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ABSTRACT
There has been a growing interest in developing learner mod-
els to enhance learning and teaching experiences in educa-
tional environments. However, existing works have primar-
ily focused on structured environments relying on meticu-
lously crafted representations of tasks, thereby limiting the
agent’s ability to generalize skills across tasks. In this pa-
per, we aim to enhance the generalization capabilities of
agents in open-ended text-based learning environments by
integrating Reinforcement Learning (RL) with Large Lan-
guage Models (LLMs). We investigate three types of agents:
(i) RL-based agents that utilize natural language for state
and action representations to find the best interaction strat-
egy, (ii) LLM-based agents that leverage the model’s general
knowledge and reasoning through prompting, and (iii) hy-
brid LLM-assisted RL agents that combine these two strate-
gies to improve agents’ performance and generalization. To
support the development and evaluation of these agents, we
introduce PharmaSimText, a novel benchmark derived from
the PharmaSim virtual pharmacy environment designed for
practicing diagnostic conversations. Our results show that
RL-based agents excel in task completion but lack in asking
quality diagnostic questions. In contrast, LLM-based agents
perform better in asking diagnostic questions but fall short
of completing the task. Finally, hybrid LLM-assisted RL
agents enable us to overcome these limitations, highlighting
the potential of combining RL and LLMs to develop high-
performing agents for open-ended learning environments.
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1. INTRODUCTION
Learner models are foundational to the advancement of ed-
ucational technologies, serving as a versatile tool for a mul-
titude of applications that enhance both teaching and learn-
ing experiences [1]. By simulating the interactions and data

of students, these computational models provide a safe and
controlled environment for teacher training, allowing edu-
cators to refine their methods without direct implications
on actual students [2]. They also facilitate the development
and evaluation of adaptive learning systems [3] or new algo-
rithms [4]. Furthermore, they have been applied for testing
theories of learning [5] and foster collaboration skills in stu-
dents through interacting with virtual peers [6].

Reinforcement learning (RL) offers a promising avenue for
developing these learner models/agents [7]. Existing works
on RL for educational domains have primarily focused on de-
veloping techniques for curriculum optimization [8–11], pro-
viding tailored hints and feedback [12, 13], and generating
educational content [14, 15]. Only a limited number of works
have explored the use of RL-based learner agents that effec-
tively operate in the learning environments [16, 17]. How-
ever, these RL-based learner agents have been studied for
structured tasks with well-defined rules, such as mathemat-
ics and logic puzzles. In such environments, RL’s capabilities
are naturally exploited due to the straightforward definition
of state and action representations using engineered features
obtained from the existing structure [7, 16, 18]. However,
the reliance on hand-crafted features and engineered state
representations limits the ability of these RL agents to be
used in unstructured domains and to generalize their learned
skills and knowledge across different tasks.

Recent advances in generative AI, in particular Large Lan-
guage Models (LLMs), provide new opportunities to dras-
tically improve state-of-the-art educational technology [19].
LLMs are capable of generating coherent and contextually
relevant content, engaging in meaningful dialogues, and ex-
ecuting specific linguistic tasks without explicit training [20,
21]. So far, in education, LLMs have mainly been applied for
generating educational content [22–24], automating grading
and feedback processes [25–30], and facilitating the devel-
opment of collaborative systems [31–33]. Few works have
also used LLMs for learner modeling in programming do-
mains [34] or for simulating students’ behaviors as a basis
for an interactive tool for teacher training [35]. However,
despite their proficiency in linguistic tasks, LLMs often fall
short in decision-making in a constrained environment, a do-
main where RL agents excel due to their inherent capability
to make feasible decisions within a given environment [36].

Given the strengths and limitations of RL and LLM-based
agents, recent works have investigated the integration of
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LLMs with RL to design agents that overcome the individ-
ual limitations of these agents. For instance, this integration
has been used to substantially improve reward design and
exploration efficiency in various domains [37–40]. However,
most of these approaches have focused on the use of LLMs
for training, bearing the risk of taking on LLMs’ limitations
in decision-making in constrained environments.

In this paper, we investigate the integration of RL and LLMs
to create agents with enhanced generalizability in text-based
educational environments, focusing on employing the LLM
in the inference phase. To support our investigations, we
present a novel text-based simulation benchmark, PharmaSim-
Text, adapted from the PharmaSim virtual pharmacy en-
vironment designed for practicing diagnostic conversations.
We present three types of agents: (i) RL-based agents em-
ploying natural language based representations, (ii) LLM-
based agents invoked through prompting, and (iii) hybrid
models where LLMs assist RL agents in the inference phase.

We extensively evaluate all agents based on their ability to
engage in effective diagnostic conversations and achieve ac-
curate diagnoses on the PharmaSimText benchmark, focus-
ing on their performance across a range of rephrased scenar-
ios across diverse patient profiles. With our experiments,
we aim to address three research questions: Which agent
type demonstrates overall superior performance in conduct-
ing effective diagnostic conversations and achieving accu-
rate diagnoses for all available patients (RQ1)? How does
reflective prompting influence the diagnostic performance
and conversation quality of LLM-involved agents (RQ2)?
How do diagnostic performance and conversation quality
vary among different agent types across diverse patients
(RQ3)? Our results demonstrate that a specific type of
LLM-assisted RL agent outperforms all other agents in a
combined score by effectively balancing accurate diagno-
sis along with high-quality diagnostic conversations. The
source code and benchmark are released on GitHub.1

2. RELATED WORK
Given our focus on integrating RL agents and LLMs to cre-
ate generalizable learner models, we review prior work in
developing learner models, explore the growing field of in-
telligent agents in text-based interactive games and finally
discuss recent advancements in integrating RL and LLMs.

