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Abstract

Determining the location of an image anywhere on Earth
is a complex visual task, which makes it particularly rel-
evant for evaluating computer vision algorithms. Yet, the
absence of standard, large-scale, open-access datasets with
reliably localizable images has limited its potential. To ad-
dress this issue, we introduce OpenStreetView-5M, a large-
scale, open-access dataset comprising over 5.1 million geo-
referenced street view images, covering 225 countries and
territories. In contrast to existing benchmarks, we enforce
a strict train/test separation, allowing us to evaluate the
relevance of learned geographical features beyond mere
memorization. To demonstrate the utility of our dataset,
we conduct an extensive benchmark of various state-of-the-
art image encoders, spatial representations, and training
strategies. All associated codes and models can be found at
https://github.com/gastruc/osv5m.

1. Introduction
While natural image classification is the standard for evaluat-
ing computer vision methods [15, 58, 69], global geolocation
offers a compelling alternative task. In contrast to classifi-
cation, where the focus is often a single object, geolocation
involves detecting and combining various visual clues, like
road signage, architectural patterns, climate, and vegeta-
tion. Predicting a single GPS coordinate or location label
from these observations necessitates a rich representation
of both the Earth’s culture and geography; see Figure 1 for
some examples. Furthermore, the abundance of geo-tagged
street-view images depicting complex scenes with a clear
and consistent point of view makes this task appropriate for
training and evaluating modern vision models.

Despite this potential, few supervised approaches are
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Figure 1. Global Visual Geolocation. Predicting the location of
an image taken anywhere in the world from just pixels requires
detecting a combination of clues of various abstraction levels [44].
Can you guess where these images were taken?1

trained and evaluated for the task of geolocation. We
attribute this to the limitations of existing geolocation
datasets: (i) Large and open geolocation datasets contain
a significant portion of noisy and non-localizable images
[26, 32, 70]; (ii) Street view datasets are better suited for
the task but are both proprietary and expensive to down-
load [11, 14, 23, 25, 41, 63]. To address these issues, we
introduce OpenStreetView-5M (OSV-5M), an open-access
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Figure 2. Localizable vs Non-Localizable. Images from our
dataset (green) occupy the space between weakly localizable im-
ages (red) like the ones from the test set of Im2GPS3k [70] and
landmark images used to advertise CV conferences (blue).

dataset of 5.1 million high-quality and crowd-sourced street
view images. Our ambition is to make both street view im-
ages and global geolocation new standards for measuring
progress in deep learning.

Automating visual geolocation has significant potential
benefits, with direct applications in fields such as journalism,
forensics, as well as historical and cultural studies. Learning
robust geographical representations may also be valuable for
various deep learning challenges, including self-supervised
learning and generative modeling, or the development of
more interpretable AI systems. Thanks to its size and scope,
and its strict train/test split, OSV-5M serves as a robust and
reliable benchmark for computer vision models. To demon-
strate this, we design an extensive evaluation experiment to
measure the impacts of various factors such as pretraining
strategies, model scale, spatial representations, fine-tuning
approaches, contrastive losses, and auxiliary tasks.

2. Related Work
In this section, we detail the notion of image localizability
(Section 2.1), the main existing geolocation datasets (Sec-
tion 2.2), and geolocation methods (Section 2.3).

2.1. Localizability
As noted by Izbicki et al. [32], images exhibit a range of
localizability, an inherently perceptual concept, see Figure 2.
Non-localizable images lack information that connects them
to a specific location or are of too low quality to properly
analyze. Weakly localizable images only contain vague or
indirect hints, such as people, animals, and objects in indoor
scenes. Localizable images should contain enough informa-
tion to allow for an informed guess relative to their location.
For example, street view images are generally localizable
as they typically contain salient features indicative of the
local environment such as climate, nature, architecture, or
utility and regulatory infrastructure. At the far end of the
spectrum, landmark images showcase emblematic monu-
ments or iconic landscapes, making their location instantly
identifiable to most viewers.

According to this criteria, a visual inspection suggests that
35% of the images in Im2GPS3k, a dataset commonly used

to benchmark geolocation methods [70], are non-localizable.
When used for evaluation, this may lead to unreliable errors
or promote methods that have memorized biases of the train-
ing distribution. When used for training, non-localizable
images can lead to sub-optimal representations or encourage
spurious correlations. OSV-5M predominantly comprises
localizable street view images whose accurate geolocation
requires robust geographical representations.

2.2. Geolocation Datasets
We motivate the need for OSV-5M by reviewing existing
geolocation datasets from the two main sources of geotagged
images: web-scraped and street view images, see Table 1.

Web-Scraped. Image hosting platforms like Flickr pro-
vide a near-endless source of geotagged images, which has
been used to create large open datasets, like YFC100M [66].
Most images correspond to personal or amateur photographs
representing food, art, and images of pets and friends, and are
either weakly or non-localizable. Even strongly localizable
images are typically taken in tourist spots, injecting an often
Western cultural bias towards recognizable landmarks [36].
The provided location metadata can be occasionally missing
or inaccurate, and the online nature of these images implies
they can be easily removed, hindering reproducibility2. For
evaluation purposes, cleaner subsets have been proposed that
improve both the image distribution coverage and annotation
quality [64, 70], but remain still heavily biased and predomi-
nantly non-localizable. Despite their small scope and size,
these datasets are currently the primary means of evaluating
geolocation models.

Street View. Conversely, street view images tend to be
strongly localizable. Captured through panoramic cameras
or dash-cams, they depict in high quality a vehicle’s sur-
roundings, which corresponds mostly to outdoor scenes with
rich geographical cues. Google famously provides a global
street view coverage, which is, however, expensive to ac-
quire for academic purposes ($1000 for 150k images) and
cannot be shared. Existing open datasets from this source
either only consist of dense samples from 3 US cities meant
for navigation [46, 77], or are inaccessible [14, 23, 41].

Luckily, crowd-sourced platforms such as Mapillary [4]
offer a global and diverse source of open-access street view
images for various environments, from dense cities and sub-
urbs to remote and inhabited landscapes. These images
have been used to construct several benchmarks for multiple
tasks other than geolocation, including depth estimation [9],
semantic segmentation [49], traffic sign detection and classi-
fication [18], place recognition [71] and visual localization
[33]. With 5.1M Mappilary images taken across the globe,
OSV-5M is the largest open-access street-view image dataset

260% of the 2014 YFCC-split [47] was deleted by 2020 [32]!



Table 1. Geolocation Datasets. OpenStreetView-5M contains
strongly localizable street views with access, scope, and size com-
parable to web-scraped databases.

Image Source size open- scopeaccess

Web-scraped

Im2GPS [26] 237 ✔ biased
Im2GPS3k [70] 2997 ✔ biased
YFCC4k [70] 4536 ✔ biased
YFCC26k [64] 26k ✔ biased
MP-16 [39] 4.7M ✔ biased
Moussely et al. [47] 14M/6M2 ✔ global
YFCC100M [66] 100M ✔ biased
PlaNet [72] 125M ✗ biased

Street view

Google-WS-15k [14] 15k ✗ global
GMCP [77] 105k ✗ 3 cities
StreetCLIP [23] 1M ✗ unknown
OpenStreetView-5M 5.1M ✔ global

and the only one designed for global geolocation. OSV-5M
has a similar order of magnitude to popular YFCC-based
geolocation train sets [39, 47], and comes with a clean test
set that is 33 times bigger than the current largest street-view
image test benchmark [14] (which is not openly accessible).

2.3. Geolocation Methods
Place recognition [78] and visual localization [16, 37, 53,
54, 60] are popular tasks that consist in finding the pose of
images in a known scene. In contrast, visual geolocation
predicts 2D coordinates or discrete locations (e.g., countries),
and aims for lower accuracy and the ability to generalize to
unseen areas [27]. Existing geolocation approaches can be
categorized by whether they treat geolocation as an image
retrieval problem, a classification problem, or both.

Image Retrieval-Based Approaches. A straightforward
method for image localization is to find the most similar
image in a large image database and predict its location [26].
The first successful approaches involved retrieving the near-
est image in a space of handcrafted features such as color
histograms [26], gist features [50], or textons [43]. It was
later improved with SIFT features and support vector ma-
chines [28]. Deep features further boosted the performance
of these approaches [70]. While such models typically ex-
hibit high performance given a large and dense enough im-
age database, they do not involve representation learning.
Consequently, unless provided with robust features, they
may perform poorly in sparsely represented or dynamically
changing environments.

