
Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler
Solutions
NAGABHUSHAN SOMRAJ, Indian Institute of Science, India
ADITHYAN KARANAYIL, Indian Institute of Science, India
SAI HARSHA MUPPARAJU, Indian Institute of Science, India
RAJIV SOUNDARARAJAN, Indian Institute of Science, India

Fig. 1. We show the improvements achieved by our regularizations on the NeRF, TensoRF and ZipNeRF models on NeRF-LLFF, RealEstate-10K andMipNeRF360
datasets respectively. We observe that the vanilla radiance fields suffer from various distortions. Regularizing the radiance fields with simpler solutions leads
to significantly better reconstructions with all the three radiance fields.

Neural Radiance Fields (NeRF) show impressive performance in photo-
realistic free-view rendering of scenes. Recent improvements on the NeRF
such as TensoRF and ZipNeRF employ explicit models for faster optimization
and rendering, as compared to the NeRF that employs an implicit represen-
tation. However, both implicit and explicit radiance fields require dense sam-
pling of images in the given scene. Their performance degrades significantly
when only a sparse set of views is available. Researchers find that supervising

Authors’ addresses: Nagabhushan Somraj, Indian Institute of Science, Bengaluru, Kar-
nataka, 560012, India, nagabhushans@iisc.ac.in; Adithyan Karanayil, Indian Institute
of Science, Bengaluru, Karnataka, India, adithyanv@iisc.ac.in; Sai Harsha Mupparaju,
Indian Institute of Science, Bengaluru, Karnataka, India, saiharsham@iisc.ac.in; Rajiv
Soundararajan, Indian Institute of Science, Bengaluru, Karnataka, India, rajivs@iisc.ac.
in.

© 2024 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/nnnnnnn.nnnnnnn.

the depth estimated by a radiance field helps train it effectively with fewer
views. The depth supervision is obtained either using classical approaches or
neural networks pre-trained on a large dataset. While the former may pro-
vide only sparse supervision, the latter may suffer from generalization issues.
As opposed to the earlier approaches, we seek to learn the depth supervision
by designing augmented models and training them along with the main radi-
ance field. Further, we aim to design a framework of regularizations that can
work across different implicit and explicit radiance fields. We observe that
certain features of these radiance field models overfit to the observed images
in the sparse-input scenario. Our key finding is that reducing the capability of
the radiance fields with respect to positional encoding, the number of decom-
posed tensor components or the size of the hash table, constrains the model
to learn simpler solutions, which estimate better depth in certain regions.
By designing augmented models based on such reduced capabilities, we
obtain better depth supervision for the main radiance field. We achieve state-
of-the-art view-synthesis performance with sparse input views on popular
datasets containing forward-facing and 360◦ scenes by employing the above

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

ar
X

iv
:2

40
4.

19
01

5v
1

 [
cs

.C
V

]
 2

9
A

pr
 2

02
4

HTTPS://ORCID.ORG/0000-0002-2266-759X
https://orcid.org/0000-0002-2266-759X
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

regularizations. The source code for our model can be found on our project
page: https://nagabhushansn95.github.io/publications/2024/Simple-RF.html

CCS Concepts: • Computing methodologies → Rendering; Volumetric
models; Computer vision; Computational photography; 3D imaging; Recon-
struction.

Additional Key Words and Phrases: neural rendering, novel view synthesis,
sparse input radiance fields

ACM Reference Format:
Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv
Soundararajan. 2024. Simple-RF: Regularizing Sparse Input Radiance Fields
with Simpler Solutions. ACM Trans. Graph. 1, 1 (May 2024), 39 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Neural Radiance Fields (NeRFs) [Mildenhall et al. 2020] show un-
precedented levels of performance in synthesizing novel views of
a scene by learning a volumetric representation implicitly within
the weights of multi-layer perceptrons (MLP). Although NeRFs are
very promising for view synthesis, there is a need to improve their
design in a wide array of scenarios. For example, NeRFs have been
enhanced to optimize and render quickly [Müller et al. 2022], re-
duce aliasing artifacts [Barron et al. 2021], and learn on unbounded
scenes [Barron et al. 2022]. Yet all these models require tens to hun-
dreds of images per scene to learn the scene geometry accurately,
and their quality deteriorates significantly when only a few training
images are available [Jain et al. 2021]. In this work, we focus on train-
ing both implicit radiance fields such as NeRF and explicit radiance
fields such as TensoRF [Chen et al. 2022b] and ZipNeRF [Barron
et al. 2023] with a sparse set of input images and aim to design novel
regularizations for effective training.

Researchers have extensively studied the training of NeRFs with
sparse input views. One approach to training NeRFs with sparse
input views is to use generalized NeRFs, where the NeRF is addi-
tionally conditioned on a latent scene representation obtained using
a convolutional neural network. However, these models require
a large multi-view dataset for pre-training and may suffer from
generalization issues when used to render a novel scene [Niemeyer
et al. 2022]. The other thread of work on sparse input NeRFs follows
the original NeRF paradigm of training scene-specific NeRFs, and
designs novel regularizations to assist NeRFs in converging to a
better scene geometry [Guo et al. 2024; Ni et al. 2024; Zhang et al.
2021b]. One popular approach among such models is to supervise
the depth estimated by the NeRF. RegNeRF [Niemeyer et al. 2022],
DS-NeRF [Deng et al. 2022] and ViP-NeRF [Somraj and Soundarara-
jan 2023] use simple priors such as depth smoothness, sparse depth
or relative depth respectively obtained through classical methods.
On the other hand, DDP-NeRF [Roessle et al. 2022] and SCADE [Uy
et al. 2023] pre-train convolutional neural networks (CNN) on a large
dataset of scenes to learn a dense depth prior. These approaches may
also suffer from issues similar to those of the generalized models.
This raises the question of whether we can instead learn the dense
depth supervision in-situ without employing any pre-training.

Recently, there is also a growing interest in sparse input explicit
radiance fields owing to their fast optimization and rendering times.
However, the regularizations designed for these models are limited

to a specific explicit radiance field and do not generalize to more
recent models. For example, while the regularizations designed for
ZeroRF [Shi et al. 2024] can be applied to TensoRF basedmodels only,
other regularizations are applicable to implicit models only [Yang
et al. 2023; Zhu et al. 2024]. It is desirable to design regularizations
that are relevant to different radiance field models through a single
framework. While there exists a plethora of implicit and explicit
radiance field models, we consider the NeRF as the representative
model for implicit radiance fields and consider two explicit radiance
fields, namely, TensoRF [Chen et al. 2022b] and ZipNeRF [Barron
et al. 2023].We note that although the NeRF basedmodels are slow in
optimization and rendering, NeRFs are versatile in learning different
properties of the scenes [Bi et al. 2020; Srinivasan et al. 2021; Verbin
et al. 2022; Zhang et al. 2021a] and may be easier to optimize as
compared to the explicit models. Hence, we believe that designing
regularizations for sparse-input NeRF is also of considerable interest.

We first observe that the radiance field models often exploit their
high capability to learn unnecessary complex solutions when train-
ing with sparse input views. While these solutions perfectly explain
the observed images, they can cause severe distortions in novel
views. For example, some of the key components of the radiance
fields, such as positional encoding in the NeRF or vector-matrix
decomposition employed in TensoRF, provide powerful capabilities
to the radiance field and are designed for training the model with
dense input views. Existing implementations of these components
may be sub-optimal with fewer input views due to the highly under-
constrained system, causing several distortions. Figs. 4, 7 and 8 show
common distortions observed with NeRF, TensoRF and ZipNeRF in
the few-shot setting respectively. We follow the popular Occam’s
razor principle and regularize the radiance fields to choose simpler
solutions over complex ones, wherever possible. In particular, we
design augmented models by reducing the capabilities of the radi-
ance fields and use the depth estimated by these models to supervise
the main radiance field.
We design different augmentations for NeRF, TensoRF and Zip-

NeRF based on different shortcomings and architectures of these
models. The high positional encoding degree used in the NeRF leads
to undesired depth discontinuities, creating floaters. Further, the
view-dependent radiance feature leads to shape-radiance ambigu-
ity, creating duplication artifacts. We design augmentations for the
NeRF by reducing the positional encoding degree and disabling
the view-dependent radiance feature. On the other hand, the large
number of high-resolution factorized components in TensoRF and
the large hash table in ZipNeRF cause floaters in these models in the
few-shot setting. Thus, we design augmentations to constrain the
model with respect to such components to learn simpler solutions.

We use the simplified models as augmentations for depth super-
vision and not as the main NeRF model since naïvely reducing the
capacity of the radiance fields may lead to sub-optimal solutions in
certain regions [Jain et al. 2021]. For example, the model that can
learn only smooth depth transitions may fail to learn sharp depth
discontinuities at object boundaries. Further, the augmented models
need to be used for supervision only if they explain the observed
images accurately. We gauge the reliability of the depths by repro-
jecting pixels using the estimated depths onto a different nearest
train view and comparing them with the corresponding images.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

https://nagabhushansn95.github.io/publications/2024/Simple-RF.html
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 3

We refer to our family of regularized models as Simple Radiance
Fields (Simple-RF) since we regularize the models to choose simple
solutions over complex ones, wherever feasible. We refer to the indi-
vidualmodels as Simple-NeRF, Simple-TensoRF and Simple-ZipNeRF
respectively. We evaluate our models on four popular datasets that
include forward-facing scenes (NeRF-LLFF), unbounded forward-
facing scenes (RealEstate-10K), unbounded 360◦ scenes (MipNeRF360)
and bounded 360◦ scenes (NeRF-Synthetic) and show that our mod-
els achieve significant improvement in performance on all the datasets.
Further, we show that ourmodel learns geometry significantly better
than prior art.
We list the main contributions of our work in the following.