Learner agents in educational environments. There is a large
body of research [1] on simulating learners in online environ-
ments. Existing research provides rich, but not generalizable
learner representations, for example by generating cognitive
models from problem-solving demonstrations (e.g., SimStu-
dent [41]) or simulates learners from student models in a
data-driven way [42–44], leading to less rich, but more gen-
eralizable representations. RL is a promising tool to address
these limitations. However, in the education domain, this
framework has been primarily applied for pedagogical policy
induction [8–11], providing tailored hints [12, 13], generat-
ing educational content [14, 15], and assessing interventions
in educational platforms [45, 46]. Despite its potential, the
exploration of RL-based learner agents for effective opera-
tion in learning environments remains limited [16, 17]. Prior

1https://github.com/epfl-ml4ed/PharmaSimText-LLM-RL

work has for example used Proximal Policy Optimization
(PPO) for designing learner models in intelligent tutoring
systems [16] or employed neural and symbolic program syn-
thesize to create student attempts in a block-based program-
ming environment [47]. In this paper, we develop a series of
learner agents for an open-ended educational environment.

Agents for text-based interactive games. The growing inter-
est in developing intelligent agents for text-based interac-
tive games, especially those that mimic real-world scenar-
ios [36, 48, 49], has led to diverse methodologies encom-
passing RL [50], behavior cloning (BC) [36], and prompting
LLMs [51, 52]. A well-known example is the game Science-
World [36], where players engage in scientific experiments
through environment exploration and interaction. Within
the RL framework, state-of-the art employs deep reinforced
relevance networks (DRRNs) [50], treating text-based in-
teractions as partially-observable Markov decision processes
(POMDPs), and learning distinct text representations for
observations and actions to estimate Q-values via a scorer
network. Within the LLM domain, LLM-based strategies
use prompts at each interaction step for strategic planning
and action selection. While some studies [51] engage in a sin-
gle interaction round with the environment, others [52, 53]
use a multi-round approach, facilitating iterative refinement
through repeated attempts. In this paper, we develop a
series of agents for a text-based educational environment
simulating real-world scenarios happening in a pharmacy.

RL and LLM integration. Recently, LLMs have been used
to assist RL agents in various tasks, demonstrating notable
advancements in reward design and exploration efficiency.
For example, [39] utilized text corpora to pre-train agents,
thereby shaping their exploration by suggesting goals based
on the agents’ current state descriptions. Furthermore, [40]
proposed a novel approach to simplify reward design by
employing LLMs to generate reward signals from textual
prompts that describe desired behaviors. In a similar vein,
[37] showcased the innovative application of few-shot LLM
prompting to hypothesize world models for RL agents, which
improves training sample efficiency and allows agents to
correct LLM errors through interaction with the environ-
ment. While these studies highlight the synergistic poten-
tial of integrating LLMs with RL techniques to achieve more
objective-aligned agent behaviors, directed exploration, and
efficient training processes, the use of LLMs in the train-
ing phase bears the risk of carrying over their limitations
in decision-making in constrained environments. A notable
gap, therefore, remains in using LLMs to assist RL agents
during the inference phase. Specifically, the current body of
work has not addressed the use of LLMs to aid RL agents
in adapting and transferring their learned skills to novel en-
vironments or tasks post-training. In our work, we aim to
bridge this gap by focusing on utilizing LLMs as assistants
for RL agents during generalization to new settings.

3. PHARMASIMTEXT BENCHMARK
We created PharmaSimText, a text-based interactive envi-
ronment, as an infrastructure for developing language agents
capable of handling text-based learning tasks and generaliz-
ing in them. PharmaSimText is an interactive text-based en-
vironment designed based on PharmaSim, a scenario-based
learning platform. It simulates real-world interactions be-



Figure 1: ’Father Inquiry’ Scenario in PharmaSim - A sim-
ulated pharmacy setting designed for practicing diagnostic
conversational skills, where participants engage with a fa-
ther seeking guidance for his infant child’s diarrhea.

tween a pharmacist and a patient in a pharmacy setting.
This benchmark includes more than 500 scenario variations
that can be used for developing and evaluating learner agents.

3.1 PharmaSim
PharmaSim is a scenario-based learning environment de-
signed to support the development of diagnostic skills. In
each scenario, a patient comes to the pharmacy and asks
for help with a specific problem. The player needs to iden-
tify different possible causes of this problem and mark how
probable they are while interacting with the environment.
Specifically, there are six different types of interactions: ask-
ing questions to the patient, seeking help from the pharma-
cist, searching about different kinds of medicine, looking for
the specifications of products available on the shelf, reading
about issues related to the problem, and offering a solution,
which ends the game and moves the player to the post-test
phase. In the post-test phase, players need to list three pos-
sible causes, rate their probability, and give an explanation
for each of them. The determination of these likelihoods
that leads to finding the most probable cause significantly
depends on a set of patient inquiries containing essential in-
formation, which we henceforth refer to as key questions.

