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Abstract

We describe the application of effective field theories for quantum chromodynamics

(QCD) to two bound states involving heavy quarks: the T+
cc exotic meson and the J/ψ. We

study the decay of the T+
cc in an effective theory for hadronic molecules, and find agreement

with experiment. We also use the nonrelativistic QCD (NRQCD) factorization formalism

to derive the leading-order transverse momentum dependent fragmentation functions (FFs)

for quarks and gluons fragmenting to J/ψ. We then make use of these TMD FFs to

compare the J/ψ production mechanisms of light quark fragmentation and photon-gluon

fusion, where the conclusions we draw can motivate future experiments at the Electron Ion

Collider, shedding light on the inner structure of nucleons and testing ideas from NRQCD

factorization. These results showcase the utility of effective field theories in explaining

experiments and testing key concepts in nuclear/particle physics.
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1

Introduction

All of the known elementary particles in the universe, as well as three of the four

fundamental forces describing their interactions, are described by the Standard Model of

particle physics. The matter particles are all spin-1/2 fermions, and are divided into two

types – quarks and leptons – of three generations each. The interactions are mediated

by “force carriers”, which are bosons of either spin-0 or spin-1. Both quarks and leptons

participate with the electroweak interaction – the unified description of electromagnetism

and the weak force – which is mediated by the massive vector bosons Z and W˘ and the

massless photon γ. Quarks are the only matter particles that participate in the strong

interaction, mediated via the exchange of gluons, which are massless and spin-1. The

massive particles get their mass through interactions with the Higgs boson, a massive spin-

0 particle. All of these particles are summarized in Fig. 1.1.

The equations of motion of a physical system are generally obtained from the principle

of least action δS
δϕi

= 0. The action S[ϕi] =
ş

dsL
(
ϕi,

Bϕ
Bsj

, sj
)

is a functional dependent on

the degrees of freedom ϕi of the system, where s represent some generalized coordinate(s).

The function L is the Lagrangian density, or simply the Lagrangian,1 and it contains all of

the physics of the system. The Standard Model is a quantum field theory (QFT), which

means the degrees of freedom in its Lagrangian are quantum fields: quantum-operator-

valued objects that are a function of space and time, and the generalized coordinates are

the coordinates of spacetime. The fundamental particles are excitations of these quantum

1 This is a mild abuse of language, as the Lagrangian is technically a separate object equal to the Lagrangian
density integrated over the spatial coordinates.
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FIGURE 1.1: Elementary particles of the Standard Model. Figure from Ref. [1].

fields. More precisely speaking, the Standard Model is a gauge QFT, which means the

Lagrangian is invariant under certain local gauge transformations. This restriction leads

the matter fields, which are described by Dirac spinor fields, to be coupled to gauge fields

which are associated with the vector bosons. The symmetry group of these interactions is

SU(3) ˆ SU(2)L ˆ U(1). The SU(3) portion describes the strong interaction, where the

fundamental particles carry a color charge. The SU(2)L ˆ U(1) portion is the electroweak

interaction, and this symmetry group is spontaneously broken to a different U(1) symmetry

group by the Higgs mechanism, where the coupling to a scalar field for the Higgs boson

causes the Z and W˘ to have nonzero mass. Electric charge is a quantum number derived

from the electroweak sector of the Lagrangian; quarks have fractional electric charge while

2



the leptons have integer electric charge.

The sector of the Standard Model describing the strong interaction is called quantum

chromodynamics (QCD). It is the theory that describes nuclear matter, and therefore is

something that underlies all the atoms and molecules that make up the things we encounter

in everyday life. Despite its ubiquitous nature, QCD has many interesting properties and

quirks that make it difficult to perform predictive calculations, and physicists are constantly

learning new things about systems described by QCD. This dissertation deals exclusively

with such systems.

Equally important to theoretical descriptions of elementary particles are the experi-

mental endeavors which measure them. Both aspects can influence and help the other:

theorists can predict new phenomena and inspire experimentalists to look for them, and

experimentalists can make discoveries that require theorists to revise their explanations

or come up with new ones. Experiments that probe the physics at small distances re-

quire enormous amounts of energy. This is achieved at particle accelerators, which produce

beams of particles and accelerate them to high speeds, before smashing them together and

detecting the remnants. Perhaps the most famous particle accelerator is the Large Hadron

Collider (LHC), a machine over 26 kilometers in circumference straddling the border be-

tween Switzerland and France, which can achieve collision energies of 13.6 TeV. Researchers

at the LHC have discovered, among many other things, the T+
cc exotic meson, whose theo-

retical description is a major topic of this dissertation. Physicists often aim to build new

accelerators that they hope will shed light on aspects of particle physics that are poorly

understood. One such future accelerator is the Electron Ion Collider (EIC), which will

be built at Brookhaven National Laboratory over roughly the next decade. The EIC will

hopefully teach us more about the inner structure of protons and neutrons. This prospect

is the primary motivation behind some of the other research projects discussed in this work.

The outline of this dissertation is as follows. The current introductory chapter provides

the basic information about quantum chromodynamics, and discusses two frameworks which

aid in calculation: effective field theory and the parton model. Chapter 2 discusses an ef-

3



fective field theory which is used to calculate the decay of the exotic meson T+
cc . Chapter 3

outlines the derivation of spin- and transverse-momentum-dependent fragmentation func-

tions for J/ψ production, and in Chapter 4 these fragmentation functions are utilized in

comparing different J/ψ production mechanisms, which can inform future experiments at

the Electron Ion Collider. Concluding remarks are given in Chap. 5. In places in the Chap-

ters where a particular topic (e.g., a lengthy derivation) would be too distracting from the

main discussion, the extra information is provided in an Appendix.

The research projects presented in this dissertation were initially published in four

papers [2–5]; the author contributed to the entire analysis and writing of each paper. Their

relevance to the field can be understood in the context of the interplay between theory

and experiment. Using effective field theories can allow us to calculate concrete theoretical

predictions for the results of collider experiments. In doing so, the validity of the theories

are tested, and the underlying systems are better understood.

1.1 Quantum chromodynamics

The physics of quarks and gluons is described by a non-Abelian gauge QFT with sym-

metry group SU(3) called quantum chromodynamics (QCD), whose Lagrangian is:

LQCD =
ÿ

q
ψ̄q,a(iγµBµδab ´ gsγ

µtC
ab AC

µ ´ mqδab)ψq,b ´
1
4

FA
µνFAµν . (1.1)

The ψ fields are Dirac spinors which create and annihilate quarks of flavor q and mass

mq; there are six flavors of quarks divided into three generations. The Aµ fields create

and annihilate gluons. Their kinetic term is written in terms of the field strength tensor

FA
µν = Bµ AA

ν ´ Bν AA
µ ´ gs fABC AB

µ AC
ν . The coupling constant between the quarks and gluons

is gs, and the Dirac matrices are denoted by γµ.

Quarks and gluons both carry what is called color charge, which is analogous to the

electric charge of electromagnetism. The information about color is contained in the color

indices on the fields. The quarks transform in the fundamental representation of SU(3),
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and so their color indices, indicated by a and b in Eq. (1.1), run from 1 to 3.2 The gluons

transform in the adjoint representation of SU(3), and so their indices, represented by A,

B, and C in Eq. (1.1), run from 1 to 8. The eight 3 ˆ 3 matrices represented by tC
ab in the

Lagrangian are the generators of SU(3) color. The commutation relation for the generators

is [tA, tB] = i fABCtC.

1.1.1 Feynman diagrams

Calculations in a quantum field theory usually involve computing a matrix element of

an operator. If one is interested in scattering amplitudes, the LSZ reduction formula [6]

relates the S-matrix elements to correlation functions, which are vacuum expectation values

of a product of field operators. More generally, we are interested in a matrix element with

arbitrary in and out states:

xout| T O exp
[

´ i
ż

dt Hint

]
|iny , (1.2)

where T indicates time ordering. The fields in O are in the interaction picture, and Hint is

the interaction Hamiltonian. Wick’s theorem [7] then tells us that the time-ordered product

of fields is equal to the normal-ordered sum of all possible contractions of the fields. In the

case of a vacuum expectation value of the time-ordered product of two fields, the statement

of the theorem is

T ϕ(x)ϕ(y) = N ϕ(x)ϕ(y) + N ϕ(x1)ϕ(x2) . (1.3)

The contraction indicates that we replace the fields with the Feynman propagator appropri-

ate for the type of field, and it has a diagrammatic interpretation as a particle propagating

from y to x. Matrix elements like in Eq. (1.2), then, have pictorial representations in the

form of Feynman diagrams, examples of which are shown in Fig. 1.2. Each has an associ-

ated mathematical value with it, and scales as a particular power of the coupling, which

for QCD is αs = g2
s /4π. If the coupling is small, then we can utilize perturbation theory

2 The fundamental indices are often suppressed in the notation.
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(a)

(b)

FIGURE 1.2: A simple (a) tree-level and (b) one-loop Feynman diagram.

and compute the observable to the desired accuracy, where each further order in αs brings

with it more Feynman diagrams.

1.1.2 Renormalization

Beginning at O(αs), loop diagrams can contribute, e.g., the quark self-energy correction

in Fig. 1.2b. In these instances, to evaluate the Feynman diagram one must integrate over

the momentum flowing through the loop. These integrals are often divergent in d = 4

dimensions. These divergences can be ultraviolet (UV) divergences, arising when the loop

momentum is large, or infrared (IR) divergences, arising when it is small. A common way

to regulate the divergences is to use dimensional regularization, where the loop integral is

evaluated in an arbitrary number of spatial dimensions. One of the simpler integrals that

can arise has the following answer in dimensional regularization:

(
µ2eγE

4π

)2´ d
2

ż

ddl
(2π)d

1
(l2 ´ ∆)n =

(
µ2eγE

4π

)2´ d
2 (´1)ni
(4π)d/2

Γ(n ´ d
2 )

Γ(n)

(
1
∆

)n´ d
2

. (1.4)

It is common to write the number of spacetime dimensions as d = 4 ´ 2ϵ, in which case the

divergences appear as poles that go as inverse powers of ϵ. Here µ is the renormalization

scale associated with the modified minimal subtraction (MS) scheme.

The final answer for a physical observable must not be divergent, so when a Feynman

diagram contains a divergence, something must be done to remedy the situation. The pro-

cedure by which these “infinities” are absorbed into the theory is called renormalization. To
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simplify the discussion, here we turn to the case of quantum electrodynamics (QED), with

one fermion and gauge boson. We contend that the fields and couplings in the Lagrangian

are bare quantities, which we now denote with a superscript (0):

L = iψ̄(0)γµ(Bµ ´ ig(0)em A(0)
µ )ψ(0) ´ m(0)ψ̄(0)ψ(0) ´

1
4

F(0)
µν F(0)µν . (1.5)

We then introduce a “renormalized” version of each of these quantities that is related to the

bare by an overall constant: [8]

Aµ =
1

?
ZA

A(0)
µ , ψ =

1
a

Zψ
ψ(0) ,

gem =
1

Zg
µ´ϵ/2g(0)em , m =

1
Zm

m(0) .

(1.6)

The Lagrangian can then be written to look like the original Lagrangian but in terms of

the renormalized fields, plus a set of counterterms.

L = iψ̄γµ(Bµ ´ igemAµ)ψ ´ mψ̄ψ ´
1
4

FµνFµν + counterterms . (1.7)

Then, order-by-order in the coupling, whenever there is a divergence arising in a loop

diagram involving a renormalized quantity, there is a corresponding diagram associated

with a counterterm, and the value of the renormalization constant(s) can be fixed so that

the divergence cancels in the final answer. In this way, the bare quantities are indeed

divergent, but infinite values for the renormalization constants are chosen to compensate,

yielding finite renormalized quantities, which are the ones that we actually measure. For

example, at O(g2
em), there is a one-loop diagram for the fermion self energy, like in Fig. 1.2b,

but with a photon in place of the gluon. It evaluates to the divergent expression,

i
32π2ϵ

(4g2
em)

(
´ 2m +

1
2

γ ¨ p
)

, (1.8)

The counterterms contribute a tree-level diagram to this process,

i(Zψ ´ 1)γ ¨ p ´ i(ZmZψ ´ 1)m . (1.9)
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Adding the two contributions and requiring that the answer be finite fixes two of the

renormalization constants:

Zψ = 1 ´
g2

em
16π2ϵ

,

Zm = 1 ´ 3
g2

em
16π2ϵ

.

(1.10)

The bare quantities, which are the original fields and parameters of the theory, must

be independent of the subtraction scale µ, since that is an arbitrary parameter in our

regularization scheme. The renormalized quantities, however, do scale with µ. Returning

from QED back to QCD, the evolution of the coupling gs with µ is described by the beta

function of QCD:

β(gs) ” µ
dgs

dµ
= ´

g3
s

16π2

(
11 ´

2
3

N f

)
+O(g5

s ) . (1.11)

Here N f is the number of quark flavors, which is equal to 6 in our current understanding

of the Standard Model. This means that the beta function is negative, and therefore the

coupling gets weaker as the energy scale increases (Fig. 1.3). This phenomenon is called

asymptotic freedom; it was predicted by Gross, Wilczek, and Politzer [9, 10], and is one of

the key characteristics of QCD.

We can solve Eq. (1.11) to obtain the value of αs = g2
s /4π at one scale as a function of

its value at another:

1
αs(µ2)

=
1

αs(µ1)
+ β0 ln

(
µ2

2

µ2
1

)
, (1.12)

for β0 = (33 ´ 2N f )/12π. Defining a scale ΛQCD ” µe´1/[2β0αs(µ)] and taking the logarithm

of both sides, we see:

1
αs(µ)

= β0 ln
(

µ2

Λ2
QCD

)
. (1.13)

Equation (1.13) implies that ΛQCD is the scale at which the coupling constant diverges

and thus perturbation theory breaks down. The experimental value of ΛQCD, derived from

measurements of αs, is about 200 MeV.
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Figure 9.3: Summary of measurements of –s as a function of
the energy scale Q. The respective degree of QCD perturba-
tion theory used in the extraction of –s is indicated in brack-
ets (NLO: next-to-leading order; NNLO: next-to-next-to-leading
order; NNLO+res.: NNLO matched to a resummed calculation;
N3LO: next-to-NNLO).

–s(M2
Z). This corresponds to –s(M2

· ) = 0.312± 0.015.

9.4.2 Heavy quarkonia decays:
Recently, two determinations have been performed [556,557] that
are based on N3LO accurate predictions. Reference [556] per-
forms a simultaneous fit of the strong coupling and the bot-
tom mass mb, including states with principal quantum number
up to n Æ 2 in order to break the degeneracy between –s and
mb, finding –s(M2

Z) = 0.1178 ± 0.0051. Reference [557] in-
stead uses as input of the fit the renormalon-free combination
of masses of the meson Bc, the bottomonium ÷b and the char-
monium ÷c, MBc ≠ M÷b/2 ≠ M÷c/2, which is weakly dependent
on the heavy quark masses, but shows a good dependence on –s.
Using this observable, they obtain –s(M2

Z) = 0.1195 ± 0.0053.
Two further values are derived at NNLO in Ref. [558, 559] from
mass splittings and sum rules giving –s(M2

Z) = 0.1183 ± 0.0019
and –s(M2

Z) = 0.1175 ± 0.0032 when evolved from the relevant
charmonium respectively bottomonium mass scales to M2

Z . Fi-
nally, by means of quarkonium sum rules, Refs. [560, 561] quote
–s(M2

Z) = 0.1168±0.0019 and –s(M2
Z) = 0.1186±0.0048 for char-

monium and bottomonium respectively. These six determinations
satisfy our criteria to be included in the heavy-quarkonia category
of the world average. Their unweighted combination leads to the
pre-average for this category of –s(M2

Z) = 0.1181± 0.0037.

9.4.3 PDF fits:
Another class of studies, analyzing structure functions at NNLO
QCD (and partly beyond), provide results that serve as relevant
inputs for the world average of –s. Most of these studies do not,
however, explicitly include estimates of theoretical uncertainties
when quoting fit results of –s. In such cases we add, in quadra-
ture, half of the di�erence between the results obtained in NNLO
and NLO to the quoted errors.

A combined analysis of non-singlet structure functions from
DIS [562], based on QCD predictions up to N3LO in some of
its parts, results in –s(M2

Z) = 0.1141 ± 0.0022 (BBG). Studies
of singlet and non-singlet structure functions, based on NNLO
predictions, result in –s(M2

Z) = 0.1162 ± 0.0017 [563] (JR14).
The AMBP group [564, 565] determined a set of parton distribu-
tion functions using data from HERA, NOMAD, CHORUS, from
the Tevatron and the LHC using the Drell-Yan process and the
hadro-production of single-top and top-quark pairs, and deter-
mined –s(M2

Z) = 0.1147± 0.0024 [564].

The MSHT group [566], also including hadron collider data,
determined a new set of parton density functions (MSHT20)
together with –s(M2

Z) = 0.1174 ± 0.0013. Similarly, the CT
group [567] determined the CT18 parton density set together
with –s(M2

Z) = 0.1164 ± 0.0026. The NNPDF group [568] pre-
sented NNPDF3.1 parton distribution functions together with
–s(M2

Z) = 0.1185± 0.0012.
We note that criticism has been expressed on some of the above

extractions. Among the issues raised, we mention the neglect of
singlet contributions at x Ø 0.3 in pure non-singlet fits [569],
the impact and detailed treatment of particular classes of data
in the fits [569, 570], possible biases due to insu�ciently flexible
parametrizations of the PDFs [571] and the use of a fixed-flavor
number scheme [572,573].

Summarizing the results from world data on structure functions,
taking the unweighted average of the central values and errors of
all selected results, leads to a pre-average value of –s(M2

Z) =
0.1162± 0.0020, see Fig. 9.2.

9.4.4 Hadronic final states of e+e≠ annihilations:
Re-analyses of jets and event shapes in e+e≠ annihilation (j&s),
measured around the Z peak and at LEP2 center-of-mass ener-
gies up to 209 GeV, using NNLO predictions matched to NLL re-
summation and Monte Carlo models to correct for hadronization
e�ects, resulted in –s(M2

Z) = 0.1224 ± 0.0039 (ALEPH) [574],
and in –s(M2

Z) = 0.1189 ± 0.0043 (OPAL) [575]. Similarly, an
analysis of JADE data [576] at center-of-mass energies between
14 and 46 GeV gives –s(M2

Z) = 0.1172 ± 0.0051, with contribu-
tions from the hadronization model and from perturbative QCD
uncertainties of 0.0035 and 0.0030, respectively. Precise deter-
minations of –s from 3-jet production alone (3j), at NNLO, re-
sulted in –s(M2

Z) = 0.1175 ± 0.0025 [577] from ALEPH data
and in –s(M2

Z) = 0.1199 ± 0.0059 [578] from JADE. A recent
determination is based on an NNLO+NNLL accurate calcula-
tion that allows to fit the region of lower 3-jet rate (2j) using
data collected at LEP and PETRA at di�erent energies. This
fit gives –s(M2

Z) = 0.1188 ± 0.0013 [579], where the dominant
uncertainty is the hadronization uncertainty, which is estimated
from Monte Carlo simulations. A fit of energy-energy-correlation
(EEC) also based on an NNLO+NNLL calculation together with
a Monte Carlo based modeling of hadronization corrections gives
–s(M2

Z) = 0.1175 ± 0.0029 [580]. These results are summarized
in the upper seven rows of the e+e≠ sector of Fig. 9.2.

Another class of –s determinations is based on analytic model-
ing of non-perturbative and hadronization e�ects, rather than on
Monte Carlo models [581–584], using methods like power correc-
tions, factorization of soft-collinear e�ective field theory, disper-
sive models and low scale QCD e�ective couplings. In these stud-
ies, the world data on Thrust distributions (T), or - most recently
- C-parameter distributions (C), are analysed and fitted to per-
turbative QCD predictions at NNLO matched with resummation
of leading logs up to N3LL accuracy, see Sec. 9.2.3.3. The results
are –s(M2

Z) = 0.1135±0.0011 [582] and –s(M2
Z) = 0.1134+0.0031

≠0.0025
[583] from Thrust, and –s(M2

Z) = 0.1123 ± 0.0015 [584] from
C-parameter. They are displayed in the lower three rows of the
e+e≠ sector of Fig. 9.2. A recent calculation has determined the
leading non-perturbative contribution to the C-parameter in the
three-jet limit, and has found that it di�ers by a factor of two from
the two-jet limit [585]. Taking this result into account in analyses
of the C-parameter would increase the value of the extracted –s

parameter, leaving it more in keeping with the world average.
The determination of Ref. [581], –s(M2

Z) = 0.1164+0.0028
≠0.0024, is

no longer included in the average as it is superseded by other
determinations that use the same Thrust data but rely on more
accurate theoretical predictions. Not included in the computa-
tion of the world average but worth mentioning are a compu-
tation of the NLO corrections to 5-jet production and compari-
son to the measured 5-jet rates at LEP [586], giving –s(M2

Z) =
0.1156+0.0041

≠0.0034, and a computation of non-perturbative and per-
turbative QCD contributions to the scale evolution of quark
and gluon jet multiplicities, including resummation, resulting in
–s(M2

Z) = 0.1199± 0.0026 [587].
We note that there is criticism on both classes of –s extractions

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/8/083C

01/6651666 by guest on 08 January 2024

FIGURE 1.3: Measurements of αs showing the running coupling. Figure from Ref. [11].

1.1.3 The quark model and bound states

So far the discussion has been about the fundamental particles of QCD – quarks and

gluons – and their treatment as quantum fields. However, these particles are not observed

individually. Nature only allows physical states which are color singlets, a fact called color

confinement; therefore all the states we observe are bound states of multiple quarks and

gluons. These bound states are called hadrons, and are further divided into mesons and

baryons, which are bosons and fermions, respectively.

All of the hadrons can be neatly organized using the quark model, which utilizes the fact

that there are six flavors of quarks along with their antiparticles, and delineates combina-

tions of them by appealing to their quantum numbers. The multitude of quantum numbers
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Table 1.1: Quantum numbers of the quarks.
Symbol Name d u s c b t

Q electric charge ´1/3 +2/3 ´1/3 +2/3 ´1/3 +2/3
I isospin 1/2 1/2 0 0 0 0
Iz z component of isospin ´1/2 +1/2 0 0 0 0
S strangeness 0 0 ´1 0 0 0
C charm 0 0 0 +1 0 0
B bottomness 0 0 0 0 ´1 0
T topness 0 0 0 0 0 +1

for each flavor are summarized in Table 1.1. The electric charge is related to the others by

Q = Iz +
B + S + C + B + T

2
, (1.14)

for isospin z component Iz, baryon number B (1 for baryons and 0 for mesons), strangeness

S, charm C, bottomness B, and topness T. Another quantum number of note is the hyper-

charge Y = B + S ´ (C ´ B + T)/3.

The quark model is independent of the fact that the quarks can be described by quantum

fields, and in fact predates QCD. In order for the hadron to be colorless, the simplest mesons

consist of a quark/antiquark pair qq̄, and the simplest baryons consist of three quarks qqq.

As Chaps. 3 and 4 deal primarily with the J/ψ, which is a bound state of cc̄, qq̄ mesons are

the most relevant hadron for this dissertation. Including up to the charm quark, they can

be organized in 16-plets according to their hypercharge, charm, and z component of isospin

(Fig. 1.4). Anything that does not fit into the simplest qq̄ or qqq categories of hadrons is

called an exotic hadron [11]. The T+
cc , which is the primary focus of Chap. 2, is an exotic

meson which is a possible tetraquark state ccūd̄.

1.2 Effective field theory

Calculations in a QFT often involve physics that is irrelevant to the problem at hand.

It can be of interest, then, to use an approximation to the full theory that only includes

the necessary ingredients to solve a particular problem. This is the idea behind effective

field theory (EFT). The key elements to constructing an EFT Lagrangian are the degrees
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7 15. Quark Model

Z

Figure 15.1: SU(4) weight diagram showing the 16-plets for the pseudoscalar (a) and vector
mesons (b) made of the u, d, s, and c quarks as a function of isospin Iz, charm C , and hypercharge
Y = B + S ≠ C

3 . The nonets of light mesons occupy the central planes to which the cc̄ states
have been added.

The mass eigenvalues are mf Õ and mf . The mixing angle is given by

tan ◊ = m8 ≠ mf Õ

m81
. (15.11)

Calculating m8 and m81 from the wave functions Eq. (15.7) and Eq. (15.8), and expressing the
quark masses as a function of the I = 1/2 and I = 1 meson masses, one obtains

tan ◊ = 4mK ≠ ma ≠ 3mf Õ

2
Ô

2(ma ≠ mK)
, (15.12)

which also determines the sign of ◊. Alternatively, one can express the mixing angle as a function
of all nonet masses. The octet mass is given by

m8 = mf Õ cos2 ◊ + mf sin2 ◊ (15.13)

whence
tan2 ◊ = 4mK ≠ ma ≠ 3mf Õ

≠4mK + ma + 3mf
. (15.14)

Eliminating ◊ from Eq. (15.12) and Eq. (15.14) leads to the sum rule [14]

(mf + mf Õ)(4mK ≠ ma) ≠ 3mfmf Õ = 8m2
K ≠ 8mKma + 3m2

a. (15.15)

1st December, 2023

FIGURE 1.4: Diagram showing the 16-plets of pseudoscalar (a) and vector (b) mesons of u,
d, s, and c quarks, organized according to isospin Iz, charm C, and hypercharge Y. Figure
from Ref. [11].

of freedom and the symmetries. The degrees of freedom are all of the quantum fields that

are applicable to the problem, or, conversely, none of the fields that will have a negligible

affect on the dynamics of the system. The desired symmetries determine the variety of

operators in the Lagrangian. A common maxim is that to write down an EFT, one writes

down all the operators involving the relevant degrees of freedom that are consistent with

the symmetries of the system.

