
The dynamics of leadership and success in software development teams

Lorenzo Betti,1, ∗ Luca Gallo,1 Johannes Wachs,2, 3, 4 and Federico Battiston1, †

1Department of Network and Data Science, Central European University, Vienna, Austria
2 Institute for Data Analytics and Information Systems,
Corvinus University of Budapest, Budapest, Hungary

3 Institute of Economics, HUN-REN Centre for Economic and Regional Studies, Budapest, Hungary
4 Complexity Science Hub, Vienna, Austria.

From science to industry, teamwork plays a crucial role in knowledge production and innovation.
Most studies consider teams as static groups of individuals, thereby failing to capture how the
micro-dynamics of collaborative processes and organizational changes determine team success. Here,
we leverage fine-grained temporal data on software development teams to gain insights into the
dynamics of online collaborative projects. Our analysis reveals an uneven workload distribution in
teams, with stronger heterogeneity correlated with higher success, and the early emergence of a lead
developer carrying out the majority of work. Moreover, we find that a sizeable fraction of projects
experience a change of lead developer, with such a transition being more likely in projects led by
inexperienced users. Finally, we show that leadership change is associated with faster success growth,
in particular for the least successful projects. Our work contributes to a deeper understanding of
the link between team evolution and success in collaborative processes.

I. INTRODUCTION

The production of innovation and knowledge increas-
ingly relies on collective efforts. For example, teamwork
is crucial in scientific research, where teams have demon-
strated their effectiveness in fostering groundbreaking
discoveries [1–3], or in industry, where teamwork is essen-
tial for the rapid development of innovative solutions [4].
The effectiveness of teamwork depends on the contin-
uous integration of specialized knowledge of individu-
als [5, 6], and the ability to leverage constructive con-
flicts to generate novel insights [7, 8]. Extensive research
has investigated characteristics of team members that
are associated with performance, from the effect of team
size [3], the interdependencies among team members [9],
and their diversity in terms of gender [10–12], exper-
tise [13], prior experiences [2, 14], and ethnicity [15, 16].
In this way, the results of such collaborative efforts often
go beyond the sum of individual contributions thanks to
the emergence of synergies among team members [17, 18],
conditional on the team’s organization.

In a team, not all members are equal [19]. Success-
ful teamwork often relies on the management of tensions
by leaders [20, 21], who organize work through the divi-
sion of complex tasks into sub-tasks among different team
members [22]. Even in self-organizing teams, lacking a
predefined hierarchical structure, specific team members
can emerge as leading figures who carry out a sizeable
fraction of the work and are eventually responsible for
the project advancement [23–25]. The organizational dy-
namic and evolving nature of teams impact team struc-
ture over time, as roles and responsibilities shift to adapt
to new challenges [26, 27]. For instance, adjustments

∗Electronic address: betti lorenzo@phd.ceu.edu
†Electronic address: battistonf@ceu.edu

in the distribution of labor, the emergence and shift of
leadership, and the turnover of team members all hinder
coordination in teams, explaining why social and coordi-
nation skills are growing in value as teams get larger and
teamwork more prevalent [28].

Indeed, various conceptual frameworks have high-
lighted the need to explicitly consider team dynamics to
properly understand how teams function and their suc-
cess [27, 29, 30]. Nevertheless, most of the insights we
have consider teams as static entities, with little empiri-
cal research accounting for their temporal evolution. This
is largely due to difficulties in accessing or collecting tem-
poral data tracking and measuring team activities across
time [31, 32]. In science, benefiting from the availability
of large-scale curated publication data, a few studies have
recently explored the concept of “persistent teams” [33]
– researchers who consistently collaborate together over
time – showing that “fresh” teams made of new collab-
orators produce more impactful research [34]. However,
publication data only records the outcome of teamwork,
lacking information about the process of the collaborative
effort, such as the specific contributions and activities of
the authors of each paper. In organization theory, team
activity is typically tracked through multi-period obser-
vations, where team members are surveyed at various
intervals. Yet this approach suffers from inherent limita-
tions of low temporal resolution because it would necessi-
tate frequently surveying team members. Such frequent
surveys can disrupt teamwork and lead to survey fatigue,
eventually compromising data quality and preventing the
effective investigation of team dynamics at a microscopic
scale [31]. While fine-grained data about team processes
can be collected through other methods like sensors that
generate real-time data [35] or in controlled laboratory
experiments [36], these approaches typically cover only a
limited number of teams and are difficult to scale.

Open-source software development offers an ideal op-
portunity to investigate collaborative dynamics at a large

ar
X

iv
:2

40
4.

18
83

3v
1

 [
ph

ys
ic

s.
so

c-
ph

]
 2

9
A

pr
 2

02
4

mailto:betti_lorenzo@phd.ceu.edu
mailto:battistonf@ceu.edu

2

scale and with a fine-grained resolution [37–39]. Soft-
ware developers track every change to the software code-
base using version control systems (e.g., Git) and store
their software in online public repositories (e.g., GitHub).
For instance, by analyzing the contribution history of a
project via its commit log (a record of every edit made
to code), it is possible to obtain information about who
made which modification to the software and when. The
analysis of this source of data has identified patterns
where few developers often perform the majority of con-
tributions in a project and most developers make few [40–
42]. This tendency towards centralization, widespread
across collaborative software development, has been em-
ployed to develop heuristics to identify the core members
of teams [43]. Changes in the activity of core developers,
as well as changes in its composition, can offer novel in-
sights about how teams function and the relationship to
project success [44]. The dynamics of the main develop-
ers may vary significantly across projects. For instance,
Linus Torvalds, who created the Linux kernel in 1991, is
nowadays continuing to dominate the development effort
of the project [45] and defines himself as a “benevolent
dictator of Planet Linux” [46]. Differently, Pandas’ cre-
ator Wes McKinney has stopped to be actively involved
in the development of Pandas after five years [47] and
other developers have succeeded as the main developers
of the project [48]. While both Linux and Pandas li-
brary are examples of successful projects, their contrast-
ing leadership dynamics highlight a gap in our under-
standing of the causes and consequences of the emergence
of key team members, their potential turnover, and the
effect of such changes on project success.

To advance the understanding of team dynamics in
open-source software projects, we leverage a curated
dataset tracking the activity of over 40 000 developers in
more than 6000 projects from 2014 to 2022, along with
their success metrics [49, 50]. Our dataset contains the
entire development history of the Rust programming lan-
guage, allowing us to study projects and contributors’ ac-
tivity over time from their inception. First, we examine
the distribution of work as reflected by the distribution of
commits among team members, study the activity pat-
terns of the lead developers – users responsible for the
largest share of commits – and correlate it with project
success. Then, we identify repositories where the lead de-
veloper changes during the project’s lifespan, identifying
profound redistribution of workload and a potential reor-
ganization of the team. Finally, we investigate the asso-
ciation between the change of lead developer and the suc-
cess growth of the project after the transition by compar-
ing those repositories to similar ones that did not change
the lead developer. Our findings demonstrate the inter-
play of team dynamics and performance in open-source
software projects, suggesting that changes in team orga-
nization have implications for the success of the project.

II. RESULTS

A. Emergence of a lead developer

Software developers track their changes to the software
codebase through commits, whose distribution across
team members can measure their work contributions [42]
and be informative about their roles in a project [43]. We
begin by analyzing the distribution of commits among
team members to characterize the distribution of work
in software development teams. We define a team as
the set of developers who make at least one commit to
a repository (i.e., the developers who can autonomously
modify the software codebase). By ranking the devel-
opers of a repository by their total number of commits,
we measure the fraction of commits authored by devel-
opers as a function of their rank. Fig. 1a shows that
the most active developer (rank = 1) authors more than
half of the total number of commits. In contrast, the
second most active developer typically accounts for only
around 10-20% of the total, while the rest is done by the
other team members. This observation highlights the
presence of a “lead developer” who carries the majority
of the workload in a repository, alongside other devel-
opers contributing to a lesser extent. Those properties
are consistent across teams of different sizes as shown
in Fig. 1a (see Fig. S1a for the distribution of reposito-
ries across different team sizes) and through the lifetime
of repositories (see Fig. S2). This persistent nature of
the workload distribution suggests a potential advantage
from such a centralization.
One potential aspect where this advantage may man-

ifest is projects’ success. To test for a relationship be-
tween heterogeneous workload distribution and success,
we first quantify the heterogeneity of the workload dis-
tribution using the relative effective team size [42]. This
metric, defined as 2H/N , where H is the binary entropy
of the distribution of commits among team members and
N is the size of the team, ranges from 1/N (i.e., one sin-
gle developer makes all commits) to 1 (i.e., the workload
is evenly distributed among all members). Consequently,
a smaller relative effective team size indicates a more
uneven distribution of commits among team members.
Then, we employ the number of stars and downloads as
metrics of repositories’ success. Such metrics track two
different dimensions of success: stars can be considered
as a proxy for repositories’ popularity, similar to likes
in social media [51], whereas the number of downloads
reflects the software usage, thus tracking technical qual-
ity. Our analysis reveals an inverse relationship between
repositories’ success and their relative effective team size,
as displayed in Fig. 1b for the number of stars and Fig. 1c
for the number of downloads (see Fig. S1b for the distri-
bution of the number of repositories for different relative
effective team sizes). The relationship is supported by
Spearman’s correlation test, yielding a correlation coef-
ficient of at least ρ = −0.28 for stars and ρ = −0.11 for
downloads across all team sizes (p < 0.001; see Table I