Currently, two different scenarios designed with insights from
human experts are available in the game. For example, in
one scenario (see Fig. 1), a father visits the pharmacy look-
ing for help with his infant child’s diarrhea. The scenario
presents four probable causes for the child’s condition. The
player is required to ask four key questions to the father
to gather the essential information needed to find the most
probable cause behind the child’s diarrhea. The relation be-
tween these key questions and the most probable cause of
the child’s diarrhea is illustrated in Fig. 2. For instance,
inquiring about the child’s age enables the player to deduce
that teething is an improbable cause due to the child’s young
age.

3.2 PharmaSimText
To develop our benchmark, several modifications to Phar-
maSim were implemented.

Migration to a text-based environment. As the first step, we
did two adaptions to PharmaSim to migrate it to a text-
based environment. First, we simplified interactions to two
types of actions: asking questions to the patient about vari-
ous characters phrased similar to PharmaSim as ”I want to

know about the character’s topic.”and advancing to the
post-test by proposing a solution as ”I want to suggest a

solution.”. Second, we modified the post-test questions to
offer a feasible assessment for the agents. To this end, we
revised the three causes question to focus solely on the most
probable cause of the patient’s issue.

Extension of available scenarios. In the next step, we focused
on enriching PharmaSimText and enhancing its complexity.
For this purpose, we expanded the two scenarios available in
the original environment across three dimensions: (1) intro-
ducing new patients, (2) varying the scenarios to alternate
the most probable cause of each patient’s problem, and (3)
diversifying patient responses by rephrasing them. Given
the scale of extension, relying solely on human expertise
was impractical. Instead, we leveraged the generative capa-
bilities of LLMs combined with human insights to develop
the scenarios in PharmaSimText. Prior to prompting LLMs
for creating scenarios, we structured our expanded scenar-
ios to align with the pharmacy assistant training curriculum
of Switzerland. We gathered a set of health problems from
the curriculum, assigning each to a fictional patient with a
specified age and gender. We further identified a range of ill-
nesses from the curriculum’s textbooks, known to manifest
symptoms relevant to the chosen problems.

Prompting LLMs for scenario creation. The scenario creation
process involved three steps: (1) we prompted the LLM to
generate a list of key questions aimed at diagnosing the most
probable cause of the patient’s problem, (2) the LLM was
tasked to simulate patient responses, assuming each illness
on the list was the most probable cause behind their prob-
lem, and (3) the LLM was prompted to generate answers
to common patient inquiries done by pharmacists. We used
GPT-4 as the LLM for scenario creation; the exact prompts
employed can be found on our GitHub repository (link pro-
vided in Footnote 1). To ensure realism and applicability,
a human expert has reviewed all of the scenarios and pro-
vided feedback including minor changes which were reflected
in the final version of the scenarios. Additionally, the LLM
was employed to diversify existing patient responses through
paraphrasing, enhancing the scenarios’ complexity. To fur-
ther augment this complexity, fictional characters were in-
troduced as distractors, enabling players to engage in more
nuanced interactions.

Statistics on the PharmaSimText benchmark. The obtained
benchmark contains eight distinct scenarios, each revolving
around a unique patient profile. Details about the patients
can be found in Table 1. On average, each scenario presents
seven potential causes for the patient’s problem, resulting in
a total of 47 scenario variations. Patient responses in each
variation are articulated in ten diverse phrasings to enhance
the depth and variability. Furthermore, each scenario neces-
sitates the identification of an average of 7.8 key questions
by the player. As a result, PharmaSimText can provide an
enriched environment for further studies on agents for text-
based interactive tasks and agents’ generalizability.



Figure 2: Diagnostic Strategy in the ’Father Inquiry’ Scenario of PharmaSim, depicting the process of identifying the most
likely cause of an infant’s diarrhea. Players must pose four key questions to the father to collect crucial information, enabling
the determination of the most probable cause of the child’s diarrhea among four potential causes.

Problem # of Possible
Causes

Possible Causes # of Key
Questions

Infant
Diarrhea

4 Change of diet, Teething, Current medication of the mother,
Viral Infection

4

Breastfeeding-
related

6 Engorgement, Plugged Ducts, Cracked Nipples, Mastitis,
Thrush, Low Milk Supply

7

Urological 4 Prostate Hyperplasia, Cystitis, Urge Incontinence, Stress
Incontinence

6

Skin-related 10 Sunburn, Insect Bites, Acne, Eczema, Athlete’s Foot, Psoriasis,
Rashes, Warts and Corns, Cold Sores, Neurodermatitis

10

Eye-related 5 Dry Eyes, Allergic Conjunctivitis, Pink Eye, Eye Strain, Stye 11
Gynecological 8 UTI, Cystitis, Kidney Stones, Overactive Bladder, Pregnancy,

STI, Stress Incontinence, Fungal Infection
8

Joint Pain 5 Osteoarthritis, Muscle Sprains, Tendonitis, Bursitis, Gout 9
Sore Throat 5 Common Cold, Influenza, Sinusitis, Pharyngitis, Bronchitis 7

Table 1: Overview of PharmaSimText Scenarios. Every task within the benchmark is centered on a unique health problem,
which could stem from various causes. Players must ask several key questions to arrive at a correct diagnosis.