Another crucial idea behind EFTs is that of power counting. All EFTs have a parameter

(or set of parameters), called the power counting parameter, that is small in the considered

energy regime. The EFT can be thought of as a series expansion in this parameter, and
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the desired accuracy can determine the number of terms in the Lagrangian, the number

of Feynman diagrams calculated, etc. As an example, if an EFT takes a full theory and

removes the physics at the high-energy scale M, and keeps the physics at the low-energy

scale m, the power counting parameter is the ratio m/M.

Broadly speaking, there are two types of EFTs: top-down and bottom-up theories. In

top-down EFTs, the full theory is known, but heavy particles are removed from the theory

to simplify the calculations. This removal is known as “integrating out” the heavy particles.

This results in an EFT with different operators than the full theory. The couplings (also

known as Wilson coefficients) associated with the new interaction terms are fixed through

a process called matching, where a particular scattering process is studied in both the full

theory and the EFT, and the results are forced to agree in the low-energy, or infrared (IR),

region where the theories are designed to coincide. The EFT couplings, then, contain all

of the information regarding the high-energy, or ultraviolet (UV), physics. Non-relativistic

QCD, which is an EFT we use in Chaps. 3 and 4, is a top-down EFT.

In bottom-up EFTs, the full theory is unknown, or else unsuitable to match onto the

low-energy theory, and the effective theory is constructed by writing down all possible

terms with the desired degrees of freedom that obey the required symmetries. Here, the

couplings are not matched to any other theory, but rather fixed to experimental or numerical

results. Chiral perturbation theory, which will underly the theories discussed in Chap. 2,

is a bottom-up EFT.

1.2.1 Example: Fermi weak theory

As an example of a top-down EFT, consider an EFT for low-energy weak interactions,

called Fermi weak theory, which is a frequent example in introductory material on the

subject [12–14]. Here the full theory is the Standard Model, whose W boson interaction

terms with quarks and leptons are given by a coupling to a weak current:

jµ
W = Vij(ūiγ

µPLdj) + (ν̄ℓγ
µPLℓ) , (1.15)
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where ui P u, c, t are the 2/3 charge quarks, dj = d, s, b are the ´1/3 charge quarks, and Vij

is the CKM matrix [15, 16], which parametrizes the strength of the flavor-changing weak

interaction.3 The amplitude for the decay of a bottom quark to a charm quark through the

exchange of a W boson with an electron neutrino, b + νe Ñ c + e´, is given by:

A =

(
´ig
?

2

)2

Vcb(c̄γµPLb)(ℓ̄γνPLνℓ)

(
´igµν

p2 ´ M2
W

)
. (1.16)

Fermi weak theory applies at momenta much lower than the W boson mass, p ! MW . In

this regime, the W boson propagator can be expanded in p2/M2
W .

1
p2 ´ M2

W
= ´

1
M2

W

8
ÿ

n=0

p2n

M2n
W

. (1.17)

Keeping only the n = 0 constant term for the propagator gives an amplitude that is the

same as would be yielded by the effective Lagrangian,

L = ´
g2

2M2
W

Vcb(c̄γµPLb)(ℓ̄γνPLνℓ) +O
(

1
M4

W

)
. (1.18)

Now the effect of the W boson exchange is approximated by a four-fermion contact operator,

as in Fig. 1.5; the W boson has been integrated out. The other light particles in the theory

have been kept, and the power counting parameters are considered to be the ratios of the

light particle masses to that of the W, e.g., mc/MW .

This was a simple example of a matching calculation: we could have started by writing

down the operator (c̄γµPLb)(ℓ̄γνPLνℓ) with an arbitrary Wilson coefficient, as that operator

contains all the degrees of freedom we need for the problem. By expanding the full theory

propagator in the limit we are interested in, as in Eq. (1.17), we can see that the Wilson

coefficient must be ´
g2

2M2
W

Vcb for the EFT to agree with the results of the full theory in the

p ! MW regime.

3 When neglecting neutrino masses, there is no mixing matrix for the leptons.
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FIGURE 1.5: Bottom quark decay in (a) the full theory (the Standard Model) and (b) the
effective theory.

1.3 The parton model

A key goal of nuclear/particle physics is to understand the inner structure of nucleons.

This was pioneered experimentally at the Stanford Linear Accelerator Center (SLAC) with

a process called deep inelastic scattering (DIS), e + p Ñ e1 + X [17, 18]. Here, an electron

e scatters off of a proton p, causing it to break apart and result in a final state X. The

DIS experiments showed that the interactions were as if the electron were scattering off

of point-like particles in simple quantum electrodynamics processes [19]. Moreover, rather

than detecting a scattered proton in the final state, X included an abundance of hadrons.

This suggests that the proton is a composite particle, made up of smaller constituents

collectively known as partons, an idea originally proposed by Feynman [20]. The partons

are now identified with quarks and gluons. Nucleons, then, are composite hadrons of quarks

and gluons interacting via QCD. The quarks are asymptotically free at high energies, which

means they almost free particles inside the nucleons.

If the proton is a collection of quasi-free partons, one might suppose that to calculate

some differential cross section dσepÑe1X for DIS, we can instead calculate the differential

cross sections dσ̂ for the partonic processes and sum over them, weighted according to some

probability distributions f for the partons.

dσepÑe1X «
ÿ

i

ż

dξ fi/p(ξ) dσ̂eiÑe1X . (1.19)
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Figure 18.4: The bands are x times the unpolarized (a,b) parton distributions f(x) (where f =
uv, dv, u, d, s ƒ s̄, c = c̄, b = b̄, g) obtained in NNLO NNPDF3.0 global analysis [76] at scales
µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right), with –s(M2

Z) = 0.118. The analogous results
obtained in the NNLO MMHT analysis can be found in Fig. 1 of Ref [55].The corresponding
polarized parton distributions are shown (c,d), obtained in NLO with NNPDFpol1.1 [78].

1st June, 2020 8:28am

FIGURE 1.6: Unpolarized parton distribution functions for various parton types, at two
different energy scales, obtained by the NNPDF collaboration [22]. Figure from Ref. [23].

This is a statement of the QCD factorization theorem. The f are known as parton distri-

bution functions (PDFs), and ξ is the fraction of the proton’s momentum carried by the

parton. Equation (1.19) takes advantage of the separation of scales in the problem. The

partonic processes involve the exchange of a highly virtual photon with Q2 " Λ2
QCD, where

the strong coupling is small and thus the σ̂ can be calculated in perturbation theory. All of

the nonperturbative physics is contained in the PDFs, which in principle are universal can

be extracted from experiment. See the PDFs for unpolarized partons plotted as a function

of the momentum fraction in Fig. 1.6. Because it allows us to write down cross sections

for otherwise nonperturbative processes, factorization is a powerful tool in understanding

the physics of nucleons, and for DIS it has been rigorously proven [21]. It will be discussed

more explicitly in Sec. 3.2 when we apply it to J/ψ production.
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2

Decays of the exotic meson T+
cc

The1 LHCb collaboration announced the discovery of an exotic state in the D0D0π+

mass spectrum in July 2021 [24–28]. It was observed as a narrow resonance close to both the

D˚0D+ and D˚+D0 thresholds (Fig. 2.1), consistent with a tetraquark with quark content

ccūd̄ and quantum numbers JP = 1+. The resonance is named T+
cc . This discovery was simi-

lar to that of the χc1(3872) [29–32], originally known as the X(3872), a possible tetraquark

state with quark content cc̄uū and quantum numbers JPC = 1++. Both resonances lie

extremely close to D˚D thresholds and can be regarded as hadronic molecules.

The decays of the χc1(3872) have been studied with an EFT called XEFT (“effective

field theory for the X”), initially developed in Ref. [33]. The similarities of that state with

the T+
cc , as well as the fact that there are more experimental observables with which to

compare to theory, motivated a generalization of XEFT to apply to the T+
cc . In this chapter

we discuss this EFT for the T+
cc , and its predictions for the total decay width and differential

decay width distributions, which are in excellent agreement with the LHCb results and were

first presented in Refs. [2, 3]. We begin by reviewing the theories that underpin XEFT.

1 The work presented in this chapter was initially published in Refs. [2, 3]. The contributions of each author
are listed below.

• R. Hodges: analysis and writing for both papers
• L. Dai: checking calculations and editing manuscript (Ref. [3])
• S. Fleming: checking calculations and editing manuscripts for both papers
• T. Mehen: analysis and writing (Ref. [2]), checking calculations and editing manuscript (Ref. [3])
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Figure 1: Distribution of D0D0⇡+ mass. Distribution of D0D0⇡+ mass where the con-
tribution of the non-D0 background has been statistically subtracted. The result of the fit
described in the text is overlaid. Uncertainties on the data points are statistical only and
represent one standard deviation, calculated as a sum in quadrature of the assigned weights
from the background-subtraction procedure.

reveal the existence of the state, does not account for the resonance being in close
vicinity of the D⇤D threshold. To assess the fundamental properties of resonances that
are close to thresholds, advanced parametrisations ought to be used [107–117]. A uni-
tarised Breit–Wigner profile FU, described in Methods Eq. (48), is used in this analysis.
The function FU, is built under two main assumptions.

Assumption 1. The newly observed state has quantum numbers JP = 1+ and isospin I = 0
in accordance with the theoretical expectation for the T+

cc ground state.

Assumption 2. The T+
cc state is strongly coupled to the D⇤D channel, which is motivated

by the proximity of the T+
cc mass to the D⇤D mass threshold.

The derivation of the FU profile relies on the assumed isospin symmetry for
the T+

cc! D⇤D decays and the coupled-channel interaction of the D⇤+D0 and D⇤0D0 system
as required by unitarity and causality following Ref. [118]. The resulting energy-dependent
width of the T+

cc state accounts explicitly for the T+
cc! D0D0⇡+, T+

cc! D0D+⇡0 and

3

FIGURE 2.1: Distribution of D0D0π+ mass, with a resonance corresponding to the T+
cc

state. Note the closeness to the two D˚D thresholds. Figure from Ref. [28].

2.1 Background for XEFT

XEFT, as a theory of the interactions between heavy mesons and pions, is built from

heavy hadron chiral perturbation theory [34–36]. This, in turn, is an extension of chiral

perturbation theory.

2.1.1 Chiral perturbation theory

The QCD Lagrangian when only considering light quarks is:

L = ´
1
4
(FA

µν)
2 + q̄(i /D ´ mq)q , (2.1)
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where q =
(
u d s

)T is a vector of light quark fields, and mq = diag(mu, md, ms) is

the light quark mass matrix. Each of these masses is small compared to ΛQCD, so it is

interesting to consider the Lagrangian in the chiral limit mq Ñ 0.

Lq Ñ q̄i /Dq = q̄Li /DqL + q̄Ri /DqR , (2.2)

where qL = 1
2 (1 ´ γ5)q and qR = 1

2 (1 + γ5)q. In this limit, there is a chiral symmetry

SU(3)L ˆ SU(3)R where the left- and right-handed fields transform independently: qL Ñ

LqL and qR Ñ RqR, with L P SU(3)L and R P SU(3)R [8].

Let us investigate the vacuum expectation value (vev) of the light quark bilinears in

the chiral limit, with the flavor indices i and j explicit: x0| q̄iqj |0y = x0| (q̄i
Rqj

L + q̄i
Lqj

R) |0y.

For simplicity consider only one of these terms and define v δij ” x0| q̄i
Rqj

L |0y [8]. Making a

SU(3)L ˆ SU(3)R transformation, the vev of the transformed fields is:

x0| q̄k
R(R:)kiLjlql

L |0y = (R:)kiLjl x0| q̄k
Rql

L |0y ,

= (R:)kiLjl v δkl ,

= v (R:)kiLjk ,

= v (LR:)ji .

(2.3)

The vev is unchanged under the transformation if (LR:)ji = δij, i.e., if L = R. Therefore,

the vev breaks the chiral symmetry to a single SU(3)V subgroup. Each of the eight broken

generators has a corresponding Goldstone boson, which can be written in a matrix M:

M =




1?
2
π0 + 1?

6
η π+ K+

π´ ´ 1?
2
π0 + 1?

6
η K0

K´ K̄0 ´

b

2
3 η


 . (2.4)

These eight fields are identified with the pions, kaons, and eta mesons. Chiral perturbation

theory (χPT) attempts to write down an EFT for these fields.

When only considering the two lightest quarks q =
(
u d

)T, M reduces to a two-by-two
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matrix of only the pion fields:

M Ñ

(
1?
2
π0 π+

π´ ´ 1?
2
π0

)
” π . (2.5)

The EFT developed with these fields is SU(2) χPT. Its power counting parameters are even

smaller than for SU(3) χPT due to the smaller quark masses. Since we are not interested

in the strange quark for the discussion of XEFT and the T+
cc , we will be dealing with SU(2)

χPT moving forward.

The combination Σ = exp(2iπ/ fπ) transforms under the chiral symmetry transforma-

tions as Σ Ñ LΣR:. As ΣΣ: = 1, the most general leading-order Lagrangian you can write

down that is invariant under this transformation is:

L =
f 2
π

8
tr BµΣBµΣ: . (2.6)

If we want to include the effects of the light quark masses, we can proceed with a spurion

analysis. The mass terms in the QCD Lagrangian appear as ´q̄LmqqR ´ q̄Rm:
qqL, which is

not invariant under qL Ñ LqL, qR Ñ RqR. We have used the fact that the mass matrix

is diagonal and real. Inspecting these operators, one can imagine introducing a fictitious

spurion field S which transforms as S Ñ LSR:; then the operators ´q̄LSqR ´ q̄RS:qL are

invariant under SU(2)L ˆ SU(2)R. Replacing S Ñ mq would make this the mass term.

We can add the most general dependence on S that obeys the symmetry to our chiral

Lagrangian:

L =
f 2
π

8
tr BµΣBµΣ: ´

B f 2
π

8
tr(SΣ: + S:Σ) . (2.7)

Explicitly breaking the symmetry, the dependence on the light quark masses can then be

expressed as:

L =
f 2
π

8
tr BµΣBµΣ: ´

B f 2
π

8
tr(m:

qΣ + mqΣ:) , (2.8)

The interpretation of B can be seen as follows. Consider a path integral Z =
ş

dϕ exp[i
ş

d4x L(ϕ)],

where ϕ represents all the fields in the given Lagrangian. If we consider the derivative
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iZ´1BZ/B(mq)ij in both QCD and χPT, we see

i
ZQCD

BZQCD

B(mq)ij =

ż

d4x x0| q̄i q̄j |0y ,

i
ZχPT

BZχPT

B(mq)ij = ´
B f 2

π

8

ż

d4x x0| (Σ + Σ:)ij |0y .

(2.9)

To lowest order in the pion fields, the expectation value in second line reduces to δij, and

so we see that the constant B is directly related to the vev discussed in Eq. (2.3).

Breaking the chiral symmetry gives masses to the pions, now making them pseudo-

Goldstone bosons. Expanding out the Σ matrices to write the Lagrangian in terms of the

pion fields themselves, we get:

Lπ = tr(Bµπ:Bµπ ´ m2
ππ:π) . (2.10)

This is the relativistic Lagrangian for the propagation of pions that we will use in our EFT

for the T+
cc . The power counting is in p2/Λ2

χ and m2
π/Λ2

χ, where p is a typical momentum

for a pion and Λχ ” 4π fπ is the scale of chiral symmetry breaking, which is near the charm

quark mass at around 1.6 GeV. It can be shown that the masses of the pions are related to

the vev by: [37]

m2
π =

2
f 2
π

(mu + md) x0| q̄q |0y . (2.11)

2.1.2 Heavy hadron chiral perturbation theory

To eventually study the interactions of pions with the χc1(3872) and T+
cc , we need to

couple the pions to heavy meson fields. Heavy hadron chiral perturbation theory (HHχPT)

[34–36] does this by incorporating into χPT mesons of the type Qq̄a, where a is a light

quark flavor index. In the charm sector these are the pseudoscalar mesons D0, D+, D+
s ,

and the vector mesons D˚0, D˚+, and D˚+
s . Again, we are uninterested in strange quarks

for the purposes of XEFT and the T+
cc , so we neglect D+

s and D˚+
s .

The pseudoscalar and vector mesons are degenerate in the heavy quark symmetry limit

mQ Ñ 8 [8]. Therefore, it is convenient to combine the pseudoscalar meson fields Pa and
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the vector meson fields P˚
aµ into a new field Ha,v, where a is an index for the light quark in

the meson, and v is the four-velocity of the mesons.

Ha,v =
1 + /v

2
(/P˚

a ´ Paγ5) . (2.12)

In the rest frame with vµ = (1, 0, 0, 0), this reduces to:

Ha,v Ñ

(
0 ´P˚

a ¨ σ ´ Pa
0 0

)
. (2.13)

Then we can define 2 ˆ 2 matrix fields Ha = P˚
a ¨ σ + Pa, which transform under the

SU(2)L ˆ SU(2)R chiral symmetry as H1
a = HbV:

ba, where V is a matrix which gives a

nonlinear realization of the symmetry, and under the SU(2) heavy quark spin symmetry as

H1
a = SHa. The Lagrangian for HHχPT in this context is then: [38]

L = tr[H:
a(iD

0)baHb] ´ g tr[H:
a Hbσ ¨ Aba] +

∆
4

tr[H:
aσ

i Haσ
i] . (2.14)

Here g is the axial coupling of the heavy mesons to the axial vector field A = i
2 (ξ

:∇ξ ´

ξ∇ξ:), where ξ =
?

Σ = exp (iπ/ fπ). The scale ∆ is the hyperfine splitting of the heavy

mesons; its term in the Lagrangian breaks heavy quark spin symmetry.

We also need to couple to photons, and the interaction terms with the magnetic field B

are given by: [39]

LEM =
eβ

2
tr(H:

a Hbσ ¨ BQab) +
e

2mQ
Q1 tr(H:

aσ ¨ BHa) . (2.15)

The matrix Qab = diag(2/3, ´1/3) is the light quark charge matrix, and Q1 is the heavy

quark charge, which is 2/3 for the charm quark. The parameter β is a coupling with mass

dimension ´1; it needs to be fit to experimental results for partial widths of D˚ decays [39,

40].

2.2 XEFT

XEFT was initially developed in Ref. [33], and has been further utilized or expanded

upon by many authors [41–56]. As a first step, it takes HHχPT and adapts it to apply to a
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particular weakly bound molecule of neutral charm mesons, consistent with the properties

of the χc1(3872). Initially known as the X(3872), the exotic state was discovered in e+e´

collisions by the Belle Collaboration in 2003 [29], and further confirmed by the CDF, DØ,

and BaBar collaborations [30–32]. Its mass averaged from these experiments is mX =

3871.65 ˘ 0.06 MeV [11]. This is close to the D˚D threshold: EX = mD + mD˚ ´ mX =

0.04 ˘ 0.09 MeV, which suggests a molecular bound-state interpretation. Furthermore,

the D˚-D hyperfine splitting is only 7 MeV higher than the neutral pion mass of 135

MeV, and so any pions produced in a D˚ decay are non-relativistic. These facts invite

an effective field theory description, first developed by Fleming et. al [33] to study pion

interactions with the bound state. They consider the resonance a weakly bound molecule

of D0D̄˚0 and D˚0D̄0, in a state which is positive under charge conjugation: |DD˚y =

(|D0D̄˚0y + |D˚0D̄0y)/
?

2. The starting point for deriving the XEFT Lagrangian is the

two-component HHχPT Lagrangian, together with kinetic terms for pions from the χPT

Lagrangian, both of which were discussed in the previous section. A key difference between

XEFT and HHχPT is that XEFT includes a kinetic energy term for the heavy mesons. In

HHχPT this term is subleading in the power counting in 1/mH, but in XEFT it is leading

in the power counting in the relative velocity of the heavy mesons v [33]. Several field
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redefinitions then lead to the initially-posited XEFT Lagrangian:

L = D:

(
iB0 +

∇2

2mD˚

)
D+ D:

(
iB0 +

∇2

2mD

)
D

+ D̄:

(
iB0 +

∇2

2mD˚

)
D̄+ D̄:

(
iB0 +

∇2

2mD

)
D̄

+ π:

(
iB0 +

∇2

2mπ
+ δ

)
π

+

(
g

?
2 fπ

)
1

?
2mπ

(
DD: ¨ ∇π + D̄:D̄ ¨ ∇π:

)
+ H.c.

´
C0

2
(D̄D +DD̄): ¨ (D̄D +DD̄)

+
C2

16
(D̄D +DD̄): ¨

(
D̄(

ÐÑ∇ )2D +D(
ÐÑ∇ )2D̄

)
+ H.c.

+
B1
?

2
1

?
2mπ

(D̄D +DD̄): ¨ DD̄∇π + H.c. + ¨ ¨ ¨ .

(2.16)

The fields that annihilate the D˚0, D̄˚0, D0, D̄0, and π0 are denoted D, D̄, D, D̄, and π,2

respectively. The residual mass δ = 7 MeV is the difference between the D˚D hyperfine

splitting and the neutral pion mass. The coupling to pions g = 0.54 is the axial coupling

from HHχPT [34–36], and the pion decay constant is fπ = 132 MeV. The two-directional

derivative is ÐÑ∇ =
ÐÝ∇ ´

ÝÑ∇.

Other key additions in XEFT are the contact interactions mediated by C0, C2, and B1,

which involve the interpolating field for the bound state, Xi = (D0D̄0˚i + D̄0D0˚i)/
?

2.

We will see that these are the interactions that are responsible for the bound state. To

derive the decay rate for the χc1(3872), Fleming et. al consider a two-point function of the

interpolating field.

G(E)δij =

ż

d4x e´iEt x0| T[Xi(x)X j(0)] |0y = δij iZ(´EX)

E + EX + iΓ/2
. (2.17)

We see that this has a pole at the location of the bound state, whose imaginary part is the

2 This π field is a nonrelativistic representation for the pion, and is different from the π field in HHχPT.
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decay width, and whose residue is the wave function renormalization for the interpolating

field. The C0 interaction is treated nonperturbatively, and in terms of the C0-irreducible

graphs contributing to G(E), collectively represented by ´iΣ(´EX), this can be written as:

G =
´iΣ

1 + C0Σ

=
´i Re Σ + Im Σ

1 + C0 Re Σ + iC0 Im Σ
.

(2.18)

From Eq. (2.17) we see that the real part of the denominator must vanish at the location

of the bound state, so we have 1 + C0 Re Σ(´EX) = 0. The value of C0 is therefore tuned

to the location of the bound state. We can expand the real part about E + EX, but not the

imaginary part since it arises from the NLO diagrams and is thus already small.

G =
i

C2
0(E + EX)Re Σ1(´EX) + iC2

0 Im Σ(´EX)
´

i
C0

. (2.19)

Ignoring the irrelevant overall constant, we can read off:

Z =
1

C2
0 Re Σ1(´EX)

,

Γ =
2 Im Σ(´EX)

Re Σ1(´EX)
.

(2.20)

All that remains is to compute the decay rate is to calculate the graphs that contribute

to Re Σ1 and Im Σ. We do not quote the full result here, as it is essentially the mu = md

case of the computation for the T+
cc decay rate, which will be discussed in detail later in the

chapter. The original prediction for the decay rate of the χc1(3872) as a function of the

binding energy is shown in Fig. 2.2. Recall that, using the most recent value of the mass

of the χc1(3872), EX = mD + mD˚ ´ mX = 0.04 ˘ 0.09 MeV.

Reference [53] revisits the decay studied in Ref. [33] and includes contributions from

final-state rescattering, introducing two new interaction terms at NLO:

L =
Cπ

2mπ0
(D:π:Dπ + D̄:π:D̄π) + C0DD:D̄:DD̄ . (2.21)
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FIG. 7: Decay rate for X → D0D̄0π0 as a function of EX . We use g = 0.6. The central solid

line corresponds to the LO prediction. The band is the result of the NLO calculation when the

parameters r0 and η are varied in the ranges 0 ≤ r0 ≤ (100MeV)−1 and −1 ≤ η ≤ 1.

IV. SUMMARY

In this paper we have developed an effective field theory of non-relativistic pions and D

mesons that can be used to describe the properties of the X(3872), assuming it is a weakly

bound state of D0D̄∗0 and D∗0D̄0 with anomalously small binding energy. Because of an

accidental cancellation between the D-meson hyperfine splitting and the mass of the π0, pion

exchange is characterized by a smaller scale than is typically the case in nuclear physics.

This relatively small scale and the small axial coupling in the D-meson system (compared

to the nucleon’s axial coupling) combine to make the corrections from π0-meson exchange

amenable to perturbation theory. This justifies the application of a theory similar to that

proposed by Kaplan, Savage, and Wise for low-energy NN interactions [51, 52], in which a
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FIGURE 2.2: Original XEFT prediction for the decay rate of the χc1(3872) as a function of
the binding energy EX. The solid line is the LO prediction, and the shaded band is the
range of the NLO prediction. Figure reused with permission from Ref. [33].