Classification-Based Approaches. Geolocation can also
be approached as a classification problem by discretizing
latitude and longitude coordinates. The choice of partition is
critical, ranging from regular [72], adaptive [14], semantic-

driven [65], combinatorial [62], administrative [24, 55], and
hierarchical [14, 70] partitions. Classification-based meth-
ods must strike a delicate balance between the quantity and
size of cells; if the discretization is too coarse, the perfor-
mance will be limited, while too many small cells may not
have enough samples for learning-based methods. Further-
more, a typical classification loss such as cross-entropy does
not incorporate the distance between regions: confusing two
adjacent cells is equivalent to mistaking the continent.

Hybrid Approaches. Retrieval and classification ap-
proaches can be combined to overcome the limitations of
discretization. This can be achieved using ranking losses
[70] or contrastive objectives [38]. Haas et al. [24] follow
a classification-then-regression approach based on proto-
type networks. Finally, Izbicki et al. [32] go beyond single-
location prediction by estimating probability distributions
based on spherical Gaussians.

3. OpenStreetView-5M
OpenStreetView-5M establishes a new open benchmark for
geolocation by providing a large, open, and clean dataset.
The Appendix details the construction of the dataset. As
detailed below, OpenStreetView-5M improves upon several
limitations of current geolocation datasets.

Scale. Deep neural networks have historically been selected
over other machine learning methods because they benefit
from larger amounts of data. OSV-5M consists of 4,894,685
training and 210,122 test images, with a height of 512 pixels
and an average width of 792± 127 pixels.

Scope. Many geolocation datasets are restricted to a few
cities [46, 77] or are significantly biased towards the West-
ern world [36]. In contrast, OpenStreetView-5M images are
uniformly sampled on the globe, covering 70k cities and 225
countries and territories, as shown in Figure 3. The distribu-
tion of test images across countries has a normalized entropy
of 0.78 [73, Eq. 19], suggesting high diversity. Our train set
has a normalized entropy of 0.67, which is comparable to
the entropy of the distribution of the countries’ area (0.71).

Access. OpenStreetView-5M is based on the crowd-sourced
street view images of Mapillary [4] which follow the CC-
BY-SA license: free of use with attribution [2].

Quality Evaluation. We estimate through manual inspec-
tion of 4500 images that 96.1% (±0.57%) of the images in
the OpenStreetView-5M dataset are localizable, with a 95%
confidence level [31, Chap. 8]. Among the weakly or non-
localizable images, 70% (2.7% total) are low-quality: under-
or over-exposed, blurry, or rotated; 30% (1.2% total) are
poorly framed, indoor, or in tunnels.
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(d) Continent and country distributions of the training set

Figure 3. OpenStreetView-5M. Image density and proportions per country and continent for the train and test sets. To ensure an unbiased
evaluation, we prioritize the uniformity of the test set’s distribution across the globe over the training set distribution.

Spatial Separation. Without carefully enforcing the spatial
separation between train and test images, geolocation can
reduce to place-recognition. As our goal is to assess the
capacity of models to learn robust geographical representa-
tions, we ensure that no image in the OSV-5M training set
lies within a 1km radius of any image in the test set.

Sequence Separation. Street-view images are typically
acquired by a limited number of camera sensors mounted
on the top or front of a small fleet of vehicles assigned to a
given region. This correlation between location, cars, and
sensors can be exploited to simplify the geolocation task.
Notoriously, players of the web-based geolocation game
GeoGuessr [3] can locate images from Ghana by spotting
a piece of duct tape placed on the corner of the roof rack
of the Google Street View car [6]. OpenStreetView-5M
tries to avoid this pitfall by ensuring that no image sequence
(a continuous series of images acquired by the same user)
appears in both training and test sets. While this might not
prevent images taken with the same vehicle on different days
from being in both sets, it limits such occurrences.

Metadata. Rich metadata beyond geographical coordinates
can improve the robustness and versatility of geolocation
models. Each image in our dataset is associated with four
tiers of administrative data: country, region (e.g., state), area
(e.g., county), and the nearest city [6]. Note that areas are
not defined for one-third of the dataset. We also associate
each image with a set of additional information: land cover,
climate, soil type, the driving side, and distance to the sea
where the image was taken. See the Appendix for more

details on these attributes.

4. Benchmark
We use OSV-5M to benchmark supervised deep learning
approaches in the context of visual geolocation. We first
present our evaluation metrics (Section 4.1) and framework
(Section 4.2). We then explore several design choices, start-
ing with the image encoder backbone (Section 4.3), the
prediction objective (Section 4.4), the fine-tuning strategy
(Section 4.5), and the choices of contrastive losses (Sec-
tion 4.6). In each experiment, we select the top-performing
designs and integrate them into a combined model, which
we evaluate and analyze in Section 4.7.

4.1. Evaluation Metrics.
We denote the space of images by I and the span of longitude
and latitude coordinates by C = [−180, 180] × [−90, 90].
Our objective is to design a model that maps an image from I
to its corresponding location in C. We measure the accuracy
of predicted location across geolocation models with three
complementary sets of metrics:
- Haversine distance [68] δ, between predicted and ground
truth image locations;
- Geoscore, based on the famous GeoGuessr game [3], de-
fined as 5000 exp(−δ/1492.7) [24];
- Accuracy of predicted locations across administrative
boundaries: country, region, area, and city.

While the average distance between predictions and
ground truth is sensitive to outliers (i.e., a few poor pre-
dictions can significantly undermine an otherwise high-
performing algorithm), the accuracy metric based on admin-
istrative borders can avoid this issue. However, this metric
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Figure 4. Visual Geolocation Model. We propose a simple and versatile framework for visual geolocation and explore the impact of various
components of this approach in train-test performance on OpenStreetView-5M. Starting from the left, the input image is converted to a
vector representation by an image encoder f img (red). Then a geolocation head f loc maps this vector to a set of geographical predictions
(mint). Then a contrastive objective is potentially added (cyan), as well as auxiliary targets to learn better representations for geolocation
(lila). We also consider various parameter fine-tuning strategies for training our image encoder, by freezing all or part of f img (yellow).

Table 2. Impact of Image Encoder. Several pretrained backbones are evaluated in OpenStreetView-5M. We outline the influence of various
architectures, pretraining strategies, and datasets. Best scores are highlighted in bold. We denote closed datasets with †.

Architecture
Size

(×106)
Pretraining Train. time

(in h)
Geoscore ↑ Distance ↓ Classification accuracy ↑

Objective Dataset Country Region Area City

1 ViT-B-32 0088 CLIP LAION-2B 022 2052 2992 35.7 07.0 0.5 0.3

2 ResNet50 0023 Classification ImageNet-1k 45 1260 4171 20.8 3.0 0.2 0.1
3 ViT-L-14 300 DINOv2 DINOv2† 316 2530 2233 46.9 10.7 0.7 0.3
4 ViT-L-14 0300 CLIP LAION-2B 206 2474 2358 44.8 10.6 0.8 0.2
5 ViT-L-14 300 CLIP DATA COMP 206 2719 1964 50.6 12.8 1.0 0.4
6 ViT-L-14 0300 CLIP Meta-CLIP 206 2724 1888 49.7 12.7 1.1 0.4
7 ViT-L-14 300 CLIP OpenAI† 206 2888 1688 53.3 14.6 1.2 0.5
8 ViT-L-14 0300 StreetCLIP OpenAI† + GSV† 206 3028 1481 56.5 16.3 1.5 0.7
9 ViT-bigG-14 1800 CLIP LAION-2B 900 2878 1766 53.4 15.0 1.3 0.5

can be too lenient for large divisions or arbitrarily punitive
for small ones. The Geoscore offers a compromise by re-
warding precise predictions without being overly sensitive
to large but rare errors.

4.2. Framework
The models evaluated in this benchmark follow a consis-
tent architecture, represented in Figure 4. All considered
networks contain the two following modules:
- the image encoder f img : I 7→ Rd, which maps an image
to a d-dimensional vector;
- the geolocation head f loc : Rd 7→ C, which maps this
vector to geographic coordinates.