• We find that the high positional encoding degree and view-
dependent radiance of the NeRF cause floater and duplication
artifacts when training with sparse inputs. We design aug-
mented models on both these fronts to supervise the main
NeRF and mitigate both artifacts.

• We observe that the large number of high-resolution decom-
posed components in TensoRF leads to floater artifacts with
sparse inputs. Thus, the augmented model is obtained by
reducing the number and resolutions of the decomposed com-
ponents.

• We find that the large hash table in ZipNeRF causes floaters
when training with sparse inputs. The augmented model is
designed by reducing the size of the hash table.

• We design a mechanism to determine whether the depths
estimated by the augmented models are accurate and utilize
only the accurate estimates to supervise the main radiance
field.

• We show that our regularization achieves substantial im-
provements on different radiance fields and on four different
datasets.

2 RELATED WORK
Chen and Williams [1993] introduce the problem of novel view
synthesis and propose an image-based rendering (IBR) approach
to synthesize novel views. The follow-up approaches introduce the
geometry of the scene for synthesizing novel views through approxi-
mate representations such as light fields [Levoy and Hanrahan 1996],
lumigraphs [Gortler et al. 1996], plenoptic functions [McMillan and
Bishop 1995] and layered depth images [Shade et al. 1998]. Chai et al.
[2000] study the minimum sampling needed for light field rendering
and also show that depth information enables better view synthe-
sis with sparse viewpoints. McMillan Jr [1997] and Mark [1999]
introduce depth image based rendering (DIBR) to synthesize new
views. Multiple variants of DIBR [Chaurasia et al. 2013; Kanchana
et al. 2022; Sun et al. 2010] find use in various applications such as
3D-TV [Fehn 2004] and free-viewpoint video [Carranza et al. 2003;
Collet et al. 2015; Smolic et al. 2006]. Ramamoorthi [2023] conduct
a detailed survey on classical work for novel view synthesis.
With the advent of deep learning, volumetric models exploited

the power of learning by training the model on a large dataset of
multi-view images. While the early approaches predict volumet-
ric representations in each of the target views [Flynn et al. 2016;
Kalantari et al. 2016], latter approaches predict a single volumetric

representation and warp the representation to the target view while
rendering [Mildenhall et al. 2019; Penner and Zhang 2017; Shih
et al. 2020; Srinivasan et al. 2019; Zhou et al. 2018]. However, these
approaches employ discrete depth planes and hence suffer from
discretization artifacts. The seminal work by Mildenhall et al. [2020]
employ a continuous representation using multi-layer perceptrons
(MLP). This started a new pathway in neural view synthesis. How-
ever, these models suffer from two major limitations, namely, the
need for the dense sampling of input views and the large time re-
quired to render novel views from the given input views. The prior
work that address these limitations can be broadly classified into
three categories. In Sec. 2.1, we review various approaches in the
literature to regularize the NeRF when training with sparse input
views. We review the explicit radiance fields that aim at fast opti-
mization and rendering in Sec. 2.2, and also review the recent work
on regularizing explicit models for the few-shot setting. Finally, in
Sec. 2.3, we review the generalized NeRFs that address both issues
jointly.

2.1 Implicit Radiance Fields
There exists extensive literature on regularizing scene-specificNeRFs
when training with sparse inputs. Hence, we further group these
models based on their approaches.

Hand-Crafted Depth Priors: The prior work on sparse input NeRFs
explore a plethora of hand-crafted priors on the NeRF rendered
depth. RegNeRF [Niemeyer et al. 2022] imposes a smoothness con-
straint on the rendered depth maps. DS-NeRF [Deng et al. 2022] uses
sparse depth provided by a Structure from Motion (SfM) module
to supervise the NeRF estimated depth at sparse keypoints. ViP-
NeRF [Somraj and Soundararajan 2023] augments the sparse-depth
regularization of DS-NeRF with a regularization on the relative
depth of objects by obtaining a prior on the visibility of objects.
HG3-NeRF [Gao et al. 2024] uses sparse depth given by colmap
to guide the sampling 3D points instead of supervising the NeRF
rendered depth. While these priors are more robust across different
scenes, they do not exploit the power of learning.
Deep Learning Based Depth Priors: There exist multiple models

that utilize the advances in dense depth estimation using deep neu-
ral networks. DDP-NeRF [Roessle et al. 2022] extends DS-NeRF by
employing a CNN to complete the sparse depth into dense depth for
more supervision. SCADE [Uy et al. 2023] and SparseNeRF [Wang
et al. 2023] use the depth map output by single image depth models
to constrain the absolute and the relative order of pixel depths, re-
spectively. DiffusioNeRF [Wynn and Turmukhambetov 2023] learns
the joint distribution of RGBD patches using denoising diffusion
models (DDM) and utilizes the gradient of the distribution provided
by the DDM to regularize NeRF rendered RGBD patches. How-
ever, the deep-learning based priors require pre-training on a large
dataset and may suffer from generalization issues when obtaining
the prior on unseen test scenes. Our work obtains depth supervi-
sion by harnessing the power of learning without suffering from
generalization issues by employing and training augmented models
on the given scene alone.

View Hallucination based Methods: Another line of regularization
based approaches simulate dense sampling by hallucinating new

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

4 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

viewpoints and regularizing the NeRF on different aspects such as
semantic consistency [Jain et al. 2021], depth smoothness [Niemeyer
et al. 2022], sparsity of mass [Kim et al. 2022] and depth based
reprojection consistency [Bortolon et al. 2022; Chen et al. 2022a;
Kwak et al. 2023; Xu et al. 2022]. Instead of sampling new viewpoints
randomly, FlipNeRF [Seo et al. 2023a] utilizes ray reflections to
determine new viewpoints. Deceptive-NeRF [Liu et al. 2023] and
ReconFusion [Wu et al. 2024] employ a diffusion model to generate
images in hallucinated views and use the generated views in addition
to the input views to train the NeRF. However, supervision with
generative models could lead to content hallucinations, leading to
poor fidelity [Lee and Lee 2024].

Other regularizations: A few models also explore regularizations
other than depth supervision and view hallucinations. FreeNeRF
[Yang et al. 2023] and MI-MLP-NeRF [Zhu et al. 2024] regularize the
NeRF by modifying the inputs. Specifically, FreeNeRF anneals the
frequency range of positional encoded NeRF inputs as the training
progresses, and MI-MLP-NeRF adds the 5D inputs to every layer
of the NeRF MLP. MixNeRF [Seo et al. 2023b] models the volume
density along a ray as a mixture of Laplacian distributions. Philip
and Deschaintre [2023] scale the gradients corresponding to 3D
points close to the camera when sampling the 3D points in inverse
depth to reduce floaters close to the camera. VDN-NeRF [Zhu et al.
2023b] on the other hand, aims to resolve shape-radiance ambiguity
in the case of dense input views. However, these approaches are
designed for specific cases and are either sub-optimal or do not
extend to more recent radiance field models.

2.2 Explicit Radiance Fields
The NeRF takes a long time to optimize and render novel views due
to the need to query the NeRF MLP hundreds of times to render a
single pixel. Hence, a common approach to fast optimization and
rendering is to reduce the time taken per query. Early works such as
PlenOctress [Yu et al. 2021a] and KiloNeRF [Reiser et al. 2021] focus
on improving only the rendering time by baking the trained NeRF
into an explicit structure such as Octrees or thousands of tiny MLPs.
PlenOxels [Fridovich-Keil et al. 2022] and DVGO [Sun et al. 2022]
reduce the optimization time by directly optimizing voxel grids, but
at the cost of large memory requirements to store the voxel grids.
TensoRF [Chen et al. 2022b] and K-Planes [Fridovich-Keil et al.
2023] reduce the memory consumption using factorized tensors
that exploit the spatial correlation of the radiance field. Alternately,
iNGP [Müller et al. 2022] and ZipNeRF [Barron et al. 2023] employ
multi-resolution hash-grids to reduce the memory consumption.
Recently, 3DGS [Kerbl et al. 2023] propose an alternative volumetric
model for real-time rendering of novel views. Specifically, 3DGS
employs 3D Gaussians to represent the scene and renders a view by
splatting the Gaussians onto the corresponding image plane. While
the above methods enable fast optimization and rendering, their
performance still reduces significantly with fewer input views.

Recently, there is increasing interest in regularizing explicit mod-
els to learn with sparse inputs [Li et al. 2024; Yang et al. 2024]. How-
ever, the regularizations designed in these models are limited to a
specific explicit radiance field and do not generalize to other explicit
models. For example, ZeroRF [Shi et al. 2024] imposes a deep image

prior [Ulyanov et al. 2018] on the components of the TensoRF [Chen
et al. 2022b] model. FSGS [Zhu et al. 2023a] and SparseGS [Xiong
et al. 2023] improve the performance of 3DGS [Kerbl et al. 2023]
in the sparse input case by improving the initialization of the 3D
gaussian point cloud and pruning Gaussians responsible for floaters
respectively. On the other hand, our approach of regularizing with
simpler solutions is applicable to various explicit models, such as
TensoRF, iNGP and ZipNeRF as well as to implicit models such as
NeRF.

Despite the recent work on sparse input 3DGS models, we do not
explore designing augmentations for 3DGS. As noted in the recent
literature, 3DGS mainly suffers from poor initialization with few
input views [Chen et al. 2024]. We believe 3DGS requires a combi-
nation of good initialization and supervision from augmentations
to learn from few input views. This necessitates a separate study
on designing better initializations for 3DGS, which is beyond the
scope of this work.