These new interaction terms can have a substantial effect on the decay rate, as evidenced

in Fig. 2.3. The authors argue that, since the NLO interactions can change the predicted

decay width by as much as about 50%, the decay width alone is not a good observable

through which to extract the binding energy of the χc1(3872). Instead, the authors look at

the decay width differential in the final state pion energy, as in Fig. 2.4. The distribution

is sharply peaked, and the location of the peak is insensitive to the NLO effects; they

only change the overall magnitude. The magnitude also decreases as the binding energy

increases, and so this differential distribution may be a better observable to extract the

binding energy.

Another key result of Ref. [53] is that XEFT provides a strong prediction regarding the

molecular nature of the χc1(3872). The sharpness of the differential decay distribution is

25



8

��� ��� ��� ��� ���
�

��

��

��

FIG. 2. Partial decay rate of X(3872) ! D0D̄0⇡0 versus the binding energy BX of X(3872). The central black

solid line is the LO decay rate. The green band is the NLO correction that has already been obtained in Ref. [21]. The

orange band is the NLO correction coming from the two new interactions, i.e., ⇡0D0 and D0D̄0 rescattering.
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FIG. 3. Resumming the D0D̄0 rescattering diagram.

Since the D0D̄0 rescattering gives a large NLO correction to the partial decay rate of X(3872) !
D0D̄0⇡0, it is interesting to see the resummation effect of final state rescattering as shown in Fig. 3. The

resummation is equivalent to replacing C0D with the effective range expansion [51]

C0D ! �
4⇡

mD

1

1/a + ip
(9)

where a is the D0D̄0 scattering length (set to be� 1
262 MeV�1 as mentioned above) and p = |(~pD�~pD̄)/2|.

The correction from such a resummation is not significant, though, as is shown in Fig. 4, where the dashed

line (from the resummed D0D̄0 rescattering diagram) only gives a small modification to the solid line (from

FIGURE 2.3: Updated XEFT prediction for the decay width of the χc1(3872) as a function
of the binding energy BX. The solid line is the LO prediction, the green band is the original
NLO prediction from Ref. [33], and the orange is the updated NLO prediction including
the new final state interaction terms. Figure from Ref. [53].

a direct consequence of the virtual D˚ propagator, arising in the tree-level decay like in

Fig. 2.7a, in the decay width. If the propagator is replaced by a constant, the distribution

becomes flat, a fact which holds true for each binding energy considered (Fig. 2.5). An

experimental measurement of the differential distribution yielding a sharp peak thus would

support a molecular interpretation for the χc1(3872).

2.2.1 Summary of the couplings in XEFT

There are many couplings in the XEFT Lagrangian, and here we discuss how each are

determined. This will carry over to the corresponding couplings for the T+
cc .

• the pion-charm meson coupling g: fit by comparing tree-level D˚ decays in XEFT

to data from the PDG.

• the contact interaction coupling C0: tuned to the location of the bound state.
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FIG. 5. The ⇡0 kinetic energy distribution for the decay process X(3872) ! D0D̄0⇡0. Color and line conventions

for the plots are the same as those used in Fig. 2.
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FIG. 6. Effects of the dynamics of D0⇤ (and D̄0⇤) as indicated in the LO amplitude Eq. (2). The dashed curves

are normalized to have the same areas as the solid curves in each panel respectively. The solid curves are the LO

E⇡ distribution from Eq. (2) and dashed curves are the LO E⇡ distribution from Eq. (2) with the D0⇤ (and D̄0⇤)

propagators set to a constant.

is insensitive to NLO corrections, so it could be a better observable for extracting properties of X(3872).

While the three-body phase-space is important in determining the overall features of E⇡ distributions, the

sharpness of the peaks is due to the pole from the virtual D0⇤ (and D̄0⇤) propagator, which is a consequence

of the molecular nature of the X(3872). To further illustrate this point, we do a simple LO analysis of E⇡

FIGURE 2.4: Decay width for the χc1(3872), differential in the final state pion energy Eπ,
for three different binding energies BX. The band colorings are the same as in Fig. 2.3.
Figure from Ref. [53].

• the derivative contact interaction coupling C2: the NLO calculation includes a cor-

rection to the LO width proportional to C2, and which depends on a cutoff used to

regulate the divergent integrals. In effective range theory, this correction arises from

a modification to the normalization of the wave function for the bound state [33]; the

modification depends on the effective range r0, which is an unknown quantity that

must be estimated. The value of C2 is fixed both to cancel the dependence of the

cutoff and reproduce the effective range theory prediction.

• the five-point contact coupling B1: all terms in the NLO calculation dependent on

B1 are also proportional to C2, and after the value of C2 is fixed, the value of B1 is

fixed accordingly to cancel all cutoff dependence.

• the final state Dπ coupling Cπ: fit to lattice calculations of Dπ scattering lengths

[53].

• the final state DD coupling C0D: this coupling is proportional to the D meson

scattering length [53], about which little is known, so an educated guess is made for

its range.

We will discuss the explicit values for these couplings in the context of the T+
cc , in Sec. 2.4.3.
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FIG. 6. Effects of the dynamics of D0⇤ (and D̄0⇤) as indicated in the LO amplitude Eq. (2). The dashed curves

are normalized to have the same areas as the solid curves in each panel respectively. The solid curves are the LO

E⇡ distribution from Eq. (2) and dashed curves are the LO E⇡ distribution from Eq. (2) with the D0⇤ (and D̄0⇤)

propagators set to a constant.

is insensitive to NLO corrections, so it could be a better observable for extracting properties of X(3872).

While the three-body phase-space is important in determining the overall features of E⇡ distributions, the

sharpness of the peaks is due to the pole from the virtual D0⇤ (and D̄0⇤) propagator, which is a consequence

of the molecular nature of the X(3872). To further illustrate this point, we do a simple LO analysis of E⇡

FIGURE 2.5: Leading-order χc1(3872) decay width differential in the final state pion en-
ergy Eπ for different binding energies BX. The solid line is the XEFT prediction, and the
dotted line is the XEFT prediction with the D˚ propagator replaced by a constant, normal-
ized to the same total width. Figure from Ref. [53].

2.3 An EFT for the T+
cc

Describing the T+
cc with an EFT essentially involves generalizing XEFT to allow for

positively charged charm mesons, accounting for the fact that it is now a coupled channel

problem because the resonance is near to two thresholds, and dealing with the idiosyncrasies

that appear as a result. The publications [2, 3] that write down this EFT were influenced by

the timing of the announcements by the LHCb collaboration, and their fits of the resonance

profile.

2.3.1 Remarks on the T+
cc experimental fits

The initial announcement of the observation of the T+
cc resonance was at the European

Physical Society Conference on High Energy Physics in July 2021 [24, 25]. These talks refer

to a fit of the resonance profile to a relativistic P-wave two-body Breit-Wigner function with

a Blatt-Weisskopf form factor [57, 58], which yielded the following values for the binding

energy and decay width:

δmBW = ´ 273 ˘ 61 ˘ 5+11
´14 keV ,

ΓBW = 410 ˘ 165 ˘ 43+18
´38 keV .

(2.22)
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In the weeks following this announcement, a flurry of theory papers [2, 59–78] rose to the

task of predicting various properties of the T+
cc . In particular, Refs. [59, 62, 65, 66, 72, 73]

attempted to predict the decay width. One of these papers was our initial analysis with the

extension of XEFT [2], where we found decay widths an order of magnitude smaller than

that in Eq. (2.22). This motivated us to understand the discrepancy, and we investigated

the possibility of a decay to other shallow bound states of two pseudoscalar charm mesons

which would enhance the width; this is discussed in Sec. 2.4.5.

Additional information regarding the fits of the resonance profile was provided in two

publications by the LHCb collaboration [27, 28], posted on the same day in September

2021. Reference [28] argues that the “relativistic P-wave two-body Breit-Wigner with a

Blatt-Weisskopf form factor . . . while sufficient to reveal the existence of the state, does not

account for the resonance being in close vicinity of the D˚D threshold.” Instead, they fit

the resonance to a unitarized Breit-Wigner profile, which yields a substantially lower value

for the decay width:

δmu = ´ 360 ˘ 40+4
´0 keV ,

Γu = 48 ˘ 2+0
´14 keV .

(2.23)

Since this fit accounts for the closeness to the D˚D threshold, we deem it more appropriate

for comparison with theoretical results.

2.3.2 Adapting the XEFT Lagrangian

There are several key differences between XEFT and the EFT for the T+
cc . Instead of

only D0 mesons and their antiparticles, we now also have bound states involving positively

charged D mesons, and we put them in an isospin doublet:

H =

(
D+

D0

)
. (2.24)

We also need to include the charged pions. These facts complicate the derivation of the La-

grangian and the decay width, as now we have to deal with matrices of fields and couplings.

The other difference with XEFT is that, for the T+
cc , we treat the pions relativistically, since
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the addition of the charged pions complicates the definition of a residual mass term for the

pions. The interaction terms are written down by constructing isospin invariants out of the

charm meson and pion fields. For a detailed explanation of this process, refer to App. A.1.

The LO Lagrangian is as follows.

LLO = H˚i:
(

iB0 +
∇2

2mH˚

´ δ˚

)
H˚i + H:

(
iB0 +

∇2

2mH
´ δ

)
H

´ C(0)
0 (H˚Tτ2H):(H˚Tτ2H) ´ C(1)

0 (H˚Tτ2τaH):(H˚Tτ2τaH)

+
g
fπ

H:BiπH˚i +
1
2

H:µDBi H˚i +H.c. .

(2.25)

Here δ and δ˚ are diagonal matrices that contain the residual masses of the D mesons;

their entries are δ
(˚)
ii = m(˚)

i ´ m0. The subscripts on the masses indicate the charge of

the charm meson. The magnetic field is denoted by B. The matrix µD contains transition

magnetic moments, µD = diag(µ0, µ+), where the entries are fixed to give the partial

widths Γ(D˚+ Ñ D+γ) = 1.33 keV and Γ(D˚0 Ñ D0γ) = 19.9 keV at tree level; refer to

App. A.2 for details on these values.

The NLO interaction terms are constructed from isospin invariant combinations of the

H fields and π fields; their derivation and their range of values are covered in App. A.1.

They are:

LC2 =
C(0)

2
4

(H˚Tτ2H):(H˚Tτ2
ÐÑ∇ 2

H)

+
C(1)

2
4

(H˚Tτ2τaH):(H˚Tτ2τa
ÐÑ∇ 2

H) + H.c. ,

(2.26)

LCπ
= C(1)

π D0:π0:D+π´ ´ C(1)
π D+:π0:D0π+ + H.c.

+ C(2)
π D0:π0:D0π0 + C(2)

π D+:π0:D+π0

+ C(3)
π D0:π+:D0π+ ,

(2.27)
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FIGURE 2.6: The diagrams that contribute to ´iΣ to NNLO. Bold solid lines are D˚

mesons, regular solid lines are D mesons, and dotted lines are pions. NNLO diagrams
arising from concatenating two NLO diagrams are not shown. Figure from Ref. [3].

LB1 = B(1)
1 (D+D˚0):(D+D0∇π0) + B(2)

1 (D0D˚+):(D+D0∇π0)

+
B(3)

1
2

(D0D˚+):(D0D0∇π+) +
B(4)

1
2

(D+D˚0):(D0D0∇π+) + H.c. ,

(2.28)

LC0D =
C(1)

0D
2

(D0D0):(D0D0) + C(1)
0D (D+D0):(D+D0) . (2.29)

We will discuss these couplings in more detail once the decay widths have been discussed.

The relativistic pion kinetic term is the same as discussed in Sec. 2.1.1:

Lπ = tr(Bµπ:Bµπ ´ m2
ππ:π) . (2.30)

2.4 Leading and next-leading order decay widths

In adapting the XEFT formula for the decay width, Eq. (2.20), to the T+
cc , we have to

account for the coupled channel problem. The two-point function G in Eq. (2.17) needs to
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be generalized to a matrix:

Ĝ =

ż

d4x e´iEt x0|T[X(x)XT(0)]|0y

= iΣ(1 + C0Σ)´1 ,

(2.31)

where the interpolating field is the appropriate combination of D˚D fields for the T+
cc .

X =

(
D0D˚+

D+D˚0

)
. (2.32)

The second line of Eq. (2.31) arises from writing Ĝ as an infinite sum of the C0-irreducible

two-point function Σ, like in Appendix A of Ref. [79], but with 2 ˆ 2 matrices C0 and Σ. The

diagrammatic representation of ´iΣ is given to NNLO in Fig. 2.6. The diagonal elements

of ´iΣ contain the graphs where the channel is the same at the initial and final insertion

of C0, and the off-diagonal elements are the graphs where the channel swaps. Any other

diagrams contributing to Σ that you can write down at this order have a pole structure

so that you could evaluate the loop integral dl0 by enclosing only a pion pole. These are

“radiation pions”, and are their diagrams are suppressed compared to those in Fig. 2.6 [80].

A feature of this matrix representation for Ĝ is that we can project out either the

isospin-0 or the isospin-1 channels, each with its own residue and decay width:

G0/1 =

(
1

¯1

)T

Ĝ
(

1
¯1

)

«
1
2

iZ0/1

E + ET +
iΓ0/1

2

,

(2.33)

The full expression for G0 is:

´iG0 =
´ 1

2 ΣI=0 ´ 2C(1)
0 det Σ

1 + C(0)
0 ΣI=0 + C(1)

0 ΣI=1 + 4C(0)
0 C(1)

0 det Σ
, (2.34)

where ΣI=0/I=1 ” Σ11 + Σ22 ¯ Σ12 ¯ Σ21 is either the isospin-0 or isospin-1 combination of

the diagrams. Taking the T+
cc to be an isospin-0 state, we treat C(1)

0 perturbatively and
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expand to LO.

´iG0 «
1
2

´ΣI=0

1 + C(0)
0 ΣI=0

. (2.35)

Now the expression above is problem is of the same form as Eq. (2.18), but with the single-

channel Σ replaced by the isospin-0 combination ΣI=0 for the coupled channel. The analysis

then proceeds in the same way as in Sec. 2.2, and the wave function renormalization and

decay width are:

Z0 =
1

(
C(0)

0

)2Re Σ1
I=0(´ET)

,

Γ0 =
2 Im ΣI=0(´ET)

Re Σ1
I=0(´ET)

.

(2.36)

We now split Σ0 into its LO and NLO contributions, and expand in the NLO ones. The

LO diagrams in Σ0 are only on the diagonal, since at LO we cannot swap channels.

Γ0 « ΓLO
0

(
1 ´

Re Σ1NLO
I=0 (´ET)

Re tr Σ1LO(´ET)

)
+

2 Im ΣNLO
I=0 (´ET)

Re tr Σ1LO(´ET)
, (2.37)

where

ΓLO
0 =

2 Im ΣLO
I=0(´ET)

Re tr Σ1LO(´ET)
. (2.38)

The Re Σ1NLO
I=0 (´ET) term in Eq. (2.37) is a correction to the LO decay width from NLO

D˚D self-energy corrections, which are the diagrams on the second row of Fig. 2.6. The

self-energy diagrams to NLO are:

• the LO self-energy diagram, ´iΣ1

• the one-pion exchange diagram, ´iΣ2

• the C2 contact diagram, ´iΣ3

The Im ΣNLO
I=0 (´ET) term in Eq. (2.37), by the optical theorem, is related to products of

NLO decay diagrams resulting from the cuts of the graphs on the third and fourth rows of

Fig. 2.6.3 These decay diagrams are shown in Fig. 2.7.

3 Im ΣNLO is from self-energy diagrams of one higher order than in Re ΣNLO because the LO self-energy
graph has no imaginary part below threshold.
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FIGURE 2.7: T+
cc decay diagrams to NLO. Figures from Ref. [3].
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2.4.1 LO calculation

The LO decay width arises from the tree-level decay in Fig. 2.7a, where the dotted line

can either be a pion or a photon. The results for the differential partial widths are:

dΓLO[T+
cc Ñ D0D0π+]

dp2
1 dp2

2
=

g2

(4π fπ)2
2γ0

3
p2

π cos2 θ

(
1

p2
1 + γ2

0
+

1
p2

2 + γ2
0

)2

,

dΓLO[T+
cc Ñ D+D0π0]

dp2
+ dp2

0
=

g2

(4π fπ)2
2
3

p2
π

(?
γ0 cos θ

p2
+ + γ2

0
´

?
γ+ sin θ

p2
0 + γ2

+

)2

,

dΓLO[T+
cc Ñ D+D0γ]

dp2
+ dp2

0
=

E2
γ

6π2

(?
γ0µ0 cos θ

p2
+ + γ2

0
´

?
γ+µ+ sin θ

p2
0 + γ2

+

)2

.

(2.39)

Here the γi are the binding momenta and the µi are reduced masses for a particular channel,

where the subscript refers to the charm meson which is the pseudoscalar meson in the

channel, e.g., γ2
0 = 2µ0(m0 + m˚

+ ´ mT). The mass mT is the mass of the T+
cc , which is

derived from the binding energy extracted by LHCb. The three-momenta are the momenta

of the final state particles, where the pπ is for a final state pion, p+ is for a final state

D+, p0 is for a final state D0, and p1 and p2 are for the two final state neutral charm

mesons in the first decay. The angle θ parametrizes the isospin state of the T+
cc ; it depends

on Σ1(´ET) and for a pure isospin-0 state is θ « ´32.4˝. Note that if we take the isospin

limit m0 = m+, which makes γ0 = γ+ and cos θ = ´ sin θ = 1/
?

2, we get the expression

for the decay width of the χc1(3872) from Ref. [33].

2.4.2 NLO calculation

To improve the readability of this section, the expressions for the self-energy diagrams,

decay diagrams, and differential decay widths to NLO are provided in full in App. A.4.

Here we discuss one decay diagram, for illustrative purposes. Consider the one-loop decay

with a Cπ vertex in Fig. 2.7c. Let the mass of the pseudoscalar charm meson be m, the

vector charm meson be m˚, and the pion by mπ. Label the momentum of the external D

meson which does not have the Cπ vertex on its line as p with momentum m1. Work in

the rest frame of the T+
cc , so that pT = (ET, 0), and route the loop momentum l clockwise
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through the loop. The diagram has the following components, arising from the Feynman

rules derived from the Lagrangian:

• the virtual D˚ propagator: i
l0´ l2

2m˚ ´δ˚+iϵ
,

• the virtual D propagator: i
´l0+ET´ l2

2m ´δ+iϵ
,

• the virtual pion propagator: i
(l´p)2´m2

π+iϵ

• the D˚Dπ vertex: (p ´ l)igπ,

• the Cπ vertex: iCπ

• a polarization vector εi
T for the T+

cc , which must contract with the (p ´ l)igπ term

• an integration over the loop momentum:
ş dd l
(2π)d

The appropriate gπ and Cπ will depend on the charges of the particles. The full integral

written out is:

ICπ
= gπCπ

ż

ddl
(2π)d

1

l0 ´ l2

2m˚ ´ δ˚ + iϵ
1

´l0 + ET ´ l2

2m ´ δ + iϵ

ˆ
1

(l ´ p)2 ´ m2
π + iϵ

(p ´ l) ¨ εT .

(2.40)

The l0 integral can be evaluated by contour, enclosing the pole at l0 = ET ´ l2

2m ´ δ + iϵ.

In terms of the reduced mass µ and binding momentum γ for the diagram, the result is:

ICπ
= 2iµgπCπ

ż

dd´1l
(2π)d´1

1
l2 + γ2 ´ iϵ

ˆ
1

(
ET ´ l2

2m ´ δ ´ p0

)2

´ (l ´ p)2 ´ m2
π + iϵ

(p ´ l) ¨ εT .

(2.41)
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Simplifying the part of pion propagator denominator that is in large parentheses, using

ET = mT ´ 2m0, δ = m ´ m0, and p0 = m1 + p2

2m1 ´ m0, we have:4

ET ´
l2

2m
´ δ ´ p0

= mT ´ 2m0 ´
l2

2m
´ (m ´ m0) ´

(
m1 +

p2

2m1
´ m0

)

= mT ´ m ´ m1 ´
l2

2m
´

p2

2m1

(2.42)

All the terms in the equation above dependent on l and p will be suppressed by factors of

the charm meson mass compared to (l ´ p)2, so we drop them.

ICπ
= 2iµgπCπ

ż

dd´1l
(2π)d´1

1
l2 + γ2 ´ iϵ

ˆ
1

(l ´ p)2 ´ (mT ´ m ´ m1)2 + m2
π ´ iϵ

(l ´ p) ¨ εT .

(2.43)

We now see that these are the basis integrals from App. A.3; their evaluation is discussed

there. They are evaluated in the power divergence subtraction (PDS) scheme [81], which

makes linear divergences explicit with the use of a hard cutoff ΛPDS. We get:

ICπ
= 2iµgπCπεT ¨ p[I(1)(p) ´ I(p)] . (2.44)

where the parameters c1, c2, and b (which are defined in the appendix) are

c1 = γ2 ,

c2 = p2 ´ (mT ´ m ´ m1)2 + m2
π ,

b = 1 .

(2.45)

The other diagrams proceed with similar analyses.

4 Recall that the energies of the D mesons are measured with respect to the D0 mass m0.
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2.4.3 Uncertainties in the NLO couplings

Evaluating all of the self-energy and decay diagrams for use in the formula for the NLO

decay width yields a lengthy answer with complicated dependence on the NLO couplings.

We discussed the determination of the couplings in XEFT in Sec. 2.2.1; the analysis will

be similar here.

While the couplings C0, g, µD, and Cπ are fixed by either experimental or lattice values,

we have to estimate reasonable ranges for the other couplings to see their effects on the

decay width. The coupling C0D is related to the D meson scattering length a; in XEFT

the bounds on the magnitude are chosen so that C0D „ ´4πa/m0 [53], which is about

C0D „ ´(1.3 fm)a. Assuming the D meson scattering length to be of the order its size,

which we take to be no larger than the size of the proton at O(fm), here we vary C0D in

the range [´1, 1] fm2, which is also what is done in the XEFT papers.

The dependence of the decay width on the C2 and B1 couplings is simplified by defining

the parameters βi, defined in App. A.5. To see their significance, we can take the isospin

limit m0 = m+, and we see that:

β2, β4 Ñ ´
4C(0)

2 µγ

π
(γ ´ ΛPDS)

2 , (2.46)

In XEFT this term is proportional to the effective range in the isospin-0 channel [33],

β2 = β4 = ´γr0. We pick the value of the effective range for nucleons, r0 « 1/(100 MeV),

as an upper bound of that for the charm mesons. For the binding momentum γ, we plot

the results for both γ = γ0 and γ = γ+ in Sec. 2.5. These values are used to provide

error bound estimates on β2 and β4. The values for B1 are then chosen to cancel the ΛPDS

dependence in the decay width after the C2 have been fixed by Eq. (2.46). The values

for the partial widths in Table 2.1 are with the couplings chosen to give upper and lower

bounds.

In the same isospin limit, the rest of the βi parameters become:

β1 = β3 = β5 =
1
π
(γ ´ ΛPDS)

(
b0 fπ

g
´ 2C(0)

2 µ

)
. (2.47)
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Table 2.1: T+
cc partial widths to NLO. The central value is the LO result, and the error bars

give bounds to the NLO corrections.

Partial width (keV)

Γ[T+
cc Ñ D0D0π+] 28+16

´7

Γ[T+
cc Ñ D+D0π0] 13+8

´5.2

Γstrong[T+
cc ] 41+25

´12

Γstrong[T+
cc ] + ΓLO

EM[T+
cc ] 47+25

´12

This is where the dependence on B1 appears, as b0 is an isospin-0 simplification of B1,

introduced in App. A.1. Here you can see that the B1 couplings must be fixed to cancel

the ΛPDS dependence in β1,3,5. The effective range can again inform an appropriate range

through which to vary these βs, however we find that the differential distributions are

negligibly affected in the range, so we will not show plots regarding them.

2.4.4 Results for partial widths

We can integrate the LO and NLO differential distributions over phase space to get

the partial widths (Table 2.1). The total predicted LO decay width of 47 keV is already

in excellent agreement with the experimental value Γu = 48 ˘ 2+0
´14 keV. There are no free

parameters at LO; the coupling C0 is merely tuned so that the two-point function G0 has

a pole at the location of the bound state, and the rest of the couplings are fixed from D˚

decays. The NLO contributions can add significant uncertainty, yielding Γ = 47+53%
´25% keV,

which arises due to the uncertainties in the NLO couplings.

2.4.5 Decay to another bound state

We mentioned in Sec. 2.3.1 that the initial T+
cc decay width quoted by the LHCb collab-

oration (ΓBW) was orders of magnitude larger than the value obtained by the early theory

calculations, including our initial value of Γ = 52 keV. To attempt to provide an expla-

nation for this discrepancy, in Ref. [2] we explored the possibility of a decay of the T+
cc

to a hypothetical bound state T̃cc of two pseudoscalar D mesons, either D0D0 or D+D0.

Predictions for such I = 1, JP = 0+ doubly-charm tetraquarks are anywhere from a few
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FIGURE 2.8: Triangle diagram for the decay of the T+
cc to a final state with a T̃cc. Figure

from Ref. [2].

to a few hundred MeV above the DD threshold [27, 82, 83], and given uncertainties it is

reasonable to investigate the existence of these T̃cc states.

We consider three decays at one-loop level: T+
cc Ñ T̃+

cc π0, T̃0
ccπ+, and T̃+

cc γ. The cor-

responding triangle diagram is shown in Fig. 2.8. The partial widths can be written in

terms of an integral of the form of I(p) from App. A.3; we quote the result here with a

parametrization specific to these decays.