3

1 2 3 4

Rank

0.0

0.2

0.4

0.6

0.8

1.0
Fr

a
ct

io
n
 o

f
co

m
m

it
s

Team size
2

3-4

5-7

8-14

15+

(0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1]

Relative effective team size

0.5

1.0

1.5

2.0

2.5

3.0

S
ta

rs
 (

lo
g
)

(0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1]

Relative effective team size

2

3

4

5

6

D
o
w

n
lo

a
d
s

(l
o
g
)

(a) (b) (c)

FIG. 1: Workload distribution within teams and relationship with success. (a) Median fraction of commits authored
by the r-th most active developer of a repository stratified by team size. The most active developer makes more than half
of the total number of commits while other developers contribute substantially less, regardless of the size of the team. (b-c)
Median number of stars (b) and downloads (c) as a function of the relative effective team size stratified by team size. The
more heterogeneous the workload distribution in the team, the higher the success. The Spearman’s rank test returns p < 0.001
for all team sizes. The number of stars and downloads are incremented by one unit. Error bars range from the 25th to the
75th percentile of the distributions.

for details). To check if the age of repositories affects
the results of the correlation, we repeated the analysis
considering the relative effective team size and success at
different moments of repositories’ lifetime, finding con-
sistent results (see Fig. S2 and Table I).

Our observation aligns with prior research on software
development teams [41], confirming that even in a rel-
atively new programming language such as Rust, the
most successful teams of software developers have an un-
even workload distribution [42]. Furthermore, as already
found in [40] where three large open-source projects were
studied, our results show that the workload distribution
becomes heterogeneous already within the first year of
activity. Differently from previous studies, in the follow-
ing we provide a characterization of the behaviors of the
lead developers of each repository. Beyond static analy-
ses, we focus in particular on team dynamics, revealing
changes in workload distribution and how this impacts a
project’s success.

B. Characterization of lead developers’ activity

Here, we describe the activity patterns of lead develop-
ers compared to non-lead developers. To begin, we com-
pare the distribution of their inter-commit time, defined
as the time elapsed between two consecutive commits au-
thored by the same user (regardless of the repository in
which the commit is made). Fig. 2a displays the distribu-
tions for lead and non-lead developers separately, show-
ing distinct characteristics for those two sets of users. In
particular, lead developers exhibit a higher frequency of
commits. Indeed, their inter-commit time distribution is
left-skewed compared to that of non-lead developers, dis-
playing a prominent peak around 30 minutes (the peak in
non-lead developers’ inter-commit time ranges between

one day and one week). This difference turns into lead
developers being more likely to have longer streaks of con-
secutive commits, as depicted in the inset of Fig. 2a. The
inset shows the probability distribution of making more
than E consecutive commits whose inter-commit time is
smaller than ∆t = 30 minutes (the observation is ro-
bust across other values of ∆t as can be seen in Fig. S3).
Lead developers are indeed three times more likely to
make streaks of at least 10 commits (P (≥ 10) = 0.0097)
compared to non-lead developers (P (≥ 10) = 0.0030).

Another aspect of the activity pattern of developers is
the number of repositories they contribute to. We first
show in Fig. 2b the distribution of the number of reposi-
tories in which lead and non-lead developers author at
least one commit. In addition to being the most ac-
tive developers in their repositories, lead developers con-
tribute to a median of 4 repositories (interquartile range
IQR 2-8) while non-lead developers are active in only
a median of 1 repository (IQR 1-2). To gauge insights
on the extent to which lead developers work on multi-
ple projects simultaneously, we introduce the repository
switch time of developers. This is defined as the time
elapsed between a developer’s first commit on a reposi-
tory and their first commit on a different one, namely the
time elapsed between a developer initiating work on one
repository and transitioning to another. Fig. 2c shows
the distribution of repository switch time for lead and
non-lead developers separately. The difference with the
inter-commit time distribution in Fig. 2a suggests that
the trains of consecutive commits shortly separated in
time (i.e., inter-commit time of 30 minutes) are mostly
done on the same repository, as lead developers switch
from one repository to another on a daily to weekly ba-
sis. The rapid decay of the repository switch time after
one week, in addition to the number of repositories in
which lead developers are active, implies that they work

4

Inter-commit time (days)
0.00

0.02

0.04

0.06

0.08

Fr
a
ct

io
n

3
0

 m
in

8
 h

o
u
rs

7
 d

a
y
s

Lead

Non-lead

Non-lead Lead

0.0

0.5

1.0

1.5

2.0

2.5

N
.

re
p

o
si

to
ri

e
s

(l
o
g

)

10 4 10 2 100 102 104

Repository switch time (days)

0.00

0.02

0.04

0.06

0.08

Fr
a
ct

io
n

3
0

 m
in

8
 h

o
u
rs

7
 d

a
y
s

0 2 4 6 8 10 12 14 16

Time (trimester)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D
o
w

n
lo

a
d
s

(l
o
g

)

Experienced

Not experienced

0 1 2
E (log)

-5

-3

-1

P
(
>
E
)

(l
o
g
)

(b)(a)

(c) (d)

FIG. 2: Characterization of lead developers’ activity. (a) Distribution of the inter-commit times and cumulative dis-
tribution of the number of commits close in time (inset) for lead and non-lead developers. Lead developers exhibit higher
frequency of commits and longer streaks of consecutive commits. (b) Distribution of the number of repositories in which lead
and non-lead developers are active. Lead developers are involved in a larger number of repositories. (c) Distribution of the
repository switch time of lead and non-lead developers. Lead developers tend to switch from one project to another on a daily to
weekly basis. (d) Number of downloads across repositories’ lifetime stratified by lead developers’ experience (median and 95%
confidence interval). Repositories led by experienced developers are downloaded more compared to those led by inexperienced
ones. Time is binned into trimesters.

concurrently on multiple projects and focus their efforts
within the Rust ecosystem. Differently, non-lead develop-
ers move between repositories over longer periods. This
may be a consequence of non-lead developers being active
in fewer projects and possibly having lesser involvement
in the Rust ecosystem.

Lead developers often contribute to multiple reposito-
ries, and their experience as core members in previous
projects might prove beneficial for new endeavours. For
this reason, we ask: Does an experienced lead developer
impact the success of a repository? We define the lead de-
veloper of a repository i as experienced if they have been
the lead developer of other repositories before starting
to contribute to repository i. We identify 2744 (43%)
repositories led by experienced lead developers and show
in Fig. 2d the median number of downloads these reposi-
tories receive across their lifetime, compared to reposito-
ries whose lead developer never led a repository before.
We observe that repositories led by developers with pre-
vious experience receive more downloads over their life-
time. Since downloads can be interpreted as an indicator
of the technical quality of the software, we speculate that
developers who led repositories in the past may leverage
their previous experience in Rust projects to develop bet-
ter software. By contrast, it is worth noticing that lead

developers’ previous experience does not affect the num-
ber of stars, indicating a lack of advantage in terms of
popularity (see Fig. S4). We verified that the observa-
tions are not influenced by the inclusion of repositories
with varying ages, as this could introduce bias due to the
advantage older repositories may have in accumulating
stars and downloads (see Fig. S4).