4. AGENTS FOR PHARMASIMTEXT
We developed three types of agents for PharmaSimText that
embody various degrees of RL and LLM synergy: RL-based
agents, LLM-based agents, and LLM-assisted RL agents.

4.1 RL-based Agents
RL agents learn to interact within an environment by taking
actions based on their current state and receiving feedback in
the form of rewards or penalties for those actions [54]. They
try to maximize their obtained cumulative reward over time
to effectively learn the best policy for achieving their goal
within the environment. One well-known method in RL in-
volves estimating a metric called Q-value, which represents
the expected future rewards for taking a certain action in
a given state. Deep Q-Networks (DQNs)[55] approximate
these Q-values using deep neural networks, enabling han-
dling of complex, high-dimensional environments by learn-
ing to predict the Q-values directly from the environmental
states. DQNs are trained through interactions with the en-
vironment, using their experience to iteratively refine and
make their estimations of Q-values more accurate.

Following previous work on text-based games, we utilized
state-of-the-art, a DRRN [50] as the RL-based agent for in-
teracting with PharmaSimText. The DRRN is designed to
learn distinct representations for the text-based states and
actions by employing two separate networks: the state en-
coder and the action encoder. A scorer network then evalu-
ates these representations to estimate their Q-values. At a
given step t in the environment, the current state st and the
action taken at are fed into the DRRN. Initially, st and at are
encoded as sequences of word embeddings, which are sub-
sequently processed by a Recurrent Neural Network (RNN)
within both the state and action encoders to obtain respec-
tive embeddings for st and at. Following the RNN layer, a
Multi-Layer Perceptron (MLP) in each encoder refines these
embeddings into more concise representations. These rep-
resentations are then concatenated and fed into the scorer
network’s MLP, which yields an estimation of the Q-value
Q(st, at).

In our case, the valid actions at time step t are interactions
available in the environment presented to the agent as a list
of sentences. After taking each action, the agent will receive



Figure 3: LLM-assisted RL agents. An LLM is prompted to assist the RL agent at the inference time to aid in generalization. In
the Suggestion-Assisted RL (SA-RL) agent (left), the LLM suggests k actions at each step for the RL agent to choose from. In
the Decision-Assisted RL (DA-RL) agent (right), the LLM selects an action from the top-k choices provided by the RL agent.

a new observation ot that is formatted as: Interaction

type; Selected interaction; The patient’s response.
For instance, in the scenario related to infant diarrhea if the
agent decides to ask about the infant’s age, the new observa-
tion will be formatted as: Discuss; I want to know about

the infant’s age; He is 5 months old. Therefore, the
agent should consider the full history of its observations to
comprehend its current state st in the environment.

We introduced two modifications to adapt the original DRRN
to our environment. First, we employed pre-trained sentence
embeddings from fastText [56] to generate text representa-
tions for both observations and actions. This choice was mo-
tivated by previous work showing that training the RNNs in
the encoders of a DRRN with a loss function solely aligned
with the RL objectives leads to unstable training and sub-
optimal embeddings [57]. Second, unlike the environments
that DRRNs were proposed to tackle the tasks in, the ob-
servation at a given time step t in PharmaSimText does not
suffice for the agent to obtain a notion of the current state
in the environment and the whole full observation history

is needed as a part of context given to the agent. There-
fore, we introduced a unit called the state updater before
the state encoder that takes the previous embedded state
e(st−1) and the new embedded observation e(ot) and returns
the updated state after the current observation st. We ex-
perimented with five different methods in the state updater:
mean pooling, max pooling, summation, an LSTM layer,
and an LSTM layer with self attention. After a series of
experiments, we observed the method based on summation
led to the most stable training; therefore this method was
adopted in our state updater. Formally, this method based
on the summation of all the observation embeddings in the
history, returns e(st) = e(st−1)+e(ot) as the new embedded
state e(st).

4.2 LLM-based Agents
The agents based on LLMs prompt an LLM at each step of
interacting with the environment to find the best next action
to finish the task. These agents can either have only one trial
or multiple trials to complete the task along with reflection
on their strategy between each trial. We respectively denote
these two agent types by none-reflective and reflective.



The none-reflective agent interacts with the LLM by is-
suing a single prompt that contains the task description,
the history of interactions (consisting of the agent’s ques-
tions and the patient’s responses), prior experience with the
patient, and valid actions available at the current step to
choose the most appropriate subsequent action. The task de-
scription is structured as Find the cause behind the pa-

tient’s problem, while the interaction history is presented
as a dialogue between the patient and the agent, with ac-
tion texts labeled as agent’s questions and environment’s
feedback text as patient responses. To format the valid
actions, each action type is formatted as a function along
with its permissible input values, which the LLM can in-
terpret. This is complemented by a descriptive text ex-
plaining the action’s purpose. For instance, the interac-
tion ”I want to ask about the subject’s topic” is format-
ted as ask(subject, topic): Asking a question about

the subject related to the topic, followed by a list of
valid subjects and topics. This meticulous formatting strat-
egy plays an essential role in minimizing the likelihood of
the LLM suggesting invalid actions.