F(m1, m2, m3, mT̃) =

c

γ12γ13

b2

[
tan´1

(
c2 ´ c1

2
a

c2b2p2
π

)

+ tan´1
(

2b2p2
π + c1 ´ c2

2
a

b2p2
π(c2 ´ b2p2

π)

)]
,

(2.48)

where the parameters are:

γ12 =
b

´2µ12(mT ´ m1 ´ m2), γ13 =
b

´2µ13(ET̃ ´ m1 ´ m3),

µ´1
ij = m´1

i + m´1
j , c1 = γ2

12, c2 =
µ13

m3
p2

π + γ2
13, b = µ13/m3 .

(2.49)
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In terms of the unknown mass mT̃ of the hypothetical T̃cc state, the partial widths are then:

Γ[T+
cc Ñ T̃+

cc π0] =
|pπ|mT̃
6πmT

(
g

?
2 fπ

)2
ˇ

ˇ cos θ F(m0, mD˚+ , m+, mT̃)

´ sin θ F(m+, m˚
0 , m0, mT̃)

ˇ

ˇ

2 ,

Γ[T+
cc Ñ T̃0

ccπ+] =
|pπ|mT̃
6πmT

(
g
fπ

)2
ˇ

ˇ cos θ F(m0, mD˚+ , m0, mT̃)
ˇ

ˇ

2 ,

Γ[T+
cc Ñ T̃+

cc γ] =
|pγ|mT̃
3πmT

ˇ

ˇµ+ cos θ F(m0, mD˚+ , m+, mT̃)

+ µ0 sin θ F(m+, m˚
0 , m0, mT̃)

ˇ

ˇ

2 .

(2.50)

We can then plot these partial widths in Fig. 2.9 as a function of the T̃cc binding energy

from 0 to 5 MeV. The pion decays have widths that increase linearly for most of the domain,

and the photon decay has a width that approaches 10 keV as the binding energy increases.

In all, these processes could increase the total width of the T+
cc by as much as 150 keV for

a T̃cc binding energy of 5 MeV, and by about 80 keV if the binding energy is the same as

that of the T+
cc . This is far above the experimental value Γu « 48 keV; this is evidence that

the T̃cc bound states do not exist.

2.5 Differential decay distributions

In this section we plot the differential distribution dΓ/dmDD, where mDD is the invariant

mass of the charm mesons in the final state, mDD = (p1 + p2)2, and compare to the LHCb

experimental data for the total yield, which is shown in Fig. 2.10 for comparison.5 The

normalizations of the curves are fixed by performing a least-squares fit of the LO distribution

to the data.

In the plots, the solid lines represent the LO curves, and dotted or dashed lines repre-

sent bounds on the NLO contributions. The LHCb data is overlaid with the background

subtracted. We show three plots that include a subset of the NLO terms:

5 Thanks to M. Mikhasenko for providing the data for use in our plots.
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FIGURE 2.9: Partial widths for the T+
cc decay to a T̃cc and a pion or photon. Figures from

Ref. [2].

• Figure 2.11: includes non-C2-dependent NLO self-energy corrections (the first diagram

on the second line of Fig. 2.6), and decays like Fig. 2.7b. These increase the magnitude

of the differential distribution by a small, but noticeable amount.

• Figure 2.12: the contributions from C0D are shown, varying it in two ranges: [´1, 1]

fm2 and [´0.25, 0.25] fm2. The change in the neutral pion decay is twice that of the

charged pion decay, due to the coupling of charged pions to charm mesons being larger

by a factor of
?

2. The magnitude of the peak is sensitive to the couplings magnitude;
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Figure 4: Mass distributions for selected D0D0, D+D0 D+D+ and D+D0⇡+ combi-
nations. (Top) DD and DD⇡+ mass distributions for selected (left) D0D0 and (right) D+D0 can-
didates with the non-D background subtracted. The overlaid fit results are described in the text.
For visibility the T+

cc! D+D0⇡0 is stacked on top of the T+
cc! D+D0� component. (Bottom)

Mass distributions for selected (left) D+D+ and (right) D+D0⇡+ candidates with the non-D back-
ground subtracted. The vertical coloured band indicates the expected mass for the hypothetical
T̂++
cc state. The overlaid fit results with background-only functions are described in the text.

Uncertainties on the data points are statistical only and represent one standard deviation,
calculated as a sum in quadrature of the assigned weights from the background-subtraction
procedure.

peak corresponds to the T̂+
cc component and using the estimates for the T̂cc mass splitting

from Methods Eqs. (86) and (87), the masses of the T̂0
cc and T̂++

cc states are estimated to
be slightly below the D0D⇤0 and slightly above the D+D⇤+ mass thresholds, respectively:

mT̂0
cc
� (mD0 +mD⇤0) = �2.8± 1.5MeV/c2 , (4)

mT̂++
cc

� (mD+ +mD⇤+) = 2.7± 1.3MeV/c2 . (5)

With these mass assignments, assuming equal production of all three T̂cc components,
the T̂0

cc state would be an extra narrow state that decays into the D0D0⇡0 and D0D0� fi-
nal states via an o↵-shell D⇤0 meson. These decays would contribute to the nar-

10

FIGURE 2.10: LHCb fits to data for the total yield as a function of the invariant mass of
the final state charm meson pair. Figure from Ref. [28].

for |C0D| = 1 fm2 the peak is either too high or too low for the neutral pion decay.

• Figure 2.13: the parameters β2 and β4 are varied together so as to maximize the effect

on the distribution. The magnitudes of the peaks are even more sensitive to these; for

β2 = β4 = ´0.59 the peaks are far too high. Clearly the appropriate choice for the

binding momentum and the effective range are important for obtaining reasonable

values for these parameters. Both choices for β2 = β4 serve to increase the partial

widths.

The Cπ diagrams, as well as terms proportional to β1, β3, and β5, contribute negligibly to

the distributions, so we do not plot their contribution individually.

The total NLO contributions to the differential distribution are plotted in Fig. 2.14.

The parameters are varied between ´1 fm2
ď C0D ď 0.25 fm2 and ´0.25 ď β2, β4 ď 0. An

important observation is that while the magnitude of the distributions can vary significantly

with the choices for the NLO couplings, the qualitative nature of the plots remains the same:

the peak stays at the same invariant mass, and the charged pion decay remains larger than

the neutral pion decay. As in XEFT, the shape of the differential distributions are a result

of the amplitudes being dependent on a virtual D˚ propagator, 1/(p2 + γ2). The binding

momentum is a small number, and so the distributions are sharply peaked at small p. If we
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were to instead replace the propagator with a constant, the curves would be much flatter

(Fig. 2.15) and would not be in good agreement with the LHCb data.

An interesting future direction would be to perform a careful fit of the experimental

data to obtain values for the NLO couplings, since there is not much known about several

of them at this time. This would increase the predictive power of the EFT, putting tighter

constraints on the couplings. Such an analysis could be further improved by having even

more precise experimental data to which to fit.
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FIGURE 2.11: Differential decay width at LO (solid lines), and NLO contributions from non-C2-dependent self-energy terms and
Fig. 2.7b. Figure from Ref. [3].
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FIGURE 2.12: Differential decay width at LO (solid lines), and NLO contributions from C0D. The legend shows the absolute value
of C0D; the positive values increase the width and the negative values decrease it. Figure from Ref. [3].
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FIGURE 2.13: Differential decay width at LO (solid lines), and NLO contributions from the parameters β2 and β4, which are set to
be equal in these plots. Figure from Ref. [3].
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FIGURE 2.14: Differential decay width at LO (solid lines), and all NLO contributions with ´1 fm2
ď C0D ď 0.25 fm2 and

´0.26 ď β2/4 ď 0. Figure from Ref. [3].
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FIGURE 2.15: Comparing the LO differential decay width to one with constant virtual D˚ propagators. The normalization is fixed
to give the curves the same partial width. Figure from Ref. [3].
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3

Spin-dependent TMD fragmentation functions for
J/ψ production

In1 this chapter we derive the spin-dependent TMD fragmentation functions (FFs) for

J/ψ production in the framework of NRQCD. These FFs are fundamental objects describing

the hadronization of a hard parton, and can be utilized in different scattering processes.

Before discussing the FFs themselves, we review the properties of the J/ψ, as well as

the theoretical background for the production mechanism we consider, semi-inclusive deep

inelastic scattering.

3.1 J/ψ meson

The J/ψ meson was discovered independently by Ting et al. [84] at Brookhaven Na-

tional Lab (BNL) and Richter et al. [85] at the Stanford Linear Accelerator Center (SLAC)

in 1974. The discovery confirmed the existence of the charm quark, posited by Bjørken

and Glashow [86] in 1964. The J/ψ was the first of so-called charmonium states to be

observed. The charmonia are bound states of charm-anticharm with different quantum

numbers 2S+1LJ, where S is the spin, L is the orbital angular momentum, and J is the total

angular momentum. They can also be described in terms of JPC, for parity P = (´1)L+1

and charge conjugation parity C = (´1)L+S. The J/ψ has quantum numbers 3S1 and

1 The work presented in this chapter was initially published in Ref. [4]. The contributions of each author are
listed below.

• R. Hodges, M. Copeland, S. Fleming: analysis and writing
• R. Gupta: analysis
• T. Mehen: checking calculations and editing manuscript
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11 15. Quark Model
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Figure 15.2: Mass spectrum with known IG(JPC) observed in the charmonium region. The DD̄
line shows the open charm threshold. The well-known cc̄ mesons are shown in black. (The 11D2
÷c2, expected around 3800 MeV, has not been seen yet.) The established additional observed states
are shown in red, and the states needing confirmation (i.e. omitted from the Summary Tables) are
labeled in green. The blue color denotes exotic isovectors.

15.4.2 Glueballs
QCD predicts the existence of extra isoscalar mesons which cannot be addressed by the quark

model. In the pure gauge theory they contain only gluons. The ground state glueball is predicted
by lattice gauge theories to be 0++, the first excited state 2++. Errors on the mass predictions are
large. From Ref. [33] one obtains 1750 (50) (80) MeV for the mass of the lightest 0++ glueball from
quenched QCD. As an example for the glueball mass spectrum, we show in Fig. 15.3 a calculation
from [34]. A mass of 1710 MeV is predicted for the ground state, also with an error of about 100
MeV. Earlier work by other groups produced masses at 1650 MeV [35] and 1550 MeV [36] (see
also [37]. The first excited state has a mass of about 2.4 GeV, and the lightest glueball with exotic
quantum numbers (2+≠) has a mass of about 4 GeV.

These calculations are made in the so-called “quenched approximation” which neglects qq̄ loops.
However, both glue and qq̄ states couple to singlet scalar mesons. Therefore glueballs will mix with
nearby qq̄ states of the same quantum numbers. The first results from lattice calculations, which

1st December, 2023

FIGURE 3.1: Mass spectrum of charmonium states. Black indicates conventional quarko-
nium states, red indicates exotic isoscalars, blue indicates exotic isovectors, and green
indicates candidates for exotic states. The DD̄ threshold is shown in pink. Figure from
Ref. [11].

1´´ and a mass of 3.1 GeV. Many other charmonium states have been measured as well

(Fig. 3.1).

Consider the J/ψ decay modes in Table 3.1. The strong decays, in particular the 3g

decay, are more predominant than the leptonic deacys. The relative proportion of 3g decays

to leptonic decays can be understood by looking at the powers in the couplings: 3g decays

will go as α3
s „ 10´3, whereas the leptonic decays will go as α2

em „ 10´4. However, the
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Table 3.1: J/ψ decay modes from the Particle Data Group [11].

Mode Fraction

J/ψ Ñ 3g (64.1 ˘ 1.0)%

J/ψ Ñ γgg (8.8 ˘ 1.1)%

J/ψ Ñ γ˚ Ñ hadrons (13.50 ˘ 0.30)%

J/ψ Ñ γ˚ Ñ e+e´ (5.971 ˘ 0.032)%

J/ψ Ñ γ˚ Ñ µ+µ´ (5.961 ˘ 0.033)%

lepton decays have considerably higher branching fractions than for other hadrons, for

example, corresponding branching fractions for the neutral rho meson ρ0 are smaller by a

factor of 10´5 [11]. Indeed, the initial BNL discovery was in decays to e+e´, and the SLAC

discovery in decays to µ+µ´. This can be attributed to the fact that the J/ψ lies below

the DD̄ threshold of about mDD̄ = 3.74 GeV, so there are fewer hadronic decays that are

kinematically allowed.

The relatively high proportion of leptonic decays makes the J/ψ an attractive subject

for experiment; muons in particular are readily measured, since they are charged particles

that are not absorbed as often as electrons, and obviously do not lead to hadronization,

so their momentum can be resolved without many other complications. It is important to

have theoretical predictions for J/ψ production to go along with experimental observations.

In this work we consider J/ψ production via a process called semi-inclusive deep-inelastic

scattering.

3.2 SIDIS and factorization

In Chap. 1, we discussed deep inelastic scattering (DIS), e(l) + h(p) Ñ e1(l1) + X(pX),

where an electron e scatters off of a hadron h (usually a proton), which hadronizes to a

final state X. The momentum transfer of the electron to the proton is parametrized by the

virtuality of the exchanged photon, q2 = (l1 ´ l)2 = ´Q2. DIS is best described in a frame

where the proton moves fast, and so the partons move in a mostly parallel direction with

momentum k « ξ p „ Q [87]. The transverse momentum is small, kT ! Q. The DIS cross
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FIGURE 3.2: Diagram for semi-inclusive deep inelastic scattering. Figure from Ref. [4].

section can be approximated using QCD factorization:

E1 dσehÑe1X

d3l1
«

ÿ

i

ż

dξ fi/h(ξ) E1 dσ̂eiÑe1X

d3l1
”

ÿ

i

fi/h b σ̂i . (3.1)

Here, the full cross section σ is factorized into a product of a probability distribution

fi/h(ξ), which describes the probability density to find a parton of type i with momentum

fraction ξ inside the hadron, and a partonic cross section σ̂, which is the cross section for

the corresponding partonic process. The distribution fi/h is called a parton distribution

function (PDF), and is extracted from experiment.

Consider now that we will measure a hadron H of momentum P in the final state along

with the electron; this is semi-inclusive DIS (SIDIS). We can define the kinematic variables

x =
Q2

2p ¨ q
, y =

p ¨ q
p ¨ l

, z =
p ¨ P
p ¨ q

. (3.2)

The parameter x is the usual DIS Bjorken scaling variable, and in the proton rest frame, y

is the fractional energy loss of the electron, and z is the ratio of the energy of the hadron

to that of the photon [87]. At leading order, we can glean the significance of Bjorken x

by considering the O(αem) partonic process where the photon is absorbed by a quasi-free
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quark inside the proton of mass mq and initial momentum k. We then have

m2
q + 2k ¨ q + q2 = m2

q ñ 1 =
Q2

2k ¨ q
«

Q2

2ξ p ¨ Q
. (3.3)

This implies that at LO, x « ξ, i.e., Bjorken x is the fraction of the proton’s momentum

carried by the parton. This need not be true at higher orders where more particles are

involved in the partonic process and thus Eq. (3.3) does not hold.

The cross section for SIDIS still factorizes: [88–91]

dσ

dx dy dz
=

ÿ

i,j

ż 1

x
dξ

ż 1

z
dζ fi/h(ξ) DH/j(ζ)

dσ̂ij(ξ, ζ)

dx dy dz

[
1 +O

(Λ2
QCD

Q2

)]
(3.4)

Here the partonic process is for an electron and a parton of type i going to an electron and a

parton of type j: e´(l) + i(k) Ñ e´(l1) + j(k1) + X. The parameter ξ is still the fraction of

the hadron h’s longitudinal momentum carried by the initial parton, and ζ is the fraction of

the scattered parton’s momentum carried by the hadron H, k1 = P/ζ. The function DH/j

is a fragmentation function (FF), and it describes the likelihood for a parton of type j to

fragment to a hadron H.

If we also want to be sensitive to a small transverse momentum of the final state hadron,

ΛQCD À PT ! Q, then we get the transverse-momentum-dependent (TMD) version of the

SIDIS cross section: [87]

dσ

dx dy dz d2PT
=

ÿ

i

dσ̂TMD
ii (Q, x, y)

ż

d2pT d2kT δ(2)(PT ´ zkT ´ pT)

ˆ fi/h(x, kT) DH/i(z, pT)

[
1 +O

(
P2

T
Q2 ,

Λ2
QCD

Q2

)] (3.5)

The integrations over ξ and ζ have been performed, and the parton is now the same type

after exchanging a photon with the electron [87]. The procedure to obtain a SIDIS cross sec-

tion, then, is to perturbatively calculate the partonic cross section σ̂TMD, and utilize it with

expressions for the TMD PDF and FF in Eq. (3.5). In practice, we can use experimental
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fits for the PDFs, and for hadrons with light quarks the FFs must also be determined exper-

imentally. However, for quarkonium, the FFs can be calculated. We will use nonrelativistic

QCD to do this.

3.3 Non-relativistic quantum chromodynamics

Non-relativistic quantum chromodynamics (NRQCD) is an effective field theory devel-

oped by Bodwin, Braaten, and Lepage [92], to provide rigorous predictions for quarkonium

decay and production cross sections. The EFT has a power counting in v ! 1, the relative

velocity of the heavy quarks in the bound state. For charmonium, v2 « 0.3. There are

three energy scales involving this velocity that are relevant: the heavy quark mass mQ, its

three-momentum mQv, and its kinetic energy mQv2. The size of the quarkonium system

is of the order 1/mQv, and its binding energy is of order mQv2. The QCD scale ΛQCD is

taken to be on the order of mQv2.

The NRQCD of Bodwin, Braaten, and Lepage separates the physics of the large scale

mQ from the smaller scales mQv, mQv2, and ΛQCD. As is standard in EFT, the effects of

high energy are incorporated into the Wilson coefficients of the operators; since αs(mQ) «

0.24 ! 1 for charmonium, the coefficients can be calculated perturbatively. The operators

themselves scale with v, and so the cross sections are double expansions in αs and v.

3.3.1 Lagrangian and power counting

The NRQCD Lagrangian can be derived by starting with full QCD and diagonalizing

the theory with the transformation Q Ñ e´imQt(ψ χ)T, to decouple the heavy quark and

antiquark fields.2

L = Q̄(i /D ´ mQ)Q

Ñ ψ:iD0ψ + χ:(iD0 + 2mQ)χ ´ ψ:iσ ¨ Dχ ´ χ:iσ ¨ Dψ .
(3.6)

The equation of motion for the antiquark field is:

(iD0 + 2mQ)χ = iσ ¨ Dψ , (3.7)

2 This can also be done with a Foldy-Wouthuysen-Tani transformation [93, 94], Q Ñ exp (´iγ ¨ D/2mQ)Q
[95].
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which can be solved for χ to integrate out the antiquark field from the Lagrangian.

L = ψ:iD0ψ ´ ψ:iσ ¨ D
1

iD0 + 2mQ
iσ ¨ Dψ . (3.8)

By assumption the heavy quark mass is large, so we can expand in powers of 1/mQ.

L = ψ:

(
iD0 +

D2

2mQ

)
ψ +O

(
1

m2
Q

)
. (3.9)

Doing this procedure with the equations of motion for the quark field ψ would give an

analogous kinetic term for the antiquarks, leaving us with:

Lheavy = ψ:

(
iD0 +

D2

2mQ

)
ψ + χ:

(
iD0 ´

D2

2mQ

)
χ . (3.10)

The light degrees of freedom are described by full QCD in the massless limit:

Llight = ´
1
2

tr FµνFµν +
ÿ

q
q̄i /Dq . (3.11)

The interaction terms relevant to quarkonium production are: [92]

Lint =
c1

8m3
Q

[
ψ:(D2)2ψ ´ (ψ ñ χ)

]

+
c2

8m2
Q

[
ψ:(D ¨ gE ´ gE ¨ D)ψ + (ψ ñ χ)]

+
c3

8m2
Q

[
ψ:(iD ˆ gE ´ gE ˆ iD ¨ σψ + (ψ ñ χ)

]

+
c4

2mQ

[
ψ:(gB ¨ σ)ψ ´ (ψ ñ χ)

]
.

(3.12)

The chromomagnetic and chromoelectric fields are Ei = F0i and Bi = 1
2 ϵijkFjk.

We can infer the v scaling of the operators using several observations: [95, 96]

• the normalization of a quarkonium bound state |Hy is unity,

• the expectation value of the quark number operator, N =
ş

d3x ψ:ψ, for the quarko-

nium bound state is O(1),
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Table 3.2: Power counting for the NRQCD fields.

Operator Velocity scaling

ψ, χ (mQv)3/2

D0 mQv2

D mQv

gE m2
Qv3

gB m2
Qv4

gA0 (Coulomb gauge) m2
Qv2

gA m2
Qv3

• the size of the bound state is
ş

d3x „ (mQv)´3.

From these we can immediately deduce that the quark field scales as ψ „ (mQv)3/2. The

kinetic term of the Lagrangian should scale as mQv2, so from that we know D0 „ mQv2

and D „ mQv. The latter aligns with the intuition that D should be associated with the

three-momentum. We summarize these scalings, along with the fields associated with the

gluons, in Table 3.2.

An erratum to the original Bodwin, Braaten, and Lepage formulation of NRQCD [92],

which is the formulation discussed up to this point, attempts to clarify some issues with

the velocity scaling of the gluon fields, and how that pertains to quarkonium production.

Rather than delve into this erratum, we instead turn to vNRQCD, which is a formulation

that has more clarity in the velocity scaling.
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3.3.2 vNRQCD

vNRQCD was developed by Luke, Manohar, and Rothstein [97], and arises from ac-

counting for the following v scalings for a four-momentum k = (k0, k) to O(v2).

hard: (k0, k) „ (mQ, mQ) ,

soft: (k0, k) „ (mQv, mQv) ,

potential: (k0, k) „ (mQv2, mQv) ,

ultrasoft: (k0, k) „ (mQv2, mQv2) .

(3.13)

The hard modes are integrated out of the full theory. The remaining modes are the scalings

that could put a virtual quark or gluon on-shell. Looking at the kinetic term in Eq. (3.10),

it is clear that on-shell fluctuations of quarks must be in the potential regime. The soft

momenta are treated as discrete variables, and the ultrasoft as continuous, so that the

quark three-momentum P = p + k has a discrete component p and continuous component

k. Therefore the soft momenta are indicated as indices on the two-spinor fields: ψp(x).

The decomposition P = p+k is invariant under the redefinition k Ñ k+q, p Ñ p ´ q,

for q „ mQv2, which is equivalent to ψp(x) Ñ eiq¨xψp´q(x) [97]. This is known as

reparametrization invariance. Derivatives on this redefined field act as Deiq¨xψp´q(x) =

eiq¨x(iq + D)ψp´q(x), so for the Lagrangian to be reparametrization invariant, the deriva-

tives must be of the form (ip + D) [98]. The kinetic term is therefore

Lheavy =
ÿ

p
ψ:

p

[
iD0 ´

(p ´ iD)2

2mQ

]
ψp + (ψ ñ χ) . (3.14)

Gluons can be either soft or ultrasoft, and vNRQCD divides the gluons into two degrees

of freedom, one for each scaling. The covariant derivative Dµ only involves the ultrasoft

gluons, to preserve the scaling of the quark kinetic term. The full effective Lagrangian
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Table 3.3: Power counting in for the vNRQCD fields.

Operator Velocity scaling

ψp, χp v3/2

Aµ
p v

D0 v2

D v2

Aµ v2

E v4

B v4

involving all the fields is:

L = ´
1
4

FµνFµν +
ÿ

p
|pµ Aν

p ´ pν Aµ
p|2 +

ÿ

p
ψ:

p

[
iD0 ´

(p ´ iD)2

2mQ

]
ψp

´ 4παs
ÿ

q,q1,p,p1

"

1
q0

ψ:

p1 [A0
q1 , A0

q]ψp

+
gν0(q1 ´ p + p1)µ ´ gµ0(q ´ p + p1)ν + gµν(q ´ q1)0

(p1 ´ p)2 ψ:

p1 [A
µ
q1 , Aµ

q ]ψp

*

+ (ψ ñ χ, T ñ T̄)

+
ÿ

p,q

4παs

(p ´ q)2 ψ:
qTAψpχ:

´qT̄Aχ´p + ¨ ¨ ¨ .

(3.15)

The new considerations regarding the velocity scaling means the operators in vNRQCD

have a different scaling than in the NRQCD of Bodwin, Braaten, and Lepage. The new

counting is summarized in Table 3.3.
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3.3.3 Quarkonium production

The production of quarkonium H in NRQCD is governed by a 4-fermion production

operator3, with the generic form

OH
n = χ:Knψ

(
ÿ

X

ÿ

λ

|H(λ) + Xy xH(λ) + X|

)
ψ:K1

nχ

” χ:Knψ(a:

HaH)ψ
:K1

nχ .

(3.16)

The sums are over other particles X in the final state, which are soft in the quarkonium

rest frame, as well as over the spin states λ. The operators Kn and K1
n are products of

color matrices, spin matrices, and/or derivatives.

The v scaling of the operators depends on how many chromoelectric (A ¨∇) or chromo-

magnetic (B ¨σ) dipole transitions must be inserted into the matrix element for its quantum

numbers to match those of the relevant hadron [92]. The former operator arises from the

D2 term in the Lagrangian, and scales as v3 since the gluon field in the covariant derivative

is ultrasoft, while the gradient acts on the quark fields and is thus soft. The latter operator

scales as v4 since it involves ultrasoft gluons, and the curl acting on an ultrasoft field scales

as v2.