2.3 Generalized Sparse Input NeRF
Obtaining a volumetric model of a scene by optimizing the NeRF
is a time-consuming process. In order to reduce the time required
to obtain a volumetric model of a scene and learn with fewer input
views, generalized NeRF models train a neural network on a large
dataset of multi-view scenes that can be directly applied to a test
scene without any optimization [Chen et al. 2021; Lee et al. 2023;
Tancik et al. 2021]. Early pieces of work such as PixelNeRF [Yu et al.
2021b], GRF [Trevithick and Yang 2021], and IBRNet [Wang et al.
2021b] obtain convolutional features of the input images and addi-
tionally condition the NeRF by projecting the 3D points onto the
feature grids. MVSNeRF [Chen et al. 2021] incorporates cross-view
knowledge into the features by constructing a 3D cost volume. How-
ever, the resolution of the 3D cost volume is limited by the available
memory size, which limits the performance of MVS-NeRF [Lin et al.
2023]. On the other hand, SRF [Chibane et al. 2021] processes indi-
vidual frame features in a pair-wise manner, and GNT [Wang et al.
2022] employs a transformer to efficiently incorporate cross-view
knowledge.
NeuRay [Liu et al. 2022] and GeoNeRF [Johari et al. 2022] fur-

ther improve the performance by employing visibility priors and
a transformer respectively to effectively reason about the occlu-
sions in the scene. More recent work such as GARF [Shi et al. 2022],
DINER [Prinzler et al. 2023] and MatchNeRF [Chen et al. 2023] try
to provide explicit knowledge about the scene geometry through
depth maps and similarity of the projected features. This approach
of conditioning the NeRF on learned features is also popular among
single image NeRF models [Lin et al. 2023], which can be considered
as an extreme case of the sparse input NeRF. However, the need for
pre-training on a large dataset of scenes with multi-view images
and generalization issues due to domain shift have motivated re-
searchers to continue to be interested in regularizing scene-specific
radiance fields.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 5

Fig. 2. Architecture of Simple-RF family of models. We train the augmented model that only learns simpler solutions in tandem with the main model. The
augmented models learn better depth in certain regions, which is propagated to the main model through the depth supervision loss L𝑎𝑢𝑔 . During inference,
only the Main Model is employed.

3 RADIANCE FIELDS AND VOLUME RENDERING
PRELIMINARIES

We first provide a brief recap of the radiance fields and volume
rendering. We also describe the notation required for further sec-
tions. To render a pixel q, we shoot the corresponding ray into the
scene and sample 𝑁 3D points p1, p2, . . . , p𝑁 , where p1 and p𝑁 are
the closest to and farthest from the camera, respectively. At every
3D point p𝑖 , the radiance field F = F1 ◦ F2 is queried to obtain a
view-independent volume density 𝜎𝑖 and a view-dependent color c𝑖
as

𝜎𝑖 , h𝑖 = F1 (p𝑖), c𝑖 = F2 (h𝑖 , v), (1)

where v is the viewing direction and h𝑖 is a latent feature of p𝑖 .
Volume rendering is then applied along every ray to obtain the color
for each pixel as c =

∑𝑁
𝑖=1𝑤𝑖c𝑖 , where the weights𝑤𝑖 are computed

as

𝑤𝑖 = exp ©«−
𝑖−1∑︁
𝑗=1

𝛿 𝑗𝜎 𝑗
ª®¬ · (1 − exp (−𝛿𝑖𝜎𝑖)) , (2)

and 𝛿𝑖 is the distance between p𝑖 and p𝑖+1. The expected ray termi-
nation length is computed as 𝑧 =

∑𝑁
𝑖=1𝑤𝑖𝑧𝑖 , where 𝑧𝑖 is the depth

of p𝑖 . 𝑧 is typically also used as the depth of the pixel q [Deng et al.
2022]. F1 and F2 are modelled differently for NeRF, TensoRF and
ZipNeRF, and are trained using the photometric lossL𝑝ℎ = ∥c− ĉ∥2,
where ĉ is the true color of q.

4 METHOD
Learning a radiance field with sparse input views leads to overfitting
on the input views with severe distortions in novel views. Our key
observation is that most of the distortions are due to the sub-optimal
use of the high capabilities of the radiance field model. Further, we
find that reducing the capability of the radiance field helps constrain
the model to learn only simpler solutions, which can provide better
depth supervision in certain regions of the scene. However, the
lower capability models are not optimal either since they cannot
learn complex solutions where necessary. Our solution here is to
use the higher capability model as the main model and employ the
lower capability models as augmentations to provide guidance on
where to use simpler solutions. The challenge is that, it is not known
apriori where one needs to employ supervision from the augmented
model. We determine the more accurate model among the main

and augmented models in terms of the estimated depth and use
the more reliable depth to supervise the other. We note that the
augmented models are employed only during the learning phase
and not during inference. Thus, there is no additional overhead
during inference. The augmented models are similar to the main
model, but we modify their parameters to reduce their capability,
and train them in tandem with the main model.

To design the augmented models, we first analyze the shortcom-
ings of the radiance field with sparse input views. Specifically, we
determine the components of the model that cause overfitting with
fewer input views, causing distortions in novel views. We then de-
sign the augmented models by reducing the model capability with
respect to such components. Thus, designing the augmented models
is non-trivial, and the design may need to be different for differ-
ent radiance fields based on the architecture of the radiance fields
and the distortions observed. Nonetheless, the core idea of design-
ing augmentations by reducing their capability to learn simpler
solutions is common across all radiance fields.
We discuss the design of augmentations for NeRF, TensoRF and

ZipNeRF in Secs. 4.1 to 4.3 respectively. We describe our approach
to determining the reliability of the depth estimates in Sec. 4.1.4.
Finally, Sec. 4.4 summarizes all the loss functions used to train our
full model. Fig. 2 shows the architecture of our family of simple
radiance fields.

4.1 Simple-NeRF
We start by discussing the specific details of the NeRF that are
relevant for the design of augmentations in Sec. 4.1.1, then analyze
the shortcomings of the NeRF with sparse input views in Sec. 4.1.2
and finally discuss the design of augmentations in Sec. 4.1.3. Fig. 3
shows the detailed architecture of Simple-NeRF.

4.1.1 NeRF Preliminaries. The NeRF learns the radiance field F us-
ing two neural networksN1,N2 and predicts the view-independent
volume density 𝜎𝑖 and view-dependent color c𝑖 as

𝜎𝑖 , h𝑖 = N1
(
𝛾 (p𝑖 , 0, 𝑙𝑝)

)
; c𝑖 = N2 (h𝑖 , 𝛾 (v, 0, 𝑙𝑣)) , (3)

where v is the viewing direction, h𝑖 is a latent feature of p𝑖 and

𝛾 (𝑥, 𝑑1, 𝑑2) = [sin(2𝑑1𝑥), cos(2𝑑1𝑥), . . . , sin(2𝑑2−1𝑥), cos(2𝑑2−1𝑥)]
(4)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

6 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Fig. 3. Architecture of Simple-NeRF. We train two augmented NeRF models in tandem with the main NeRF. In smoothing augmentation, we reduce the
positional encoding frequencies that are input to N𝑠

1 and concatenate the remaining frequencies to the input of N𝑠
2 . For Lambertian augmentation, we ask N𝑙

2
to output the color based on position alone, independent of the viewing direction. We add depth supervision losses L𝑠 and L𝑙 between the coarse NeRFs of
the main and augmented models and a consistency loss L𝑐𝑓 𝑐 between the coarse and fine NeRFs of the main model. During inference, only the Main Model
is employed.

is the positional encoding from frequency 𝑑1 to 𝑑2. 𝑙𝑝 and 𝑙𝑣 are the
highest positional encoding frequencies for p𝑖 and v respectively.
When 𝑑1 = 0, 𝑥 is concatenated to the positional encoding features
in Eq. (4). NeRF circumvents the need for the dense sampling of 3D
points along a ray by employing two sets of MLPs, a coarse NeRF
and a fine NeRF, both trained using L𝑝ℎ . The coarse NeRF is trained
with a coarse stratified sampling, and the fine NeRF with dense
sampling around object surfaces, where object surfaces are coarsely
localized based on the predictions of the coarse NeRF. Since the
scene geometry is mainly learned by the coarse NeRF, we add the
augmentations only to the coarse NeRF.

4.1.2 Analysing Sparse Input NeRF. With sparse input views, we
find that two components of the NeRF, namely positional-encoding
and view-dependent radiance, can cause overfitting, leading to
distortions in novel views. Both positional encoding and view-
dependent radiance are elements designed to increase the capability
of the NeRF to explain different complex phenomena. For example,
the former helps in learning thin objects against a farther back-
ground, and the latter helps in learning specular objects. However,
when training with sparse views, the fewer constraints coupled with
the higher capacity of the NeRF lead to solutions that overfit the
observed images and learn implausible scene geometries. Specifi-
cally, the high positional encoding degree leads to undesired depth
discontinuities in smooth-depth regions resulting in floater artifacts,
where a part of an object is broken away from it and floats freely in
space [Barron et al. 2022], as shown in Fig. 4a. The view-dependent
radiance causes shape-radiance ambiguity, leading to duplication
artifacts in the novel views as shown in Fig. 4b. With sparse input
views, the NeRF explains different objects by varying the color of
the same 3D points based on the viewing direction, thereby giving
us an illusion of the object without learning the correct geometry of
the object. This is, in a way, similar to the illusion created by lentic-
ular images and can be observed better in the supplementary video.
Our augmentations consist of reducing the capability of the NeRF

(a) Floater artifacts: We visualize the depth learned by the NeRF model for
an input frame from the NeRF-LLFF flower scene.

(b) Duplication artifacts: To visualize the duplication artifacts that arise due
to the shape-radiance ambiguity in sparse-input NeRF, we render an input
frame by only changing the viewing direction. This is an example from the
NeRF-LLFF room scene.