Implementation details. Unless stated otherwise, f img is
always a pretrained and frozen CLIP ViT-B/32 model [57]
with d = 768 and f loc is a Multilayer Perceptron (MLP)
with GroupNorms [75]. This base model directly regresses
geographical coordinates and uses the L1 norm as loss func-
tion. The model is trained with a batch size of 512 images
for 30 epochs (260k iterations) with a fixed learning rate of
2× 10−4. Throughout the paper we will denote in blue the
frozen base model, in orange its fine-tuned version, and in
green the model combining all top-performing designs.

4.3. Image Encoder
We first benchmark various architectures for the image en-
coder module f img, with varying backnones, and pretraining
strategies and datasets:
- Architecture. We test a standard ResNet50 [29], and mod-
ern ViTs [17] of multiple sizes (B-32, L-14, and bigG-14).
- Pretraining. We consider different types of pretrain-
ing objectives, including classification on ImageNet, self-
supervized pretraining DINOv2 [52], text supervision CLIP
[57], as well as StreetCLIP [23], which is finetuned specifi-
cally for geolocation.
- Dataset. We consider several pretraining datasets, includ-
ing LAION-2B [61], DATA COMP [20], Meta-CLIP [76],
and the proprietary datasets of DINOv2, OpenAI, and Street-
CLIP [23].

Analysis. Our experimental results are presented in Ta-
ble 2. Here, we summarize several key takeaways:
- Model Size. As shown in Rows 1, 2, 4, and 9 of Table 2,
there is a direct correlation between the size of the image
encoder and its geolocation performance. The large ViT,
bigG-14 model with 1.8 billion parameters (Row 9) improves
significantly on the performance of its smaller versions. As



Table 3. Prediction Modules. We report the performance of var-
ious prediction models and objectives. QuadTrees, hierarchical
supervision, and hybrid models all significantly improve on di-
rect regression or classification with administrative borders. We
underline the accuracy for divisions that the method is specifically
trained to categorize.

Number
classes

Geo ↑
score

Dis ↓
tance

Classification accuracy ↑
country region area city

R
eg

. Coord. - 2052 2992 35.7 7.0 0.5 0.3
Sin/cos - 1192 4797 13.6 2.1 0.1 0.0

C
la

ss
ifi

ca
tio

n

Country 222 2263 2981 56.3 - - -
Region 2.8k 2683 2858 57.0 30.2 - -
Area 9.3k 1935 4454 36.3 19.7 8.8 -
City 69.8k 2600 3217 52.2 28.5 7.3 4.9
+ hierarchy 69.8k 2868 2768 58.2 34.3 9.6 6.0
QuadTree 11.0k 2772 2832 54.8 27.7 5.4 2.8
+ hierarchy 11.0k 2890 2654 57.4 29.9 5.9 2.9

Hybrid 11.0k 3036 2518 60.8 36.3 9.5 5.7

the size of models correlates with their training time, we
select ViT-L-14 as the best compromise.
- Pretraining. As seen in rows 3, 7, and 8, CLIP pretraining
leads to better results than DINO or image classification. We
thus focus on the latter for further comparisons.
- Dataset. Rows 4 to 8 show the significant impact of the
choice of pretraining datasets. The geolocation-oriented
StreetCLIP (row 8) leads to the best results, followed by
OpenAI’s CLIP (row 7). However, both datasets are not open
access. We choose DATA COMP (row 5) as the best open-
source dataset for its slightly better country classification
rate compared to Meta-CLIP (row 6).

4.4. Prediction Head
We examine three different possible supervision schemes for
the geolocation head f loc: regression, classification (includ-
ing hierarchical classification), and a hybrid approach.

Regression. We start with the most straightforward ap-
proach: f loc directly regresses coordinates in C. We train an
MLP supervised with the L1 loss between true and predicted
coordinates. To account for the periodicity of the latitude,
we also test an approach where we regress instead the cosine
and sine of the longitude and latitude and then recover the
real coordinates with trigonometry [42].

Classification. We divide the train set into a set K of K
divisions, such as countries, regions, areas, and cities, which
amount to K = 222 , 2.8k, 9.3k, and 69.8k, respectively. As
some administrative borders can have vastly different sizes,
we also consider an adaptive partition with a QuadTree of
depth 10 and maximum leaf size of 1000, corresponding
to 11k cells. We then train a classifier f classif : Rd 7→ RK

which maps an image representation to the probability that
the image was taken in each division. Then, to predict the
final geographic location, we define f lookup, which associates

Table 4. Parameter Fine-tuning Strategies. We compare the
performance of different parameter fine-tuning strategies, in terms
of performance, number of parameters, and training time.

Param.
(M)

Train.
time

Geo ↑
score

Dis ↓
tance

Classification accuracy ↑
country region area city

Frozen 0.6 22 2052 2992 35.7 7.0 0.5 0.3

LoRA-32 2.4 44 2101 2760 36.7 6.4 0.4 0.0
Last block 7.7 26 2587 2372 46.7 12.9 1.0 0.5
Fine-tuning 88.0 132 2893 2085 54.9 19.1 1.6 0.8

each division with the average location of its training im-
ages: f lookup : K 7→ C. The predicted geolocation can be
summarized as: f loc = f lookup ◦ argmax f classif.

In our implementation, f classif is an MLP trained with
cross-entropy, while f lookup is a look-up table obtained di-
rectly from the training set.

Hierarchical Supervision. We can exploit the nested na-
ture of the administrative divisions and QuadTree cells to
supervise all levels simultaneously [48, 70]. More precisely,
we predict a probability vector at the finest resolution (either
city or maximum depth of the QuadTree), which we aggre-
gate recursively to obtain predictions at all levels. We can
now supervise with a cross-entropy term for each level.

Hybrid Approach. Inspired by approaches that combine
both classification and retrieval [24, 70], we perform regres-
sion and classification in a two-step approach. Given the
output of our QuadTree classifier f classif : Rd → RK , we
define f relative : Rd → [−1, 1]2K that outputs the relative
coordinates of the predicted location inside each cell k. We
scale these values such that (0, 0) points to the centroid of
the training images in the cell and [−1, 1]2 spans the entire
bounding box. Using the cell prediction of the classifier
f classif and the relative position from f relative, we can predict
the location of the image with sub-cell precision.

We train f classif with the cross-entropy, and f relative with
the L2 loss between the predicted and true relative coordi-
nates on the division that contains the true location.

Analysis. We report the performance of different predic-
tion heads in Table 3, and make the following observations:
- Regression. Predicting sines and cosines does not improve
the regression model’s performance. We hypothesize that
this is due to the non-linearity of the trigonometric formula.
- Classification. Classification methods generally perform
well in Geoscore and starkly improve their respective clas-
sification rates, e.g. +23.2% region accuracy for the region
classifier compared to the regression model. However, their
influence on the average error distance is smaller. Coarse
partitions, like countries, are limited by the low precision of
f lookup. Inversely, overly refined partitions such as cities lead
to a more challenging classification setting where most labels



Table 5. Contrastive Learning. We report the impact of adding a
contrastive objective to our model, defined by various notions of
positive matches between images.

Pairs Geoscore ↑ Distance ↓ Classification accuracy ↑
country region area city

no contrastive 2893 2085 54.9 19.1 1.6 0.8

ge
og

ra
ph

ic country 2903 2005 66.8 13.7 0.7 0.3
region 3028 2131 60.0 33.3 2.9 1.0
area 2376 2886 43.7 18.9 3.7 1.2
city 2912 2209 56.3 24.5 3.2 1.2
cell 2891 2310 55.9 25.4 3.5 1.3

text-based 2812 2171 66.0 13.0 0.7 0.2

have only a few training examples. QuadTree-constructed la-
bels achieve performance close to the administrative division-
based classifier across all levels, e.g. 54.8% vs. 56.3% for
countries and 27.7% vs. 30.2% for regions. This compounds
into an overall better performance, which shows that adapt-
ing the granularity of the label distribution according to the
image density appears to be a successful heuristic.
- Hierarchical & Hybrid. Supervising on all levels simulta-
neously significantly improves the prediction. Hybrid meth-
ods bridge the gap between classification and regression,
yielding high precision without relying on very fine-grained
partitions. These results validate the underlying spatial hi-
erarchical nature of geographical data [67]. We select both
hybrid and hierarchical designs for the combined model.