The J/ψ is a 3S[1]
1 configuration, which according to the power counting in Table 3.3 will

have a matrix element that scales as (v3/2)4v´3 = v3: a factor of v3/2 for each of the four

spinors, and a factor of v´3 for the normalization to the volume of the hadron. For a matrix

element with orbital angular momentum number L and requiring E chromoelectric dipole

transitions and M chromomagnetic dipole transitions, the scaling of the matrix element

goes as v3+2L+2E+4M. This can be broken down for a single bilinear χ:Knψ as follows:

• a factor of (v3/2)2 = v3 from the two heavy quark spinors,

• a factor of v for each increment in the angular momentum quantum number, since

they involve a derivative D acting on a heavy quark field,

3 At this stage we return to the Bodwin, Braaten, and Lepage notation where the heavy quark spinors do
not have soft momentum labels, while retaining the knowledge of the v scaling of the fields gained from
vNRQCD.
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• each chromoelectric dipole transition contributes v3v´2 = v; the v3 is from the chro-

moelectric dipole operator, and the v´2 is from the necessary virtual heavy quark

propagator,

• each chromomagnetic dipole transition contributes v4v´2 = v2; the v4 is from the

scaling of the chromomagnetic field, and the v´2 is again from the virtual heavy

quark propagator.

Then since there are two bilinears in a matrix element this cumulative v scaling is squared,

and combined with the factor of v´3 for the normalization to the volume of the hadron,

leading to the v3+2L+2E+4M rule. The NRQCD operator associated with cc̄ production

via light quark fragmentation (LQF) at leading order in αs is in a color octet 3S1, with

Kn = σiTa. Two chromoelectric operators must be inserted to bring the state to a color

singlet [92, 99, 100], which in the process takes it to a P-wave and then back to an S-wave.

This means the 3S[8]
1 matrix element scales as v7. Beyond 3S[1]

1 and 3S[8]
1 , two other matrix

elements that appear at leading order in J/ψ production are for 1S[8]
0 and 3P[8]

0 ; these will

be covered in the next chapter when a different production mechanism is discussed.

In terms of these NRQCD matrix elements, the quarkonium production cross sections

have a factorized form of:4

σ(H) =
ÿ

n

Fn(Λ)

mdO´4
Q

x0|OH
n (Λ) |0y

”
ÿ

L,s,c

Fn

mdO´4
Q

xOH(2s+1L[c]
J )y ,

(3.17)

where dO is the mass dimension of the operator. This is a sum of terms involving pertur-

bative short-distance coefficients Fn, and non-perturbative NRQCD long distance matrix

elements (LDMEs) xOH(2s+1L[c]
J )y.

The general procedure for utilizing this NRQCD factorization approach is as follows:

4 This equation is valid in the collinear limit; in the TMD regime it is an approximation. This will be dis-
cussed further in Sec. 3.3.4.
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1. Write down the full QCD Feynman diagrams appropriate for the production problem

at hand.

2. Perform a nonrelativistic expansion on the Dirac spinors u and v for the heavy quarks,

taking dependence on u and v and turning it into dependence on the two-spinors ξ

and η.

3. Match the color and spin structure of the resulting two-spinor bilinear to the appro-

priate 4-fermion operator in NRQCD, of the form in Eq. (3.16).

4. Be sure that you are accounting for all relevant terms at the order in αs and v you

are considering.

The matching from full QCD Dirac spinors onto NRQCD LDMEs for the most relevant

bilinears is outlined in App. B.1. We will be using this procedure to calculate the J/ψ FFs

using NRQCD.

3.3.4 TMD factorization in NRQCD

As we are considering the transverse momentum in the problem, we will be using a

factorization conjecture analagous to Eq. (3.17).

∆iÑJ/ψ(z, kK) Ñ
ÿ

L,s,c,m

d(m)
iÑcc̄(z, kK) xO J/ψ(2s+1L[c]

J )y , (3.18)

The matching coefficient describes the production of a cc̄ pair by a parton i. Its superscript

(m) refers to the power in the strong coupling, d(m) „ αm
s .

Reference [4] argues that Eq. (3.18) is an approximation, and that the LDME should

in fact be replaced by an operator that itself is transverse-momentum dependent. This is

because it is possible for the emission of soft gluons to alter the transverse momentum of

the produced cc̄ pair. The collinear momentum, with P+ " mc, is unchanged, but soft

gluon emissions like in Fig. 3.3 could change the transverse momentum pK „ mcv of the

quarks by O(mcv), giving the J/ψ a different transverse momentum than the cc̄. In this

work we will use Eq. (3.18) as an approximation, as has been done in a previous study [101]

on J/ψ production via TMD fragmentation, since a full TMD treatment of the NRQCD
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FIGURE 3.3: A soft gluon exchange in a cc̄ production diagram, which can alter the trans-
verse momentum pK „ mcv of the cc̄. Figure from Ref. [4].

factorization formalism has yet to be developed.

3.4 Light quark fragmentation

We now have the theoretical background to derive the fragmentation functions. In

this chapter, we will be working in a reference frame where the J/ψ has no transverse

momentum; all of the transverse momentum dependence will be in the fragmenting partons.

Pµ = P+n̄µ +
M2

2P+
nµ , (3.19)

where the light-cone coordinate vectors are defined to be:

nµ =
1

?
2
(1, 0, 0, ´1) ,

n̄µ =
1

?
2
(1, 0, 0, 1) .

(3.20)

Using these, any vector v can be written as vµ = v+n̄µ + v´nµ + vµ
T, for v+ ” n ¨ v and

v´ ” n̄ ¨ v.

In position space, the field-theoretic definition of the quark TMD FF is: [87]

∆̃qÑJ/ψ(z, bT, P+/z) =
1

2zNc
Tr

ż

db´

2π
eib´P+/z

ÿ

X

Γαα1

ˆ x0| W{ψα
i (b) |J/ψ(P), Xy

ˆ xJ/ψ(P), X| ψ̄α1

i (0)W
y

|0y ,

(3.21)
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Here we have allowed the parton to have an arbitrary polarization. At leading twist,

the initial parton can be unpolarized, longitudinally polarized, or transversely polarized,

corresponding to projection operators Γ P tγ+/2, γ+γ5/2, iσβ+γ5/2u, respectively. The W

objects are Wilson lines – objects inserted into an operator to preserve gauge invariance.

They are

W{ = Wb̂T
(+8n; bT,+8)Wn(b; 0,+8)

W
y
= Wn(0;+8, 0)Wb̂T

(+8n;+8, 0) .
(3.22)

where the Wilson line along a single direction is

Wv(xµ; a, b) = P exp
[

igs

ż b

a
ds v ¨ Ac(x + sv)tc

]
. (3.23)

In the TMDFF, these connect the quark fields that are separated by b = (0, b´, bT), with a

transverse separation bT ” bT b̂T. Refer to App. B.2 for a more detailed discussion of these

Wilson lines.

3.4.1 Enumerating the diagrams

To see how to write down the Feynman diagrams contributing to the quark TMD FF,

look more closely at one of the matrix elements in the definition, x0| W{ψ(b) |J/ψ, Xy. In

NRQCD factorization, the FF will be broken down into a piece to produce a cc̄ pair and

an LDME, so we can instead work with x0| W{ψ(b) |cc̄, Xy. The Wick contractions will be

done in the interaction picture, where the matrix element is:

x0| W{ψ
α
i (b) exp

(
´ i

ż

d4x Hint

)
|cc̄, Xy . (3.24)

The interaction Hamiltonian density for QCD is Hint = gsψ̄γµ Aa
µTaψ. Expanding the time

evolution operator and the Wilson line in gs, one of the resluting terms has the following

Wick contraction contribute to the matrix element:

g2
s

ż

d4x1

ż

d4x2 x0| ψ(b)ψ̄(x1)γ
µ Aa

µ(x1)Taψ(x1)ψ̄(x2)γ
ν Ab

νTbψ(x2) |cc̄, Xy . (3.25)
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FIGURE 3.4: Diagrams at leading order in αs contributing to the quark TMDFF. The double
lines represent the Wilson lines. Diagram (b) has a mirror diagram. Figures from Ref. [4].

This clearly corresponds to the left half of Fig. 3.4a. The only other contribution of the

matrix element x0| W{ψ(b) |cc̄, Xy at this order in αs corresponds to the left half of Fig. 3.4c;

combining two such matrix elements in the full expression for the TMD FF yields four

possible diagrams contributing to ∆qÑcc̄, one of which is a mirror image of another.

3.4.2 Quark diagram amplitudes

Applying the replacement rules for the contractions, the expressions we get for the

diagrams in Fig. 3.4 are:

d(a) =
g4

s
4zM4Nc

ż

dDk
(2π)D

ż

db´eib´P+/ze´ib(k+P)

ˆ Tr
[

/kγµ /k + /P
(k + P)2 + iϵ

(
Γχµν

) /k + /P
(k + P)2 + iϵ

γν

]
δ(k2)

(3.26)
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d(b)+mirror =
g4

s
4zM4Nc

ż

dDk
(2π)D

ż

db´eib´P+/ze´ib(k+P)

ˆ Tr
[

/k
(

nµ

P+ ´ iϵ
Γχµν

/k + /P
(k + P)2 + iϵ

γν

´ γµ /k + /P
(k + P)2 + iϵ

Γχµν
nν

P+ + iϵ

)]
δ(k2)

(3.27)

d(c) =
g4

4zM4Nc

ż

dDk
(2π)D

ż

db´eib´P+/ze´ib(k+P)

ˆ Tr
[

/k
nµ

P+ ´ iϵ
(
Γχµν

) nν

P+ + iϵ

]
δ(k2)

(3.28)

The delta function δ(k2) arises from the cuts of the light quark propagator in the diagrams,

where we have taken its mass to be zero. Here the spinor structure is

χµν = ū(p)γµTav(p1)v̄(p1)γνTau(p). (3.29)

This has the following nonrelativistic expansion.

χµν « M2Λµ
iΛν

j[ξ
:σiTaη][η:σjTaξ] . (3.30)

The integration over dDk is trivial due to the delta function arising from the b´ integral.

At this stage we begin to match onto NRQCD operators.

3.4.3 NRQCD matching and J/ψ polarization

The nonrelativistic expansion of the QCD spinors u and v yields answers in terms of

the two-spinors ξ and η, which match onto the NRQCD heavy quark and antiquark fields

ψ and χ. A projection operator PJ/ψ(λ) projects out the J/ψ bound state with a particular

helicity λ. In this instance we have a color octet 3S1 state, where the matching is:

M2η1:σiTaξ1ξ:σjTaη Ø xχ:σiTaψPJ/ψ(λ) ψ:σjTaχy . (3.31)

Spin symmetry implies that the matrix element on the right-hand side be proportional to

ϵ˚
λiϵjλ (no sum over λ), where ϵ is the polarization three-vector of the J/ψ [102]. The
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helicity can take values λ = ˘1, 0. The coefficient of this tensor structure is then defined

to be the NRQCD LDME:

xχ:σiTaψPJ/ψ(λ) ψ:σjTaχy =
2M

3
ϵ˚

λiϵjλ xO J/ψ(3S[8]
1 )y , (3.32)

The polarization tensor for the J/ψ can be decomposed in terms of a parametrization

appropriate for a spin-1 particle [103, 104].

ϵ˚
λiϵjλ =

1
3

δij +
i
2

ϵijkSk ´ Tij , (3.33)

where the vector polarized piece is in terms of:

S = Im (ϵ˚
λ ˆ ϵλ) = (Sx

T, Sy
T, SL) , (3.34)

and the tensor polarized piece is:

Tij =
1
3

δij ´ Re
(
ϵ˚

λiϵjλ
)

”
1
2




´ 2
3 SLL + Sxx

TT Sxy
TT Sx

LT

Syx
TT ´ 2

3 SLL ´ Sxx
TT Sy

LT

Sx
LT Sy

LT
4
3 SLL


 .

(3.35)

The choice of a particular helicity λ fixes the values of the parameters in S and Tij. Refer

to App. B.3 for interpretations of these parameters.

Boosting to a frame where the J/ψ has arbitrary momentum P yields:5

Λµ
iΛν

jϵ
˚
i ϵj = ´

1
3

(
gµν ´

PµPν

M2

)
+

i
2M

ϵµναβPαSβ ´ Tµν , (3.36)

where

Sβ =
(

P+n̄β ´ P´nβ

) SL

M
+ STβ , (3.37)

5 The boost matrices are discussed in App. B.1.
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Tµν =
1
2

" [
4
3
(P+)2

M2 n̄µn̄ν ´
2
3

n̄tµn̄νu +
1
3

M2

(P+)2 nµnν

]
SLL

´
1
M

(
P+n̄ ´

M2

2P+
n
)tµ

S νu

LT +
2
3

SLLgµν
T + Sµν

TT

*

,

(3.38)

We consider the production of unpolarized, longitudinally polarized, and transversely po-

larized J/ψ. Experimentally, this is measured by looking at the angular distribution of the

lepton pair to which the J/ψ decays; we will look at this distribution in more detail in

Sec. 4.1.1. The polarization tensor in the unpolarized case is the usual result:

ÿ

pol

ϵ
˚µ
U ϵν

U = ´gµν +
PµPν

M2 . (3.39)

The polarization vector for a longitudinally polarized J/ψ is simple to deduce. It needs

to have a Cartesian component that lies along the three-momentum of the J/ψ, ϵ9 P.

Combined with the constraints ϵL ¨ P = 0 and ϵL ¨ ϵL = ´1, the result must be

ϵ
µ
L =

1
M
(
|P|, P0P̂

)
. (3.40)

The transversely polarized J/ψ tensor can be obtained from the relation ϵ
˚µ
U ϵν

U = ϵ
˚µ
L ϵν

L +

ϵ
˚µ
T ϵν

T, so it is sufficient to study only the unpolarized and longitudinally polarized case.

Comparing Eq. (3.40) with Eq. (3.36) reveals that longitudinal polarization corresponds to

SLL = ´1, with all other parameters vanishing.

After matching onto NRQCD and plugging in an arbitrary polarization for the J/ψ,

the full expression for ∆qÑJ/ψ is quite large. However, its terms can be classified according

to their dependence on the polarization parameters of Sµ and Tµν, and the polarization

of the initial light quark [103]. The coefficients of these structures are also referred to as

fragmentation functions. The possible FFs depending on the quark and hadron polarization

are given in Table 3.4. Their relations to the full FF ∆qÑJ/ψ are provided in App. B.4.
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Table 3.4: Quark TMD Fs for different parton polarizations, organized according to the
J/ψ polarization parametrization.

Quark polarization

Unpolarized Longitudinal Transverse
H

ad
ro

n
po

la
ri

za
ti

on

U D1 (unpolarized) HK
1 (Collins)

L G1 (helicity) HK
1L

T DK
1T (polarizing FF) GK

1T H1, HK
1T

LL D1LL HK
1LL

LT D1LT G1LT HK
1LT, H1

1LT

TT D1TT G1TT
HK

1TT (transversity),
H1

1TT

At this order in αs, the only nonzero TMD FFs are:

D1(z, kT; µ) =
2α2

s (µ)

9πNc M3z
k2

Tz2(z2 ´ 2z + 2) + 2M2(z ´ 1)2

[z2k2
T + M2(1 ´ z)]2

xO J/ψ(3S[8]
1 )y ,

D1LL(z, kT; µ) =
2α2

s (µ)

9πNc M3z
k2

Tz2(z2 ´ 2z + 2) ´ 4M2(z ´ 1)2

[z2k2
T + M2(1 ´ z)]2

xO J/ψ(3S[8]
1 )y ,

D1LT(z, kT; µ) =
2α2

s (µ)

3πNc M
(2 ´ z)(1 ´ z)

[z2k2
T + M2(1 ´ z)]2

xO J/ψ(3S[8]
1 )y ,

D1TT(z, kT; µ) =
2α2

s (µ)

3πNc M
z(z ´ 1)

[z2k2
T + M2(1 ´ z)]2

xO J/ψ(3S[8]
1 )y ,

G1L(z, kT; µ) =
α2

s (µ)

3πNc M3
k2

Tz2(2 ´ z)
[z2k2

T + M2(1 ´ z)]2
xO J/ψ(3S[8]

1 )y ,

GK
1T(z, kT; µ) =

2α2
s (µ)

3πNc M
z(z ´ 1)

[z2k2
T + M2(1 ´ z)]2

xO J/ψ(3S[8]
1 )y .

(3.41)

The function D1 was first calculated in Ref. [101]; the rest are results new to Ref. [4].

These are ready to be utilized in an expression for a J/ψ production cross section.
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FIGURE 3.5: The lone diagram at LO in αs contributing to the gluon TMDFF. Figure from
Ref. [4].

3.5 Gluon fragmentation

The procedure for obtaining the gluon TMD FFs are the same as for the quark. In

terms of Wilson lines in the adjoint representation, W , the gluon TMD FF is: [87]

∆̃αα1

gÑJ/ψ(z, bT, P+z) =
1

2z2P+

ż

db´

2π
eib´P+/z

ÿ

X

x0| G+α(b)W{ |J/ψ(P), Xy

ˆ xJ/ψ(P), X| G+α1

(0)W
y

|0y .

(3.42)

The spin indices are left free. There is only one diagram at leading order in αs, shown in

Fig. 3.5. Its amplitude is:

dαα1

g =
g2

2z2P+(N2
c ´ 1)

ż

db´

(2π)
ei(b´P+/z´P¨b)

(
Pα nµ

P2 ´ P+ gαµ

P2

)
χµν

ˆ

(
Pα1 nν

P2 ´ P+ gα1ν

P2

)
.

(3.43)

Fourier transforming to kT space yields two delta functions:

ż

db´

(2π)

d2bT

(2π)2 e´i(kT ¨bT)ei(b´P+/z´b´P++PT ¨bT) =
(z2)z=1

P+
δ(1 ´ z)δ(2)(kT) . (3.44)

The amplitude thus reduces to:

dαα1

g =
g2

2(P+M2)2(N2
c ´ 1)

δ(1 ´ z)δ(2)(kT)
(

Pαnµ ´ P+gα
µ

)
χµν
(

Pα1

nν ´ P+gα1

ν

)
. (3.45)
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Table 3.5: Gluon TMD FFs for the unpolarized, antisymmetric, and symmetric combina-
tions of gluons, along with the parametrization of the J/ψ polarization.

Gluon operator polarization

Unpolarized
Helicity 0 anti-
symmetric

Helicity 2
H

ad
ro

n
po

la
ri

za
ti

on

U Dg
1 (unpolarized)

HKg
1 (linearly polar-

ized)

L Gg
1L (helicity) HKg

1L

T DKg
1T GKg

1T Hg
1T (transversity), HKg

1T

LL Dg
1LL HKg

1LL

LT Dg
1LT Gg

1LT HKg
1LT, H1g

1LT

TT Dg
1TT Gg

1TT HKg
1TT, H1g

1TT

We then need to match onto NRQCD and project out the various polarizations of the gluon

and J/ψ. The resulting TMD FFs can be organized in a table like in the quark case (Table

3.5).

The nonvanishing TMDFFs are:

Dg
1(z, kT; µ) =

παs(µ)

9M3 xO J/ψ(3S[8]
1 )y δ(1 ´ z)δ(2)(kT) ,

Dg
1LL(z, kT; µ) =

παs(µ)

9M3 xO J/ψ(3S[8]
1 )y δ(1 ´ z)δ(2)(kT) ,

Gg
1L(z, kT; µ) = ´

παs(µ)

6M3 xO J/ψ(3S[8]
1 )y δ(1 ´ z)δ(2)(kT) ,

Hg
1TT(z, kT; µ) = ´

παs(µ)

6M3 xO J/ψ(3S[8]
1 )y δ(1 ´ z)δ(2)(kT) .

(3.46)

Notice that the transverse momentum dependence is trivial. Nontrivial kT dependence

appears at one loop, and has been calculated recently for the unpolarized case by Echevarria

et al. [105].
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3.6 Phenomenology

We can now turn to making some predictions utilizing the derived TMD FFs. As their

TMD FFs have more interesting transverse momentum dependence at this order in αs, as

well as the fact that quark PDFs are better understood, we focus only on LQF.

3.6.1 Cross section expressions

We established in Sec. 3.2 that the SIDIS cross section can be factorized into a convo-

lution of a PDF, a FF, and a partonic cross section. Here we write the expression more

explicitly. The full QCD cross section is given by: [101, 103, 106]

dσ

dx dz dQ2 dP2
K

=
α2

emM
2Q2xzs

LµνWµν , (3.47)

for the kinematic variables:

Q2 = ´q2 = ´(l ´ l1)2, x =
Q2

2p ¨ q
, y =

p ¨ q
p ¨ l

, z =
p ¨ P
p ¨ q

, (3.48)

and the hadronic and leptonic tensors:

Lµν = e´2 xl1| Jµ(0) |ly xl| J:
ν(0) |l1y . (3.49)

Wµν = e´2
ż

d4x
(2π)4 e´iq¨x

ÿ

X

xp| J:
µ(x) |P, Xy xP, X| Jν(0) |py (3.50)

The lepton charge is e, Jµ = eψ̄Aem
µ ψ is the electromagnetic current, and s = Q2/xy is the

center-of-mass energy. At leading twist, the hadronic tensor factorizes into a convolution

of a TMD PDF Φ and a TMD FF ∆: [103]

Wµν = 2z
ż

d2kT d2pT δ(2)
(

pT ´ kT +
PK

z

)
Tr [γµΦ(pT, x)γν∆(kT, z)] (3.51)

We saw in the previous section that the full expression for the TMD FF, for a polarized par-

ton and polarized J/ψ, can be organized according to those polarizations to yield multiple

coefficient functions. The same can be done for the TMD PDFs in terms of the nucleon and

72



Table 3.6: Quark TMD PDFs organized according to quark and nucleon polarization.

Quark polarization

Unpolarized (U) Longitudinal (L) Transverse (T)
N

uc
le

on
po

la
ri

za
ti

on U f1 (unpolarized)
hK

1 (Boer-
Mulders)

L g1 (helicity) hK
1L (Worm-gear)

T f K
1T (Sivers) gK

1T (Worm-gear)
h1 (transversity),
hK

1T (pretzelosity)

parton polarizations. The resulting coefficient functions, also called PDFs, are summarized

in Table 3.6 for quarks and Table 3.7 for gluons.

Consider the case of LQF with an unpolarized lepton and unpolarized target. There

are only two surviving convolutions,

dσUU(l + H Ñ l1 + J/ψ + X)

dx dz dy d2PK

=
4πα2s

Q4

(
1 ´ y +

y2

2

)"

I[ f1D1] + SLLI[ f1D1LL]

*

,

(3.52)

where we have defined the convolution integral

I[ f D] = 2z
ż

d2kT d2pT δ(2)
(

pT ´ kT +
PK

z

)
f (pT)D(kT) . (3.53)

This clearly has an unpolarized parton; the polarization of the J/ψ is obtained by sum-

ming over appropriate values of the parameter SLL. For unpolarized J/ψ, the sum is over

SLL P t1/2, 1/2, ´1u, and for longitudinally polarized J/ψ, it is over SLL P t´1u. Trans-

verse polarization can be obtained by taking the difference between the unpolarized and

longitudinally polarized cases.
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Table 3.7: Gluon TMD PDFs organized according to gluon and nucleon polarization.

Gluon operator polarization

Unpolarized
Helicity 0 anti-
symmetric

Helicity 2

N
uc

le
on

po
la

ri
za

ti
on U f g

1 (unpolarized)
hKg

1 (linearly polar-
ized)

L gg
1L (helicity) hKg

1L

T f Kg
1T gKg

1T
hg

1T (transversity),
hKg

1T

Similarly, for a polarized lepton beam and longitudinally polarized target, the cross

section is: [103]

dσLL(l + H Ñ l1 + J/ψ + X)

dx dz dy d2PK

=
4πα2s

Q4 2λeSqL y
(

1 ´
y
2

)
x

"

I[g1LD1] + SLLI[g1LD1LL]

*

.

(3.54)

The parameter λe is the beam helicity, and SqL is the polarization parameter for the quark.

This is not a physical cross section; rather, it is instead a difference of physical cross sections.

In terms of a basis where superscripts represent the helicities of the target and subscripts

represent the helicities of the virtual photon, dσLL is: [106]

dσLL =
1
2
(dσ++

++ ´ dσ´´
++ ). (3.55)

3.6.2 Transverse momentum dependence of the PDFs

In plotting the cross sections, we use numerical values for the PDFs that have been fit

to experiment. The TMD PDFs are poorly constrained and are a topic of ongoing research

in the field [87, 107–111]. It is common to use a parametrization where the transverse
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momentum dependence is in the form of a Gaussian:

Φi/N(x, pT) =
1

π xp2
Ty

Φi/N(x)e´p2
T/xp2

Ty , (3.56)

where xp2
Ty is a small parameter and Φi/N(x) is the collinear PDF. However, when applied

to our cross sections in Eqs. (3.52) and (3.54), using the Gaussian in the range xp2
Ty P

[0.2, 0.8] GeV2 is not sufficiently different from simply using the first-order result in the

TMD expansion:

Φi/N(x, pT) « Φi/N(x)δ(2)(pT) (3.57)

Using a delta function for the transverse momentum dependence also avoids computational

difficulties associated with highly oscillatory integrands. Therefore, here we use Eq. (3.57)

to produce the plots of the cross sections.