Fig. 4. Failure of sparse-input NeRF: We show two shortcomings of the
NeRF when trained with two input views on the NeRF-LLFF dataset. In Fig
(a), we observe the floaters as small orange regions in the depth map. In Fig
(b), we observe the duplication of the object on the table caused by the NeRF
trying to blend the input images. Simple-NeRF introduces regularizations to
mitigate these distortions as seen in both figures. We note that the models
used to synthesize the above images include the sparse depth supervision
(Sec. 4.4).

model with respect to the positional encoding and view-dependent
radiance to obtain better depth supervision.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 7

4.1.3 Design of Augmentations. We employ two augmentations,
one each for regularizing positional encoding and view-dependent
radiance, which we describe in the following. We refer to the two
augmentations as smoothing and Lambertian augmentations, re-
spectively.

Smoothing augmentation: The positional encodingmaps two nearby
points in R3 to two farther away points in R3(2𝑙𝑝+1) allowing the
NeRF to learn sharp discontinuities in volume density between the
two points in R3 as a smooth function in R3(2𝑙𝑝+1) . We reduce the
depth discontinuities, which are caused by discontinuities in the vol-
ume density, by reducing the highest positional encoding frequency
for p𝑖 to 𝑙𝑠𝑝 < 𝑙𝑝 as

𝜎𝑖 , h𝑖 = N𝑠
1 (𝛾 (p𝑖 , 0, 𝑙

𝑠
𝑝)), (5)

where N𝑠
1 is the MLP of the augmented model. The main model is

more accurate where depth discontinuities are required, and the
augmented model is more accurate where discontinuities are not
required. We determine the respective locations as binary masks and
use only the reliable depth estimates from one model to supervise
the other model, as we explain in Sec. 4.1.4.
Since color tends to have more discontinuities than depth in

regions such as textures, we include the remaining high-frequency
positional encoding components of p𝑖 in the input for N2 as

c𝑖 = N𝑠
2 (h𝑖 , 𝛾 (p𝑖 , 𝑙

𝑠
𝑝 , 𝑙𝑝), 𝛾 (v𝑖 , 0, 𝑙𝑣)) . (6)

Note that h𝑖 already includes the low-frequency positional encoding
components of p𝑖 .

Lambertian Augmentation: The ability of the NeRF to predict view-
dependent radiance helps it learn non-Lambertian surfaces. With
fewer images, the NeRF can simply learn any random geometry
and change the color of 3D points in accordance with the input
viewpoint to explain away the observed images [Zhang et al. 2020].
To guard the NeRF against this, we disable the view-dependent
radiance in the second augmented NeRF model to output color
based on p𝑖 alone as

𝜎𝑖 , h𝑖 = N𝑙
1 (𝛾 (p𝑖 , 0, 𝑙𝑝)); c𝑖 = N𝑙

2 (h𝑖), (7)

We note that while the augmentedmodel is more accurate in Lamber-
tian regions, the main model is better equipped to handle specular
objects. We determine the respective locations as we explain in the
following and use only the reliable depth estimates for supervision.

4.1.4 Determining Reliable Depth Estimates. Let the depths esti-
mated by the main and augmented models for pixel q be 𝑧𝑚 and 𝑧𝑎
respectively. We now seek to determine the more accurate depth
among the two. Fig. 5 shows our approach to determining the re-
liability of the estimated depth. Specifically, we reproject a 𝑘 × 𝑘
patch around q to the nearest training view using both 𝑧𝑚 and 𝑧𝑎 .
We then compute the similarity of the reprojected patch with the
corresponding patch in the first image using the mean squared error
(MSE) in intensities. We choose the depth corresponding to lower
MSE as the reliable depth. To filter out the cases where both the
main and augmented models predict incorrect depth, we define a
threshold 𝑒𝜏 and mark the depth to be reliable only if its MSE is also
less than 𝑒𝜏 . If 𝑒𝑚 and 𝑒𝑎 are the reprojection MSE corresponding
to 𝑧𝑚 and 𝑧𝑎 respectively, we compute a mask 𝑚𝑎 that indicates

Fig. 5. Determining the reliability of depths for supervision: We
choose the depth that has higher similarity, with respect to the patches re-
projected to the nearest input view, to supervise the other model (Sec. 4.1.4).
The patches are only representative and are not to scale.

where the augmented model is more reliable as

𝑚𝑎 =

{
1 if (𝑒𝑎 ≤ 𝑒𝑚) and (𝑒𝑎 ≤ 𝑒𝜏)
0 otherwise .

(8)

We compute the reliability mask𝑚𝑚 for the main model similarly.
We now impose the depth supervision as

L𝑎𝑢𝑔 = 1{𝑚𝑎=1} ⊙ ∥𝑧𝑚 −�∇(𝑧𝑎)∥2 + 1{𝑚𝑚=1} ⊙ ∥�∇(𝑧𝑚) − 𝑧𝑎 ∥2,
(9)

where ⊙ denotes element-wise product, 1 is the indicator function
and�∇ is the stop-gradient operator.We impose two losses,L𝑠 for the
smoothing augmentation and L𝑙 for the Lambertian augmentation.
The final depth supervision loss is the sum of the two losses.

For specular regions, the intensities of the reprojected patches
may not match, leading to the masks being zero. This only implies
supervision for fewer pixels and not supervision with incorrect
depth estimates.

4.1.5 Hierarchical Sampling. Since multiple solutions can explain
the observed images in the few-shot setting, the coarse and fine
MLP of the NeRF may converge to different depth estimates for a
given pixel as shown in Fig. 6b. Thus, dense sampling may not be
employed around the region where the fine NeRF predicts the object
surface, which is equivalent to using only the coarse sampling for
the fine NeRF. This can lead to blur in rendered images as seen in
Fig. 6a. To prevent such inconsistencies, we drive the two NeRFs to
be consistent in their solutions by imposing an MSE loss between
the depths predicted by the two NeRFs. If 𝑧𝑐 and 𝑧𝑓 are the depths
estimated by the coarse and fine NeRFs respectively, we define the
coarse-fine consistency loss as

L𝑐 𝑓 𝑐 = 1{𝑚𝑓 =1} ⊙ ∥𝑧𝑐 −�∇(𝑧𝑓)∥2 + 1{𝑚𝑐=1} ⊙ ∥�∇(𝑧𝑐) − 𝑧𝑓 ∥2,
(10)

where the masks 𝑚𝑐 and 𝑚𝑓 are determined as we describe in
Sec. 4.1.4.
Apart from enforcing consistency between the coarse and fine

NeRF models, L𝑐 𝑓 𝑐 provides two additional benefits. Without L𝑐 𝑓 𝑐 ,
the augmentations need to be imposed on the fine NeRF as well,
leading to an increase in the training time andmemory requirements.
Secondly, if one of the coarse or fine NeRFs converges to the correct

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

8 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

(a) The above images correspond to the NeRF-LLFF horns scene. We enlarge
a small region of the frame to better observe the improvement in sharpness.

(b) Histogram of depth values predicted by the coarse and fine NeRF models
for the image patch shown in Fig (a).

Fig. 6. Ineffective hierarchical sampling in sparse-input NeRF: Fig (b)
shows that the coarse and fine models in the NeRF converge to different
depth estimates when training with sparse input views. This leads to inef-
fective hierarchical sampling, resulting in blurry predictions in Fig (a). By
predicting consistent depth estimates with the help of L𝑐𝑓 𝑐 , Simple-NeRF
predicts consistent depth estimates leading to sharp reconstructions. We
note that the models used to synthesize the above images include the sparse
depth supervision (Sec. 4.4).

solution, L𝑐 𝑓 𝑐 helps quickly convey the knowledge to the other
NeRF, thereby facilitating faster convergence.

4.2 Simple-TensoRF
We first provide a brief overview of TensoRF [Chen et al. 2022b]
in Sec. 4.2.1 and also describe the notation required to explain the
design of our augmentations. We discuss the distortions observed
with sparse input TensoRF in Sec. 4.2.2 and then discuss the design
of augmentations in Sec. 4.2.3.

4.2.1 TensoRF Preliminaries. TensoRF models the fields F1 and F2
with a tensor G1 and a tiny MLPN2, respectively. The 3D tensor G1
is factorized as the sum of outer products of 1D vectors v and 2D
matrices M. Specifically, G1 consists of two 3D tensors, G𝜎 to learn
the volume density and G𝑐 to learn the latent features of the color
as

G𝜎 =

𝑅𝜎∑︁
𝑟=1

v𝑋𝜎,𝑟 ◦M𝑌𝑍
𝜎,𝑟 +

𝑅𝜎∑︁
𝑟=1

v𝑌𝜎,𝑟 ◦M𝑋𝑍
𝜎,𝑟 +

𝑅𝜎∑︁
𝑟=1

v𝑍𝜎,𝑟 ◦M𝑋𝑌
𝜎,𝑟 , (11)

G𝑐 =
𝑅𝑐∑︁
𝑟=1

v𝑋𝑐,𝑟 ◦M𝑌𝑍
𝑐,𝑟 ◦ a3𝑟−2 +

𝑅𝑐∑︁
𝑟=1

v𝑌𝑐,𝑟 ◦M𝑋𝑍
𝑐,𝑟 ◦ a3𝑟−1 (12)

+
𝑅𝑐∑︁
𝑟=1

v𝑍𝑐,𝑟 ◦M𝑋𝑌
𝑐,𝑟 ◦ a3𝑟 ,

𝜎𝑖 = sigmoid(G𝜎 (p𝑖)); h𝑖 = G𝑐 (p𝑖), (13)

where ◦ represents the outer product, and 𝑅𝜎 and 𝑅𝑐 represent
the number of components in the factorization of sigma and color
grids, respectively. G(p𝑖) is obtained by trilinearly interpolating G

(a) Floater artifacts: We visualize the depth learned by the TensoRF model
for an input frame from the NeRF-LLFF room scene.

(b) Objects close to camera: We illustrate TensoRF incorrectly placing objects
close to the cameras using a toy example.