C. Lead developers of repositories can change

Lead developers emerge early in a project and display
distinct activity patterns. Does the same individual con-
sistently maintain such a role, or does this figure change
in time? To identify such changes, we first aggregate de-
veloper activities (i.e., cumulative number of commits)
and the success of repositories (i.e., cumulative number
of stars and downloads) by trimesters. Then, we consider
the lead developer of a repository at trimester t as the
one who has made the largest share of commits up to that
time (we excluded 206 repositories from the subsequent
analyses to ensure the inclusion of repositories displaying
meaningful changes; see details in the Methods section).
We find that 618 repositories (10%) undergo a change of
lead developer, with the majority of such changes occur-

5

ring between the second and third year of a repository’s
lifetime, as shown in Fig. 3a. Most repositories undergo-
ing a change in lead developer experience only one transi-
tion (92%). Therefore, we focus our subsequent analyses
on the first and second lead developers, hereafter referred
to as the old and new lead developers, respectively.

To further investigate how the transition from the old
to the new lead developer occurs, the first aspect we ex-
amine is the dynamics of the transition . We show in
Fig. 3b the relative number of new commits authored by
the old and new lead developer around the time when
the transition occurs (i.e., the time when the lead devel-
oper changes), averaged across repositories (repositories
with no activity in a trimester are omitted). The result
indicates a rapid transition with a drop in the activity
of the former lead developer. One year before the tran-
sition, old and new lead developers make a comparable
amount of new contributions on average, i.e., 30% of the
total number of new commits. However, while the activ-
ity of old lead developers sharply declines, dropping to
levels below 10%, the relative contribution of new leads
largely increases, ultimately making a heavy portion of
new commits (around 65%) in the subsequent year af-
ter the change. In particular, in 297 repositories, corre-
sponding to 48% of projects that undergo a change, the
old lead developer ceases to contribute entirely through
commits. This stop in commit activity does not neces-
sarily indicate a complete departure from the project,
as contributors can remain involved in other activities
within projects. Indeed, we observe that in 48 of such
repositories (16%), old lead developers remain active by
engaging in other tasks such as addressing issues and re-
viewing pull requests. This transition of core team mem-
bers to administrative roles has been previously observed
in open-source software development as a response to an
abrupt increase of external attention [52].

Next, we ask if previous experience can explain changes
to the role of the lead developer. To account for the
temporal dimension, we consider the lead developer of
a repository i as experienced if they have been the lead
developer of other repositories before becoming the lead
developer of repository i. We find that 11% of reposito-
ries initiated by inexperienced lead developers undergo
a transition of lead developer (388 out of 3519), while
this happens to 9% of those initiated by experienced
lead developers (230 out of 2646). Although this dif-
ference looks small, it corresponds to a 30% increase in
the odds of changing the lead developer when the initial
lead lacks previous experience and it is deemed signifi-
cant according to Fisher’s exact test (odds ratio at 1.30,
p-value = 0.003). We checked the robustness of the result
against the year in which repositories were initiated by
conducting additional tests restricted to repositories ini-
tiated after specific years. The results, shown in Fig. 3c,
confirm that the association remains significant except
for the last two years, possibly because of the reduction
of the sample size (N = 2339 for 2019 and N = 1027 for
2020). In short, the experience of the initial lead devel-

oper is associated with a lower likelihood of change.
Finally, we investigate if lead developers changes may

be explained by the success of the project before the
change. For instance, existing literature on startups sug-
gests a U-shape relationship between founder departure
and growth rate, indicating that founders of startups ex-
periencing either slow or rapid growth are more likely to
depart than those of startups with intermediate growth
rates [53]. Interestingly, we find no evidence supporting
an association between previous success and the likeli-
hood of changing the lead developer in the future within
the Rust ecosystem (see Fig. S5 for details).

D. Repositories that change the lead developer
perform better after the change

With the previous analyses, we have shown that a size-
able fraction of Rust repositories undergo a change of
their lead developers, describing the dynamics and fac-
tors associated with this turnover. How does such a
turnover relate to the repositories’ future success?
To answer this question, we employ a matching ap-

proach to compare the success trend of those repositories
(named “lead-change repositories”) against the success of
similar repositories whose lead developer did not change
(named “lead-remain repositories”). Specifically, we de-
sign a stringed matching procedure to identify pairs of
lead-change and lead-remain repositories that are similar
in terms of team composition and success prior to the
change of the lead developer (see Methods section for de-
tails). To ensure a reasonable fit, we restrict the analysis
to a subset of 151 lead-change repositories (24%) display-
ing meaningful activity and success one year before the
change of leader (more than 50 commits, 10 stars, and
100 downloads). We then monitor the difference in the
success growth at time t (∆t) associated to the lead de-
veloper change as

∆t = Yt − Ỹt

where Yt = St/St0 is the success of the lead-change repos-
itory (i.e., either number of stars or downloads) relative

to the last pre-treatment period (t0 = −1) and Ỹt is that
of the matched repository. The value of ∆t should be
close to zero for t ≤ t0, indicating that the lead-change
repository and its match exhibit similar success trajec-
tory before the change. After t0, ∆t quantifies how the
success growth varies in relation to the change of lead
developer. We consider ∆t for t ranging from [−4, 4],
namely, one year before and after the time in which the
change occurs (t = 0).
We find that the change of lead developer is positively

related to a stronger growth in success. Fig. 4a shows
the success difference ∆t for stars averaged across the
135 repositories with a suitable match (89% of the lead-
change repositories). Notably, the difference in success
growth is already positive during the first trimester in
which the new lead developer takes over (∆t=0 = 0.05

6

0 1 2 3 4 5 6

Year in which the lead changes

0

2

4

6

8

10
C

u
m

u
la

ti
v
e
 p

e
rc

e
n
ta

g
e

3 2 1 0 1 2 3

Time relative to lead change

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
a
ct

io
n
 o

f
n
e
w

 c
o
m

m
it

s

Old lead

New lead

2014 2015 2016 2017 2018 2019 2020

Repositories created after

2

4

6

8

10

12

14

%
 o

f
le

a
d
-c

h
a
n
g
e
 r

e
p
o
s. ** ** ** * **

Experienced

Not experienced

(a) (b) (c)

FIG. 3: Lead developers can change across the lifetime of repositories. (a) Cumulative percentage of repositories
undergoing a lead developer change as a function of the number of years since their creation. Around 10% of repositories
change their lead developer throughout their lifetime, with the majority occurring within the second and third year of activity.
(b) Fraction of new commits authored by the old and new lead developer before and after the lead developer transition (mean
and 95% confidence interval). After the transition (vertical dashed line), contributions from the old lead developer diminish
rapidly. (c) Percentage of lead-change repositories stratified by the previous experience of the old lead developer. Each point
refers to repositories created at a specific year or later. Repositories led by inexperienced lead developers exhibit a significantly
higher likelihood to change their lead developer compared to those led by experienced ones, according to Fisher’s exact test.
Significance levels are denoted as follows: * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. Error bars refer to 95%
confidence intervals (Wilson score interval).

on average, 95% CI: 0.02 - 0.09) and keeps increasing
during the whole year after the change (one year later,
∆t=4 = 0.23 on average, 95% CI: 0.06 - 0.40). Same
results hold for downloads (see Fig. S7), thus suggest-
ing that the change of lead developer is associated with
faster success growth with respect to both popularity and
technical quality. The values of ∆t before the change
(t < 0) are close to zero, meaning that the success trends
between the lead-change and their matched repositories
are close on average before the transition. This under-
lines the good quality of the matching procedure. To
check the robustness of the result, we also consider the
median of the success difference ∆t, showing that the ob-
served positive association is not due to the skewness of
the distribution of ∆t (see Fig. S7).

Finally, we investigate how success before the transi-
tion and lead developer experience affect success growth.
As depicted in Fig. 4b, we find that lowly successful
repositories (i.e., those in the bottom 30% of the success
distribution) have larger ∆t in terms of number of stars
when compared to average (i.e., those between the 50th
and the 80th percentile) and top (i.e., top 10%) reposi-
tories. This indicates that repositories gaining relatively
more visibility after the change of lead developers are the
least popular. We found no significant differences in the
case of downloads (see Fig. S8). Regarding the previous
experience, we observe in Fig. 4c that repositories initi-
ated by an experienced lead developer have a significant
growth in terms of stars, whereas repositories initiated
by inexperienced lead developers do not (see Fig. S9 for
a discussion of the skewness of ∆t). Finally, in Fig. S10,
we consider the combined effect of both the old and the
new lead developer’s experience on success growth.