Despite efforts to format valid actions to guide the LLM,
there are instances where the LLM still proposes an action
that is invalid within the PharmaSimText environment. In
such cases, we implemented a strategy where the LLM was
prompted to suggest an alternative action, repeating this
process for a maximum of k = 3 attempts. Should all sug-
gested actions remain invalid, we selected the valid action
that has the smallest distance in the natural language em-
bedding space to the k-th suggested action. This approach
ensures that the LLM’s output is effectively grounded in the
set of actions that are feasible within the environment.

The reflective agent employs a prompting strategy akin to
that of the none-reflective agent to determine the optimal
subsequent action. The none-reflective agent prompt is aug-
mented with a segment including learnings from prior en-
gagements with the same patient having the same cause.
This reflective process involves prompting the LLM to eval-
uate its previous strategies based on the observed outcomes
after completing each trial. The agent then updates its tex-
tual memory of previous learnings, and the updated memory
is used for prompting in the next trial. This approach was
inspired by research on self-reflective LLMs, notably the con-
tinually learning language agent CLIN[52]. Similar to CLIN,
we constructed the learning memory using causal formats
such as “X is necessary for Y” to guide future interactions.
This mechanism enables the reflective agent to dynamically
adapt and refine its approach, enhancing its decision-making
process over time.

4.3 LLM-assisted RL Agents
The perspective of RL-based agents remains limited to their
experience during training, potentially hindering the perfor-
mance in tasks with unfamiliar elements not encountered
during their training. To address this, we leveraged LLMs’
commonsense reasoning capabilities to augment RL agents’
decision-making processes. As shown in Fig. 3, we explored
two methods for integrating LLM assistance: Suggestion-
Assisted RL (SA-RL) and Decision-Assisted RL (DA-RL).

In the SA-RL approach, at a given time step t, the LLM

Figure 4: Generalization task, requiring the agents to gener-
alize over different wordings of a scenario.

is prompted to suggest a list of k best actions to be taken
at that state called LLM-Suggestedt. The actions’ Q-values
in LLM-Suggestedt are then calculated by the RL agent,
and the next action is sampled from the probability distri-
bution obtained by taking softmax over the estimated Q-
values. The prompting format here is similar to the LLM-
based agents discussed in Section 4.2 containing the task de-
scription, the history of interactions, prior experience with
the patient, and valid actions at that step. We set k = 5 in
the interaction steps and k = 2 in the posttest steps.

In the DA-RL approach, at a given time step t, we collect
a list of k most probable actions under the RL agent’s pol-
icy RL-Suggestedt. Then, an LLM is prompted to choose
the best action among the actions in RL-Suggestedt. The
prompting used for this task contains the task description,
the history of interactions, prior experience with the patient,
and the actions in RL-Suggestedt. Therefore, the LLM acts
as a decision assistant for the RL agent. Notably, in our
implementation, we set k = 5 in the interaction steps and
k = 2 in the post-test steps.

Based on whether the LLM is given an opportunity to re-
flect on its past decisions or not, we obtain two versions
of DA-RL and SA-RL approaches, which we distinguish via
reflective/none-reflective prefixes. Thus, we study four LLM-
assisted RL agents: none-reflective-DA-RL, reflective-DA-
RL, none-reflective-SA-RL, and reflective-SA-RL.

5. EXPERIMENTAL EVALUATION
We evaluated our agents in PharmaSimText to assess which
agent type demonstrates the most effective diagnostic con-
versations and accurate diagnoses among all patients (RQ1),
to investigate the impact of reflective prompting on the diag-
nostic performance and interaction quality of LLM-involved
agents (RQ2), and to explore how diagnostic performance
and conversation quality vary among the different agent
types when confronted with different patients (RQ3).

5.1 Experimental Setup
Our evaluation was focused on the generalization capabilities
of the agents, specifically their ability to navigate tasks fea-
turing not previously encountered elements. We assessed the
agents’ generalizability across rephrased versions of already-
encountered scenarios, aiming to measure their reliance on
the precise wording of these scenarios. Figure 4 provides
insight into our evaluation methodology for generalization,



Figure 5: Agent Performance on PharmaSimText. Post-test Performance Score (left), Trajectory Quality Score (middle), and
Combined Score (right) of the RL-based agent, the reflective-DA-RL agent, the reflective-SA-RL agent, and the reflective-
LLM-based agent. In the SA-RL agent, the LLM suggests k actions at each step for the RL agent to choose from. In the
DA-RL agent, the LLM selects an action from the top-k choices provided by the RL agent. Scores are averaged across all
patients in PharmaSimText.

illustrating the diversity created by rephrased answer op-
tions in a specific scenario.