Fig. 7. Failure of sparse-input TensoRF: We show the two shortcomings
of TensoRF when trained with few input views. In Fig (a), the orange regions
indicate the floaters. For reference, we also show the depth learned by
Simple-TensoRF, which is free from floaters. We note that the models used
to synthesize these images include the sparse depth supervision (Sec. 4.4). In
Fig (b), the image on the left depicts the true scene, which can be accurately
learned by the TensoRF model provided with dense input views. The image
on the right illustrates how TensoRF can incorrectly place the objects yet
perfectly reconstruct the input views, when training with few input views.

at p𝑖 . v𝑋 ∈ R𝐼 and M𝑌𝑍 ∈ R𝐽 ×𝐾 represent the vector along the
x-axis and the matrix in the yz-plane respectively and so on, where
𝐼 , 𝐽 and 𝐾 represent the resolution of the tensor in the 𝑥,𝑦 and 𝑧
dimensions respectively. Thus, the total number of voxels in the
tensor is 𝑁𝑣𝑜𝑥 = 𝐼 × 𝐽 × 𝐾 . Note that G𝑐 uses an additional vector
a𝑟 ∈ R𝐷 to learn appearance as a latent feature of dimension 𝐷 .
TensoRF assumes that the entire scene is contained within a

3D bounding box b as shown in Fig. 7b, whose vertices are given
by {(𝑏𝑥1 , 𝑏𝑥2), (𝑏𝑦1 , 𝑏𝑦2), (𝑏𝑧1 , 𝑏𝑧2)}. TensoRF handles unbounded
forward-facing scenes by transforming the space into normalized
device coordinates (ndc) similar to the NeRF. The coarse to fine
training is implemented by using lower resolution tensors G𝜎 and
G𝑐 during the initial stages of the optimization and gradually in-
creasing the resolution as the training progresses. Finally, the color
at p𝑖 is obtained using the tiny MLP N2 as

c𝑖 = N2 (h𝑖 , 𝛾 (v, 0, 𝑙𝑣)), (14)

where 𝛾 is the positional encoding described by Eq. (4). Thus, we
note that F2 = 𝛾 ◦N2. The color of the pixel is then obtained through
volume rendering using 𝜎𝑖 and c𝑖 as in Sec. 3. For further details,
we refer the readers to TensoRF [Chen et al. 2022b].

4.2.2 Analysing Sparse Input TensoRF. When training a TensoRF
model with sparse input views, we find that three of its components
cause overfitting, leading to distortions in novel views. Employing

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 9

a higher resolution tensor G𝜎 with a large number of components
𝑅𝜎 allows the TensoRF to learn sharp depth edges, but results in
undesired depth discontinuities in smooth regions causing floaters
as shown in Fig. 7a. Further, the large bounding box b allows the
TensoRF to handle objects that are truly very close to the camera.
On account of large distances between cameras when only a few
input views are available, it may be possible to place objects close to
one camera such that they are out of the field of view of the other
cameras, even for objects visible in multiple input views. Specifically,
TensoRF learns multiple copies of the same object, each visible in
only one input view, thereby explaining the observations without
learning the geometry of the objects as shown in Fig. 7b. We design
the augmentations to reduce the capability of the TensoRF model
with respect to these three components.

4.2.3 Design of Augmentations. Employing a high-resolution and
high-rank tensor G𝜎 enables TensoRF to learn significantly different
𝜎 values for two nearby points in R3 leading to undesired depth
discontinuities in smooth regions. We constrain the augmented
TensoRF to learn only smooth and continuous depth surfaces by
reducing the number of components to 𝑅𝑠𝜎 < 𝑅𝜎 and also reducing
the number of voxels of G𝜎 from to 𝑁 𝑠𝑣𝑜𝑥 < 𝑁𝑣𝑜𝑥 . We note that
modifying only one of these components is insufficient to achieve
the desired smoothing. For example, only reducing the resolution
of the grid allows TensoRF to learn sharp changes in 𝜎 at the voxel
edges, leading to block artifacts. On the other hand, only reducing
the number of components allows TensoRF to learn sharp changes
in 𝜎 on account of the high-resolution grid.
Further, we find that reducing 𝑅𝜎 to 𝑅𝑠𝜎 leads to the augmented

TensoRF learning cloudy volumes instead of hard object surfaces.
We encourage the augmented TensoRF to learn hard surfaces by
employing a mass concentration loss that minimizes the entropy of
mass, grouped into 𝑁𝑚𝑐 intervals as

L𝑚𝑐 = 𝐻
©«

𝑗 (𝑁 /𝑁𝑚𝑐)∑︁
𝑖=(𝑗−1) (𝑁 /𝑁𝑚𝑐)+1

𝑤𝑖

𝑁𝑚𝑐

𝑗=1

ª®®¬ , (15)

where 𝐻 (𝑤1,𝑤2, . . . ,𝑤𝑛) =
∑𝑛
𝑖=1 (−𝑤𝑖 log𝑤𝑖) is the entropy opera-

tor, 𝑁 is the number of 3D points p𝑖 along a ray and𝑤𝑖 is the weight
corresponding to p𝑖 as described in Eq. (2).
Objects that are incorrectly placed close to the camera due to a

large bounding box are typically smooth in depth and hence are
not mitigated by the above augmentation. We design a second aug-
mentation to mitigate such distortions by reducing the size of the
bounding box b along the z-axis by increasing 𝑏𝑧1 to 𝑏𝑠𝑧1 . We note
that replicating the same in the main TensoRF model could lead to
distortions in objects that are truly close to the camera. In practice,
we find that including both the augmentations in a single augmented
TensoRF model works reasonably well, and hence we employ a sin-
gle augmented model. We then use the reliable depth estimates from
the augmented model to supervise the main model as in Eq. (9).

4.3 Simple-ZipNeRF
ZipNeRF [Barron et al. 2023] integrates the iNGPmodel [Müller et al.
2022], which achieves significant improvements in optimization and
rendering times, with the anti-aliasing ability of MipNeRF [Barron

(a) Floater artifacts: We visualize the depth learned by the ZipNeRF model
for an input frame from the MipNeRF360 kitchen scene.

(b) Objects close to camera:We illustrate ZipNeRF incorrectly placing objects
close to the cameras using a toy example.

Fig. 8. We show two shortcomings of ZipNeRF when trained with few input
views. In Fig (a), while the RGB frame for an input view is reconstructed
perfectly, we observe floaters in the depth image, shown by the dark-blue
regions. For reference, we also show the depth learned by Simple-ZipNeRF,
which is free from floaters and better reconstructs the scene. In Fig (b), the
image on the left depicts the true scene, which can be accurately learned
by the ZipNeRF model provided with dense input views. The image on the
right illustrates how the sparse-input ZipNeRF model can incorrectly place
parts of the object close to the cameras, yet perfectly reconstruct the input
views.

et al. 2021] and the ability to handle unbounded 360◦ scenes of
MipNeRF360 [Barron et al. 2022]. Our contributions to enable the
training of ZipNeRF with sparse input views are mainly with respect
to the components of the iNGPmodel, and hence, we believe that the
augmentations designed for ZipNeRF are relevant to iNGP as well.
We discuss the specific components of ZipNeRF that are relevant in
our augmentations in Sec. 4.3.1, analyze the limitations of ZipNeRF
with sparse input views in Sec. 4.3.2 and then discuss the design of
our augmentations in Sec. 4.3.3.

4.3.1 ZipNeRF Preliminaries. ZipNeRF employs a multi-resolution
grid and a hash function that maps every vertex of the grid to an
entry in a hash table. The hash table contains the latent features
representing the volume density and the radiance. Concretely, given
a point p𝑖 ∈ R3, the vertices of the voxel enclosing p𝑖 are mapped to
an entry in a hash table of length𝑇 through the use of hash function
H1 as,

H1 (p) = ©«
3⊕
𝑗=1

𝑝 𝑗𝜋 𝑗
ª®¬ mod 𝑇, (16)

where ⊕ denotes the bit-wise XOR operation, 𝜋 𝑗 is a prime number,
and 𝑝 𝑗 is the 𝑗-th coordinate of p. The feature vectors corresponding
to the eight vertices of the voxel are trilinearly interpolated. The
same procedure is repeated for every level of the multi-resolution
grid, and the corresponding interpolated features are concatenated
to form the latent feature H1 (p𝑖). Two tiny MLPs are employed to

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

10 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

decodeH1 (p𝑖) into the volume density and the radiance as

𝜎𝑖 , h𝑖 = N1 (H1 (p𝑖)); c𝑖 = N2 (h𝑖 , 𝛾 (v, 0, 𝑙𝑣)), (17)

where 𝛾 is the positional encoding as defined in Eq. (4). We note
that F1 and F2 in Eq. (1) are thus represented as F1 = H1 ◦ N1 and
F2 = 𝛾 ◦N2. The color of the pixel is then obtained through volume
rendering using 𝜎𝑖 and c𝑖 as in Sec. 3. Note that multiple vertices in
the grid could map to the same entry in the hash table at every level.
iNGP and ZipNeRF rely on the MLP N1 to resolve such collisions
based on multi-resolution features. Unbounded scenes are handled
by employing a contraction function that maps the distance along
the ray from 𝑧 ∈ [𝑧near, 𝑧far] to a normalized distance 𝑠 ∈ [0, 1]. The
3D points p𝑖 are then sampled in 𝑠-domain. For further details, we
refer the readers to iNGP [Müller et al. 2022] and ZipNeRF [Barron
et al. 2023].

4.3.2 Analysing Sparse Input ZipNeRF. We find that two compo-
nents of ZipNeRF tend to cause overfitting when trained with sparse
input views, leading to distortions in novel views. Firstly, employing
a hash table with a large size𝑇 enables ZipNeRF to learn sharp depth
edges, but introduces undesired depth discontinuities in smooth re-
gions, causing floaters as shown in Fig. 8a. Secondly, since ZipNeRF
handles unbounded 360◦ scenes, it learns the radiance field over the
entire 3D space. Similar to TensoRF, ZipNeRF tends to incorrectly
place multiple copies of objects very close to the camera without
learning the correct geometry as shown in Fig. 8b. Thus, we design
the augmentations to reduce the capability of the ZipNeRF model
with respect to these two components.