III. DISCUSSION

In this study, we used fine-grained data about soft-
ware development teams to characterize the temporal
dynamics of online collaborative projects. By tracking
the activity of the most active contributor, we unveiled
the emergence of a lead developer who exhibits a distinc-
tive pattern of activity compared to non-lead developers,
with lead developers emerging early in a project lifetime.
Moreover, we show how an uneven distribution of work-
load among team members is positively associated with
a repository’s success. We identified a sizeable fraction
of projects that undergo a change of their lead developer
and revealed an association between such transitions and
faster success growth.

Our analysis of open-source Rust projects reports that
most of the work is carried out by one or a few devel-
opers and that this correlates with higher success. This
evidence is well-documented in the literature and spans
across different programming languages [40–42, 54, 55].
One possible explanation for such a correlation is the in-
crease in efficiency due to the concentration of workload
among few developers, which is likely to reduce the cost
of coordination [42, 56]. At the same time, this distribu-
tion of work may result in a concentration of knowledge
about the functioning of the software around a few devel-
opers, thus posing the project at risk should the main de-
velopers leave. Drawing on a well-known concept in the
software development literature, projects have a small
“truck factor”, meaning that the number of key devel-
opers who would need to be incapacitated, i.e., hit by
a truck, to prevent further development of the project is
small [57–61]. The tension between efficiency and project

7

-4 -3 -2 -1 0 1 2 3 4

Time relative to lead developer change (t)

0.0

0.1

0.2

0.3

0.4
st
a
rs

t

Bottom Mid Top

Star bin at t= 1

1.0

0.5

0.0

0.5

1.0

1.5

st
a
rs

t
=

3

Not Experienced Experienced

Old lead

0.1

0.0

0.1

0.2

0.3

0.4

st
a
rs

t
=

3

(a) (b) (c)

FIG. 4: Lead developer changes are associated with faster success growth. (a) Average effect of lead developer change
∆t for stars. Repositories’ success grows faster compared to similar repositories that did not undergo such a change. (b-c)
Success growth ∆t for stars stratified by (b) the success before the change of lead developer and (c) the experience of the
old lead developer. Worst-performing repositories exhibit a large positive effect following the change, whereas top-performing
ones are minimally affected. Repositories started by an experienced lead developer benefit more from the change than those
initiated by an inexperienced one. Error bars in (a) and (c) correspond to 95% confidence intervals.

sustainability highlights a “high risk, high reward” strat-
egy in open-source software development.

More broadly, our study contributes to the ongoing
discourse within the field of team science, particularly
by addressing the unresolved question of how changes in
team composition affect teamwork [31]. Although the
literature presents mixed findings, where team changes
can be either beneficial [62, 63] or detrimental [64, 65],
there is consensus that changes involving core team mem-
bers deeply affect team functionality [19]. Our results are
not only in line with these general predictions, but lean
towards a positive effect of such changes on team out-
comes, especially for the worst-performing teams before
the transition. In addition, the stronger effect observed
for experienced lead developers leaves room to speculate
about the importance of experienced developers in set-
ting the stage for successful projects regardless of poten-
tial changes in such a fundamental role. This observation
raises further questions about the characteristics of the
old and new lead developers that may influence such a
relationship. Drawing on previous studies, the change of
a team member is more beneficial the higher the relative
skills of the team members involved in the turnover [66].
Further research is needed to identify factors that make
the turnover more beneficial for team outcomes.

While our findings relate the change of the lead devel-
oper with a significantly higher success growth, the mech-
anism behind this association remains unclear. Indeed,
this relationship highlights a deep connection between
the dynamics of teams and their performance, which
leaves room for speculation on whether success drives
leadership change or vice versa. For instance, as a result
of a rapid increase of attention, projects can attract new
contributors, and core developers can shift to organiza-
tional roles [52]. This suggests that an increase in success
brings more developers to join the team, thus increasing
the probability of changing the lead developer. A sim-

ilar mechanism may occur due to Rust’s rapid increase
in public attention, which likely increases the number of
new contributors to projects and may require teams to
adapt and undergo structural changes [67]. Conversely,
leadership turnover can unleash creative forces previously
bound up in an organization or team, which drive the in-
crease in the project’s success [68]. At the same time,
in our context we saw that new leaders tend to ramp up
their activity in a project before taking over, suggesting
that there may be value in a balance of previous collabo-
rative ties and new connections in an evolving team [21].
In short, further research is needed to shed light on the
causality between lead developer change and success.

Our work relies on the analysis of a curated dataset
and benefits from considering the whole development his-
tory of one single programming language, providing a
controlled environment to characterize team dynamics in
open-source software development. Indeed, the inclusion
of multiple programming languages may affect the re-
sults because coding practices differ depending on the
programming language. For instance, it has been shown
that different programming languages have varying lev-
els of productivity and require unequal effort to write
the same code [69, 70]. Extending our study to a larger
sample of programming languages is not trivial. For in-
stance, the success metrics we considered (i.e., GitHub’s
stars and downloads) are platform-specific and may not
be available for all programming languages. This ap-
plies in particular to programming languages that are
older than software-development platforms, as we may
not have data on their repositories’ entire development
history. Keeping these challenges in mind, future stud-
ies on multiple programming languages might broaden
our understanding of how teams coordinate in software
development projects beyond the Rust ecosystem.

Beyond open-source software development, our work
provides a fresh perspective on team evolution, leader-

8

ship dynamics and their relationship to project success,
contributing to a deeper understanding of the successful
dynamics of collaborative processes.

IV. METHODS

A. Data and selection of repositories

We used data sourced from [49], consisting of a curated
dataset containing the activities of developers across
39 671 repositories hosting Rust packages on various on-
line platforms (e.g., GitHub, GitLab). Developers’ ac-
tivities are tracked through commits, providing a com-
prehensive record of changes to the project’s codebase,
in addition to other activities pertaining more to project
management tasks (e.g., pull requests, Q&As). Devel-
opers’ user names are disambiguated, and flags identi-
fying bot accounts are provided. The dataset includes
platform-specific features that can be used as a proxy
for repositories’ success over time. We chose to use the
number of stars, which can be considered the most re-
liable measure of popularity [51], and number of down-
loads as a proxy for technical quality. Since stars are only
available for repositories stored on GitHub, we discarded
those hosted in other platforms (6% of the projects in
the datasets).

Inspired by [71], we filtered repositories to ensure the
inclusion of repositories suitable to study collaborative
software development. After discarding the activity of
bots, we selected the repositories satisfying the follow-
ing conditions: (1) first commit with no deletions, (2)
total number of lines of code positive across the whole
lifetime, (3) first commit in 2014 or later, (4) at least 100
lines of code in total, (5) lifetime of at least one year, (6)
at least one commit per month on average, (7) at least
one package associated to the repository (since a repos-
itory can host more than one package [49]). Conditions
(1) and (2) make us more confident that we study repos-
itories for which their whole history is tracked. Indeed,
no repository can be initiated by deleting any line, nor
can it have a negative number of lines at any point in its
lifetime. Conditions (4-7) select repositories hosting soft-
ware developed over time and likely discard very small
projects. After discarding repositories developed by one
single developer, and repositories displaying activity on
less than four trimesters, we ended up with a total of
6165 repositories.

B. Detecting lead developer changes

The lead developer of a repository is defined as the
developer with the highest number of commits. How-
ever, different developers may be leading the repository
at different points in time. To identify changes in lead de-
velopers over time, we counted the cumulative number of
commits authored by team members at each time period

(i.e., trimesters). Then, we defined the lead developer of
the repository at time t as the team member that made
the largest share of commits up to that time. To avoid
the inclusion of spurious changes, such as those in the ini-
tial phases of the project when the activity is relatively
low, we excluded the repositories that have changed the
lead developer within the first three trimesters of activ-
ity. Additionally, cases where a lead developer change is
followed by the former lead developer re-assuming their
role were excluded as well (total repositories discarded
Nspurious = 206). This criterion ensures that our analyses
rely on repositories in which a meaningful change hap-
pened, with the initial lead developer maintaining their
position for a significant duration before being succeeded
by a new lead developer.