4.5. Parameter Fine-tuning
We evaluate different fine-tuning strategies to quantify the
impact of learning dedicated features for geolocation. In all
configurations, we learn f loc from random weight, and f img

is fine-tuned as follows:
- Frozen. f img is initialized with pretrained weights and
remains frozen.
- LoRA-32. We fine-tune f img using Low Rank Adap-
tion [30] and a rank of 32 (more values in supplementary).
- Last block. We unfreeze the last transformer block of f img,
responsible for producing the image embedding.
- Fine-tuning. We fine-tune all parameters of f img.

Analysis. In Table 4, we report the impact of different
fine-tuning strategies. Training only the last transformer
block instead of using LoRA leads to a ten times larger
Geoscore improvement in only half the training time. This
suggests that pretrained models can extract relevant patch
embeddings, while image encoding must be significantly
adapted for geolocation. Fine-tuning the entire network
leads to an even larger improvement but a five-fold increase
in training time. However, the resulting performance is
comparable to the frozen ViT-bigG-14 shown in Table 2 and
trains 9 times faster. We select the fine-tuning configuration
as the top-performing approach and denote it in orange.

Table 6. Combined Model. We report the improvements brought
by each top-performing design choice and their combination and
compare them with baselines and competing approaches.

Geo ↑
score

Dis ↓
tance

Classification accuracy ↑

country region area city

Base model 2052 2992 35.7 7.0 0.5 0.3

ViT-L-14 DC + 667 - 1028 +14.9 + 5.8 +0.5 + 0.1
QuadTree + 720 - 160 +19.1 +20.7 +5.4 + 2.5

Hybrid + 264 - 314 + 6.0 + 8.6 +4.5 + 2.9
Hierarchical + 118 - 178 + 2.6 + 0.2 +0.5 + 0.1

Fine-tuning + 841 - 907 +19.2 +12.1 +1.1 + 0.5
Region contrast. + 135 + 46 - 5.1 +14.2 +2.1 + 0.2

Combined model +1309 - 1178 +32.3 +32.4 +9.8 + 5.6
3361 1814 68.0 39.4 10.3 5.9

Random 328 8724 20.0 2.0 0.0 0.0
Human Evaluation 1009 6407 48.9 12.2 3.0 0.0
GeoEstimator [48] 3331 2308 66.8 39.4 18.4 4.2
StreetCLIP 0-shot [23] 2273 2854 38.4 20.8 9.9 14.8

4.6. Contrastive Objectives
Contrastive learning builds positive and negative sample
pairs from the training set and pushes representations of
positive pairs close to each other while contrasting negative
ones [12, 13]. Positive pairs can be formed within the same
modality, such as different views of an object, or across
modalities, such as images and captions. In the geolocation
context, we propose two approaches to construct such pairs:
- Geographic. We match images if they are within the same
administrative division: countries, regions, areas, cities, or
QuadTree cells. We modify the dataloader to ensure each
image is part of at least one positive pair. Contrary to Haas
et al. [23], we use the multi-positive MIL-NCE loss [45] as
our contrastive objective to account for images in several
positive pairs, e.g. in the same country.
- Text-Based. Similar to Haas et al. [23], we pair each
image with a textual description of its location formed as the
following string: “An image of the city of $CITY, in the area
of $AREA, in the region of $REGION, in $COUNTRY.”.

Analysis. In Table 5, we measure the impact on the fine-
tuned model of different approaches for constructing con-
trastive pairs. We observe a consistent improvement in terms
of performance when building positive pairs with regions,
which may be the division most likely to present unique and
homogeneous visual and cultural identities. In contrast, ar-
eas appear to hurt the performance when used contrastively.
Overall, contrastive learning yields a much higher country
and region classification rate compared to the classification-
based approaches of Table 3, suggesting that encouraging
geographically consistent representations is advantageous
for geolocation. We also observe that using text as a proxy
when geographically consistent pairs exist is not beneficial.

4.7. Combined Model
Summarizing our previous exploration and analysis, we com-
bine the most impactful design choices for each experiment



Table 7. Nearest Neighbors. We report the performance of nearest
neighbor retrieval using different encoders.

Geo ↑
score

Dis ↓
tance

Classification accuracy ↑
country region area city

CLIP-VIT-B32-LAION 2511 3455 49.3 29.6 1.9 13.1
DINOv2 2994 2542 61.1 37.1 22.9 16.4
CLIP-VIT-L14-DATACOMP 3201 2047 64.5 38.4 23.3 16.6
CLIP-VIT-L14-OpenAI 3545 1458 72.8 44.4 27.5 19.3
StreetCLIP 3597 1386 73.4 45.8 28.4 19.9

Combined model 2734 2608 54.9 24.5 13.6 9.4

into a strong geolocation model, denoted in green: ViT-L-14
backbone pretrained on DATA COMP, QuadTree partition
with hybrid prediction and hierarchical supervision, fully
fine-tuned with a region-contrastive loss. As shown in Ta-
ble 6, this model starkly improves on the base model, with
an increase of +1309 in Geoscore, an average distance re-
duced by 45%, and significantly better accuracy at all levels
of administrative divisions.

Analysis. In Table 6, we compare the performance of our
combined model to a random baseline (select the location
of a random image in the training set) and a human per-
formance obtained by asking 80 annotators to guess the
locations of the same 50 images randomly sampled from the
test set [44].Despite the difficulty of the task, the average
annotator’s performance is significantly better than chance.
Our baseline model, and more substantially our combined
model, far surpasses the accuracy of annotators. We also
evaluate two state-of-the-art geolocation models: StreetCLIP
[23] evaluated in zero-shot using the text string given in Sec-
tion 4.6, and the GeoEstimator model [48] fine-tuned on our
training set. As both models are designed for geolocation,
they yield good performance. Owing to its bespoke geo-
cells, GeoEstimator reaches the highest accuracy for area
classification, illustrating the benefit of architectures with
built-in geographical priors. See the appendix for further
experiments, notably on the impact of auxiliary variables.

Nearest Neighbor. We perform retrieval by matching each
image from the test set with an image from the train set
based on the cosine distance between the features of each
image encoder. We perform approximate matching with the
FAISS algorithm [35] through the AutoFAISS package [1],
without re-ranking [34, 56]. As reported in Table 7, retrieval
methods trained through contrastive learning exhibit high
performance. However, the supervision of our combined
model based on geographic coordinates and cells does not
enhance its retrieval performance. In fact, its retrieval score
is lower than that of its pretrained image encoder. These
findings are consistent with observations that fine-tuning
self-supervised models decreases retrieval performance [74].
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Figure 5. Spatial Distribution of Errors. We plot the average
prediction error of the combined model in km across the globe.

Error Distribution. We report in Figure 5 a heatmap of
the average error distance. Areas sparsely populated with
training images, such as South America, have a significantly
higher error rate. We report a Pearson correlation coefficient
of −0.25 between image density and error, suggesting that
image density is not the only factor in the mistakes of our
proposed model. See Figure 6 for a visualization of the error
distribution. Over half of the combined model’s predictions
are within 250km of the true image locations.
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Figure 6. Error Distribution. Proportion of predictions within a
set distance in the test set. ⋆ evaluated on 50 images only.

5. Conclusion
We introduced a new open-access street view dataset of un-
precedented size and quality, enabling the consistent training
and evaluation of global geolocation models for the first
time. Through an extensive experimental framework, we
demonstrate that our dataset is a competitive benchmark for
developing and evaluating general and bespoke state-of-the-
art computer vision approaches for geolocation. Through its
scale and quality, we expect OSV-5M to also be useful for
self-supervised learning and generative modeling, valuable
tasks beyond the scope of visual geolocation.
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Appendix
This supplementary material starts by providing fur-

ther details on the construction and analysis of our dataset
OpenStreetView-5M in Section A, showcasing indicative
samples in Figure A. Then, we provide additional ex-
periments in Section B and qualitative results in Fig-
ure B. Finally, Section C further implementation details
can be found and Section D outlines our Datasheet [21] for
OpenStreetView-5M.
A. OpenStreetView-5M Dataset
OpenStreetView-5M is designed to achieve an open, large-
scale, balanced, and global geographical coverage. Through
the Mapillary API and the support of the Mapillary team,
we gained access to the locations of all 1.8B images [4]. To
provide a more manageable and better distributed dataset,
we design a specific construction approach, presented in this
section. The code to reproduce the treatment can be found
at https://github.com/gastruc/osv5m.