4.3.3 Design of Augmentations. Employing a hash table of larger
size 𝑇 allows ZipNeRF to avoid collisions and not share features
across multiple 3D points. This enables ZipNeRF to map two nearby
points in R3 to two independent entries in the hash table, thus map-
ping them to two farther away points in the latent feature space.
This allows the MLP N1 to learn discontinuities in the volume den-
sity, resulting in sharp depth edges. We encourage the augmented
model to share features across more 3D points by reducing the size
of the hash table to 𝑇 𝑠 < 𝑇 .
To mitigate the objects being placed close to the camera incor-

rectly, we cannot reduce the size of the bounding box as in TensoRF,
since ZipNeRF handles unbounded scenes. We achieve a similar
effect by sampling the 3D points p𝑖 along the ray in 𝑠-domain in the
range 𝑠 ∈ [𝑠near, 1] instead of 𝑠 ∈ [0, 1]. This ensures that the objects
are placed at least at a certain distance away from the camera in
the augmented model. However, we note that employing the above
modification in the main model is detrimental to learning or render-
ing any objects that are truly close to the camera. In practice, we
find that including both the augmentations in a single augmented
ZipNeRF model works reasonably well, and hence, we employ a
single augmented model. We then use these depth estimates as in
Eq. (9).

4.4 Overall Loss
Let L𝑚 denote the combination of the losses employed by the cor-
responding radiance fields. For example, while the NeRF employs
only the photometric loss L𝑝ℎ , TensoRF employs a total variation

Table 1. Train and test frame numbers of RealEstate-10K dataset used in
the three different settings.

No. of i/p frames Train frame nos. Test frame nos.
2 10, 20 5–9, 11–19, 21–25
3 10, 20, 30 5–9, 11–19, 21–29, 31–35
4 0, 10, 20, 30 1–9, 11–19, 21–29, 31–35

regularization in addition to L𝑝ℎ . We refer the readers to the corre-
sponding papers for the details of all the losses imposed. We impose
all such losses on the augmented models as well and denote them
by L𝑎 . In addition, we also include the sparse depth loss on both
the main and augmented models as,

L𝑠𝑑 = ∥𝑧𝑚 − 𝑧∥2 + ∥𝑧𝑎 − 𝑧∥2, (18)

where 𝑧𝑚 and 𝑧𝑎 are the depths obtained from the main and aug-
mented models respectively, and 𝑧 is the sparse depth given by the
SfM model [Deng et al. 2022]. Our final loss is a combination of all
the losses as,

L = 𝜆𝑚L𝑚 + 𝜆𝑎L𝑎 + 𝜆𝑠𝑑L𝑠𝑑 + 𝜆𝑎𝑢𝑔L𝑎𝑢𝑔+ (19)
𝜆𝑐 𝑓 𝑐L𝑐 𝑓 𝑐 + 𝜆𝑚𝑐L𝑚𝑐 ,

where L𝑐 𝑓 𝑐 and L𝑚𝑐 are respectively imposed for the main NeRF
and augmented TensoRF models only, and 𝜆𝑚, 𝜆𝑎, 𝜆𝑠𝑑 , 𝜆𝑎𝑢𝑔, 𝜆𝑐 𝑓 𝑐
and 𝜆𝑚𝑐 are hyper-parameters.

5 EXPERIMENTAL SETUP

5.1 Datasets
We evaluate the performance of our models on four popular datasets,
namely NeRF-LLFF [Mildenhall et al. 2019], RealEstate-10K [Zhou
et al. 2018], MipNeRF360 [Barron et al. 2022] and NeRF-Synthetic
[Mildenhall et al. 2020]. We assume the camera parameters are
known for the input images, since in applications such as robotics or
extended reality, external sensors or a pre-calibrated set of cameras
may provide the camera poses.

NeRF-LLFF dataset contains eight real-world forward-facing scenes
typically consisting of an object at the centre against a complex back-
ground. Each scene contains a varying number of images ranging
from 20 to 60, each with a spatial resolution of 1008×756. Following
prior work [Niemeyer et al. 2022], we use every 8th view as the test
view and uniformly sample 2, 3 or 4 input views from the remaining.

RealEstate-10K dataset contains a large number of real-world
forward-facing scenes, from which we select 5 test scenes for our
experiments.We include both indoor and unbounded outdoor scenes
and select 50 temporally continuous frames from each scene. The
frames have a spatial resolution of 1024 × 576. Following prior
work [Somraj and Soundararajan 2023], we reserve every 10th frame
for training and choose 2, 3 or 4 input views among them. In the
remaining 45 frames, we use those frames that are not very far from
the input frames for testing. Specifically, we choose all the frames
between the training views that correspond to interpolation and five
frames on either side that correspond to extrapolation. Tab. 1 shows
the train and test frame numbers we use for the three different
settings.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 11

MipNeRF360 dataset contains seven publicly available unbounded
360◦ real-world scenes including both indoor and outdoor scenes.
Each scene contains 100 to 300 images. The four indoor scenes have
a spatial resolution of approximately 1560 × 1040, and the three
outdoor scenes have an approximate spatial resolution of 1250×830.
Following prior work [Barron et al. 2023], we reserve every 8th view
for testing and uniformly sample 12, 20 and 36 input views from the
remaining. We use more input views on this dataset as compared to
the other datasets owing to the significantly larger fields of view.
NeRF-Synthetic dataset contains eight bounded 360◦ synthetic

scenes, each containing 100 train images and 200 test images. All
the scenes have a spatial resolution of 800 × 800. For training, we
uniformly sample 4, 8 and 12 input views from the training set and
test on all 200 test images.

5.2 Evaluation measures
Wequantitatively evaluate the predicted frames from variousmodels
using the peak signal-to-noise ratio (PSNR), structural similarity
(SSIM) [Wang et al. 2004] and LPIPS [Zhang et al. 2018] measures.
For LPIPS, we use the v0.1 release with the AlexNet [Krizhevsky
et al. 2012] backbone, as suggested by the authors. We also employ
depth mean absolute error (MAE) to evaluate the models on their
ability to predict absolute depth in novel views. In addition, we also
evaluate the models with regard to their ability to predict better
relative depth using the spearman rank order correlation coefficient
(SROCC). Obtaining better relative depth might be more crucial
in downstream applications such as 3D scene editing. Since the
ground truth depth is not provided in the datasets, we train NeRF
and ZipNeRF models with dense input views on forward-facing
and 360◦ datasets respectively and use their depth predictions as
pseudo ground truth. On the NeRF-LLFF and MipNeRF360 datasets,
we normalize the predicted depths by the median ground truth
depth, since the scenes have different depth ranges. With very few
input views on forward-facing datasets, the test views could contain
regions that are not visible in the input views, and hence, we also
evaluate both the view synthesis and depth performance in visible
regions only. To determine such regions, we use the depth estimated
by a NeRF trained with dense input views and compute the visible
region mask through reprojection error in depth. We provide more
details on the mask computation in the supplementary. On the other
hand, the input views cover most of the scene in the 360◦ datasets,
and hence we evaluate the performance on full frames. We do not
evaluate the rendered depth on the NeRF-Synthetic dataset since
the depth estimated with the dense input ZipNeRF is unreliable,
especially in the white background regions, and the ground truth
depth is not provided in the dataset either.

6 EXPERIMENTAL RESULTS
Wepresent themain results of our workwith Simple-NeRF in Sec. 6.1
and then show the extension of our ideas to explicit models in
Secs. 6.2 and 6.3.

6.1 Simple-NeRF
6.1.1 Comparisons. We evaluate the performance of our Simple-
NeRF on the two forward-facing datasets only since the NeRF does

not natively support unbounded 360 scenes. We evaluate the per-
formance of our model against various sparse input NeRF models.
We compare with DS-NeRF [Deng et al. 2022], DDP-NeRF [Roessle
et al. 2022] and RegNeRF [Niemeyer et al. 2022] which regularize the
depth estimated by the NeRF. We also evaluate DietNeRF [Jain et al.
2021] and InfoNeRF [Kim et al. 2022] that regularize the NeRF in
hallucinated viewpoints. We also include two recent models, FreeN-
eRF [Yang et al. 2023] and ViP-NeRF [Somraj and Soundararajan
2023], among the comparisons. We train the models on both datasets
using the codes provided by the respective authors.

6.1.2 Implementation details. We develop our code in PyTorch and
on top of DS-NeRF [Deng et al. 2022]. We employ the Adam Opti-
mizer with an initial learning rate of 5e-4 and exponentially decay it
to 5e-6. We adjust the weights for the different losses such that their
magnitudes after scaling are of similar orders. For the first 10k iter-
ations of the training, we only impose L𝑚,L𝑎 and L𝑠𝑑 . L𝑎𝑢𝑔 and
L𝑐 𝑓 𝑐 are imposed after 10k iterations. We set the hyper-parameters
as follows: 𝑙𝑝 = 10, 𝑙𝑣 = 4, 𝑙𝑠𝑝 = 3, 𝑘 = 5, 𝑒𝜏 = 0.1, 𝜆𝑚 = 𝜆𝑎 = 1,
𝜆𝑠𝑑 = 𝜆𝑎𝑢𝑔 = 𝜆𝑐 𝑓 𝑐 = 0.1 and 𝜆𝑚𝑐 = 0. The network architecture is
exactly the same as DS-NeRF. For the augmented models, we only
change the input dimension of the MLPs N1 and N2 appropriately.
The augmented models are employed only during training, and the
network is exactly the same as Vanilla NeRF for inference. We train
the models on a single NVIDIA RTX 2080 Ti GPU for 100k iterations.