C. Matching procedure

To investigate the performance of repositories after the
change of their lead developer (“lead-change reposito-
ries”), we compared their success trajectory with that of
similar ones whose lead developer did not change (“lead-
remain repositories”). Specifically, we implemented a
matching procedure that, for each lead-change reposi-
tory, identifies a set of lead-remain repositories that are
similar to the lead-change repository in terms of tem-
poral patterns of activity, team composition and success
before the change of lead developer happened. Then, we
selected the matched repository among those candidates
as the one with the most similar success trajectory during
the year preceding the change of lead developer.
The details of the matching are as follows. Initially,

for each lead-change repository, we identified lead-remain
repositories whose first commit date differs by at most six
months from that of the lead-change repository. In ad-
dition, we required the lead-remain repositories to have
lifetime as long as the age at which the lead-change
repository changed the lead developer. This ensures that
the lead-change repository and its candidates developed
within a comparable timeframe. Such a requirement con-
tributes to controlling for the average status of Rust’s
ecosystem, thus avoiding potential biases due to the rapid
growth of the programming language. In this setting,
t = 0 designates the time in which the new lead devel-
oper takes over. Then, we refined our set of candidates to
select repositories that closely matched the lead-change
repository in terms of team composition and prior suc-
cess for t < 0. The selected set of candidates met the
following criteria: (1) similar team size at t = −1 (see
Fig. S6), (2) absolute difference in relative effective team
size, averaged across t ∈ [−4,−1], smaller than 0.20, and
(3) absolute relative difference of (log) number of stars
and downloads at t = −1 smaller than 0.50.
As the last step, we selected the candidate that most

closely matched in terms of success growth before the
change. To do that, we first defined the success growth
as Yt = St/St0 , where t0 = −1 refers to the last time

9

period before the change of the lead developer and St

is either the number of stars or downloads at time t. In
other words, we considered the success growth relative to
the success of the repository at the last trimester before
the lead developer change. We then chose the matched
repository as the one that exhibited the smallest max-
imum relative difference in success growth during the
period t ∈ [−4,−1], considering both stars and down-
loads. If the maximum difference is larger than 0.50, we
discarded the lead-change repository due to the lack of
a sufficiently similar repository among the lead-remain
ones. Our results are robust against the choice of those
thresholds.

Acknowledgements

L.G. and F.B. acknowledge support from the Air
Force Office of Scientific Research under award num-
ber FA8655-22-1-7025. J.W. acknowledges support
from the Center for Collective Learning (101086712-
LearnData-HORIZON-WIDERA-2022-TALENTS-01 fi-
nanced by EUROPEAN RESEARCH EXECUTIVE
AGENCY (REA).)

[1] S. Wuchty, B. F. Jones, and
B. Uzzi, Science 316, 1036 (2007),
https://www.science.org/doi/pdf/10.1126/science.1136099
.

[2] R. Guimerà, B. Uzzi, J. Spiro, and
L. A. N. Amaral, Science 308, 697 (2005),
https://www.science.org/doi/pdf/10.1126/science.1106340
.

[3] L. Wu, D. Wang, and J. A. Evans, Nature 566, 378
(2019).

[4] M.-L. Liu, N.-T. Liu, C. G. Ding, and C.-P. Lin, Tech-
nological Forecasting and Social Change 91, 295 (2015).

[5] S. M. Ben-Menahem, G. von Krogh, Z. Erden, and
A. Schneider, Academy of Management Journal 59, 1308
(2016), https://doi.org/10.5465/amj.2013.1214 .

[6] J. A. Grand, M. T. Braun, G. Kuljanin, S. W. J. Ko-
zlowski, and G. T. Chao, J Appl Psychol 101, 1353
(2016).

[7] X.-Y. Xie, W.-L. Wang, and K. Luan, Group
Processes & Intergroup Relations 17, 240 (2014),
https://doi.org/10.1177/1368430213502559 .

[8] N. J. A. Thomas A. O’Neill and S. E. Hast-
ings, Human Performance 26, 236 (2013),
https://doi.org/10.1080/08959285.2013.795573 .

[9] F. Baumann, A. Czaplicka, and I. Rahwan, Scientific
Reports 14, 2491 (2024).

[10] Y. Yang, T. Y. Tian, T. K. Woodruff, B. F.
Jones, and B. Uzzi, Proceedings of the National
Academy of Sciences 119, e2200841119 (2022),
https://www.pnas.org/doi/pdf/10.1073/pnas.2200841119
.

[11] J. B. Bear and A. W. Woolley, Interdis-
ciplinary Science Reviews 36, 146 (2011),
https://doi.org/10.1179/030801811X13013181961473
.

[12] L. Wallrich, V. Opara, M. Weso lowska, D. Barnoth,
and S. Yousefi, “The relationship between team diver-
sity and team performance: reconciling promise and re-
ality through a comprehensive meta-analysis registered
report,” (2024).

[13] M. de Vaan, B. Vedres, and D. Stark, Amer-
ican Journal of Sociology 120, 1144 (2015),
https://doi.org/10.1086/681213 .

[14] N. Pobiedina, J. Neidhardt, M. d. C. Calatrava Moreno,
and H. Werthner, in Proceedings of the 22nd Inter-

national Conference on World Wide Web, WWW ’13
Companion (Association for Computing Machinery, New
York, NY, USA, 2013) p. 1185–1194.

[15] R. B. Freeman and W. Huang, Journal of Labor Eco-
nomics 33, S289 (2015), https://doi.org/10.1086/678973
.

[16] S. Hoogendoorn and M. Van Praag, (2012).
[17] A. W. Woolley, C. F. Chabris, A. Pentland, N. Hashmi,

and T. W. Malone, Science 330, 686 (2010),
https://www.science.org/doi/pdf/10.1126/science.1193147
.

[18] L. H. Ungar, B. A. Mellers, V. A. Satopaa, P. E. Tet-
lock, and J. Baron, in AAAI Fall Symposium: Machine
Aggregation of Human Judgment (2012).

[19] H. Arrow and J. E. Mcgrath, Small Group Research 24,
334 (1993), https://doi.org/10.1177/1046496493243004 .

[20] T. Saeed, S. Almas, M. Anis-ul Haq, and G. S. K. Niazi,
International Journal of Conflict Management 25, 214
(2014).

[21] B. Vedres and T. Cserpes, in Academy of Management
Proceedings, Vol. 2020 (Academy of Management Briar-
cliff Manor, NY 10510, 2020) p. 18879.

[22] S. J. Zaccaro, A. L. Rittman, and M. A. Marks, The
Leadership Quarterly 12, 451 (2001).

[23] S. O’Mahony and F. Ferraro, The Academy of Manage-
ment Journal 50, 1079–1106 (2007).

[24] R. Thapa and S. Vidolov, ECIS 2020 Research Papers
(2020).

[25] S. TAGGAR, R. HACKEW, and S. SAHA,
Personnel Psychology 52, 899 (1999),
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1744-
6570.1999.tb00184.x .

[26] H. A. Simon, Administrative behavior (Simon and Schus-
ter, 2013).

[27] H. Arrow, J. McGrath, and J. Berdahl, Small Groups
as Complex Systems: Formation, Coordination, Devel-
opment, and Adaptation (Thousand Oaks, California,
2000).

[28] D. J. Deming, The Quarterly Journal of Economics 132,
1593 (2017).

[29] F. Delice, M. Rousseau, and J. Feitosa, Frontiers in Psy-
chology 10 (2019), 10.3389/fpsyg.2019.01324.

