE), Office of Science under contract DE-AC02-05CH11231. DW,
KG, and MF are supported by DOE grant DE-SC0009920. This research used resources of the
National Energy Research Scientific Computing Center, a DOE Office of Science User Facil-
ity supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231 using NERSC award HEP-ERCAP0021099.

27



SciPost Physics Submission

A Combined Z+jets results

In Fig. 12 we compare the unfolding results for Z+jets events, as discussed in Sec. 3. We show
the same kinematic observables as in Fig 3 for the (b)OmniFold benchmark, in Fig. 6 for the
distributions matching, and in Fig. 7 for the conditional generation. We omit all error bars
representing statistical or Bayesian network uncertainties. The (b)OmniFold curves do not
show unfolding, but learned densities from noisy data. They can be compared to each other,
and used as benchmarks for the actual unfolding. None of the networks have been especially
optimized for the task, so for all of them there should still be possible performance gains.
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Figure 12: Results collected from Sec. 3, showing all unfolding networks, as well as
the (b)Omnifold de-noising benchmark.
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B Hyperparameters

Parameter DiDi CFM Z+jets CFM t t̄ TraCFM

Optimizer Adam
Learning rate 0.001
LR schedule Cosine annealing
Batch size 16384
Epochs 500 400 1000 500
Network MLP MLP MLP Transformer
Number of layers 8 8 8 -
Hidden nodes 512 512 1024 -
Transformer blocks - - - 6
Transformer heads - - - 4
Embedding dim - - - 128
Bayesian regularization 1

Table 2: Network and training hyperparameters for the Direct Diffusion and CFM
networks in Figs. 6, 7, 9, and 10

Parameter cINN Z+jets cINN t t̄ Transfermer

Optimizer Adam
Max Learning rate 0.0003
LR schedule One cycle
Batch size 1024
Epochs 75 130 250
Network RQS-INN RQS-INN Transformer+RQS
INN blocks 10 20 1
RQS bins 24 30 30
Subnet layers 5 5 5
Subnet dim 200 256 256
Transformer blocks - - 6
Transformer heads - - 4
Embedding dim - - 128

Table 3: Network and training hyperparameters for the cINN and Transfermer in
Figs. 7 and 9.

Parameter SB

Optimizer Adam
Learning rate 0.001
Batch size 128
Network Updates 250000
Network Fully connected ResNet
Blocks 6
MLP size 256

Table 4: Network and training hyperparameters for the Schrödinger Bridge in Fig. 6.
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Parameter VLD Z+jets VLD t t̄

Optimizer Adam Adam
Initial Learning rate 5× 10−4 5× 10−4

Fine-tune Learning rate 1× 10−4 1× 10−4

Batch size 1024 1024
Updates 1 Million 1 Million
Hidden Dimensions 64 64
Denoising Layers 8 8
Detector Encoder Layers 6 6
Part* Encoder Layers 6 6
Part* Decoder Layers 6 6

Table 5: Network and training hyperparameters for the VLD networks in Figs 7, 9,
and 10.
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