A.1. Construction Approach
Sampling. We start by ensuring that regions with high
image density are not disproportionately represented. We
define a 100 × 100m grid across the entire world and ran-
domly choose one image per cell. Then, both the training
and test sets are sampled with a weight proportional to the
local image density raised to the power of −0.75. Such a
strategy balances density-based sampling (which tends to
be biased towards urban centers) and area-based sampling
(which might favor larger countries). We eliminate images
from the test set that are either located within a 1km radius
of any train image or share a sequence ID.

Handcrafted Filters. We apply a series of handcrafted
filters to remove low-quality images
- Blurriness. Blurry images indicate low quality and poten-
tially low localizability. We remove images whose average
logarithmic magnitude spectrum is below 120dB.
- Radiometry. Certain images hosted on Mapillary are
too dark to be meaningfully analyzed, while other have
a distinct encoding errors giving them a purple tint. To
remove those, we first filter out images whose average
brightness (average value over pixels and RGB channels)
is below 50. To handle purple images, we remove images
for which over 50% of pixels meet the following criteria:
R > 60 & G > 60 & B < 50.
- Exposition. The exposure of Dash-cam images can be
badly exposed, for example, when they face the sun. To
filter them, we remove images for which 70% of pixels have
a brightness over 250 (overexposed) or under 5 (underex-
posed).

Rotation-Based Filtering. We perform a learning-based
filtering based on a pretrained and frozen RotNet network
[22]. This model learns self-supervised image representa-
tions by training for the pretext task of predicting a random
rotation applied to an input image. Although it it used as a
pretext task in the original paper, it becomes useful for filter-
ing out images downloaded from Mapillary’s website that
are incorrectly rotated. We use the pretrained network to in-
fer the rotation of various images and then use the following
filtering strategy depending on RotNet’s prediction:

- 0◦ (96% of images) For normal street view images the
cues that signify an absence of rotation are multiple: the sky
is up, and cars and pedestrians are upward. We keep these
images unchanged.
- 180◦ (4%) Over 90% images predicted to be rotated
by 180◦ are, in fact, actually upside down. We rotate all
these images by a half-turn. For the images in the test, we
perform an additional visual inspection to remove the small
proportion of non-localizable images not removed by the
previous filters.
- 90◦ or 270◦ (0.2%) Images predicted as rotated by a
quarter-turn are in the vast majority taken indoors or in
tunnels. We remove all such images from both the train
and test set.

A.2. Discussion
Why Not Just Subsample YFCC100M? The wide adop-
tion of YFCC100M, with its nearly 50 million geotagged
images,, might question the need for creating yet another geo-
tagged image dataset. However, several compelling reasons
justify creating OpenStreetView-5M instead of subsampling
YFCC100M:
- Data Distribution. The images shared on Flickr do no aim
to capture our world in an objective way, but instead focus
on aesthetic and cultural value. For example, recognizable
landmarks like the Eiffel Tower or the Louvre, are a cultural
symbol of the city of Paris, yet they lack any information that
is useful in identifying other cities as French or even other
streets as Parisian. Additionally, many images are renders or
infographics. In contrast, OSV-5M only features dashcam
pictures, that offer a consistent front-view perspective, that is
more objective as it doesn’t focus on something specific, and
thus may be more beneficial for learning visual geographical
representations.
- Localizability. From a manual inspection of 1000 images
we find that fewer than 10% (±1.3%, 95% confidence) of
YFCC100M’s images are perceptually localizable. In stark
contrast, OSV-5M boosts this perceptual localizability to a
rate of 96.1% (±0.57, 95% confidence), making it a more

https://github.com/gastruc/osv5m
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Figure A. Images from OSV-5M. The true locations can be found on the next page. The Mapillary users are credited in the subcaptions.

suitable candidate for a standard evaluation benchmark for
global geolocation.
- Geographical Bias. Images in the YFCC100M dataset
exhibit a high cultural bias towards the Western world, with
over 35% of images from the US and nearly 70% from North
America and Europe [36]. OSV-5M offers a more equitable
global representation, as detailed in Figure 2 of the main
paper.
- Selection Challenges. Subsampling YFCC100M based on
metadata alone is ambiguous: 30% of images lack titles, 68%
lack descriptions, 30% lack tags, and 50% lack geotagging.
The tags “travel” and “nature” cover fewer than 2 million
images. Using instead automated selection methods may
inadvertently propagate existing biases, such as filtering
street views of non-Western countries.
- Persistence. As happens with a lot of large research
dataset, YFCC comes only as a collection of image URLs
that need to be downloaded directly from Flickr. Such
a dataset construction approach, even if the only feasible
choice for very large datasets, is very volatile and can prevent
future reproducibility. For example, 60% of the 2014 YFCC-
split [47] was deleted by 2020 [32]. While YFCC100M

used to be hosted on Yahoo’s Webscope, this option is no
longer available [5]. Instead users need to create an AWS
account, that requires a credit card to acquire API credentials
for downloading the data through a designated S3 bucket
[8]. Even if no charge is applied, this setting may be pro-
hibitive for academics or residents of certain countries. Also,
due to the sensitive nature of the Flickr data, users need to
make a formal request to download the dataset, something
that isn’t needed for our dataset. Instead, OSV-5M ensures
persistence, open and easy access for long-term and broad
usage.

To summarize, YFCC100M is a vast and unstructured
set of images, a subset of which may be well suited for
localization and place recognition. However, the ambiguous
localizability, geographical content, metadata, persistence,
and access to its images highlight the need for a dedicated
dataset like OSV-5M, specifically designed for the task of
global visual geolocation.

Visible GeoTags. Due to the diversity in user input data,
we found that a small percentage of images (< 5%) have
a visible overlayed text on the bottom part that tags their
location. This should be taken into consideration when con-
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Figure B. True Locations. Location of the images of Figure A. With blue we visualize errors of the combined model that are superior to
500 km. Most of the images (9 out of 16) are predicted within 500km of where they were taken. We observe that two difficult images (9 and
14) are erroneously mapped to the US, which could be explained by the geographical bias of the training set.

structing a benchmark for a future dataset. However, due
to the standard ViTs resampling of images to 224 × 224,
these coordinates become indecipherable, as demonstrated
in Figure C. We implement for our data loader the option to
add a Gaussian blur with a width of 2 to the bottom 14 rows.
When training and/or testing a baseline model with this blur,
we observe only small and inconclusive differences in score:
training without blurring but testing with it yielded slightly
better results than both training and testing without the blur,
yet training and testing with the blur produced inferior out-
comes. This indicates that (i) the network is not able to
read the coordinates, and (ii) the bottom rows do not contain
critical geographic information. However, we recommend
using the blur for methods that use higher-resolution models
to obscure any potential location-specific details in the text.

Limitations. We list three main limitations of our OSV-
5M dataset:
(i) Geographical Bias in Training. Due to our reliance
crowd-sourced from Mapillary users, the distribution of loca-
tions is biased towards Western countries. We designed our
test set to explicitly balance this distribution, but the training
set remains affected by the number of selected images.
(ii) User separation. We successfully separated images
from the same sequence between training and test sets. How-

ever, we could not separate images uploaded by the same
user on different days, as the required metadata was not
available at the time of the dataset construction.
(iii) Resolution. The dataset provides images with a vertical
resolution of 512 pixels. This restricts the ability to zoom in
and read distant texts, for example in street signs, potentially
obscuring valuable visual cues. However, through our meta-
data users can access higher-resolution versions of all our
images on the mapillary website.