We defined agent success in a subtask based on two aspects:
identifying the most probable cause of the patient’s problem
and asking the key questions in the conversation. Here a
subtask denotes the combination of a cause and a wording.
We therefore introduced three metrics:

• Post-test Performance Score: binary indicator of cor-
rect diagnosis of the patient’s problem. It measures
the agent’s ability to identify the most probable cause
of the patient’s problem.

• Trajectory Quality Score: fraction of key questions in-
volved in the agent’s conversation. It measures the
quality of the agent’s conversation.

• Combined Score: product of the Post-test Performance
Score and Trajectory Quality Score. It measures both
the above elements together.

5.2 Agent Training and Evaluation
We developed and trained all of the agents separately for
each patient. In this process, different wordings of subtasks
leading to the same cause were split randomly to a training,
validation, and test set. Therefore, the training, validation,
and test sets included subtasks of all of the causes available
for a patient in distinct wordings. Specifically, the agents
saw all the causes during training and validation, but not
all wordings. In our experiments, 80% of the available word-
ings for each cause were used for training and the remaining
wordings were split in half for the validation and test set.

The RL-based agents were trained using subtasks from the
designated training set being given a random subtask at each
episode of interaction with the environment. At a given time
step t, the agent took an action sampled from a softmax pol-
icy obtained from the Q-values of all of the actions available.
The randomness of the softmax policy was controlled using
a temperature decaying from 1 to 0.001 linearly during the
training. After each interaction, the agent was rewarded
using a reward function that awarded the agent a positive
reward of +1 when it successfully completed the posttest

and penalizes with -1 otherwise. Moreover, each interaction
of the agent was penalized by a small negative reward of
-0.01.

Following each iteration of training, these agents underwent
an evaluation phase using subtasks from the validation set.
The iteration that yielded the highest average Post-test Per-
formance Score on the subtasks in validation set was used
for testing and also served as the foundation for the RL
component within the LLM-assisted RL agents.

The agents that had an LLM involved in their structures
used the GPT-4 model. The LLM-based agents initially
gain experience through interactions within the training sub-
tasks. This acquired experience is subsequently leveraged
during their engagement with the test subtasks.

5.3 RQ1: Efficacy of Different Agent Types
In our first analysis, we aimed to assess the agents’ efficacy
in diagnostic dialogues and accuracy in diagnoses aggregated
over all patients. Figure 5 illustrates the Post-test Perfor-
mance Score, Trajectory Quality Score, and Combined Score
of the different agents.

We observed that the RL-based agent achieved a high Post-
test Performance Score, indicating its ability to arrive at
the correct diagnosis through a process of trial and error.
However, this agent’s approach often lacked the depth and
nuance of a meaningful diagnostic conversation, reflected in
its low Trajectory Quality Score. This observation is prob-
ably due to its lack of background knowledge and common
sense reasoning. Conversely, the LLM-based agent exhib-
ited a superior capacity for engaging in meaningful diagnos-
tic dialogues, reflected in a higher Trajectory Quality Score.
However, the LLM-based agent exhibited a lower Post-test
Performance Score than the RL-based agent, indicating that
its ability to consistently reach the correct diagnosis is infe-
rior compared to the RL-based agent.

In examining the LLM-assisted RL agents, both DA-RL and
SA-RL agents surpassed the LLM-based agent in Post-test
Performance Score, indicating that integrating LLM with
RL generally improves diagnostic precision of purely LLM-



Figure 6: Performance of reflective and none-reflective agents on PharmaSimText. Post-test Performance Score (left), Trajec-
tory Quality Score (middle), and Combined Score (right) for none-reflective and reflective DA-RL, SA-RL, and LLM-based
agents.

based agents. Notably, the SA-RL agent exhibited superior
Post-test Performance Score closely mirroring that of the
RL-based agent. The DA-RL’s relative under-performance
may have stemmed from its longer trajectories compared to
the RL-based agent, leading to unfamiliar states where the
DRRN struggled to provide accurate diagnoses, thereby af-
fecting the DA-RL’s RL-driven suggestions. Furthermore, in
terms of engaging in quality diagnostic dialogues, the SA-RL
agent was also superior to the DA-RL agent. This superior-
ity is likely due to the RL framework’s preference for shorter,
more direct solutions, which reduced the action quality sug-
gested by the DRRN in prolonged interactions. This effect
was more pronounced in the DA-RL agent, potentially con-
straining the quality of diagnostic conversations.

In the comparison of the agents in the Combined Score, the
SA-RL agent emerged as the standout performer. Unlike its
counterparts, the SA-RL agent adeptly navigated the dual
challenges posed by the benchmark, demonstrating both a
high conversation quality and diagnostic accuracy. This
achievement highlights the SA-RL agent’s unique capacity
to capture the strengths of both RL-based and LLM-based
agents through the addition of suggestion-based assistance
from LLMs to the RL agents’ decision-making process.

To further investigate the results, we performed additional
statistical tests. A Kruskal-Wallis test shows significant dif-
ferences between the agents for the Trajectory Quality Score
and Combined Score (ptrajectory < 0.0001 and pcombined <
0.001) and a trend to significance for the Post-test Perfor-
mance Score (pperformance = 0.052). Post-hoc comparisons
using Mann-Whitney U tests with a Benjamini-Hochberg
correction for the Combined Score indicate significant dif-
ferences between 5 out of 6 pairs of agents supporting prior
findings. For instance, the comparison between RL-based
agent and SA-RL agent resulted in a p-value smaller than
0.01, and for the comparison between SA-RL agent and
LLM-based agent the p-value was smaller than 0.05.