3.6.3 Discussion of the phase and parameter spaces

We plot the cross sections in eight regions of phase space, corresponding to dividing

the variables x, z, Q, into two bins each and integrating over those subsets of the domains,

and plotting as a function of PK. This is done for the sake of comparison with the plots

in Ref. [101], who were the first to derive the TMD FFs for J/ψ production in the case of

unpolarized partons and J/ψ. The bins are x P [0.1, 0.5] & [0.5, 1], z P [0.1, 0.4] & [0.4, 0.8],

and Q (GeV) P [10, 30] & [30, 50], and PK is constrained to be in the TMD regime PK P

[0, z[bin min]Q[bin min]/2] [101].

There are several parameters in the full expressions for the cross sections. Here we list

them and justify the values we choose for the plots.

• the center-of-mass energy s: we choose
?

s = 63 GeV to be within the capabilities

of the future Electron Ion Collider [112], as well as to be consistent with Ref. [101],

• the PDF energy scale µ: the PDFs are associated with an energy exchange of Q, so

we choose µ = 30 GeV „ Q,

• the collinear PDFs: we choose the numerical fits of Ref. [113]; we have to evolve the

polarized PDF g1L to the scale µ = 30 GeV,
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• the TMD FF renormalization scale µ: as the matching of the TMD FF from full

QCD to NRQCD is done at the scale „ M, the FFs are evaluated at µ = M = 3.1

GeV,

• the color-octet 3S1 LDME xO J/ψ(3S[8]
1 )y: chosen to be the fit from Ref. [114], xO J/ψ(3S[8]

1 )y

= 0.3 ˆ 10´2 GeV,6

• the beam helicity λe: we use λe = ´1, corresponding to a purely left-handed beam,

• the quark polarization parameter SqL: we use SqL = ´1, which means the target

spin is parallel to the photon momentum [106, 115],

• an arbitrary normalization factor N : chosen by hand to allow the different plots to

be shown with the same vertical axis.

3.6.4 Plots

We plot dσUU for the case of transversely and longitudinally polarized J/ψ, in Figs. 3.6

and 3.7, respectively. In each case we show the full differential cross section, as well as the

individual contributions from the two TMD FFs D1 and D1LL. For transversely polarized

J/ψ, the D1LL contribution suppresses the total cross section and is of roughly equal mag-

nitude to the D1 contribution, such that near |PK| = 0 the total cross section is essentially

zero in all bins. It follows that for longitudinally polarized J/ψ, the D1LL contribution

enhances the total cross section, since the SLL parameter has a sign flip.

The two polarization cases are plotted alongside the unpolarized case in Fig. 3.8. Lon-

gitudinal J/ψ polarization dominates at smaller PK, and transverse polarization takes over

around |PK| = 2 GeV. The same is true when considering the cross section dσLL. Here, in

the larger x bin, all contributions to the cross section are negative, which occurs because

the polarized PDF g1L goes negative. In light of Eq. (3.54), this suggests that the negative

helicity photon cross section dominates for higher x.

6 Choosing an LDME fit is non-trivial; this will be discussed in detail in the next chapter, where a greater
variety of LDMEs are utilized.
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FIGURE 3.6: SIDIS cross section for an unpolarized beam and target, producing transversely polarized J/ψ. Figure from Ref. [4].
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FIGURE 3.7: SIDIS cross section for an unpolarized beam and target, producing longitudinally polarized J/ψ. Figure from Ref. [4].
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FIGURE 3.8: SIDIS cross section for an unpolarized beam and target, producing different polarizations of J/ψ. Figure from Ref. [4].
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FIGURE 3.9: SIDIS cross section for a longitudinally polarized beam and target, producing different polarizations of J/ψ. Figure
from Ref. [4].
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4

Competing production mechanisms for polarized J/ψ
in SIDIS

We1 established in the previous chapter that PDFs and FFs are fundamental objects

regarding the internal structure of nucleons and hadrons. Furthermore, the dependence

of PDFs and FFs on the transverse momentum of the partons is a research area where

much is yet to be understood. We derived, for the first time, the polarized TMDFFs

for J/ψ production in SIDIS. Fragmentation is not the only production mechanism for

J/ψ, however: there can also be direct production via photon-gluon fusion (PGF). This

mechanism is sensitive to gluon PDFs, and also to different NRQCD LDMEs than light

quark fragmentation (LQF). Due to the fact that little is known about spin-dependent

gluon TMDs [116], and the uncertainty surrounding the NRQCD polarization puzzle and

the LDME values (discussed in Sec. 4.1), we are motivated to find kinematic regimes where

different J/ψ production mechanisms dominate the cross section. Identifying these regimes

would allow for the uncertain quantities to be extracted more readily in future experiments.

TMD direct production of quarkonium has been studied in many papers [101, 117–141].

However, all but one [101] of these papers neglect LQF, which we find to have a significant

contribution, and only a couple [128, 140] consider polarized J/ψ. Our research, initially

presented in Ref. [5], is intended to extend the analysis of Ref. [101] to account for polarized

1 The work presented in this chapter was initially published in Ref. [5]. The contributions of each author are
listed below.

• R. Hodges, M. Copeland, S. Fleming: analysis and writing
• R. Gupta: analysis
• T. Mehen: checking calculations and editing manuscript
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Figure 1.8: Top: The schematic of eRHIC at BNL, which would require construction of an
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Botton: The schematic of MEIC at JLab, which would require construction of an ion linac
(red), and an electron-ion collider ring (blue) with at least two interaction points, around the
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FIGURE 4.1: Schematic of the EIC at BNL. Red is the new electron beam facility, and blue
is the existing RHIC hadron beam. Figure from Ref. [112].

J/ψ and color octet PGF.

The energies we consider will be accessible at the future Electron-Ion Collider (EIC)

at Brookhaven National Lab (BNL), which will make use of the existing facilities of the

Relativistic Heavy Ion Collider (RHIC), including its tunnel and polarized proton and

nuclear beams, along with a new electron beam facility. A schematic of the EIC design

is shown in Fig. 4.1. According to the EIC White Paper [112], some of the most relevant

characteristics the new EIC will aim to have are:

• highly polarized („ 70%) electron and nucleon beams,

• center of mass energies from 20 to 100 GeV, upgradable to 140 GeV,

• collision luminosity of „ 1033´34 cm´2 s´1.

The EIC will be able to access both higher Q2 and smaller x than previous experiments at

CERN, DESY, JLab, SLAC, PHENIX, and STAR (Fig. 4.2). Relevant to this chapter is
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The 12 GeV upgrade of CEBAF at JLab and the COMPASS at CERN will initiate such
studies in predominantly valence quark region. However, these programs will be dramati-
cally extended at the EIC to explore the role of the gluons and sea quarks in determining
the hadron structure and properties. This will resolve crucial questions, such as whether
a substantial “missing” portion of nucleon spin resides in the gluons. By providing high-
energy probes of partons’ transverse momenta, the EIC should also illuminate the role of
their orbital motion contributing to nucleon spin.

The Spin and Flavor Structure of the Nucleon

An intensive and worldwide experimen-
tal program over the past two decades has
shown that the spin of quarks and antiquarks
is only responsible for ⇠ 30% of the pro-
ton spin. Recent RHIC results indicate that
the gluons’ spin contribution in the currently
explored kinematic region is non-zero, but
not yet su�cient to account for the missing
70%. The partons’ total helicity contribu-
tion to the proton spin is very sensitive to
their minimum momentum fraction x acces-
sible by the experiments. With the unique
capability to reach two orders of magnitude

lower in x and to span a wider range of mo-
mentum transfer Q than previously achieved,
the EIC would o↵er the most powerful tool
to precisely quantify how the spin of gluons
and that of quarks of various flavors con-
tribute to the protons spin. The EIC would
realize this by colliding longitudinally polar-
ized electrons and nucleons, with both inclu-
sive and semi-inclusive DIS measurements.
In the former, only the scattered electron is
detected, while in the latter, an additional
hadron created in the collisions is to be de-
tected and identified.
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Figure 1.2: Left: The range in parton momentum fraction x vs. the square of the momentum
transferred by the electron to the proton Q2 accessible with the EIC in e+p collisions at two
di↵erent center-of-mass energies, compared to existing data. Right: The projected reduction
in the uncertainties of the gluon’s helicity contribution �G vs. the quark helicity contribution
�⌃/2 to the proton spin from the region of parton momentum fractions x > 0.001 that would
be achieved by the EIC for di↵erent center-of-mass energies.

Figure 1.2 (Right) shows the reduction in
uncertainties of the contributions to the nu-
cleon spin from the spin of the gluons, quarks
and antiquarks, evaluated in the x range

from 0.001 to 1.0. This would be achieved by
the EIC in its early operations. In future, the
kinematic range could be further extended
down to x ⇠ 0.0001 reducing significantly

2

FIGURE 4.2: Plot showing the range of Q2 and x the future EIC will be able to access in
e + p collisions, compared to existing experiments. Figure from Ref. [112].

that it will access Q2 ą 100 GeV2, for which there is no data for polarized DIS. This will

allow us to distinguish between different J/ψ production mechanisms, which have different

hierarchies as Q2 increases.

4.1 Uncertainties in NRQCD

In addition to giving an avenue to access polarized TMD PDFs, a key motivation behind

this research project is to provide an opportunity to shed light on various uncertainties

surrounding the NRQCD factorization formalism. While LQF is only sensitive to the color

octet 3S1 LDME, at the same order in αs and v, PGF (whose leading contributions are

shown in Fig. 4.3) has contributions from three more LDMEs: xO J/ψ(3S[1]
1 )y, xO J/ψ(3P[8]

0 )y,

and xO J/ψ(1S[8]
0 )y. According to the velocity scaling rules, these scale as v3, v7, and v7,
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FIGURE 4.3: Diagrams at LO and NLO in αs contributing to J/ψ production via photon-
gluon fusion. There is a crossed diagram for (a), and permuting the vertices yields five
other graphs like (b). Figures from Ref. [5].

respectively, while xO J/ψ(3S[8]
1 )y also scales as v7. The contribution from xO J/ψ(3S[1]

1 )y is

at roughly the same order as the others in our double power counting, since an extra factor

of αs (as in Fig. 4.3b) is required to produce a cc̄ with those quantum numbers.

4.1.1 Polarization puzzle

One of the key points of tension between the NRQCD factorization formalism and the

experimental results is that NRQCD predicts that the J/ψ is transversely polarized at high

PT, but the data indicates it is unpolarized in that region. This is called the “polarization

puzzle”.

The polarization of the final state J/ψ can be measured by looking at the angular

distribution of the decay to a lepton pair ℓ+ℓ´. The coordinate system for this distribution

can be confusing and there are a number of different conventions for the z axis. We use the

helicity convention, which can be defined as follows.

• Start in the center of mass frame of the two beams, and let the direction of the J/ψ

momentum be the z axis.

• Define the x axis such that the x-z plane is the production plane, i.e., the plane formed

by the incident beams.

• Boost to the J/ψ rest frame. The x-z plane is preserved, but now the momenta of
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the beams are no longer back-to-back.

This coordinate system is illustrated in Fig. 4.4. Define the angles according to the ℓ+

momentum vector’s orientiation. The polar angle θ is the angle the ℓ+ momentum makes

with the z axis, and the azimuthal angle ϕ is with respect to the production plane. Then

the probability distribution for the ℓ+ℓ´ decay is: [142]

W(θ, ϕ) =
1

3 + λθ
(1 + λθ cos2 θ + λϕ sin2 θ cos 2ϕ + λθϕ sin 2θ cos ϕ) . (4.1)

Most studies average over ϕ and measure only the θ dependence. The parameter of interest

is the polar anisotropy parameter λθ, which can be written in terms of the cross sections

for unpolarized and longitudinally polarized J/ψ production:

λθ „
1 ´ 3 σL

σU

1 + σL
σU

. (4.2)

From this one can clearly see that pure longitudinal polarization corresponds to λθ = ´1

and pure transverse polarization to λθ = +1.

To see why NRQCD predicts transverse polarization for the J/ψ at high PT, consider

the following facts:

1. Prevailing wisdom indicates that the color octet 3S1 mechanism is dominant for J/ψ

production.2

2. The color octet 3S1 configuration of the cc̄ pair must undergo two chromoelectric

transitions A ¨∇ to attain the quantum numbers of the J/ψ. This operator preserves

heavy quark spin symmetry, i.e., it is insensitive to the transformations of the spin of

the heavy quark, unlike the chromomagnetic transition B ¨ σ.

3. On-shell gluons must be transversely polarized, i.e., p ¨ ε = 0.

These support the following argument: at high PT, the virtual gluon that produces the cc̄

is almost on-shell, and therefore is mostly transversely polarized. Because the operators

that take the cc̄ to the J/ψ quantum numbers preserve heavy quark spin symmetry, the

2 This will be discussed in more detail in Sec. 4.3.
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Fig. 3 Illustration of three
different definitions of the
polarization axis z (CS:
Collins–Soper, GJ:
Gottfried–Jackson, HX:
helicity) with respect to the
directions of motion of the
colliding beams (b1, b2) and of
the quarkonium (Q)

colliding beams (Gottfried–Jackson frame [24], GJ), the op-
posite of the direction of motion of the interaction point (i.e.
the flight direction of the quarkonium itself in the centre-of-
mass of the colliding beams: centre-of-mass helicity frame,
HX) and the bisector of the angle between one beam and the
opposite of the other beam (Collins–Soper frame [25], CS).
The motivation of this latter definition is that, in hadronic
collisions, it coincides with the direction of the relative mo-
tion of the colliding partons, when their transverse momenta
are neglected (the validity and limits of this approximation
are discussed in detail in Sect. 7). For our considerations, we
will take the HX and CS frames as two extreme (physically
relevant) cases, given that the GJ polar axis represents an
intermediate situation. We note that these two frames differ
by a rotation of 90◦ around the y axis when the quarkonium
is produced at high pT and negligible longitudinal momen-
tum (pT ≫ |pL|). All definitions become coincident in the
limit of zero quarkonium pT. In this limit, moreover, for
symmetry reasons any azimuthal dependence of the decay
distribution is physically forbidden.

We conclude this section by defining the somewhat
misleading nomenclature which is commonly used (and
adopted, for convenience, also in this paper) for the polar-
ization of vector mesons. These particles share the quantum
numbers of the photon and are therefore said, by analogy
with the photon, to be “transversely” polarized when they
have spin projection Jz = ±1. The counterintuitive adjec-
tive originally refers to the fact that the electromagnetic field
carried by the photon oscillates in the transverse plane with
respect to the photon momentum, while the photon spin is
aligned along the momentum. “Longitudinal” polarization
means Jz = 0. By further extension, the same terms are also
used to describe the “spin alignment” of vector quarkonia
not only with respect to their own momenta (HX frame),
but also with respect to any other chosen reference direction
(such as the GJ or CS axes).

3 Dilepton decay angular distribution

Vector quarkonia, such as the J/ψ , ψ ′ and Υ (nS) states, can
decay electromagnetically into two leptons. The reconstruc-
tion of this channel represents the cleanest way, both from
the experimental and theoretical perspectives, of measuring
their production yields and polarizations. In this and the fol-
lowing sections we discuss how to determine experimentally
the “spin alignment” of a vector quarkonium by measuring
the dilepton decay angular distribution. For convenience we
mention explicitly the J/ψ as the decaying particle, but con-
siderations and results are valid for any J = 1−− state.

We begin by studying the case of a single production
“subprocess”, here defined as a process where the J/ψ is
formed as a given superposition of the three J = 1 eigen-
states, Jz = +1,−1,0 with respect to the polarization axis z:

|V ⟩ = b+1|+1⟩ + b−1|−1⟩ + b0|0⟩. (1)

The calculations are performed in the J/ψ rest frame, where
the common direction of the two leptons define the refer-
ence axis z′, oriented conventionally along the direction of
the positive lepton. The adopted notations for axes, angles
and angular momentum states are illustrated in Fig. 4. Be-
cause of helicity conservation for (massless) fermions in

Fig. 4 Sketch of the decay J/ψ → ℓ+ℓ−, showing the notations used
in the text for axes, angles and angular momentum states
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parallel. Because of angular momentum conservation, the
produced quarkonium has, thus, angular momentum com-
ponent Jz = ±1 along the direction of the colliding lep-
tons. This precise QED prediction (the relative amplitude
for the Jz = 0 component is of order me/Ee ≃ 3 × 10−4

for J/ψ production and smaller for Υ production) is com-
monly used as a base assumption in quarkonium measure-
ments in electron-positron annihilations (as, for example, in
the recent analysis of [17]). The fact that the dilepton system
coupled to a photon is a pure Jz = ±1 state is also an es-
sential ingredient in the determination of the expression for
the dilepton-decay angular distributions of vector quarkonia
(see Sect. 3).

The same reasoning can be applied to the production
of Drell–Yan lepton pairs in quark-antiquark annihilation
(Fig. 1(b)): the quark and antiquark, in the limit of vanish-
ing masses, must annihilate with opposite helicities, result-
ing in a dilepton state having Jz = ±1 along the direction
of their relative velocity. The experimental verification of
this basic mechanism has reached an impressive level of
accuracy [14]. Quark helicity is conserved also in QCD,
when the masses can be neglected. Similarly to the Drell–
Yan case, quarkonia originating from quark-antiquark anni-
hilation (into intermediate gluons) will thus tend, provided
they are produced alone, to have their angular momentum
vectors “aligned” (Jz = ±1) along the beam direction. This
prediction is in good agreement with the χc1, χc2 and ψ ′ po-
larizations measured in low-energy proton-antiproton colli-
sions [18–20].

At very high pT, quarkonium production at hadron col-
liders should mainly proceed by gluon fragmentation [21].
In NRQCD, heavy-quark velocity scaling rules for the non-
perturbative matrix elements, combined with the αS and
1/pT power counting rules for the parton cross sections, pre-
dict that J/ψ and ψ ′ production at high pT is dominated
by gluon fragmentation into the colour-octet state cc̄[3S

(8)
1 ]

(Fig. 1(c)). Transitions of the gluon to other allowed colour
and angular momentum configurations, containing the cc̄

in either a colour-singlet or a colour-octet state, with spin
S = 0,1 and angular momentum L = 0,1,2, . . . , as well
as additional gluons (cc̄[1S

(8)
0 ]g, cc̄[3P

(8)
J ]g, cc̄[3S

(1)
1 ]gg,

etc.), are more and more suppressed with increasing pT. Up
to small corrections, the fragmenting gluon is believed to be
on shell and have, therefore, helicity ±1. This property is
inherited by the cc̄[3S

(8)
1 ] state and remains intact during

the non-perturbative transition to the colour-neutral phys-
ical state, via soft-gluon emission. In this model, the ob-
served charmonium has, thus, angular momentum compo-
nent Jz = ±1, this time not along the direction of the beam,
but along its own flight direction.

“Unpolarized” quarkonium has the same probability,
1/(2J + 1), to be found in each of the angular momentum
eigenstates, Jz = −J,−J + 1, . . . ,+J . This is the case,

for example, in the colour evaporation model [22, 23]. In
this framework, similarly to NRQCD, the QQ̄ pair is pro-
duced at short distances in any colour and angular momen-
tum configuration. However, contrary to NRQCD, no hierar-
chy constraints are imposed on these configurations, so that
the cross section turns out to be dominated by QQ̄ pairs
with vanishing angular momentum (1S0), in either colour-
singlet or colour-octet states. In their long distance evolution
through soft gluon emissions, J = 0 states get their colour
randomized, assuming the correct quantum numbers of the
physical quarkonium. As a result, the final angular momen-
tum vector J has no preferred alignment.

In two-body decays (such as the 3S1 → ℓ+ℓ− case con-
sidered in this paper), the geometrical shape of the angu-
lar distribution of the two decay products (emitted back-to-
back in the quarkonium rest frame) reflects the polarization
of the quarkonium state. A spherically symmetric distribu-
tion would mean that the quarkonium would be, on average,
unpolarized. Anisotropic distributions signal polarized pro-
duction.

The measurement of the distribution requires the choice
of a coordinate system, with respect to which the momen-
tum of one of the two decay products is expressed in spheri-
cal coordinates. In inclusive quarkonium measurements, the
axes of the coordinate system are fixed with respect to the
physical reference provided by the directions of the two col-
liding beams as seen from the quarkonium rest frame. Fig-
ure 2 illustrates the definitions of the polar angle ϑ , deter-
mined by the direction of one of the two decay products (e.g.
the positive lepton) with respect to the chosen polar axis, and
of the azimuthal angle ϕ, measured with respect to the plane
containing the momenta of the colliding beams (“production
plane”). The actual definition of the decay reference frame
with respect to the beam directions is not unique. Measure-
ments of the quarkonium decay distributions have used three
different conventions for the orientation of the polar axis
(see Fig. 3): the direction of the momentum of one of the two

Fig. 2 The coordinate system for the measurement of a two-body de-
cay angular distribution in the quarkonium rest frame. The y axis is per-
pendicular to the plane containing the momenta of the colliding beams.
The polarization axis z is chosen according to one of the possible con-
ventions described in Fig. 3

FIGURE 4.4: The conventions for the z axis (we use the helicity convention, zHX) and an-
gles θ, ϕ. The bi are the incident beams and Q is the quarkonium. Figures from Ref. [142].

J/ψ inherits the polarization of the virtual gluon. Therefore, at high PT, the J/ψ should

be mostly transversely polarized. However, this is not at all consistent with data from the

Collider Detector at Fermilab (CDF); see Fig. 4.5. This figure shows the polar anisotropy

parameter α = λθ as a function of PT for the production of the charmonium states ψ1 and

J/ψ. For the J/ψ plot, it shows several curves predicted by NRQCD. The blue band is

prompt J/ψ production, which is all the production that does not arise via the decay of

a B meson. This is further divided into direct production and feed-down production, the

latter of which is e.g., production from the decay of a higher-mass charmonium bound state

like the ψ1 or χc0. The partonic processes we consider in this dissertation are an example

of direct production.
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PDF ⟨OJ/ψ
1 (3S1)⟩ ⟨OJ/ψ

8 (3S1)⟩ M
J/ψ
3.4 ⟨Oψ′

1 (3S1)⟩ ⟨Oψ′
8 (3S1)⟩ Mψ′

3.5 ⟨Oχc0
1 (3P0)⟩ ⟨Oχc0

8 (3S1)⟩
MRST98LO 1.3 ± 0.1 4.4 ± 0.7 8.7 ± 0.9 6.5 ± 0.6 4.2 ± 1.0 1.3 ± 0.5 8.9 ± 1.3 2.3 ± 0.3
CTEQ5L 1.4 ± 0.1 3.9 ± 0.7 6.6 ± 0.7 6.7 ± 0.7 3.7 ± 0.9 0.78 ± 0.36 9.1 ± 1.3 1.9 ± 0.2

unit GeV3 10−3GeV3 10−2GeV3 10−1GeV3 10−3GeV3 10−2GeV3 10−2GeV5 10−3GeV3

TABLE I. NRQCD matrix elements. The error bars take into account the statistical errors only.

′

′

FIG. 1. Polarization variable α vs. pT for (a) direct ψ′ and (b) prompt J/ψ compared to CDF data.

of the Tevatron, the data sample for J/ψ should be more
than one order of magnitude larger than in Run I, allow-
ing the polarization to be measured with higher precision
and out to larger values of pT . If the result continues to
disagree with the predictions of the NRQCD factoriza-
tion approach, it would indicate a serious flaw in our
understanding of inclusive charmonium production. The
predictions of low-order perturbative QCD for the spin-
dependence of cc̄ cross sections could be wrong, or the use
of NRQCD to understand the systematics of the forma-
tion of charmonium from the cc̄ pair could be flawed, or
mc could simply be too small to apply the factorization
approach to the charmonium system.
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FIGURE 4.5: Plot showing the disagreement between NRQCD and data for the polariza-
tion of the (a) ψ1 and (b) J/ψ at high transverse momentum. Here, the parameter α is our
λθ . Figure reused with permission from Ref. [143]; experimental data from Ref. [144].

4.1.2 LDME fits

The LDMEs are nonperturbative objects that need to be fit to experiment; however,

there is significant disagreement between the three fits most commonly quoted in the lit-

erature [114, 145–147]; see Table 4.1. The color singlet 3S1 has a mostly consistent central

value between the three fits, but the rest can vary by as much as a factor of 5, and the

uncertainties are large in all cases.

References [145, 146], by Butenschön and Kniehl, are global fits to the world’s data at

NLO in NRQCD. These authors were the first to show that the color octet mechanisms

are crucial for aligning the NRQCD predictions for the J/ψ production cross sections to

data from many collaborations [148–157], and that the color singlet model alone is an

underprediction. Refer to Fig. 1 of Ref. [145] to see the agreement. The main difference

between the work of Butenschön and Kniehl and the fits of Refs. [114, 147] is that the latter

attempt to account for the NRQCD polarization puzzle, and only fit to the larger values

of PT, arguing that NRQCD factorization is not valid at small PT. It is worth noting that

despite their disagreement between fits, the relative magnitudes of the different LDMEs are

consistent with their v scaling predicted by NRQCD.