[30] J. C. Gorman, T. A. Dunbar, D. Grimm, and C. L.
Gipson, Frontiers in Psychology 8 (2017), 10.3389/fp-
syg.2017.01053.

http://dx.doi.org/10.1126/science.1136099
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1136099
http://dx.doi.org/ 10.1126/science.1106340
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1106340
http://dx.doi.org/10.1038/s41586-019-0941-9
http://dx.doi.org/10.1038/s41586-019-0941-9
http://dx.doi.org/https://doi.org/10.1016/j.techfore.2014.03.014
http://dx.doi.org/https://doi.org/10.1016/j.techfore.2014.03.014
http://dx.doi.org/10.5465/amj.2013.1214
http://dx.doi.org/10.5465/amj.2013.1214
http://arxiv.org/abs/https://doi.org/10.5465/amj.2013.1214
http://dx.doi.org/10.1177/1368430213502559
http://dx.doi.org/10.1177/1368430213502559
http://arxiv.org/abs/https://doi.org/10.1177/1368430213502559
http://dx.doi.org/ 10.1080/08959285.2013.795573
http://arxiv.org/abs/https://doi.org/10.1080/08959285.2013.795573
http://dx.doi.org/10.1038/s41598-024-52837-3
http://dx.doi.org/10.1038/s41598-024-52837-3
http://dx.doi.org/ 10.1073/pnas.2200841119
http://dx.doi.org/ 10.1073/pnas.2200841119
http://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.2200841119
http://dx.doi.org/10.1179/030801811X13013181961473
http://dx.doi.org/10.1179/030801811X13013181961473
http://arxiv.org/abs/https://doi.org/10.1179/030801811X13013181961473
http://dx.doi.org/ 10.31234/osf.io/nscd4
http://dx.doi.org/ 10.31234/osf.io/nscd4
http://dx.doi.org/ 10.31234/osf.io/nscd4
http://dx.doi.org/ 10.31234/osf.io/nscd4
http://dx.doi.org/10.1086/681213
http://dx.doi.org/10.1086/681213
http://arxiv.org/abs/https://doi.org/10.1086/681213
http://dx.doi.org/10.1145/2487788.2488147
http://dx.doi.org/10.1145/2487788.2488147
http://dx.doi.org/10.1086/678973
http://dx.doi.org/10.1086/678973
http://arxiv.org/abs/https://doi.org/10.1086/678973
http://dx.doi.org/ 10.1126/science.1193147
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1193147
https://api.semanticscholar.org/CorpusID:33038430
https://api.semanticscholar.org/CorpusID:33038430
http://dx.doi.org/10.1177/1046496493243004
http://dx.doi.org/10.1177/1046496493243004
http://arxiv.org/abs/https://doi.org/10.1177/1046496493243004
http://dx.doi.org/10.1108/IJCMA-12-2012-0091
http://dx.doi.org/10.1108/IJCMA-12-2012-0091
http://dx.doi.org/https://doi.org/10.1016/S1048-9843(01)00093-5
http://dx.doi.org/https://doi.org/10.1016/S1048-9843(01)00093-5
https://aisel.aisnet.org/ecis2020_rp/196
https://aisel.aisnet.org/ecis2020_rp/196
http://dx.doi.org/https://doi.org/10.1111/j.1744-6570.1999.tb00184.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1744-6570.1999.tb00184.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1744-6570.1999.tb00184.x
http://dx.doi.org/10.4135/9781452204666
http://dx.doi.org/10.4135/9781452204666
http://dx.doi.org/10.4135/9781452204666
http://dx.doi.org/10.3389/fpsyg.2019.01324
http://dx.doi.org/10.3389/fpsyg.2019.01324
http://dx.doi.org/ 10.3389/fpsyg.2017.01053
http://dx.doi.org/ 10.3389/fpsyg.2017.01053

10

[31] S. E. Humphrey and F. Aime, The Academy
of Management Annals 8, 443 (2014),
https://doi.org/10.1080/19416520.2014.904140 .

[32] M. Santolini, L. Blondel, M. J. Palmer, R. N. Ward,
R. Jeyaram, K. R. Brink, A. Krishna, and A.-L.
Barabasi, “igem: a model system for team science and
innovation,” (2023), arXiv:2310.19858 [cs.SI] .

[33] S. Chowdhary, L. Gallo, F. Musciotto, and F. Battiston,
“Team careers in science: formation, composition and
success of persistent collaborations,” (2024), in prepara-
tion.

[34] A. Zeng, Y. Fan, Z. Di, Y. Wang, and S. Havlin, Nature
Human Behaviour 5, 1314 (2021).

[35] M. Kolbe and M. Boos, Frontiers in Psychology 10
(2019), 10.3389/fpsyg.2019.01478.

[36] R. O. Szabo, S. Chowdhary, D. Deritei, and F. Battiston,
Scientific Reports 12, 10498 (2022).

[37] I. Scholtes, P. Mavrodiev, and F. Schweitzer, Empirical
Software Engineering 21, 642 (2016).

[38] C. Gote, I. Scholtes, and F. Schweitzer, Empirical Soft-
ware Engineering 26, 75 (2021).

[39] D. Sornette, T. Maillart, and G. Ghezzi, Plos one 9,
e103023 (2014).

[40] M. Goeminne and T. Mens, in the Joint Porceedings of
the 1st International workshop on Model Driven Software
Maintenance and 5th International Workshop on Soft-
ware Quality and Maintainability (Citeseer, 2011) pp.
74–82.

[41] K. Yamashita, S. McIntosh, Y. Kamei, A. E. Hassan,
and N. Ubayashi, in Proceedings of the 14th International
Workshop on Principles of Software Evolution, IWPSE
2015 (Association for Computing Machinery, New York,
NY, USA, 2015) p. 46–55.

[42] M. Klug and J. P. Bagrow, Royal So-
ciety Open Science 3, 160007 (2016),
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.160007
.

[43] T. Bock, N. Alznauer, M. Joblin, and S. Apel,
ACM Trans. Softw. Eng. Methodol. 32 (2023),
10.1145/3593803.

[44] M. S. Zanetti, I. Scholtes, C. J. Tessone, and
F. Schweitzer, in 2013 6th international workshop on
cooperative and human aspects of software engineering
(chase) (IEEE, 2013) pp. 49–56.

[45] “Linuk kernel commit distribution on github,” https:

//web.archive.org/web/20240324122230/https:

//github.com/torvalds/linux/graphs/contributors,
accessed: 2024-04-17.

[46] G. Rivlin, “Leader of the free world,” https://www.

wired.com/2003/11/linus/, accessed: 2024-04-17.
[47] M. Turck, “In conversation with wes mckinney, ceo,

ursa computing,” https://mattturck.com/mckinney/,
accessed: 2024-04-17.

[48] “Pandas commit distribution on github,” https://web.

archive.org/web/20240417080730/https://github.

com/pandas-dev/pandas/graphs/contributors, ac-
cessed: 2024-04-17.

[49] W. Schueller, J. Wachs, V. D. P. Servedio, S. Thurner,
and V. Loreto, Scientific Data 9, 703 (2022).

[50] W. Schueller and J. Wachs, Collective Intelligence 3,
26339137241231912 (2024).

[51] H. Borges and M. Tulio Valente, Journal of Systems and
Software 146, 112 (2018).

[52] D. Maldeniya, C. Budak, L. P. Robert Jr., and D. M.

Romero, in Proceedings of The Web Conference 2020 ,
WWW ’20 (Association for Computing Machinery, New
York, NY, USA, 2020) p. 2055–2065.

[53] W. Boeker and R. Karichalil, Academy of Management
Journal 45, 818 (2002), https://doi.org/10.5465/3069314
.

[54] A. Mockus, R. T. Fielding, and J. D. Herbsleb, ACM
Transactions on Software Engineering and Methodology
11, 309–346 (2002).

[55] T. Che lkowski, P. Gloor, and D. Jemielniak, PLOS ONE
11, 1 (2016).

[56] Y. Ye, K. Nakakoji, and Y. Yamamoto, in Software En-
gineering Approaches for Offshore and Outsourced De-
velopment, edited by B. Meyer and M. Joseph (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007) pp. 152–169.

[57] G. Avelino, L. Passos, A. Hora, and M. Valente, in 2016
IEEE 24th International Conference on Program Com-
prehension (ICPC) (IEEE Computer Society, Los Alami-
tos, CA, USA, 2016) pp. 1–10.

[58] R.-H. Pfeiffer, in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR)
(2021) pp. 41–45.

[59] L. Williams and R. R. Kessler, Pair programming illumi-
nated (Addison-Wesley Professional, 2003).

[60] M. Bowler, “Truck Factor,” https://web.archive.org/

web/20210429072452/http://www.agileadvice.com/

2005/05/15/agilemanagement/truck-factor/ (2005),
[Accessed 27-03-2024].

[61] M. Ferreira, T. Mombach, M. T. Valente, and K. Fer-
reira, Software Quality Journal 27, 1583 (2019).

[62] J. C. Gorman, P. G. Amazeen, and N. J. Cooke, Non-
linear dynamics, psychology, and life sciences 14, 265
(2010).

[63] H.-S. Choi and L. Thompson, Organizational Behavior
and Human Decision Processes 98, 121 (2005).

[64] J. N. Pedro J. Ramos-Villagrasa and A. L.
Garćıa-Izquierdo, European Journal of Work
and Organizational Psychology 21, 778 (2012),
https://doi.org/10.1080/1359432X.2012.669525 .