In summary, the experimental outcomes highlight distinct
strengths and weaknesses among the agents. The RL-based
agent demonstrated proficiency in achieving a high Post-
test Performance Score score, but was hindered in engaging
in effective diagnostic dialogues due to limited background

knowledge. Conversely, the LLM-based agent excelled in
conducting high-quality conversations by leveraging its ex-
tensive knowledge base, though with less accuracy in diag-
noses. The hybrid LLM-assisted RL agents, DA-RL and SA-
RL, outperformed the LLM-based agent in diagnostic preci-
sion and surpassed the RL-based agent in dialogue quality.
The SA-RL agent achieved both a high conversation quality
and diagnostic accuracy, illustrating its effective integration
of LLM and RL capabilities.

5.4 RQ2: Effect of Reflective Prompting
In our second analysis, we aimed to explore the impact of
reflective prompting on the efficacy of LLM-involved agents.
As described in Section 4, none-reflective agents were lim-
ited to a single attempt, whereas reflective agents were given
three attempts per subtask with opportunities for reflection.
Figure 6 illustrates the Post-test Performance Score, Trajec-
tory Quality Score, and Combined Score for none-reflective
and reflective LLM-assisted RL and LLM-based agents.

We observed a nuanced impact of reflective prompting on
agent performance. Specifically, reflective prompting did not
significantly impact the Combined Score of the purely LLM-
based agent. For this agent, reflection led to shorter diagnos-
tic conversations by eliminating what the agent considered
redundant questions. However, this streamlining resulted in
poorer conversation quality without significantly improving
diagnosis accuracy, negating the potential diagnosis accu-
racy gains from reflection.

In contrast, the reflective process considerably enhanced the
performance of the hybrid LLM-assisted RL agents. This
improvement can be attributed to the reflective phase allow-
ing the agents to reassess and refine their decision-making
processes, leading to more accurate diagnoses. The perfor-
mance boost was particularly notable in SA-RL agents, most
likely due to their reliance on the LLM for suggesting po-
tential actions during the interaction phase. This reliance
provided a broader scope for reflection to influence decision-
making, unlike DA-RL agents where decisions were more
heavily influenced by the RL-based agent. This finding un-
derscores the value of incorporating reflective mechanisms
in enhancing the capabilities of hybrid agents.



Figure 7: Performance of different agents in interaction with different patients. Post-test Performance Score (left), Trajectory
Quality Score (middle), and Combined Score (right) for RL-based and reflective SA-RL, DA-RL, and LLM-based agents.

In summary, our experiment revealed that reflective prompt-
ing has a different effect on LLM-based and LLM-assisted
RL agents. For the LLM-based agents, reflective prompt-
ing led to shorter and lower quality diagnostic conversa-
tions, with no significant improvement in diagnostic accu-
racy. On the other hand, the LLM-assisted RL agents ben-
efited from reflection, showing improvements in diagnostic
accuracy. This enhancement was more pronounced for SA-
RL agents, which rely more on LLM suggestions.

5.5 RQ3: Agent Efficacy for Different Patients
In our final analysis, we investigated the performance of our
agents across the different patients. Figure 7 illustrates the
Post-test Performance Score, Trajectory Quality Score, and
Combined Score for each patient averaged over all of the
subtasks available for that patient in PharmaSimText for the
RL-based agent as well as the reflective SA-RL, DA-RL, and
LLM-based agents.

We again observed that the RL-based agent showed supe-
rior Post-test Performance Score across all patients, while
the LLM-based agent was not able to identify all causes cor-
rectly for five out of the nine patients. The LLM-assisted
RL agents managed to overcome this limitation, with the
SA-RL agent showing superior performance than the DA-
RL agent. The opposite result was found for the Trajectory
Quality Score. While the LLM-based agents conducted high-
quality diagnostic dialogues, the RL-based agent exhibited a
suboptimal Trajectory Quality Score for all of the patients,
often incorporating merely one or two key questions within
its diagnostic conversations, highlighting the extent of its
deviation from an effective diagnostic interaction. Again,
the LLM-assisted RL agents overcame this limitation, with
the SA-RL agent generally showing the highest Trajectory
Quality Score scores.

Our examination of the Combined Score revealed that, ex-
cept for the SA-RL agent, most agents encounter difficulties
in scenarios related to Skin and Eye conditions. A closer
inspection of their Post-test Performance Score and Trajec-
tory Quality Score metrics suggested that these agents face

challenges in different facets of the scenarios related to these
specific patients. A particularly noteworthy observation is
the superior performance of the SA-RL agent, which over-
comes the limitations of purely RL-based and LLM-based
agents across all patient categories.