6.1.3 Quantitative andQualitative Results. Tabs. 2 and 3 show the
view-synthesis performance of Simple-NeRF and other prior art
on NeRF-LLFF and RealEstate-10K datasets respectively. We find
that Simple-NeRF achieves state-of-the-art performance on both
datasets in most cases. The higher performance of all the models on
the RealEstate-10K dataset is perhaps due to the scenes being simpler.
Hence, the performance improvement is also smaller as compared to
the NeRF-LLFF dataset. Fig. 9 shows predictions of various models
on an example scene from the RealEstate-10K dataset, where we
observe that Simple-NeRF is the best in reconstructing the novel
view. Figs. 10 to 15 show more comparisons on both datasets with 2,
3, and 4 input views. Further, Simple-NeRF improves significantly
in estimating the depth of the scene as seen in Tab. 4 and Fig. 16.
We provide video comparisons in the supplementary.

We note that the quantitative results in Tabs. 2 and 3 differ from
the values reported in ViP-NeRF [Somraj and Soundararajan 2023]
on account of the following two differences. Firstly, the quality eval-
uation metrics are computed on full frames in ViP-NeRF. However,
we exclude the regions not seen in the input views as explained in
Sec. 5.2. Secondly, while we use the same train set as that of ViP-
NeRF on the RealEstate-10K dataset, we modify the test set as shown
in Tab. 1. We change the test set since the test views that are very far
away from the train views may contain large unobserved regions.
We provide more reasoning and details in the supplementary.

6.1.4 Ablations. We test the importance of each of the components
of our model by disabling them one at a time. We disable the smooth-
ing and Lambertian augmentations and coarse-fine consistency loss
individually. When disabling L𝑐 𝑓 𝑐 , we additionally add augmen-
tations to the fine NeRF since the knowledge learned by coarse

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

12 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Table 2. Quantitative results of NeRF based models on the NeRF-LLFF dataset.

2 views 3 views 4 views
Model LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑
InfoNeRF 0.6024 0.2219 9.16 0.6732 0.1953 8.37 0.6985 0.2270 9.18
DietNeRF 0.5465 0.3283 11.94 0.6120 0.3405 11.76 0.6506 0.3496 11.86
RegNeRF 0.3056 0.5712 18.52 0.2908 0.6334 20.22 0.2794 0.6645 21.32
FreeNeRF 0.2638 0.6322 19.52 0.2754 0.6583 20.93 0.2848 0.6764 21.91
DS-NeRF 0.3106 0.5862 18.24 0.3031 0.6321 20.20 0.2979 0.6582 21.23
DDP-NeRF 0.2851 0.6218 18.73 0.3250 0.6152 18.73 0.3042 0.6558 20.17
ViP-NeRF 0.2768 0.6225 18.61 0.2798 0.6548 20.54 0.2854 0.6675 20.75
Simple-NeRF 0.2688 0.6501 19.57 0.2559 0.6940 21.37 0.2633 0.7016 21.99

Table 3. Quantitative results of NeRF based models on the RealEstate-10K dataset.

2 views 3 views 4 views
Model LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑
InfoNeRF 0.5924 0.4342 12.27 0.6561 0.3792 10.57 0.6651 0.3843 10.62
DietNeRF 0.4381 0.6534 18.06 0.4636 0.6456 18.01 0.4853 0.6503 18.01
RegNeRF 0.4129 0.5916 17.14 0.4171 0.6132 17.86 0.4316 0.6257 18.34
FreeNeRF 0.5036 0.5354 14.70 0.4635 0.5708 15.26 0.5226 0.6027 16.31
DS-NeRF 0.2709 0.7983 26.26 0.2893 0.8004 26.50 0.3103 0.7999 26.65
DDP-NeRF 0.1290 0.8640 27.79 0.1518 0.8587 26.67 0.1563 0.8617 27.07
ViP-NeRF 0.0687 0.8889 32.32 0.0758 0.8967 31.93 0.0892 0.8968 31.95
Simple-NeRF 0.0635 0.8942 33.10 0.0726 0.8984 33.21 0.0847 0.8987 32.88

Fig. 9. Qualitative examples of NeRF based models on the RealEstate-10K dataset with two input views. While DDP-NeRF predictions contain
blurred regions, ViP-NeRF predictions are color-saturated in certain regions of the door. Simple-NeRF does not suffer from these distortions and synthesizes a
clean frame. For reference, we also show the input images.

NeRF may not efficiently propagate to the fine NeRF. We also an-
alyze the need to supervise with only the reliable depth estimates
by disabling the mask and stop-gradients in L𝑎𝑢𝑔 and L𝑐 𝑓 𝑐 . In ad-
dition, we also analyze the effect of including residual positional
encodings 𝛾 (p𝑖 , 𝑙𝑠𝑝 , 𝑙𝑝) while predicting the color in the smoothing
augmentation model. Tab. 5 shows a quantitative comparison be-
tween the ablated models. We observe that each of the components
is crucial, and disabling any of them leads to a drop in performance.
Further, using all the depths for supervision instead of only the

reliable depths leads to a significant drop in performance. Finally,
disabling L𝑐 𝑓 𝑐 also leads to a drop in performance in addition to
increasing the training time by almost 2× due to the inclusion of
augmentations for the fine NeRF.
Since we design our regularizations on top of DS-NeRF [Deng

et al. 2022] baseline, our framework can be seen as a semi-supervised
learning model by considering the sparse depth from a Structure
from Motion (SfM) module as providing limited depth labels and
the remaining pixels as the unlabeled data. Our approach of using

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 13

Fig. 10. Qualitative examples of NeRF based models on RealEstate-10K dataset with three input views. Simple-NeRF predictions are closest to the
ground truth among all the models. In particular, DDP-NeRF predictions have a different shade of color and ViP-NeRF suffers from shape-radiance ambiguity,
creating ghosting artifacts.

Fig. 11. Qualitative examples of NeRF based models on the RealEstate-10K dataset with four input views. We find that Simple-NeRF and ViP-NeRF
perform the best among all the models. However, ViP-NeRF predictions contain minor distortions, as pointed out by the magenta arrow, which is rectified by
Simple-NeRF.

Fig. 12. Qualitative examples of NeRF based models on the NeRF-LLFF dataset with two input views. DDP-NeRF and ViP-NeRF synthesize frames
with broken objects in the second row, and FreeNeRF breaks the object in the first row due to incorrect depth estimations. Simple-NeRF produces sharper
frames devoid of such artifacts.

augmented models in tandem with the main radiance field model is
perhaps closest to the Dual-Student architecture [Ke et al. 2019] that
trains another identical model in tandem with the main model and
imposes consistency regularization between the predictions of the
two models. However, our augmented models have complementary
abilities as compared to the main radiance field model. We now
analyze if there is a need to design augmentations that learn “sim-
pler” solutions by replacing our novel augmentations with identical

replicas of the NeRF as augmentations. The seventh row of Tab. 5
shows a performance drop when using identical augmentations.
Finally, we analyze the need for an augmentation that explicitly

achieves depth smoothing. In other words, we ask if naively reducing
the model capacity in the augmented model achieves a similar effect
to that of our smoothing augmentation. We test this by replacing
the smoothing augmentation with an augmented model that has a
smaller MLP N1. Specifically, we reduce the number of layers from

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

14 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Fig. 13. Qualitative examples of NeRF based models on the NeRF-LLFF dataset with three input views. In the first row, the orchid is displaced out of
the cropped box in the FreeNeRF prediction, due to incorrect depth estimation. ViP-NeRF and RegNeRF fail to predict the complete orchid accurately and
contain distortions at either end. In the second row, ViP-NeRF prediction contains severe distortions. Simple-NeRF reconstructs the best among all the models
in both examples.

Fig. 14. Qualitative examples of NeRF based models on the NeRF-LLFF dataset with four input views. In the first row, we find that ViP-NeRF,
FreeNeRF, and DDP-NeRF struggle to reconstruct the shape of the leaf accurately. In the second row, DS-NeRF introduces floaters. Simple-NeRF does not
suffer from such artifacts and reconstructs the shapes better.

Fig. 15. Qualitative examples of Simple-NeRF on the NeRF-LLFF dataset with two, three, and four input views.We observe errors in depth estimation
with two input views, causing a change in the position of the roof. While this is corrected with three input views, there are a few shape distortions in the metal
rods. With four input views, even such distortions are corrected.

eight to four in the augmented model. From the results in the last
row of Tab. 5, we conclude that reducing the positional encoding
degree is more effective, perhaps because the MLP with fewer layers
may still be capable of learning floaters on account of using all the
positional encoding frequencies.

6.2 Simple-TensoRF
6.2.1 Implementation Details. Building on the original TensoRF
code base, we employ Adam Optimizer with an initial learning rate

of 2𝑒 − 2 and 1𝑒 − 3 for the tensor and MLP parameters respec-
tively, which decay to 2𝑒 − 3 and 1𝑒 − 4. We employ the same hyper-
parameters as the original implementation for the main model as fol-
lows: 𝑅𝜎 = 24, 𝑅𝑐 = 72, b = {(−1.5, 1.5), (−1.67, 1.67), (−1.0, 1.0)},
𝑁𝑣𝑜𝑥 = 6403, 𝐷 = 27, and 𝑙𝑣 = 0. We set 𝑅𝑠𝜎 = 12, 𝑏𝑠𝑧1 = −0.5 and
𝑁 𝑠𝑣𝑜𝑥 = 1603, 𝑁𝑚𝑐 = 5, 𝑘 = 5, 𝑒𝜏 = 0.1 for the augmented model and
the remaining hyper-parameters are the same as the main model.
We weigh the losses as 𝜆𝑚 = 𝜆𝑎 = 1, 𝜆𝑠𝑑 = 𝜆𝑎𝑢𝑔 = 0.1, 𝜆𝑚𝑐 =

0.01 and 𝜆𝑐 𝑓 𝑐 = 0. We train the models on a single NVIDIA RTX

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 15

Table 4. Evaluation of depth estimated by different NeRF based models
with two input views. The reference depth is obtained using NeRF with
dense input views. The depth MAE on the two datasets is of different orders
on account of different depth ranges.