Training SOTA methods on OSV-5M. Many state-of-
the-art geolocation methods [14, 23, 24, 72] either rely on
private datasets or lack publicly available code, that prevents
their evaluation. In our main paper we evaluated the perfor-
mance of the pretrained StreetCLIP model both for zero-shot
retrieval (Tab 6 and Fig 6) and as a pretrained image en-
coder (Tab 2), yet the implementation required to fine-tune
the model is not publicly available. Similarly, the complete
training code of Translocator [55] is also not available. We
managed to train the publicly available ISN model [19] on
OSV-5M, achieving good performance which we attribute
to its bespoke geocell module. The aforementioned diffi-
culty in training and evaluating SOTA models show the clear
need for open-source datasets and implementations of visual
geolocation approaches, that our paper directly addresses.



(1) Full resolution image

no blurring

blurring

(2) Image rescaled in dataloader.

Figure C. Visible Geotagging. A small minority of images (< 5%) have visually overlayed geotags at their bottom left corner (1). For
those images as resized by our data loader to 224× 224 and as optionally blurred, we empirically measure to not provide any important
information that the network can use to improve its performance .

Figure D. Geoscore. From a point centered in Paris, red contours
highlight level sets of the score along the earth’s spherical geometry.

Geoscore. In our paper geoscore is introduced as a better
evaluation method as it strikes a balance between rewarding
precision and not being oversensitive to outlier predictions.
Let us consider, for example, a model which produces nine
accurate predictions but fails on the tenth image, choosing
New Zealand instead of Ireland, a 20 000km mistake. Con-
trast this with another model which consistently mispredicts
by 2 000km. Solely examining the mean error might mis-
leadingly favor the latter model, when the first one has a
higher geographic proficiency. In terms of geoscore, the
model with one major error would achieve an average score
close to 4500, while the one that is consistently off would
score 1300. In that way, geoscore provides a more intuitive
way to compare the performance of models on our dataset.
See Figure D for an illustration of Geoscore.

B. Additional Experiments
This section presents further results and analysis of our pro-
posed framework.

Auxiliary Supervision. We start by evaluating the perfor-
mance gained by learning to predict various auxiliary infor-
mation. Based on their coordinates, we associate to each
image of our dataset the following meta-data, according to
its latitude and longtitude coordinates:
- Land Cover. Relying on the Global Land Cover Share

Table A. Auxiliary Variables. We report the impact on geolocation
performance of learning to predict various auxiliary variables. We
also report the performance on the test set for each variable as the
overall accuracy or the average error.

Num of
classes.

Perf.
test

Geo ↑
score

Dis ↓
tance

Classification accuracy ↑
country region area city

no auxiliary - - 2893 2085 54.9 19.1 1.6 0.8

land cover 11 54.8 2821 2102 52.2 16.9 1.4 0.7
climate 31 58.3 2898 2022 53.7 18.8 1.7 0.8
soil type 15 47.7 2826 2111 52.4 17.6 1.5 0.7
driving side 01 94.6 2896 2025 54.5 18.7 1.6 0.7
dist to sea - 543km 2870 2053 52.5 18.7 1.5 0.7

all - - 2910 1987 54.0 19.8 1.6 0.8

Database [40], we classify each image of our dataset into
one of 11 land cover types, such as artificial, forest, or crops.
- Climate. We use recent Köppen-Geiger climate classi-
fication maps [10] to associate each image with a climate
type among 31, such as tropical rainforest, arid steppe, or
temperate with dry winter.
- Soil Type. Thanks to the Digital World Soil Map [59], we
characterize the local soil with a 15 class nomenclature, such
as acrisols, fluvisols, or ferralsols.
- Driving Side. We also add a binary indicator for whether
a country uses left or right-hand traffic.
- Distance to the Sea. For all locations we compute the
distance to their nearest sea.
The maps we used to extract land cover, climate, and soil
types come in a resolution of 1 km (or 30 arc-seconds).

We use an MLP f aux to predict the image’s metadata in
addition to its coordinates. All categorical variables are su-
pervised with the unweighted sum of cross-entropy terms,
while the distance to the sea is supervised with the L1 loss.
Adding auxiliary tasks encourages the model to focus on
relevant geographical cues. As seen in Table A, we only
observe a modest impact, indicating that the large train set
of OSV-5M allows our model to already learn good latent
variables for geolocation. It should be noted that our model
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Figure F. Effect of LoRA Bottleneck Width. We report the perfor-
mance of finetuning with LoRA of different bottleneck widths, in
comparison to finetuning the last block, or the whole network. For
each experiment, the marks’ radius are proprtional to the training
time.

can perform accurate predictions for complex geographic
variables in the test set, which may have some useful appli-
cations in itself.

Spatial Separation. We study the impact of the radius
of spatial separation between the train and the test set. We
do this by creating test sets along different radii of sep-
aration from the training set: 0m (488k images), 500m
(294k), 1km (210k), 2km (166k), 3km (136k), 4km (117k)
and 5km (107k). As observed in Figure E, all methods, in-
cluding retrieval-based approaches, are equally affected by
this phenomenon, indicating that, as expected, the problem
of global geolocation becomes harder as the separation ra-
dius increases. This allows us to define different versions
of our test set tiered by difficulty. In particular, if we re-
move the separation between train and test makes the task
becomes significantly easier: 3952 geoscore for StreetCLIP
in retrieval mode and 3852 for our best model, corresponding
to an average distance error of 1191km.

(1) GT: Sardinia
Comb.: Senegal
Base: Mali
SCLIP: Italy

(2) GT: Irland
Comb.: Lesotho
Base: Australia
SCLIP: USA

(3) GT: Russia
Comb.: Erythrea
Base: Saudi Arabia
SCLIP: Turkmenistan

Figure G. Erroneous Predictions. Images that are consistently
predicted wrongly despite being sampled from areas with relatively
high density of training images.

(1) Input Image (2) Mean attention (3) Selected head

Figure H. Attention Maps. We visualize the self-attention maps
of the [CLS] token of the last layer of the image encoder of the
combined model. We show the mean across all heads in (2), and
manually selected an interesting layer in (3).

LoRA. Fig F shows the results with different widths of the
LoRA bottleneck, ranging from 2 to 64. We share similar
observations with the LoRA paper [30, 7.2]: higher ranks
do not increase or even slightly decrease performance. Un-
freezing the last transformer block remains more efficient
in terms of training time, and fine-tuning the entire model
leads to even better performance.

Erroneous Predictions. In Fig G we illustrate some
sources of geolocation errors not related to the density of
training images. These include landscapes that are: (i) simi-
lar between very distant countries (Fig G (a,b)), or (ii) any
key information is far away from the camera (Fig G (b,c)),
or are (iii) monotonous and nearly featureless (Fig G (c)).

Humans and Baselines. We compare in Table B our mod-
els against two random baselines: selecting randomly a lo-
cation on the map or the location of a random image from
the training set. We also construct an Annotator Ensemble
Oracle by selecting the most accurate prediction for each
image from all annotators. Our baseline model, and more
substantially our combined model, far surpasses the accu-



Table B. Annotator Performance. We report the average perfor-
mance of 80 annotators on a subset of 50 images.

Geo ↑
score

Dis ↓
tance

Classification accuracy ↑

continent country region

Annot. performance 1009 6407 48.9 12.2 3.0
Annot. ensemble oracle 3919 443 98.0 70.0 28.0

Random location 120 10273 16.0 0.0 0.0
Random image 328 8724 20.0 2.0 0.0

Base model 2235 3247 74.0 36.0 8.0
Combined model 3333 1948 86.0 70.0 34.0

racy of individual annotators, but is still outmatched by the
Annotator Ensemble Oracle.

Attention Maps. We represent in Figure H the self-
attention maps of the [CLS] token of the last layer of the
combined model of images from the teaser. We observe
that the network focuses on regions of interest containing
useful geographical cues, such as the double yellow road
line—a specific trait to certain countries—or vegetation and
buildings.