Given the inferior performance of the RL-based agent in the
Trajectory Quality Score, we examined the dialogues gen-
erated by the RL-based agent and the SA-RL agent within
an identical scenario that resulted in a correct diagnosis, as
illustrated in Fig. 8. This comparison reveals a pronounced
contrast in the conversational dynamics of these two agents.
The dialogue led by the SA-RL agent exhibits a flow that
is markedly more reminiscent of human-like interaction, in
contrast to the RL-based agent’s brief conversation. No-
tably, the RL-based agent’s approach is characterized by
posing a single key question before directly drawing a con-
clusion. In comparison, the SA-RL agent engages in a more
thorough inquiry, covering a broader spectrum of key ques-
tions in a logically sequential manner.

In summary, the hybrid LLM-assisted RL agents manage to
ovecome the limitations of solely RL-based and LLM-based
agents, with the SA-RL agent demonstrating superior per-
formance across all patients. The RL-based agent exhibits
a behavior characterized by short conversation, limiting in-
teractions to very few key questions, while the SA-RL agent
follows a more human-like behavior.

6. DISCUSSION AND CONCLUSION
In this paper, we explored integration of RL and LLMs to
enhance learner models in educational technologies. While
RL-based agents show promise in structured learning tasks,
they struggle with open-ended environments and skill gen-
eralization. Conversely, LLMs excel in generating student-
like responses, but fail in constrained action spaces. By
combining RL and LLMs, we aimed to develop more gen-
eralizable agents for text-based educational settings. We
assessed our agents, including RL-based , LLM-based , and
hybrid models, on their ability to conduct diagnostic conver-
sations and make accurate diagnoses in our novel benchmark
PharmaSimText.



Figure 8: Example diagnostic conversations conducted by the
RL-based (top) and SA-RL agents (bottom) with the patient
with joint pains in a test subtask with Osteoarthritis as the
most probable cause.

Specifically, we were interested in answering the following
three research questions: Which agent type demonstrates
overall superior performance in conducting effective diag-
nostic conversations and achieving accurate diagnoses for
all available patients (RQ1)? How does reflective prompt-
ing influence the diagnostic performance and conversation
quality of LLM-involved agents (RQ2)? How do diagnostic
performance and conversation quality vary among different
agent types across diverse patients (RQ3)?

To address our first research question, we assessed four agents:
one RL-based, one LLM-based, and two integrating LLMs
with RL, in rephrased versions of the scenarios related to
different patients in PharmaSimText that the agents had not
seen before. Effective diagnostic conversations require high-
quality conversations and accurate diagnoses. The RL agent
excelled in finding the correct diagnosis but struggled in
comprehensive diagnostic dialogues due to its limited knowl-
edge. The LLM agent was adept in high-quality diagnostic
conversations but tended to misdiagnose patients. LLM-RL
integrations were able to address these limitations by en-
hancing the diagnostic accuracy compared to the LLM-based
agent and the conversation quality compared to the RL-
based agent. Among all agents, the SA-RL agent achieved
the best combination of diagnostic accuracy and conversa-
tion quality.

The second research question investigated the benefits of re-
flective prompting of the LLMs in the LLM-involved agents.
To answer this question, we compared the reflective ver-

sions of three LLM-involved agents with their none-reflective
counterparts. In prior works, reflection showed noticeable
improvements in task completion of prompted LLMs [52, 53].
Therefore, we hypothesized a noticeable drop in the perfor-
mance of the LLM-involved agents after confining them to
only one trial. Our results showed a mixed effect for reflec-
tion in the solely LLM-based agent and the hybrid agents.
For the LLM-based agent, the reflection improved the diag-
nostic accuracy of the agent, but it decreased the quality of
the agent’s conversation by shortening its trajectory. For the
hybrid agents, the reflective process increased the diagnostic
accuracy. We therefore conclude that the effect of reflective
prompting depends on the agent type.

To address the third research question, we analyzed the
agents over the three metrics for each of the patients sepa-
rately. We observed that the agents did not struggle with
similar patients. In our subsequent analysis, we looked at
an example of the conversations done by the RL-based agent
and the SA-RL agent, and we observed that while the RL-
based agent conversation seemed rushed, the SA-RL’s con-
versation seemed human-like and followed a sequential logic.

One of the limitations of this work is the focus on gener-
alization at a single level of rephrased versions of the sce-
narios. A few possible generalization levels available Phar-

maSimText are: generalizing to a new wording of a known
scenario (wording generalization), to a new diagnosis of a
known patient (subtask generalization), and to a new patient
(task generalization). Our presented experiments are lim-
ited to the wording generalization. Further research should
be done within different generalization levels to evaluate cur-
rent agents and propose new agent frameworks that consider
the models’ confidence in integration and leverage LLM in-
sights for rapid adaptation of RL-based agents to new tasks.
Moreover, our proposed reflective process showed limitations
in improving the LLM-based agents. This suggests a need
for further research for improved reflection in the interac-
tive format of the PharmaSimText benchmark. Moreover,
future research should consider evaluating the similarity of
behavior of these agents to human students to further facili-
tate their use cases such as evaluating learning environments
and collaborative learning.

To conclude, the proposed LLM integration approach rep-
resents a promising step towards agents with generalization
capabilities in open-ended text-based educational environ-
ments. Furthermore, our implemented benchmark facilitates
further research in developing agents with generalization ca-
pabilities at a higher level.
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