By deriving new observables that are sensitive to all these matrix elements and the J/ψ

polarization, we hope that comparison to experiments at the future EIC can help resolve
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Table 4.1: Fits of NRQCD LDMEs.
xO J/ψ(3S[1]

1 )y

ˆ GeV3

xO J/ψ(3S[8]
1 )y

ˆ10´2 GeV3

xO J/ψ(1S[8]
0 )y

ˆ10´2 GeV3

xO J/ψ(3P[8]
0 )y /m2

c

ˆ10´2 GeV3

B & K [145, 146] 1.32 ˘ 0.20 0.224 ˘ 0.59 4.97 ˘ 0.44 ´0.72 ˘ 0.88

Chao et al. [114] 1.16 ˘ 0.20 0.30 ˘ 0.12 8.9 ˘ 0.98 0.56 ˘ 0.21

Bodwin et al. [147] 1.32 ˘ 0.20 1.1 ˘ 1.0 9.9 ˘ 2.2 0.49 ˘ 0.44

the NRQCD polarization puzzle and further constrain the LDMEs. Before delving into

which production mechanisms are dominant in which regions of phase space, first we derive

the cross sections themselves.

4.2 Cross section expressions

In this section we outline the cross sections for J/ψ production via LQF and PGF,

before their properties are discussed in the next section.

4.2.1 Light quark fragmentation

The cross section for production via light-quark fragmentation was discussed in Chap. 3.

We quote the results here for convenience. For an unpolarized beam and target, and

considering only unpolarized and longitudinally polarized J/ψ, we found

dσUU(l + H Ñ l1 + J/ψ + X)

dx dz dQ2 d2PK

=
4πα2

Q4

(
1 ´ y +

y2

2

)"

I[ f1D1] + SLLI[ f1D1LL]

*

. (4.3)

The convolution integral is:

I[ f D] =

ż

d2pT d2kT δ(2)(pT ´ kT + PK/z) f (pT)D(kT) , (4.4)

and the relevant FFs are:

D1 =
2α2

s
27πzM3

z2k2
T(z

2 ´ 2z + 2) + 2M2(z ´ 1)2

[z2k2
T + M2(1 ´ z)]2

xO J/ψ(3S[8]
1 )y ,

D1LL =
2α2

s
27πzM3

z2k2
T(z

2 ´ 2z + 2) ´ 4M2(z ´ 1)2

[z2k2
T + M2(1 ´ z)]2

xO J/ψ(3S[8]
1 )y .

(4.5)
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Recall that for unpolarized J/ψ, one sums over SLL P t1/2, 1/2, ´1u, and for longitudinally

polarized J/ψ, SLL = ´1.

4.2.2 Photon-gluon fusion

Collinear J/ψ production via PGF has been studied in the NRQCD factorization for-

malism has been studied in previous literature [158]. Here we extend the analysis to have

transverse momentum dependence.

The reference frame we use for this production mechanism is different than the one we

used to derive the fragmentation cross sections. Define p, pA, q, and P to be the proton,

parton, virtual photon, and J/ψ momenta, respectively. We work in a reference frame where

the photon has zero transverse momentum, and the photon and proton are back-to-back.

qµ = (0, 0, 0, ´Q) ,

pµ
A =

Q
2x

(1, 0, 0, 1) ,

Pµ =
1
2

(
P2

T + M2

zQ
+ zQ, 2PK, 0,

P2
T + M2

zQ
´ zQ

)
.

(4.6)

This is therefore a quasi-TMD framework, where the transverse momentum dependence of

the parton is taken to be negligibly small, and so the transverse momentum dependence of

the final state J/ψ arises in the hadronization process.

Recall from the previous chapter that the J/ψ longitudinal polarization vector is:

ϵ
µ
L =

1
M
(
|P|, P0P̂

)
. (4.7)

This is frame-independent, and allows us to easily project out the desired polarizations of

the J/ψ.

We consider two diagrams contributing to PGF: the O(αs) diagram in Fig. 4.3a and the

O(α2
s ) diagram in Fig. 4.3b. The former is proportional to two color octet NRQCD LDMEs,

xO J/ψ(1S[8]
0 )y and xO J/ψ(3P[8]

0 )y, while the latter is proportional to the color singlet LDME

xO J/ψ(3S[1]
1 )y. Here we state the results for the cross sections in the limit Q2 " M2, P2

T.

89



The full expressions are lengthy, and are provided in the Github repository [159] associated

with the initial publication of these results [5].

dσU(
1S[8]

0 )

dx dz dQ2 dP2
T
=

32π3zα2
emαs

9MQ6z̃3

(
1 ´ y +

y2

2

)

ˆ δ(z̄)δ(2)(PT) fg(xz̃) xO J/ψ(1S[8]
0 )y +O

(
M2

Q2 ,
P2

T
Q2

)
,

(4.8)

dσL(
1S[8]

0 )

dx dz dQ2 dP2
T
=

1
3

dσU(
1S[8]

0 )

dx dz dQ2 dP2
T
+O

(
M2

Q2 ,
P2

T
Q2

)
, (4.9)

dσU(
3P[8]

0 )

dx dz dQ2 dP2
T
=

64π3zα2
emαs

9M3Q6z̃5

[
y2 (8 + z(3z ´ 8)) + 8(1 ´ y)z̃ ´ 2(1 ´ y)zz̃2]

ˆ δ(z̄)δ(2)(PT) fg(xz̃) xO J/ψ(3P[8]
0 )y +O

(
M2

Q2 ,
P2

T
Q2

)
,

(4.10)

dσL(
3P[8]

0 )

dx dz dQ2 dP2
T
=

64π3z3α2
emαs

9M3Q6z̃5

[
(2 ´ y)2 ´ 2z(1 ´ y)

]

ˆ δ(z̄)δ(2)(PT) fg(xz̃) xO J/ψ(3P[8]
0 )y .

(4.11)

dσU(
3S[1]

1 )

dx dz dQ2 dP2
T
=

512πz̄α2
emα2

s

243MQ6zz̃2(P2
T + z̄2M2)2

(
1 ´ y +

y2

2

) [
P2

T + z̄2M2(2 ´ zz̃)
]

ˆ fg(x) xO J/ψ(3S[1]
1 )y +O

(
M2

Q2 ,
P2

T
Q2

)
,

(4.12)

dσL(
3S[1]

1 )

dx dz dQ2 dP2
T
=

512πz̄α2
emα2

s

243MQ6zz̃2(P2
T + z̄2M2)2

(
1 ´ y +

y2

2

)
P2

T

ˆ fg(x) xO J/ψ(3S[1]
1 )y +O

(
M2

Q2 ,
P2

T
Q2

)
.

(4.13)

Here, z̄ ” 1 ´ z and z̃ ” 2 ´ z. The color octet and color singlet PGF contributions can

clearly be differentiated according to their dependence on z. Recall that in the proton rest

frame, z is the ratio of the energy of the J/ψ to the energy of the photon. Therefore z Ñ 1

is the limit where none of the cc̄’s energy is lost via the emission of a hard gluon, and so
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we would expect Fig. 4.3a to dominate. Away from z = 1, Fig. 4.3b should dominate. This

is reflected in the delta function in (1 ´ z) present in the color octet cross sections.

When plotting the color octet PGF cross sections, we need to decide how to handle

the delta functions. The delta function in PT arises because we are doing an expansion in

PT to leading order, and we replace it with a Gaussian centered at PT = 0 in the plots.

Similarly, we can identify the delta function in (1 ´ z) as the leading order term of a shape

function [160, 161]. Effects from higher order in the αs and v expansions would yield a

more complicated z dependence, having the effect of “smearing out” this delta function.

The resulting z dependence is contained in a so-called shape function that describes the

physics near the endpoint. We model these higher order effects as a Gaussian.

δ(2)(PT) Ñ
1

π xP2
Ty

e´P2
T/xP2

Ty ,

δ(1 ´ z) Ñ
1

a

π xz̄y
e´(1´z)2/xz̄y .

(4.14)

We choose the parameters to be xP2
Ty = 0.25 GeV2 and xz̄y = 0.04. The former corresponds

to the smallest of the |PT| upper bounds for the bins we consider in the next section. The

latter ensures we have non-negligible contributions from z P [0.7, 1], which is a range we

choose in reference to J/ψ production in e+e´ collisions, where the NLO contributions have

logarithms (1 ´ z)´1 log (1 ´ z) that become large around z « 0.7 [162]. In practice these

parameters are somewhat arbitrary and would need to be extracted from experiment.

4.3 Determining dominant production mechanisms

Echevarria et al. [101] were the first to compare the relative contribution to J/ψ pro-

duction of LQF and PGF, using TMD factorization. Our unpolarized J/ψ cross sections

presented in the preceding two sections are consistent with theirs. However, Echevarria et

al. notably do not consider color octet PGF in their plots, as they work in the region z ! 1,

and do not take into account shape function effects as described above. In the Q2 " M2, P2
T

limit, they compare their expressions for the xO J/ψ(3S[1]
1 )y PGF and LQF cross sections,

91



denoted by dσ(γ˚g) and dσ(γ˚q), respectively, and estimate the relative contribution of

one to the other: [101]

dσ(γ˚g)
dσ(γ˚q)

„

(
M

Qv2

)2

. (4.15)

For charmonium, v2 „ 0.3 and M „ 3 GeV, so this reduces to:

dσ(γ˚g Ñ cc̄)
dσ(γ˚q Ñ cc̄)

„
100 GeV2

Q2 . (4.16)

In other words, after about Q „ 10 GeV the contribution from PGF should rapidly diminish

compared to LQF. This is indeed reflected in the plots of dσ/dP2
T when only considering the

xO J/ψ(3S[1]
1 )y contribution to PGF. However, in our results we find that the xO J/ψ(1S[8]

0 )y

and xO J/ψ(3P[8]
0 )y contributions are non-negligible when replacing the delta function in

(1 ´ z) with a Gaussian to account for shape function effects. This is to be expected from the

power counting. The cross sections for production via PGF are evaluated at αs(µ2 = Q2),

and for the large Q2 accessible at the EIC, αs(Q2) „ 0.1. Since the xO J/ψ(1S[8]
0 )y and

xO J/ψ(3P[8]
0 )y LDMEs scale as v7 and xO J/ψ(3S[1]

1 )y scales as v3, the diagrams in Fig. 4.3

are roughly the same order in the double power counting. Therefore, Eq. (4.15) should still

hold for the color octet process, albeit with an exponential suppression away from z = 1.

As in the previous chapter, we plot the differential cross sections in eight bins to be con-

sistent with Ref. [101], for unpolarized and longitudinally polarized J/ψ.3 For unpolarized

J/ψ (Fig. 4.6), PGF is most significant in the smaller x bin, x P [0.1, 0.5]. In particular,

PGF is most dominant over LQF in the bin x P [0.1, 0.5], z P [0.4, 0.8], and Q P [10, 30] GeV.

This fact would be unchanged if using the LDME fits that increase the LQF contribution

by a factor of four. The color octet PGF contribution only becomes noticeable at larger z,

which is to be expected due to the presence of the δ(1 ´ z) in those cross sections.

These observations about which mechanisms are dominant in which bins are mostly

unchanged when looking at longitudinally polarized J/ψ (Fig. 4.7). However, it is notable

3 For the LDMEs, we will use the fits from Ref. [114]. The fits of Ref. [147] would increase the LQF curves
by a factor of about four.
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that the color singlet mechanism now goes to zero as PT Ñ 0, which is clear from the

expression in Eq. (4.13).
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FIGURE 4.6: Contributions to the cross section for the production of unpolarized J/ψ from three production mechanisms. Each
plot is a bin integrated over the subset of the integration domains indicated. Figure from Ref. [5].
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FIGURE 4.7: Contributions to the cross section for the production of longitudinally polarized J/ψ from three production mecha-
nisms. Each plot is a bin integrated over the subset of the integration domains indicated. Figure from Ref. [5].
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4.4 Angular distributions & asymmetries

Earlier we mentioned that the final state leptons have an angular distribution according

to [142]

W(θ, ϕ) „
1

3 + λθ
(1 + λθ cos2 θ + λϕ sin2 θ cos 2ϕ + λθϕ sin 2θ cos ϕ) . (4.17)

Recall that the polar anisotropy parameter λθ is a measure the polarization of the J/ψ.

We can plot the contribution to λθ from each of the bins (Fig. 4.8), and we see that

most contribute to a longitudinally polarized J/ψ. However, at larger PT the contribution

tends towards transverse polarization, which is consistent with previous conclusions from

NRQCD.

The cos 2ϕh azimuthal asymmetry is a frequent subject of research [128–135]. This angle

ϕh is distinct from the ϕ in Eq. (4.17); ϕh is the angle between the J/ψ production plane

and the lepton plane. The asymmetry is defined by projecting out the cos 2ϕh contribution

from the cross section:

Acos 2ϕh(PT) =

ş

dϕ dσ cos 2ϕh
ş

dϕ dσ
. (4.18)

The LQF cross sections have no azimuthal dependence, so they do not contribute to the

numerator of this expression. This suggests that Acos 2ϕh is a good avenue to extract gluon

TMDs. However, the inclusion of LQF in the denominator greatly suppresses the asymme-

try (Fig. 4.9). The suppression is smallest in the bins where LQF is less dominant compared

to PGF, and the bin with the largest magnitude asymmetry is z P [0.4, 0.8], Q P [10, 30]

GeV, x P [0.1, 0.5].
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5

Conclusion

Quantum chromodynamics is a sector of the Standard Model that has plentiful inter-

esting research areas. Beyond the everyday realm of protons and neutrons, it also describes

bound states with heavier quarks, like the T+
cc exotic meson and J/ψ. A crucial element

of learning about these systems is the interplay between theory and experiment. This

dissertation has focused on theoretical methods that attempt to predict the outcomes of

experiments at particle colliders – including both explaining past experiments and motivat-

ing new ones. In this way we hope to gain greater insight into QCD and nuclear matter.

In Chap. 1 we framed QCD in the context of the Standard Model that describes most

of what we know about particle physics. We also gave the background on effective field

theory: a formalism that can make calculations easier by taking what we know about a

system, and re-organizing it in a systematic way that highlights the physics we care about.

Furthermore, we discussed how the parton model and factorization can be useful tools in

describing scattering experiments that probe the inner structure of nucleons.

Chapter 2 delved into an EFT for the T+
cc developed out of an earlier theory for the

χc1(3872). We showed how the theory correctly predicts the total decay width and differ-

ential decay distributions, as measured by the LHCb collaboration. The findings reinforce

the view of the T+
cc as a weakly bound molecule of a D˚D pair, and showcase the remarkable

utility of EFT models in explaining experimental results. Future directions in this research

could be to perform statistical analyses of the data to further constrain the NLO couplings

and thereby make the predictions of the effective theory more precise.
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Chapters 3 and 4 both dealt with transverse momentum dependent J/ψ production in

the formalism of NRQCD factorization. Chapter 3 was mostly a theoretical endeavor that

explained our efforts to write down, for the first time, all of the polarized TMD quark and

gluon fragmentation functions. These FFs were then used in Chap. 4 to look at production

via both light quark fragmentation and photon gluon fusion for large Q2. No current

measurements exist in this regime, but we made a case for J/ψ production to be studied

at the future Electron Ion Collider as a way to learn about gluon TMDs and extract the

NRQCD LDMEs. Further constraining the TMDs and LDMEs would allow for more precise

theoretical calculations in nuclear physics. Future directions in this research could be to

compute the TMD FFs to further orders in αs and v, and to develop a TMD version of

NRQCD factorization.
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Appendix A

Supplementary material: T+
cc decays

A.1 D meson-pion interaction terms

Here we see how to write down terms in the T+
cc interaction Lagrangian by constructing

isospin invariants. The charm mesons are an isospin-1/2 field, and the pions are an isospin-1

field; represent them with ψ and v, respectively.

ψα =


D+

D0


 , vi =

1
?

2




π1

π2

π0


 . (A.1)

By simple addition of angular momentum, to construct interaction terms between one

charm meson and one pion, we can get either isospin-1/2 or isospin-3/2 terms. For the

isospin-1/2 terms, we need to have one free spinor index. We can write down

O1/2 = v ¨ σψ = viσ
i
αβψβ . (A.2)

For the isospin-3/2 term, we need to have a free vector index.

Oi
3/2 = viψ ´

1
3

σiO1/2 , (A.3)

where the second term is necessary to make Oi
3/2 orthogonal to O1/2. The appropriate

terms in the Lagrangian are then

LCπ
= c1/2O:

1/2O1/2 + c3/2O:i
3/2Oi

3/2 . (A.4)

We can then multiply out these operators to get the interaction terms in terms of the charm

meson and pion fields themselves. Redefining the couplings as linear combinations of the
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c1/2 and c3/2, we get:

LCπ
Ñ C(1)

π D0:π0:D+π´ ´ C(1)
π D+:π0:D0π+ + H.c.

+ C(2)
π D0:π0:D0π0 + C(2)

π D+:π0:D+π0

+ C(3)
π D0:π+:D0π+ ,

(A.5)

where

C(1)
π =

?
2

3
c3/2 ´

?
2

3
c1/2 ,

C(2)
π =

2
3

c3/2 +
1
3

c1/2 ,

C(3)
π =

1
3

c3/2 +
2
3

c1/2 .

(A.6)

For the B1 terms we proceed similarly, but with two pseudoscalar charm mesons and a pion

on one side of the vertex, and a vector and pseudoscalar charm meson on the other.

LB1 = b0εαβ(ψ
˚
α ψβ)

:ψρ(σ
2σi)ρτψτvi

+ b1[ψ
˚
α (σ

2σk)αβψβ]
:εijkψρ(σ

2σi)ρτψτvj + H.c. ,
(A.7)

which in terms of the charm meson and pion fields becomes

LB1 Ñ B(1)
1 (D+D˚0):(D+D0∇π0) + B(2)

1 (D0D˚+):(D+D0∇π0)

+
B(3)

1
2

(D0D˚+):(D0D0∇π+) +
B(4)

1
2

(D+D˚0):(D0D0∇π+) + H.c. .

(A.8)

Here there are four B1 couplings instead of the two in Eq. (A.7); this is because for the

T+
cc , isospin is only an approximate symmetry, so we need isospin-breaking terms in the

Lagrangian to properly renormalize. In the isospin limit we would have

B(1)
1 = ´ B(2)

1 = ´
?

2b0 ,

B(3)
1 = 2(b1 + b0) ,

B(4)
1 = 2(b1 ´ b0) .

(A.9)
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The C0D terms merely need two pseudoscalar charm meson fields.

LC0D = c0(εαβψαψβ)
:ερτψρψτ + c1[ψα(σ

2σk)αβψβ]
:ψρ(σ

2σk)ρτψτ . (A.10)

In terms of the charm meson and pion fields:

LC0D Ñ
C(1)

0D
2

(D0D0):(D0D0) + C(1)
0D (D+D0):(D+D0) , (A.11)

where C(1)
0D = 4c1.

A.1.1 Obtaining numerical values for the Cπ

This analysis was first presented in Ref. [53].

We can write down the charm mesons and pions as vectors n the isospin |I, mIy basis.

|π+y = ´ |1, 1y , |π0y = |1, 0y ,

|D+y =

ˇ

ˇ

ˇ

ˇ

1
2

,
1
2

F

, |D0y =

ˇ

ˇ

ˇ

ˇ

1
2

, ´
1
2

F

.
(A.12)

Then, using Clebsch-Gordan coefficients, we can write

|D0π0y =

c

2
3

ˇ

ˇ

ˇ

ˇ

3
2

, ´
1
2

F

+
1

?
3

ˇ

ˇ

ˇ

ˇ

1
2

, ´
1
2

F

,

|D+π0y =

c

2
3

ˇ

ˇ

ˇ

ˇ

3
2

,
1
2

F

+
1

?
3

ˇ

ˇ

ˇ

ˇ

1
2

,
1
2

F

, (A.13)

|D0π+y = ´

c

2
3

ˇ

ˇ

ˇ

ˇ

1
2

,
1
2

F

´
1

?
3

ˇ

ˇ

ˇ

ˇ

3
2

,
1
2

F

.

This implies that the scattering lengths are related by:

aD0π0 = aD+π0 =
2
3

a3/2
Dπ

+
1
3

a1/2
Dπ ,

aD0π+ =
1
3

a3/2
Dπ +

2
3

a1/2
Dπ .

(A.14)

Lattice calculations in Ref. [163] give a1/2
Dπ = 0.37+0.03

´0.02 fm and a3/2
Dπ = ´(0.100 ˘ 0.002) fm.

We can then use Cπ = 4π(1 + mπ/mD)aDπ [53] to get values for C(2)
π and C(3)

π , and from
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there solve for c1/2 and c3/2 to obtain C(1)
π .

C(1)
π = ´ 3.0+0.32

´0.40 fm ,

C(2)
π = ´ 0.76+0.14

´0.09 fm ,

C(3)
π = 2.9+0.3

´0.2 fm .

(A.15)

A.2 Transition magnetic moments

At tree level the emission of a photon by a D˚ meson is given by the amplitude

A = iµεD ¨ kγ ˆ εγ , (A.16)

for transition magnetic moment µ. The corresponding decay width is then

Γ(D˚ Ñ Dγ) =
1

3π

mD

mD˚

|µ|2|kγ|3 . (A.17)

We can then use the kinematics for a two-body decay to write

|kγ| =
m2

D˚ ´ m2
D

2mD˚

, (A.18)

and solve for µ using known or derived values for the decay widths. The value Γ(D˚+ Ñ

D+γ) = 1.33 keV is known from the Particle Data Group (PDG) [164], and Γ(D˚0 Ñ

D0γ) = 19.9 keV can be obtained by using isospin symmetry to relate Γ[D˚0 Ñ D0π0]

to Γ[D˚+ Ñ D+π0], then writing in terms of the branching ratios Br[D˚0 Ñ D0γ] and

Br[D˚0 Ñ D0π0] from the PDG. We get:

µD0 =
2.80 ˆ 10´4

MeV
, µD+ = ´

7.34 ˆ 10´5

MeV
. (A.19)

In HHχPT, these couplings have the form [39, 40]

µD0 =
2e
3

β +
2e

3mc
, µD+ = ´

e
3

β +
2e

3mc
. (A.20)

Our values are consistent with these in sign and relative magnitude.
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A.3 Power divergence subtraction scheme

These integrals were first evaluated in Ref. [165].

The primary integral for which we use the PDS scheme is the following integral over a

Cartesian momentum:

Σdim reg(c ´ iϵ) =
ż

dd´1l
(2π)d´1

1
l2 + c ´ iϵ

. (A.21)

Here the integral is regularized using dimensional regularization. The integral clearly has a

linear divergence in d = 4, since the radial integrand goes as d|l| l2/(l2 + c ´ iϵ). However,

using dimensional regularization yields a finite result for d = 4:

Σdim reg(c ´ iϵ)|d=4 = ´

?
c ´ iϵ
4π

. (A.22)

It can be a useful to ensure that all divergences cancel as a consistency check that the

effective theory is properly renormalized. We therefore use the PDS scheme to make the

linear divergence explicit. However, the result is not finite in d = 3. We start by introducing

a new dimensionless scale to keep track of the divergence.

ΣPDS(c ´ iϵ) =
(

ΛPDS

2

)4´d ż

dd´1l
(2π)d´1

1
l2 + c ´ iϵ

. (A.23)

Evaluating in d dimensions, we see the integral has a pole at d = 3. Expanding the result

around the pole yields:

ΣPDS(c ´ iϵ) = ´
ΛPDS

4π(d ´ 3)
+ finite . (A.24)

We now redefine ΣPDS to have a counterterm which cancels this divergence in d = 3,

ΣPDS Ñ ΣPDS + ΛPDS/4π(d ´ 3). This redefined integral, when then evaluated in d = 4,

gives

ΣPDS(c ´ iϵ)|d=4 =
1

4π

(
ΛPDS ´

?
c ´ iϵ

)
. (A.25)
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There is now a linear divergence in ΛPDS which must cancel in our final answers for observ-

ables.

The other integrals in our calculation for which the PDS scheme is relevant are as

follows.

I(p) =
ż

dd´1l
(2π)d´1

1
l2 + c1 ´ iϵ

1
l2 ´ 2bl ¨ p + c2 ´ iϵ

, (A.26)

pi I(1)(p) =
ż

dd´1l
(2π)d´1 li 1

l2 + c1 ´ iϵ
1

l2 ´ 2bl ¨ p + c2 ´ iϵ
, (A.27)

pipj I(2)0 (p) + δijp2 I(2)1 (p) =
ż

dd´1l
(2π)d´1 lilj 1

l2 + c1 ´ iϵ
1

l2 ´ 2bl ¨ p + c2 ´ iϵ
. (A.28)

The scalar integral I(p) is finite in both d = 3 and d = 4, and so no counterterm is needed.

I(p) =
1

8π

1
a

b2p2

[
tan´1

(
c2 ´ c1

2
a

b2p2c1

)
+ tan´1

(
2b2p2 + c1 ´ c2

2
a

b2p2(c2 ´ b2p2)

)]
. (A.29)

To evaluate the linear tensor integral I(1)(p), one contracts both sides of Eq. (A.27) with

pi, and algebraic manipulation of the numerator on the right-hand side yields two integrals

of the form of Eq. (A.23). The two have an opposite sign for the linear divergence in ΛPDS,

and so I(1)(p) is also finite.

p2 I(1)(p) =
1
2b

[
1

4π

a

c1 ´ iϵ ´
1

4π

b

c2 ´ b2p2 ´ iϵ + (c2 ´ c1)I(p)
]

. (A.30)

The quadratic tensor integrals I(2)0 (p) and I(2)1 (p) have a subtlety in the PDS scheme. After

using Feynman parameters to combine the propagator denominators, it is necessary to per-

form the numerator algebra in d = 4 before evaluating the momentum integral. Otherwise,

one obtains a different coefficient for the subtraction scale ΛPDS, and its dependence does

not cancel in the final expression for the T+
cc decay width. Likewise, algebraic manipulation

of the numerator, like the method used to solve for I(1)(p), leads to a distinct incorrect

coefficient for ΛPDS. The correct procedure yields the following intermediate steps after
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evaluating the momentum integral:

I(2)0 (p) =
b2

8π

ż 1

0
dx

x2
a

∆(x)
,

p2 I(2)1 (p) =
1

8π

[
2
3

ΛPDS ´

ż 1

0
dx

b

∆(x)
]

,

(A.31)

In our effective theory for the T+
cc , all dependence on ΛPDS cancels in the limit µ0 = µ+,

which is an approximation we make in the cutoff-dependent terms.