[65] K. Lewis, M. Belliveau, B. Herndon, and J. Keller, Orga-
nizational Behavior and Human Decision Processes 103,
159 (2007).

[66] J. K. Summers, S. E. Humphrey, and G. R. Fer-
ris, Academy of Management Journal 55, 314 (2012),
https://doi.org/10.5465/amj.2010.0175 .

[67] M. Galesic, D. Barkoczi, A. M. Berdahl, D. Biro, G. Car-
bone, I. Giannoccaro, R. L. Goldstone, C. Gonzalez,
A. Kandler, A. B. Kao, R. Kendal, M. Kline, E. Lee,
G. F. Massari, A. Mesoudi, H. Olsson, N. Pescetelli,
S. J. Sloman, P. E. Smaldino, and D. L. Stein, Journal
of The Royal Society Interface 20, 20220736 (2023),
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2022.0736
.

[68] D. Tzabbar and R. R. Kehoe, Journal of Management
40, 449 (2014).

[69] L. Lavazza, S. Morasca, and D. Tosi, in Proceedings
of the 31st Annual ACM Symposium on Applied Com-
puting , SAC ’16 (Association for Computing Machinery,
New York, NY, USA, 2016) p. 1434–1439.

[70] L. Prechelt, Computer 33, 23–29 (2000).
[71] C. Gote, P. Mavrodiev, F. Schweitzer, and I. Scholtes, in

Proceedings of the 44th International Conference on Soft-
ware Engineering , ICSE ’22 (Association for Computing
Machinery, New York, NY, USA, 2022) p. 262–273.

http://dx.doi.org/10.1080/19416520.2014.904140
http://dx.doi.org/10.1080/19416520.2014.904140
http://arxiv.org/abs/https://doi.org/10.1080/19416520.2014.904140
http://arxiv.org/abs/2310.19858
http://dx.doi.org/ 10.1038/s41562-021-01084-x
http://dx.doi.org/ 10.1038/s41562-021-01084-x
http://dx.doi.org/10.3389/fpsyg.2019.01478
http://dx.doi.org/10.3389/fpsyg.2019.01478
http://dx.doi.org/10.1038/s41598-022-13929-0
http://dx.doi.org/ 10.1145/2804360.2804366
http://dx.doi.org/ 10.1145/2804360.2804366
http://dx.doi.org/10.1098/rsos.160007
http://dx.doi.org/10.1098/rsos.160007
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.160007
http://dx.doi.org/ 10.1145/3593803
http://dx.doi.org/ 10.1145/3593803
https://web.archive.org/web/20240324122230/https://github.com/torvalds/linux/graphs/contributors
https://web.archive.org/web/20240324122230/https://github.com/torvalds/linux/graphs/contributors
https://web.archive.org/web/20240324122230/https://github.com/torvalds/linux/graphs/contributors
https://www.wired.com/2003/11/linus/
https://www.wired.com/2003/11/linus/
https://mattturck.com/mckinney/
https://web.archive.org/web/20240417080730/https://github.com/pandas-dev/pandas/graphs/contributors
https://web.archive.org/web/20240417080730/https://github.com/pandas-dev/pandas/graphs/contributors
https://web.archive.org/web/20240417080730/https://github.com/pandas-dev/pandas/graphs/contributors
http://dx.doi.org/10.1038/s41597-022-01819-z
http://dx.doi.org/https://doi.org/10.1016/j.jss.2018.09.016
http://dx.doi.org/https://doi.org/10.1016/j.jss.2018.09.016
http://dx.doi.org/10.1145/3366423.3380272
http://dx.doi.org/10.5465/3069314
http://dx.doi.org/10.5465/3069314
http://arxiv.org/abs/https://doi.org/10.5465/3069314
http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1371/journal.pone.0152976
http://dx.doi.org/10.1371/journal.pone.0152976
http://dx.doi.org/ 10.1109/ICPC.2016.7503718
http://dx.doi.org/ 10.1109/ICPC.2016.7503718
http://dx.doi.org/ 10.1109/ICPC.2016.7503718
http://dx.doi.org/10.1109/MSR52588.2021.00017
http://dx.doi.org/10.1109/MSR52588.2021.00017
https://web.archive.org/web/20210429072452/http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
https://web.archive.org/web/20210429072452/http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
https://web.archive.org/web/20210429072452/http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
http://dx.doi.org/10.1007/s11219-019-09457-2
http://dx.doi.org/https://doi.org/10.1016/j.obhdp.2005.06.003
http://dx.doi.org/https://doi.org/10.1016/j.obhdp.2005.06.003
http://dx.doi.org/ 10.1080/1359432X.2012.669525
http://dx.doi.org/ 10.1080/1359432X.2012.669525
http://arxiv.org/abs/https://doi.org/10.1080/1359432X.2012.669525
http://dx.doi.org/https://doi.org/10.1016/j.obhdp.2007.01.005
http://dx.doi.org/https://doi.org/10.1016/j.obhdp.2007.01.005
http://dx.doi.org/https://doi.org/10.1016/j.obhdp.2007.01.005
http://dx.doi.org/10.5465/amj.2010.0175
http://arxiv.org/abs/https://doi.org/10.5465/amj.2010.0175
http://dx.doi.org/ 10.1098/rsif.2022.0736
http://dx.doi.org/ 10.1098/rsif.2022.0736
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2022.0736
http://dx.doi.org/10.1145/2851613.2851780
http://dx.doi.org/10.1145/2851613.2851780
http://dx.doi.org/10.1145/2851613.2851780
http://dx.doi.org/10.1109/2.876288
http://dx.doi.org/10.1145/3510003.3510619
http://dx.doi.org/10.1145/3510003.3510619

11

Supplementary Material:
The dynamics of leadership and success in software development teams

[2, 3) [3, 5) [5, 8) [8, 15) 15

Team size

0

500

1000

1500

2000

N
.
re

p
o
si

to
ri

e
s

(0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]

Relative effective team size

(a) (b)

FIG. S1: Distribution of repositories across team size (a) and relative effective team size strata (b), as defined in Fig. 1.

TABLE I: Spearman’s correlation coefficient between the relative effective team size of teams and the success of repositories
(stars and downloads) stratified by team size. Correlations are estimated at various stages of the repositories’ lifetimes: the
last active period in the dataset (All) and after one, two, and three years of activity. Significance levels are denoted as follows:
* for p < 0.05, ** for p < 0.01, and *** for p < 0.001.

Spearman’s ρ
Stars Downloads

Success at Team size N. repos.

All

2 1212 -0.28*** -0.16***
3-4 1475 -0.37*** -0.18***
5-7 1229 -0.41*** -0.18***
8-14 1192 -0.41*** -0.11***
15+ 1263 -0.54*** -0.16***

1

2 1563 -0.27*** -0.10***
3-4 1690 -0.37*** -0.17***
5-7 952 -0.42*** -0.14***
8-14 690 -0.42*** -0.12**
15+ 372 -0.49*** -0.15**

2

2 1354 -0.26*** -0.11***
3-4 1630 -0.37*** -0.14***
5-7 1220 -0.42*** -0.14***
8-14 949 -0.44*** -0.06
15+ 728 -0.48*** -0.13***

3

2 929 -0.27*** -0.10**
3-4 1229 -0.35*** -0.15***
5-7 1009 -0.41*** -0.14***
8-14 889 -0.40*** -0.06
15+ 834 -0.48*** -0.13***

12

0.0

0.2

0.4

0.6

0.8

1.0
t=

 1
 y

ea
rs

Fr
ac

tio
n

of
 c

om
m

its
Team size

2
3-4
5-7
8-14
15+

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
ar

s (
lo

g)

0

1

2

3

4

5

Do
wn

lo
ad

s (
lo

g)

0.0

0.2

0.4

0.6

0.8

1.0

t=
 2

 y
ea

rs
Fr

ac
tio

n
of

 c
om

m
its

0.5

1.0

1.5

2.0

2.5

3.0
St

ar
s (

lo
g)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Do
wn

lo
ad

s (
lo

g)

1 2 3 4
Rank

0.0

0.2

0.4

0.6

0.8

1.0

t=
 3

 y
ea

rs
Fr

ac
tio

n
of

 c
om

m
its

(0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1]
Relative effective team size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
ar

s (
lo

g)

(0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1]
Relative effective team size

2

3

4

5

6

Do
wn

lo
ad

s (
lo

g)

FIG. S2: Workload distribution within teams and relationship with success at different point in time during the lifetime of
repositories. Similarly to Fig. 1, the workload distribution is heterogeneous and the success is decreasing in the relative effective
team size, pointing to those properties being stable across the lifetime of repositories. The Spearman’s correlations between
relative effective team size and success remains negative and significant for both stars and downloads. The only exceptions are
downloads for team sizes 8-14 at t = 2 and t = 3 years, cases in which the correlation is not anymore significant at 0.05 level.
Table I shows the detailed results of the correlation. The details of the figure are the same as in Fig. 1.