C. Implementation Details
In this section, we detail our architecture, loss, metrics, and
the retrieval algorithm.

Architecture. All considered networks have a base image
encoder I 7→ Rd, with a d which depends on each architec-
ture (d = 768 for the model ViT-B-32, and d = 1024 for
all the other encoders). We then add one or several heads to
map the image representation to geographical information:
- Regression f loc. This network directly predicts the lon-
gitude and latitude of an image with a MLP of size d 7→
d 7→ 64 7→ 2 with group norms of 4 groups [75] and without
normalizing the last layer.
- Regression f loc sin/cos. For this variation, we predict the
cosine and sine of both coordinates with an MLP: d 7→ d 7→
64 7→ 4 with a normalization that ensures that the squared
sum between coordinate 0, 1 and 2, 3 is 1. We then use the
atan2 function to recover the corresponding coordinates.
- Classification f classif. To predict in which of the K ge-
ographic divisions an image was taken, we use an MLP:
d 7→ d 7→ 512 7→ K.
- Hybrid f relative. In the hybrid model, we predict both
the division and the position of the image within this cell.
The relative position is predicted for all cells with an MLP
ϕrelative : d 7→ d 7→ 512 7→ R2K with a specialized normal-
ization for the last layer, explained below. During inference,
we select the relative prediction of the cell with the highest
prediction score for f classif. During training, we only su-
pervise the relative prediction that corresponds to the true
cell.

w

h

x⋆w (1− x⋆)w

y⋆h

(1− y⋆)h

w⋆, h⋆

Figure I. Hybrid Model. The normalization of the hybrid model
requires special considerations to ensure that the output (x, y) of
ϕaux is such (0, 0) maps to the cell’s centroid w⋆, h⋆, and that
[−1, 1]2 maps the entire cell.

For this network, a key implementation detail is the nor-
malization of the last layer of ϕrelative. We require that for
each cell a prediction of (0, 0) should correspond to the cen-
troid h⋆, w⋆ ∈ C2 of the training set images in the cell, and
that a range of prediction of [−1, 1]2 covers the entire bound-
ing box of size h,w. As illustrated in Figure I, we denote
by x⋆, y⋆ ∈ [0, 1]2 the relative position of the centroid in the
cell and by x, y the prediction of the MLP ϕaux. The output
of f relative is defined as follows:

w⋆ + w

{
−xx⋆ if x ≤ 0

x(1− x⋆) else
, (1)

h⋆ + h

{
−yy⋆ if y ≤ 0

y(1− y⋆) else
. (2)

This normalization allows the network ϕrelative to easily pre-
dict the centroid of the cell, which facilitates learning the
distribution of images of that cell. This is particularly cru-
cial for cells with an off-centered centroid, as it provides
increased precision in high density areas. In practice, re-
moving this normalization decreases the performance of the
hybrid model by 59 points of geoscore, or 22% from the ben-
efit brought by using a hybrid model over pure classification.
- Auxiliary f aux. Finally, the auxiliary network is an MLP
d 7→ d 7→ 64 7→ A, where A corresponds to the number of
auxiliary task predictions: 11 for land cover, 31 for climate,
15 for soil type, 1 for the driving side, and 1 for the distance
to the nearest sea. For all classification tasks (i.e. everything
except the distance to the sea), we softmax the output logits.

Contrastive Learning. We use the MIL-NCE loss [45] as
our contrastive objective, which extends the InfoNCE loss
[51] to cases where each sample can have multiple positive
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with Pi ⊂ B the set of image positively paired with i and
T a temperature parameter set as 0.1. If an image has only
one positive match, this equation becomes the InfoNCE loss
[51].

Nearest Neighbors Retrieval To perform nearest neigh-
bor retrieval, we create a HNSW32 indexe using the FAISS
library [35] through the autofaiss package (https://
github.com/criteo/autofaiss). This approach
achieves fewer than 200 self-consistency errors per million
with over 90% compression rate.

During retrieval, our training set is divided into five parts,
each requiring 15 minutes for index computation and collec-
tively consuming 15.6GB of storage for StreetCLIP embed-
dings, our most resource-intensive model. This setup enables
us to predict locations for 12,000 to 32,000 test images per
second, depending on the model size.

Although retrieval methods demonstrate high perfor-
mance and have been made efficient with approximate meth-
ods, it is important to note that they are not a learning tech-
nique, as they rely on already geographically relevant repre-
sentations that are already learned.

D. Datasheet for Dataset
D.1. Motivation
Q1 For what purpose was the dataset created? Was there

a specific task in mind? Was there a particular gap that
needed to be filled? Please provide a description.

• OpenStreetView-5M (OSV-5M) is the first global
scale, open-access, large dataset of street view im-
ages. Its goal is to enable the training and evalu-
ation of modern computer vision approaches for
global visual geolocation, which would depend
until now on proprietary or expensive APIs such
as Google Street View. More broadly, OSV-5M
can be used to evaluate and improve representation
learning.

Q2 Who created the dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)?

• The dataset was created as part of a the “IMAG-
INE Summer Hackathon”, an internal event of
the LIGM/ENPC/UGE laboratory. All images of
OSV-5M come from the Mapillary website, which
is a platform where users upload georeferenced
images.

Q3 Who funded the creation of the dataset? If there is an
associated grant, please provide the name of the grantor
and the grant name and number.

• This work was partially supported by the ANR
project READY3D ANR-19-CE23-0007 and used
the HPC resources of IDRIS under the allocation
2022-AD011012096R1 made by GENCI.

Q4 Any other comments?
• All the images of OSV-5M are already openly ac-

cessible through Mapillary’s heavily moderated
database. We only selected a small fraction dis-
tributed across the globe, and added metadata from
public sources.

D.2. Composition

Q5 What do the instances that comprise the dataset rep-
resent (e.g., documents, photos, people, countries)?

• OSV-5M is composed of street view images depict-
ing various street scenes, captured by dash-cams
of different vehicles from across the world.

Q6 How many instances are there in total (of each type,
if appropriate)?

• The training set contains 4,894,685 images, and
the test set 210,122.

Q7 Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from
a larger set?

• OSV-5M is a small subset of 5.1M images from the
1.8 billion images hosted on the Mapillary website.

Q8 What data does each instance consist of?
• Each instance consists of a georeferenced street

view image with a height of 512 pixels.
Q9 Is there a label or target associated with each in-

stance?
• Yes. Each image is associated with the following

targets: longitude and latitude, administrative divi-
sion (country, region, sub-region, closest city), and
labels corresponding to the local land cover, soil,
and climate type at a resolution of 30 arc seconds
(1km). We also add the distance to the nearest sea
and the driving side of the country.

Q10 Is any information missing from individual in-
stances?

• Yes. Sub-regions are not defined for all countries,
about 30% of the instances do not have a value for
this field.

Q11 Are relationships between individual instances made
explicit (e.g., users’ movie ratings, social network
links)?

• No. The data is organized as a collection of im-
ages with no particular order or relations. However,

https://github.com/criteo/autofaiss
https://github.com/criteo/autofaiss


the metadata allows a user to organize them based
on different geographical criteria.

Q12 Are there recommended data splits (e.g., training,
development/validation, testing)?

• Yes. We provide an official training and test set.
Our implementation also proposes a validation
split.

Q13 Are there any errors, sources of noise, or redundan-
cies in the dataset?

• Yes. We have heavily filtered the dataset using
semi-automatic methods to discard low-quality im-
ages and wrong localization, as presented in Sec-
tion A. We have estimated through the manual
inspection of 4500 images that 96.1% (±0.57%
with a 95% confidence level) of the images in
OpenStreetView-5M are perceptually localizable,
i.e. provide a clear enough overview of their sur-
roundings.

Q14 Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites,
tweets, other datasets)?

• No. OSV-5M is self-contained and will be stored
and distributed on huggingface.co.

Q15 Does the dataset contain data that might be consid-
ered confidential (e.g., data that is protected by legal
privilege or by doctor–patient confidentiality, data
that includes the content of individuals’ non-public
communications)?

• No. OSV-5M relies on crowdsourced data, whose
license is respected by providing usernames for
each image, which is include in our metadata.

Q16 Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might
otherwise cause anxiety? If so, please describe why.

• Highly unlikely: OSV-5M contains 5 million im-
ages of streets that come from Mapillary, which
imposes a strong crowd-sourced moderation pol-
icy.

Q17 Does the dataset relate to people?
• Yes. Many of the images of OSV-5M contain ve-

hicles and some contain pedestrians, yet Mappilary
performs highly accurate privacy blurring.3

Q18 Does the dataset identify any subpopulations (e.g., by
age, gender)?

• No. The metadata contains no information about
the people present in the photography beyond, who
are also privacy blurred.1

Q19 Is it possible to identify individuals (i.e., one or more
natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset?