The final answers we obtain are:

p2 I(2)0 = ´
1

16π

b

c2 ´ b2p2 ´ iϵ +
c1

2
I(p) +

3
4

c2 ´ c1

b
I(1)(p) ,

p2 I(2)1 =
ΛPDS

12π
´

1
16π

b

c2 ´ b2p2 ´ iϵ ´
c1

2
I(p) ´

1
4

c2 ´ c1

b
I(1)(p) .

(A.32)

A.4 Expressions for T+
cc amplitudes and differential decay widths

Here we give the expressions for the diagrams on the first two lines on the right-hand side

of Fig. 2.6, and the decay diagrams in Fig. 2.7. We have neglected terms in the propagators

that go as p4/m2
H or (δm)p2/mH, where H is a charm meson and δm „ mπ, since they are

small compared to p2.

´iΣ1(m, m˚) = ´
iµ(m, m˚)

2π
[ΛPDS ´ γ(m, m˚)] , (A.33)

´ iΣ2(m1, m˚
1 , m2, m˚

2 , mπ, g1, g2)

= ´
4ig1g2

3
µ(m1, m˚

1 )µ(m2, m˚
2 )

"

1
16π2 [ΛPDS ´ γ(m1, m˚

1 )][ΛPDS ´ γ(m2, m˚
2 )]

+
(m˚

2 ´ m1)
2 ´ m2

π

(8π)2

[
1
ϵ
+ 2 ´ 4 log

(
γ(m1, m˚

1 ) + γ(m2, m˚
2 )

´ i(m˚
2 ´ m1)

2 + im2
π

)
´ 4 log µ

]*

,

(A.34)

107



´iΣ3(m1, m˚
1 , m2, m˚

2 , C2) = ´
i

4π2 C2[γ
2(m1, m˚

1 ) + γ2(m2, m˚
2 )]µ(m1, m˚

1 )

ˆ µ(m2, m˚
2 )[ΛPDS ´ γ(m1, m˚

1 )]

ˆ [ΛPDS ´ γ(m2, m˚
2 )] .

(A.35)

The integrals involved in Σ2 and Σ3 can be evaluated using a Fourier transform method

described in Ref. [166]. The 1/ϵ pole that appears in Σ2 is irrelevant to the T+
cc decay

width because it will drop out when taking the derivative with respect to E. The reduced

mass is defined as µ(m1, m2) ” m1m2/(m1 + m2) and the binding momenta are defined as

γ2(m1, m2) = 2µ(m1, m2)(m1 + m2 ´ mT).

The combinations of these self-energy diagrams that we need in the expression for the

T+
cc decay width are:

Re tr Σ1LO = Re Σ1
1(m0, m˚

+) + Re Σ1
1(m+, m˚

0 ) ,

Re Σ1NLO
0 |C2Ñ0 = Re

[
Σ1

2(m+, m˚
0 , m+, m˚

0 , mπ+ , g/ fπ, g/ fπ)

+ Σ1
2(m0, m˚

+, m0, m˚
+, mπ+ , g/ fπ, g/ fπ)

+ Σ1
2(m+, m˚

0 , m0, m˚
+, mπ0 , ´g/

?
2 fπ, g/

?
2 fπ)

+ Σ1
2(m0, m˚

+, m+, m˚
0 , mπ0 , g/

?
2 fπ, ´g/

?
2 fπ)

]

(A.36)

The amplitudes A for the decay diagrams have a subscript that labels to which sub-

diagram of Fig. 2.7 they correspond. If there is a single pion/charm meson vertex in a

diagram, its coupling is labeled gπ, and if there are more than one such vertex, the cou-

plings are indicated with a numeric subscript. The basis integrals are defined in App. A.3.

The parameters c1 and c2 are provided where appropriate, b = 1 unless otherwise specified,

and the momentum arguments for the integrals are p unless otherwise specified.

iA(2.7a)(p, m, m˚, gπ) =
2igπϵT ¨ pπµ(m, m˚)

p2 + γ2(m, m˚)
. (A.37)
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iA(2.7b)(p, m, mext, mπ, m˚
1 , m˚

2 , g1, g2, g3) =
4iµ(m, m˚

1 )µ(mext, m˚
2 )

p2 + γ2(mext, m˚
2 )

ˆ g1g2g3

[
ϵT ¨ p pπ ¨ p

ˆ
(

I(2)0 ´ 2I(1) + I
)

+ ϵT ¨ pπp2 I(2)1

]
,

c1 = γ2(m, m˚
1 ) ,

c2 = p2 ´ (mT ´ m ´ mext)
2 + m2

π .

(A.38)

iA(2.7c)(m, mext, mπ, m˚, gπ, Cπ) = 2iµ(m, m˚)gπCπϵT ¨ p[I(1) ´ I] ,

c1 = γ2(m, m˚) ,

c2 = p2 ´ (mT ´ m ´ mext)
2 + m2

π .

(A.39)

iA(2.7d)(m, mext, m˚
1 , m˚

2 , gπ, C2) =
1
π

iC2gπϵT ¨ pπµ(m, m˚
1 )µ(mext, m˚

2 )

ˆ
p2 ´ γ2(m, m˚

1 )

p2 + γ2(mext, m˚
2 )
[γ(m, m˚

1 ) ´ ΛPDS] .

(A.40)

iA(2.7e)(m, m˚, B1) = ´
iB1

2π
ϵT ¨ pπµ(m, m˚)[γ(m, m˚) ´ ΛPDS] . (A.41)

iA(2.7f)(m1, m2, m˚, p0
π, gπ, C0D) = 4iµ(m1, m2)µ(m2, m˚)

ˆ gπC0DϵT ¨ pπ I(pπ) ,

c1 = γ2(m2, m˚) ,

c2 = ´ 2µ(m1, m2)

(
mT ´ m1

´ m2 ´ p0
π ´

p2
π

2m1

)
,

b =
µ(m1, m2)

m1
.

(A.42)
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Using the expressions defined therein, the differential decay widths for the two strong

decays of T+
cc are below. The subscripts on µ and γ indicate which charm meson is a

pseudoscalar in that channel, e.g., µ0 = µ(m0, m˚
+).

dΓNLO
0 (T+

cc Ñ D+D0π0)

dp2
0dp2

+

=
2

Re tr Σ1LO(´ET)
Re
[
A(2.7a)(p+, m+, m˚

0 , ´g/
?

2 fπ)

ˆ

(
A(2.7b)(p0, m+, m0, mπ0 , m˚

0 , m˚
+, ´g/

?
2 fπ, g/

?
2 fπ, g/

?
2 fπ)

+A(2.7b)(p+, m+, m+, mπ´ , m˚
0 , m˚

0 , g/ fπ, g/ fπ, ´g/
?

2 fπ)

´ A(2.7b)(p0, m0, m0, mπ+ , m˚
+, m˚

+, g/ fπ, g/ fπ, g/
?

2 fπ)

´ A(2.7b)(p+, m0, m+, mπ0 , m˚
+, m˚

0 , g/
?

2 fπ, ´g/
?

2 fπ, ´g/
?

2 fπ)

+A(2.7c)(p0, m+, m0, mπ0 , m˚
0 , ´g/

?
2 fπ, C(2)

π )

´ A(2.7c)(p0, m0, m0, mπ+ , m˚
+, g/ fπ, C(1)

π )

+A(2.7 f )(m0, m+, m˚
0 , ´g/

?
2 fπ, C(1)

0D )

´ A(2.7 f )(m+, m0, m˚
+, g/

?
2 fπ, C(1)

0D )

)˚

+ (D0 Ø D+, π+ Ø π´)

]

´
1

Re tr Σ1LO(´ET)

[
[β1(p2

+ + γ2
+) + β2]

ˆ
(ˇ
ˇA(2.7a)(p+, m+, m˚

0 , ´g/
?

2 fπ)
ˇ

ˇ

2

´ A(2.7a)(p0, m0, m˚
+, g/

?
2 fπ)A˚

(2.7a)(p+, m+, m˚
0 , ´g/

?
2 fπ)

)

+ [β3(p2
0 + γ2

0) + β4]
(ˇ
ˇA(2.7a)(p0, m0, m˚

+, g/
?

2 fπ)
ˇ

ˇ

2

´ A(2.7a)(p+, m+, m˚
0 , ´g/

?
2 fπ)A˚

(2.7a)(p0, m0, m˚
+, g/

?
2 fπ)

)]

´
dΓLO

0 (T+
cc Ñ D+D0π0)

dp2
0dp2

+

Re Σ1NLO
0

Re tr Σ1LO

ˇ

ˇ

ˇ

ˇ

C2Ñ0,E=´ET

,

(A.43)
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dΓNLO
0 (T+

cc Ñ D0D0π+)

dp2
1dp2

2

=
1

Re tr Σ1LO(´ET)
Re
[
A(2.7a)(p2, m0, m˚

+, g/ fπ)

ˆ

(
A(2.7b)(p1, m0, m0, mπ+ , m˚

+, m˚
+, g/ fπ, g/ fπ, g/ fπ)

+A(2.7b)(p2, m0, m0, mπ+ , m˚
+, m˚

+, g/ fπ, g/ fπ, g/ fπ)

´ A(2.7b)(p1, m+, m0, mπ0 , m˚
0 , m˚

+, ´g/
?

2 fπ, g/
?

2 fπ, g/ fπ)

´ A(2.7b)(p2, m+, m0, mπ0 , m˚
0 , m˚

+, ´g/
?

2 fπ, g/
?

2 fπ, g/ fπ)

+A(2.7c)(p1, m0, m0, mπ+ , m˚
+, g/ fπ, C(3)

π )

´ A(2.7c)(p1, m+, m0, mπ0 , m˚
0 , ´g/

?
2 fπ, C(1)

π )

+A(2.7 f )(m0, m0, m˚
+, g/ fπ, C(1)

0D /2)
)˚

+ (p1 Ø p2)

´

(
2gµ0

fπ

)2 p2
π

3
β5

(
1

p2
1 + γ2

0
+

1
p2

2 + γ2
0

)]

´
dΓLO

0 (T+
cc Ñ D0D0π+)

dp2
1dp2

2

(
β4 +

Re Σ1NLO
0

Re tr Σ1LO

ˇ

ˇ

ˇ

ˇ

C2Ñ0,E=´ET

)
.

(A.44)

The parameters βi depend on the C2 and the B1, and are defined in App. A.5.

A.5 βi expressions

Here we give the expressions for the βi parameters.

β1 = (ΛPDS ´ γ+)

(
fπ

?
2πg

B(1)
1 +

1
π

C(+)
2 µ+ ´

1
π

C(´)
2 µ0

ΛPDS ´ γ0

ΛPDS ´ γ+

)
, (A.45)
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β2 =

[
1
π

C(+)
2 µ+(´2γ2

+)(ΛPDS ´ γ+) ´
1
π

C(´)
2 µ0(´γ2

0 ´ γ2
+)(ΛPDS ´ γ0)

+ 2π

(
µ2

0
γ0

+
µ2
+

γ+

)´1[
´

1
π2 C(+)

2 µ3
+(γ+ ´ ΛPDS)(2γ+ ´ ΛPDS)

´
1

π2 C(+)
2 µ3

0(γ0 ´ ΛPDS)(2γ0 ´ ΛPDS)

´
C(´)

2 (γ2
+ + γ2

0)µ+µ0

2π

(
µ+

γ0
(ΛPDS ´ γ0) +

µ0

γ+
(ΛPDS ´ γ+)

)

+
C(´)

2 µ+µ0(µ+ + µ0)

π2 (ΛPDS ´ γ+)(ΛPDS ´ γ0)

]]
,

(A.46)

β3 = (ΛPDS ´ γ0)

(
´

fπ
?

2πg
B(2)

1 +
1
π

C(+)
2 µ0 ´

1
π

C(´)
2 µ+

ΛPDS ´ γ+

ΛPDS ´ γ0

)
, (A.47)

β4 =

[
1
π

C(+)
2 µ0(´2γ2

0)(ΛPDS ´ γ0) ´
1
π

C(´)
2 µ+(´γ2

0 ´ γ2
+)(ΛPDS ´ γ+)

+ 2π

(
µ2

0
γ0

+
µ2
+

γ+

)´1[
´

1
π2 C(+)

2 µ3
+(γ+ ´ ΛPDS)(2γ+ ´ ΛPDS)

´
1

π2 C(+)
2 µ3

0(γ0 ´ ΛPDS)(2γ0 ´ ΛPDS)

´
C(´)

2 (γ2
+ + γ2

0)µ+µ0

2π

(
µ+

γ0
(ΛPDS ´ γ0) +

µ0

γ+
(ΛPDS ´ γ+)

)

+
C(´)

2 µ+µ0(µ+ + µ0)

π2 (ΛPDS ´ γ+)(ΛPDS ´ γ0)

]]
,

(A.48)

β5 =
1
π

C(+)
2 µ0(ΛPDS ´ γ0) ´

1
π

C(´)
2 µ+(ΛPDS ´ γ+)

+
B(3)

1 fπ

4πg
(γ0 ´ ΛPDS) ´

B(4)
1 fπ

4πg
(γ+ ´ ΛPDS)

µ+

µ0
.

(A.49)
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In the isospin limit m+ = m0 these become:

β1 = β3 = β5 =
1
π
(γ ´ ΛPDS)

(
b0 fπ

g
´ 2C(0)

2 µ

)
,

β2 = β4 = ´
4C(0)

2 µγ

π
(γ ´ ΛPDS)

2 .

(A.50)

Since we are dropping isospin-breaking interactions in this limit, the isospin-1 couplings

drop out. Equation (A.50) is consistent with the dependence on ΛPDS in XEFT [33].
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Appendix B
Supplementary material: J/ψ production

B.1 NRQCD matching

The content of this appendix follows the results of a paper by Braaten and Chen [99].

Define the momentum of the c and c̄ to be p = P
2 + q and p̄ = P

2 ´ q, respectively, where

qµ = Λµ
jqj is a boosted relative three-momentum. The boost matrix is: [99]

Λ0
j =

1
2Eq

Pj ,

Λi
j = δi

j ´
PiPj

P2 +
P0

2Eq

PiPj

P2 .

(B.1)

These satisfy the relations:

PµLµ
j = 0 ,

gµνΛµ
iΛν

j = ´ δij ,

Λµ
iΛν

j = ´ gµν +
PµPν

P2 .

(B.2)

The nonrelativistic expansions of the QCD spinors, to linear order in q, are given by:

ū(p)v( p̄) = ´ 2ξ:(q ¨ σ)η ,

ū(p)γµv( p̄) = MΛµ
jξ

:σjη ,

ū(p)
i
2
[γµ, γν]v( p̄) = i(PµΛν

j ´ PνΛµ
j)ξ

:σjη ´ 2Λµ
jΛν

kϵjklqlξ:η ,

ū(p)γµγ5v( p̄) = Pµξ:η ´ 2iΛµ
jξ

:(q ˆ σ j)η ,

ū(p)γ5v( p̄) = Mξ:η .

(B.3)
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These two-spinors then match onto vacuum matrix elements of NRQCD operators: [99]

M2η1:σiξ
1ξ:σjη Ø xχ:σiψPJ/ψ(λ) ψ:σjχy ,

M2q1
mqnη1:σiTaξ1ξ:σjTaη Ø xχ:σi

(
´

i
2

ÐÑD m
)
TaψPJ/ψ(λ) ψ:σj

(
´

i
2

ÐÑD n
)
Taχy ,

M2η1:σiTaξ1ξ:σjTaη Ø xχ:σiTaψPJ/ψ(λ) ψ:σjTaχy ,

M2η1:Taξ1ξ:Taη Ø xχ:TaψPJ/ψ(λ) ψ:Taχy ,

(B.4)

which in turn can be decomposed into the J/ψ polarization vectors and NRQCD LDMEs

using rotational symmetry and tensor analysis:

xχ:σiψPJ/ψ(λ) ψ:σjχy =
2M

3
ϵ˚

i ϵj xO J/ψ(3S[1]
1 )y ,

xχ:σi
(

´
i
2

ÐÑD m
)
TaψPJ/ψ(λ) ψ:σj

(
´

i
2

ÐÑD n
)
Taχy = 2Mϵ˚

i ϵjδmn xO J/ψ(3P[8]
0 )y ,

xχ:σiTaψPJ/ψ(λ) ψ:σjTaχy =
2M

3
ϵ˚

i ϵj xO J/ψ(3S[8]
1 )y ,

xχ:TaψPJ/ψ(λ) ψ:Taχy = 2M xO J/ψ(1S[8]
0 )y .

(B.5)

B.2 Wilson lines

To present an introduction to Wilson lines, we will briefly turn to the Abelian case of

QED. Consider an operator with two Dirac fields at different spacetime points: ψ̄(x)ψ(y).

This is not invariant under local gauge transformations ψ(z) Ñ V(z)ψ(z), where V(z) =

exp[igemθ(z)], since V:(x)V(y) ‰ 1. However, if we could construct an object W(x, y)

which transforms as W Ñ V(x)W(x, y)V:(y) and insert it into the product as ψ̄(x)W(x, y)ψ(y),

then that object would be gauge invariant. The gauge field transforms as Aµ(z) Ñ

Aµ(z) + Bµθ(z). Consider, then, the ansatz

W(x, y) = exp
[

igem

ż

P
dzµ Aµ(z)

]
, (B.6)
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where P is a path connecting y and x. Changing from z to a variable that s that parametrizes

the path, we get

W(x, y) = exp
[

igem

ż sx

sy

ds
dzµ

ds
Aµ

(
z(s)

)]
, (B.7)

where the bounds of the integration domain have been transformed according to y = z(sy)

and x = z(sx). Under the local gauge transformation, this becomes

W(x, y) Ñ exp
[

igem

ż sx

sy

ds
dzµ

ds
Aµ

(
z(s)

)
+ igem

ż sx

sy

ds
dzµ

ds
Bµθ
(
z(s)

)]

= exp
[

igem

ż sx

sy

ds
dzµ

ds
Aµ

(
z(s)

)
+ igem

ż sx

sy

ds
d
ds

θ
(
z(s)

)]

= exp
[

igem

ż sx

sy

ds
dzµ

ds
Aµ

(
z(s)

)
+ igemθ(x) ´ igemθ(y)

]

= V(x)W(x, y)V:(y) .

(B.8)

Therefore this Wilson line W(x, y) has the desired transformation property to let the op-

erator be gauge invariant.

The half-staple-shaped Wilson lines in Eq. (3.21) are products of two Wilson lines along

straight line segments:

W{ = Wb̂T
(+8n; bT,+8)Wn(b; 0,+8)

W
y
= Wn(0;+8, 0)Wb̂T

(+8n;+8, 0) .
(B.9)

Here, the notation convention used is

Wv(xµ; a, b) = P exp
[

igs

ż b

a
ds v ¨ Ac(x + sv)tc

]
. (B.10)

This is a Wilson line for a field that starts at x and travels along the direction specified

by v. The path ordering P is needed because we have returned to the non-Abelian case

where the gauge fields are gluons. The gauge transformation property of the Wilson line

116



holds, so the Wilson line in Eq. (B.10) is analogous to the QED Wilson line in Eq. (B.7)

with zµ(s) = xµ + svµ. We find

Wv(xµ; a, b) Ñ V
(
z(b)

)
Wv(xµ; a, b)V:

(
z(a)

)

= V(x + bv)Wv(xµ; a, b)V:(x + av) .
(B.11)

The half-staple-shaped Wilson lines, together with the light quark fields, then transform

as:

W{ψ(b) Ñ V(+8n + 8b̂T)Wb̂T
(+8n; bT,+8)V:(bT + 8n)

ˆ V(b + 8n)Wn(b; 0,+8)V:(b)V(b)ψ(b)

= V(+8n + 8b̂T)W{ψ(b)

ψ̄(0)W
y

Ñ ψ̄(0)V:(0)V(0)Wn(0;+8, 0)V:(+8n)

ˆ V(+8n)Wb̂T
(+8n;+8, 0)V:(+8n + 8b̂T)

= ψ̄(0)W
y

V:(+8n + 8b̂T)

(B.12)

The combination of these is then gauge invariant.

B.3 Interpretation of J/ψ polarization parameters

This analysis of the polarization parameters for a spin-1 particle follows from Appendix

A of a paper by Bacchetta and Mulders [103].

The general construction of the density matrix of a spin-1 particle is written in terms

of the three-dimensional generalization of the Pauli matrices, Σi.

ρ =
1
3

(
1̂ +

3
2

SiΣi + 3TijΣij
)

. (B.13)

The tensor Σij is symmetric and has zero trace:

Σij = ´
2
3

1̂δij +
1
2

ΣtiΣju . (B.14)
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The coefficients of the operators are the spin vector S and the spin tensor Tij. In the rest

frame of the hadron, Ref. [103] parametrizes them as:

S = (Sx
T, Sy

T, SL) ,

Tij =




´ 2
3 SLL + Sxx

TT Sxy
TT Sx

LT

Syx
TT ´ 2

3 SLL ´ Sxx
TT Sy

LT

Sx
LT Sy

LT
4
3 SLL


 .

(B.15)

The spin vector operator is:

Σ ¨ n̂ = Σx cos θ cos φ + Σy cos θ sin φ + Σz sin θ , (B.16)

for polar and azimuthal angles θ and φ. Let |m(θ,φ)y be the eigenstates of this operator

with magnetic quantum number m. The probability associated with one of these states is

P(m(θ,φ)) = Tr ρ |m(θ,φ)y xm(θ,φ)| . (B.17)

It follows then that the tensor polarization parameters can be written in terms of proba-

bilities:

SLL =
1
2

P(1(0,0)) +
1
2

P(´1(0,0)) ´ P(0(0,0)) ,

Sx
LT = P(0(´ π

4 ,0)) ´ P(0( π
4 ,0)) ,

Sy
LT = P(0(´ π

4 , π
2 )
) ´ P(0( π

4 , π
2 )
) ,

Sxx
LT = P(0( π

2 ,´ π
4 )
) ´ P(0( π

2 , π
4 )
) ,

Sxy
LT = P(0( π

2 , π
2 )
) ´ P(0( π

2 ,0)) .

(B.18)

This puts constraints on the ranges for the parameters.

´1 ď SLL ď
1
2

,

´1 ď Si
LT, Sij

TT ď 1 .

(B.19)
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B.4 Projection operators for TMDFFs

Below are listed the projection operators for the quark TMDFFs [103, 167]. The notation

∆[Γ]
pol is the part of the quark FF with parton polarization projector Γ, proportional to the

J/ψ polarization parameter Spol.

∆[γ+]
U (x, kT) = D1 ,

∆[γ+]
L (x, kT) = 0 ,

∆[γ+]
T (x, kT) =

1
M

ϵ
µν
T ST νkT µDK

1T ,

∆[γ+]
LL (x, kT) = SLLD1LL ,

∆[γ+]
LT (x, kT) =

1
M

SLT ¨ kTD1LT ,

∆[γ+]
TT (x, kT) =

1
M2 kT ¨ STT ¨ kTD1TT ,

(B.20)

∆[γ+γ5]
U (x, kT) = 0 ,

∆[γ+γ5]
L (x, kT) = SLG1L ,

∆[γ+γ5]
T (x, kT) =

1
M

ST ¨ kTG1T ,

∆[γ+γ5]
LL (x, kT) = 0 ,

∆[γ+γ5]
LT (x, kT) =

1
M

ϵ
µν
T SLT νkT µG1LT ,

∆[γ+γ5]
TT (x, kT) = ´

1
M2 ϵ

µν
T STT νρkρ

TkT µG1TT ,

(B.21)
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∆[iσi+γ5]
U (x, kT) =

1
M

ϵ
ij
TkT jHK

1 ,

∆[iσi+γ5]
L (x, kT) =

1
M

SLki
T HK

1L ,

∆[iσi+γ5]
T (x, kT) = Si

T H1T +
1

M2 ST ¨ kTki
T HK

1T ,

∆[iσi+γ5]
LL (x, kT) =

1
M

SLLϵ
ij
TkT jHK

1LL ,

∆[iσi+γ5]
LT (x, kT) =ϵ

ij
TSLT jH1

1LT +
1

M2 SLT ¨ kTϵ
ij
TkT jHK

1LT ,

∆[iσi+γ5]
TT (x, kT) =

1
M

ϵ
ij
TSTT jlkl

T H1
1TT +

1
M3 kT ¨ STT ¨ kTϵ

ij
TkT jHK

1TT .

(B.22)

The gluon FF ∆αα1

gÑJ/ψ has no kT dependence at leading order in αs, so the only non-vanishing

FFs at this order are:

∆αβ
U = ´

1
2

gαβ
T Dg

1 ,

∆αβ
L =

i
2

ϵ
αβ
T SLGg

1 ,

∆αβ
T = 0 ,

∆αβ
LL = ´

1
2

gαβ
T SLLDg

1LL ,

∆αβ
LT = 0 ,

∆αβ
TT =

1
2

Sαβ
TT Hg

1TT .

(B.23)
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