13

100 101 102

E (t = 10min)

10 6

10 5

10 4

10 3

10 2

10 1

100
P(

>
E)

Lead
Non-lead

100 101 102

E (t = 30min)
100 101 102

E (t = 60min)

FIG. S3: Complementary cumulative distribution of the number of commits close in time E for different values of δt. Leaders
are more likely to make commits in larger event train sizes for all the tested values of δt.

0.0

0.5

1.0

1.5

Al
l r

ep
os

N.
 st

ar
s (

lo
g)

Experienced
Not experienced 2

3

4

Do
wn

lo
ad

s (
lo

g)

0.0

0.5

1.0

1.5

20
14

-1
5

St
ar

s (
lo

g)

Experienced
Not experienced 0

2

4

Do
wn

lo
ad

s (
lo

g)

1

0

1

20
16

-1
7

St
ar

s (
lo

g)

Experienced
Not experienced 2

3

4

Do
wn

lo
ad

s (
lo

g)

0.0

0.5

1.0

1.5

20
18

-1
9

St
ar

s (
lo

g)

Experienced
Not experienced 2

3

4

Do
wn

lo
ad

s (
lo

g)

0 2 4 6 8 10 12 14 16
Time (trimester)

0

1

2

20
20

St
ar

s (
lo

g)

Experienced
Not experienced

0 2 4 6 8 10 12 14 16
Time (trimester)

2

4

6

Do
wn

lo
ad

s (
lo

g)

Re
po

sit
or

ie
s c

re
at

ed
 in

:

FIG. S4: Number of downloads acquired across repositories’ lifetime stratified by lead developer’s experience (median and 95%
confidence interval). Each row corresponds to repositories initiated in different years, with the first row including all repositories.
While the prior experience of lead developers doesn’t impact repositories’ success in terms of stars, it does influence the number
of downloads. Indeed, repositories whose lead developer is experienced receive more downloads across their lifetime than those
whose lead developer is not experienced. After accounting for the initiation year of repositories, we find that this observation
remains consistent regardless of the repositories’ age.

14

0

[1, 10
1)

[10
1 , 10

2)

[10
2 , 10

3)

[10
3 , 10

4)

Stars

0

5

10

15

20
%

 o
f

le
a
d
-c

h
a
n
g
e
 r

e
p
o
s.

Success at:
t= 1 year t= 2 year

[0, 10
1)

[10
1 , 10

2)

[10
2 , 10

3)

[10
3 , 10

4)

[10
4 , 10

5)

[10
5 , 10

6)

[10
6 , 10

7)

[10
7 , 10

8)

Downloads

0

5

10

15

20

(a) (b)

FIG. S5: Percentages of repositories that will change the lead developer after time t as a function of the success of repositories
at time t. The figure suggests that repositories with the worst performance in terms of stars (a) and downloads (b) are the
most likely to change their lead developer. We investigated whether there is a connection between future leadership changes
and past success, testing both linear and quadratic dependencies using a fixed effect regression model. However, our analysis
did not find significant evidence supporting such a relationship. Error bars refer to 95% confidence intervals (Wilson score
interval).

0 10 20 30 40 50
Team size lead-change repository (x)

0

20

40

60

80

100

Si
m

ila
r t

ea
m

 si
ze

 ra
ng

e
(Y

)

FIG. S6: Graphical representation of the team size similarity used in the matching approach. For each team size of the lead-
change repository (horizontal axis), the range of similar team sizes for the candidate repositories is represented (vertical lines).
The solid line represents the two team sizes being equal. In plain terms, we require similar team sizes to be strictly close or equal
for small team sizes (2 to 15), while being similar in relative terms for larger team sizes (larger than 15). The functional relation-
ship is the following, considering x being the team size of the lead change repository and Y being the range of similar team sizes
for the candidate repositories: Y = {1} if x = 1, Y = {n|n ∈ N and |n− x| ≤ 2} if x ∈ [2, 5], Y = {n|n ∈ N and |n− x| ≤ 4} if
x ∈ [6, 8], Y = {n|n ∈ N and |n− x| ≤ 6} if x ∈ [6, 15], Y = {n|n ∈ N and | log10(n) − log10(x)|/ log10(x) ≤ 0.2} if x > 15.

15

0.0

0.1

0.2

0.3

0.4

0.5

0.6
t (

m
ea

n)
Stars

0

2

4

6

8

10

Downloads

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Time relative to lead developer change (t)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

t (
m

ed
ia

n)

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Time relative to lead developer change (t)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

FIG. S7: We checked if the result for the average ∆t (top row) is influenced by the skewness of its distribution by comparing it
with the estimation of the median ∆t (bottom row). The effect on stars (left column) and downloads (right column) remains
positive, although the magnitude decreases, especially for downloads. This suggests that while the skewness of ∆t may enhance
the average ∆t, it doesn’t affect the direction of the effect. Error bars represent 95% confidence intervals.

Bottom Mid Top

Star bin at t= 1

0.5

0.0

0.5

1.0

1.5

st
a
rs

t
=

3

Bottom Mid Top

Download bin at t= 1

3

2

1

0

1

2

3

4

d
o
w
n
lo
a
d
s

t
=

3

(a) (b)

FIG. S8: Descriptive analysis of the heterogeneity of ∆t considering the success before the change of the lead developer.
Repositories are divided into bins depending on the number of stars (a) and number of downloads (b) in the trimester preceding
the change of the lead developer (t = −1). Bottom teams: below the 30th percentile of success; Mid teams: between the 50th
and 80th percentile of success; Top teams: above the 90th percentile of success. Although worst performing repositories in
terms of stars benefit more from the change of lead developer, this is not the same when we consider downloads. Indeed, we
observe no difference on the effect depending on the number of downloads before the change of the lead developer.

16

Not Experienced Experienced
Old lead

0.1

0.0

0.1

0.2

0.3

0.4

t=
3 (

m
ea

n)

Stars

Not Experienced Experienced
Old lead

0.0

0.5

1.0

1.5

2.0

2.5

Downloads

Not Experienced Experienced
Old lead

0.00

0.05

0.10

0.15

0.20

0.25

t=
3 (

m
ed

ia
n)

Not Experienced Experienced
Old lead

0.2

0.0

0.2

0.4

0.6

FIG. S9: Descriptive analysis of the heterogeneity of ∆t at t = 3 considering the experience of the old lead developer.
Repositories initiated by experienced lead developers have a larger benefit from the turnover. The second row displays the
median ∆t, indicating that the observed result is not affected by the skewness of the distribution. Error bars refer to 95%
confidence intervals.

17

Not Experienced Experienced
Old lead

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

t=
3 (

m
ea

n)

Stars
New lead
Not Experienced
Experienced

Not Experienced Experienced
Old lead

0

2

4

6

8

10

12
Downloads

Not Experienced Experienced
Old lead

0.0

0.1

0.2

0.3

0.4

0.5

0.6

t=
3 (

m
ed

ia
n)

New lead
Not Experienced
Experienced

Not Experienced Experienced
Old lead

0

1

2

3

4

5

6

FIG. S10: Descriptive analysis of the heterogeneity of ∆t considering the experience of the old and new lead developer. The
figure suggests that the experience of the new lead developer is not affecting strongly the way repositories benefit from the
change. However, this further stratification shrinks the sample size and the large error bars make it difficult to draw conclusions
from this analysis. The second row displays the median ∆t. Error bars refer to 95% confidence intervals.

	Introduction
	Results
	Emergence of a lead developer
	Characterization of lead developers' activity
	Lead developers of repositories can change
	Repositories that change the lead developer perform better after the change

	Discussion
	Methods
	Data and selection of repositories
	Detecting lead developer changes
	Matching procedure

	Acknowledgements
	References