3See https://blog.mapillary.com/update/2018/04/
19/accurate-privacy-blurring-at-scale.html

• No. The license plates and faces of pedestrians
have been privacy blurred by Mapillary using an
automatic algorithm with over 99% recall for faces
and 99.9% recall for license plates.1 Furthermore,
users can signal images that violate privacy.
We also manually inspected 4500 images and ob-
served no confidentiality leak. With a confidence
of 95% we can assume that fewer than 0.067% of
the dataset contains leaks.

Q20 Does the dataset contain data that might be consid-
ered sensitive in any way (e.g., data that reveals racial
or ethnic origins, sexual orientations, religious be-
liefs, political opinions or union memberships, or
locations; financial or health data; biometric or ge-
netic data; forms of government identification, such
as social security numbers; criminal history)?

• No.
Q21 Any other comments?

• No.

D.3. Collection Process

Q22 How was the data associated with each instance ac-
quired?

The images of Mapillary are taken and uploaded by
users of the Mapillary platform. We downloaded
the images directly from Mapillary’s API. Addi-
tional metadata was collected from the following
open-access sources: (i) land cover: Global Land
Cover Share Database [40] (ii) climate: Köppen-
Geiger climate classification maps [10], (iii) soil
type: Digital World Soil Map [59] (iv) administra-
tive division: reverse geocoder [7].

Q23 What mechanisms or procedures were used to collect
the data (e.g., hardware apparatus or sensor, manual
human curation, software program, software API)?

• We used Mapillary’s web API and a Python script
running on a standard workstation.

Q24 If the dataset is a sample from a larger set, what was
the sampling strategy (e.g., deterministic, probabilis-
tic with specific sampling probabilities)?

• We first defined a 100×100m grid across the entire
world and sampled one image per cell among the
1.8B images of Mapillary. We then sample the
train and test sets with a weight proportional to the
local image density raised to the power of −0.75.
We then filter the images based on both learned
and handcrafted filters, as described in Section A.

Q25 Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdwork-
ers paid)?

huggingface.co
https://blog.mapillary.com/update/2018/04/19/accurate-privacy-blurring-at-scale.html
https://blog.mapillary.com/update/2018/04/19/accurate-privacy-blurring-at-scale.html


• The images are crowdsourced by Mapillary users
who agree on Mapillary’s terms of use. To the best
of our knowledge, users are not compensated.

Q26 Over what timeframe was the data collected? Does
this timeframe match the creation timeframe of the
data associated with the instances (e.g., recent crawl
of old news articles)?

• The images used in OSV-5M were uploaded be-
tween January 2011 and August 2023.

Q27 Were any ethical review processes conducted (e.g., by
an institutional review board)?

• No.
Q28 Did you collect the data from the individuals in ques-

tion directly, or obtain it via third parties or other
sources (e.g., websites)?

• N.A. The images were downloaded through Map-
illary’s API.

Q29 Were the individuals in question notified about the
data collection?

• No. We followed the terms of use of Mapillary.
Q30 Did the individuals in question consent to the collec-

tion and use of their data?
• Yes. Following the Mapillary terms of use, a user

agrees for their data to be be used respecting the
CC BY-SA 2.0 DEED license.

Q31 If consent was obtained, were the consenting indi-
viduals provided with a mechanism to revoke their
consent in the future or for certain uses?

• N.A.
Q32 Has an analysis of the potential impact of the dataset

and its use on data subjects (e.g., a data protection
impact analysis) been conducted?

• No. However, users of OSV-5M can signal poten-
tial issues with the images to the corresponding
authors. Flagged images will be removed and Map-
illary will be further contacted.

Q33 Any other comments?
• All the images of OSV-5M are already openly ac-

cessible through Mapillary’s heavily moderated
database. We only added additional metadata from
public sources.

D.4. Preprocessing, Cleaning, and/or Labeling

Q34 Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)?

• Yes. We removed the images based on learned and
handcrafted filters, as described in Section A. In
particular, we removed images that were classified
as blurry, too dark or purple, or badly exposed. We

also used a pretrained model [22] to detect and
remove images with potential spurious orientation.

Q35 Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unantici-
pated future uses)? If so, please provide a link or other
access point to the “raw” data.

• Yes. The removed images are saved on a local
server but are not public. Note that all these im-
ages, including the filtered ones, are still available
on Mapillary’s website.

Q36 Is the software used to preprocess/clean/label the
instances available?

• Yes. The script used for cleaning the dataset will
be released alongside the dataset.

Q37 Any other comments?
• No.

D.5. Uses

Q38 Has the dataset been used for any tasks already?
• Yes. To train and evaluate geolocation models,

the subject of the paper.
Q39 Is there a repository that links to any or all papers

or systems that use the dataset?
• No. But once we release the dataset we will main-

tain an updated list on the project page.
Q40 What (other) tasks could the dataset be used for?

• The images of OSV-5M can be used for both self-
supervised learning and generative modeling, both
as a pretraining or fine-tuning dataset. The meta-
data beyond geolocation can be used as targets for
separate tasks.

Q41 Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses?

• The density-based sampling leads to a spatial dis-
tribution that may not fit other datasets and tasks.

Q42 Are there tasks for which the dataset should not be
used?

• Yes.The same limitations that apply for Mapillary
data (CC BY-SA 2.0 DEED), also apply to our
dataset.

• Privacy Concerns. Despite being heavily moder-
ated, the dataset may contain images of individuals
or private residences. Usage must avoid applica-
tions that can infringe on personal privacy or ex-
ercise surveillance and open-source intelligence
(OSINT).

• Cultural and Ethical Sensitivity. The dataset
spans a wide range of cultures and countries, each

https://www.mapillary.com/terms


with its own set of ethical norms and cultural sensi-
tivities. We strongly advise against using OSV-5M
in a way that might propagate stereotypes, misrep-
resent cultures, or otherwise harm the dignity and
representation of the featured communities.

• Manipulation and Misrepresentation. The
dataset should not be used to create misleading
representations of locations or to manipulate im-
ages in a way that distorts or misrepresents the
reality of the places and the depicted people.

Q43 Any other comments?
• No.

D.6. Distribution

Q44 Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization)
on behalf of which the dataset was created?

• Yes. The dataset will be open-access and accessi-
ble to the research community.

Q45 How will the dataset be distributed (e.g., tarball on
website, API, GitHub)?

• The data will be hosted on huggingface.co.
Q46 When will the dataset be distributed?

• The dataset will be distributed upon the publication
of the preprint on arXiv, which should be in Q2 of
2024.

Q47 Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? If so, please describe
this license and/or ToU, and provide a link or other
access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated
with these restrictions.

• Yes. The dataset inherits from Mappilary CC-
BY-SA license: free of use with attribution to the
authors of the images [2].

Q48 Have any third parties imposed IP-based or other
restrictions on the data associated with the instances?

• No.
Q49 Do any export controls or other regulatory restric-

tions apply to the dataset or to individual instances?
• No.

Q50 Any other comments?
• No.

D.7. Maintenance

Q51 Who will be supporting/hosting/maintaining the
dataset?

• The authors will maintain the dataset. The dataset
will be hosted on huggingface.co.

Q52 How can the owner/curator/manager of the dataset
be contacted (e.g., email address)?

• A dedicated email will be created.
Q53 Is there an erratum?

• No. There is no erratum for our initial release.
Errata will be documented as future releases on
the dataset website.

Q54 Will the dataset be updated (e.g., to correct labeling
errors, add new instances, delete instances)?

• Yes.
Q55 If the dataset relates to people, are there applicable

limits on the retention of the data associated with
the instances (e.g., were individuals in question told
that their data would be retained for a fixed period
of time and then deleted)?

• N.A.
Q56 Will older versions of the dataset continue to be sup-

ported/hosted/maintained?
• Yes. We are dedicated to providing ongoing sup-

port for the OSV-5M dataset.
Q57 If others want to extend/augment/build on/contribute

to the dataset, is there a mechanism for them to do
so?

• Yes. The data is free of use under Mappilary CC-
BY-SA license. User making explicit use of our
proposed split should cite our paper.

Q58 Any other comments?
• No.

huggingface.co
huggingface.co
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