NeRF-LLFF RealEstate-10K
model MAE ↓ SROCC ↑ MAE ↓ SROCC ↑
DS-NeRF 0.2074 0.7230 0.7164 0.6660
DDP-NeRF 0.2048 0.7480 0.4831 0.7921
ViP-NeRF 0.1999 0.7344 0.3856 0.8446
Simple-NeRF 0.1420 0.8480 0.3269 0.9215

Fig. 16. Estimated depthmaps of NeRF basedmodels on RealEstate-10K
and NeRF-LLFF datasets with two input views. In both examples, the two
rows show the predicted images and the depths respectively. We find that
Simple-NeRF is significantly better at estimating the scene depth. Also, DDP-
NeRF synthesizes the left table edge at a different angle due to incorrect
depth estimation.

Table 5. SimpleNeRF ablation experiments on RealEstate-10K and NeRF-
LLFF datasets with two input views.

RealEstate-10K NeRF-LLFF
model LPIPS ↓MAE ↓LPIPS ↓MAE ↓
Simple-NeRF 0.0635 0.33 0.2688 0.14
w/o smoothing augmentation 0.0752 0.38 0.2832 0.15
w/o Lambertian augmentation 0.0790 0.39 0.2834 0.15
w/o coarse-fine consistency 0.0740 0.42 0.3002 0.19
w/o reliable depth 0.0687 0.45 0.3020 0.22
w/o residual pos enc 0.0790 0.40 0.2837 0.16
w/ identical augmentations 0.0777 0.40 0.2849 0.15
w/ smaller n/w as smoothing aug 0.0740 0.38 0.2849 0.15

2080 Ti 11GB GPU for 25k iterations and enable L𝑎𝑢𝑔 after 5k itera-
tions.

6.2.2 Quantitative andQualitative Results. Tab. 6 shows the view-
synthesis performance of Simple-TensoRF on the NeRF-LLFF and
RealEstate-10K datasets. We compare the performance of our model
against the vanilla TensoRF and a baseline we create by adding
sparse depth loss on TensoRF, which we refer to as DS-TensoRF.
We find that Simple-TensoRF significantly improves performance
over TensoRF and DS-TensoRF on both datasets. Fig. 18 compares

the three models visually, where we observe that Simple-TensoRF
mitigates multiple distortions observed in the renders of TensoRF
and DS-TensoRF. From Tab. 6 and Fig. 19, we observe that Simple-
TensoRF is significantly better at estimating the scene depth than
both TensoRF and DS-TensoRF. While we observe that Simple-NeRF
performs marginally better than Simple-TensoRF in most cases,
Simple-TensoRF achieves a lower depth MAE on the RealEstate-10K
dataset.
We test the need for the different components of our augmen-

tation by disabling them one at a time and show the quantitative
results in the second half of Tab. 6. Specifically, we disable the re-
duction in the number of tensor decomposition components and
the number of voxels in the first two rows respectively. In the third
row, we disable both the components, where the augmented model
consists of the reduction in the bounding box size only. We find that
disabling either or both of the components leads to a drop in per-
formance. In particular, Fig. 20 shows that reducing only the tensor
resolution and not reducing the number of tensor decomposition
components leads to translucent blocky floaters. On the other hand,
reducing only the number of components causes small and com-
pletely opaque floaters. These effects can be better observed in the
supplementary videos. Further, we find that reducing the number
of components 𝑅𝜎 is more crucial in obtaining simpler solutions on
the RealEstate-10K dataset.

6.3 Simple-ZipNeRF
6.3.1 Implementation Details. We build our code in PyTorch on
top of an unofficial ZipNeRF implementation1. For the main model,
we retain the hyper-parameters of the original ZipNeRF. For the
augmented model, we reduce the size of the hash table from𝑇 = 221
to 𝑇 𝑠 = 211 and set 𝑠near = 0.3. We impose L𝑎𝑢𝑔 after 5k iterations
and use 𝑘 = 5, 𝑒𝜏 = 0.2. The rest of the hyper-parameters for the
augmented model are the same as the main model. We weigh the
losses as 𝜆𝑚 = 𝜆𝑎 = 1, 𝜆𝑎𝑢𝑔 = 10 and 𝜆𝑠𝑑 = 𝜆𝑐 𝑓 𝑐 = 𝜆𝑚𝑐 = 0. We
do not impose the sparse depth loss L𝑠𝑑 since we find that Colmap
either fails in sparse reconstruction or provides noisy sparse depth
for 360◦ scenes. We train the models on a single NVIDIA RTX 2080
Ti 11GB GPU for 25k iterations.

6.3.2 Quantitative and Qualitative Results. We compare the per-
formance of ZipNeRF with and without our augmentations on the
MipNeRF360 and NeRF-Synthetic datasets in Tabs. 7 and 8 respec-
tively. We observe that including our augmentations improves per-
formance significantly on both datasets in terms of all the evaluation
measures. This observation is further supported by the qualitative
examples in Figs. 21 to 23, where we observe a clear improvement in
the quality of the rendered novel views and depth when employing
our augmentations. In addition, Tab. 7 and Fig. 24 also shows the
performance of the augmented model on the MipNeRF360 dataset.
We observe a significant reduction in distortions in the renders of
the augmented model; however, the same does not reflect in the
quantitative evaluation due to the blur introduced by the augmented
model.

1ZipNeRF implementation: https://github.com/SuLvXiangXin/zipnerf-pytorch

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

16 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

(a)Without smoothing augmentation: The ablated model introduces floaters that are
significantly reduced by using the smoothing augmentation model.

(b) Without Lambertian augmentation: The ablated model suffers from
shape-radiance ambiguity and produces ghosting artifacts.

(c) Without reliability of depth supervision: The smoothing augmentation model strug-
gles to learn sharp depth discontinuities at true depth edges. Supervising the main
model using such depths without determining their reliability causes the main model
to learn incorrect depth. As a result, the ablated model fails to learn sharp depth
discontinuities at certain regions.

(d) Without coarse-fine consistency: We observe that while Simple-
NeRF predictions are sharper, the ablated model without coarse-fine
consistency loss, L𝑐𝑓 𝑐 produces blurred renders. This is similar to
Fig. 6a, where we observe DS-NeRF also produce blurred renders.

Fig. 17. Qualitative examples for Simple-NeRF ablated models on the NeRF-LLFF dataset with two input views.We also show the outputs of the
dense-input NeRF for reference.

Table 6. Quantitative results of TensoRF based models with three input views.

NeRF-LLFF RealEstate-10K

Model LPIPS ↓ SSIM ↑ PSNR ↑ Depth
MAE ↓

Depth
SROCC ↑ LPIPS ↓ SSIM ↑ PSNR ↑ Depth

MAE ↓
Depth

SROCC ↑
TensoRF 0.5474 0.3163 12.29 0.67 0.03 0.0986 0.8532 29.62 0.44 0.63
DS-TensoRF 0.2897 0.6291 18.58 0.23 0.73 0.0739 0.8872 32.50 0.27 0.75
Simple-TensoRF 0.2461 0.6749 20.22 0.17 0.83 0.0706 0.8920 32.70 0.22 0.80
𝑅𝑠𝜎 = 𝑅𝜎 0.2536 0.6677 19.85 0.18 0.81 0.085 0.8821 30.94 0.27 0.77
𝑁 𝑠𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥 0.2568 0.6579 19.95 0.19 0.79 0.0735 0.8896 32.22 0.22 0.82
𝑅𝑠𝜎 = 𝑅𝜎 ;𝑁 𝑠𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥 0.2728 0.6424 19.50 0.22 0.74 0.0787 0.8871 31.73 0.23 0.79

(a) NeRF-LLFF dataset: In the first example, we find that the horn is broken
and almost half of the bony frill is missing in the renders of TensoRF and
DS-TensoRF. In the second example, TensoRF and DS-TensoRF extend the
red stigma and break the green stem. Simple-TensoRF does not introduce
such distortions and is closest to the ground truth.

(b) RealEstate-10K dataset: In the first example, we observe a shift in the
position of the door due to incorrect depth estimation. With sparse depth
supervision, DS-TensoRF moves the door to the correct position, but only
partially. Adding our augmentations provides the best result. Similarly, we
see distortions in the frames rendered by TensoRF and DS-TensoRF in the
second example, which are reduced significantly by Simple-TensoRF.

Fig. 18. Qualitative examples of TensoRF based models with three input views.

Further, in Fig. 25, we show the performance of ZipNeRF and
Simple-ZipNeRF as the number of input views increases. We ob-
serve that the performance of ZipNeRF is too low with very few
input images, where our augmentation does not help improve the

performance. As the number of input views increases, the perfor-
mance of ZipNeRF improves, and our augmentation helps improve
the performance significantly. Further, with a large number of input

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 17

Table 7. Quantitative results of ZipNeRF based models on the MipNeRF360 dataset.

12 input views 20 input views 36 input views

Model LPIPS ↓ SSIM ↑ PSNR ↑ Depth
MAE ↓

Depth
SROCC ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑

ZipNeRF 0.5614 0.4616 15.86 7.43 0.28 0.435 0.5911 18.89 0.3316 0.6737 21.78
Augmented ZipNeRF 0.6825 0.4462 16.27 96.42 0.49 0.619 0.5244 19.31 0.5917 0.5646 21.21
Simple-ZipNeRF 0.4876 0.5245 17.60 3.54 0.51 0.3421 0.6456 21.03 0.239 0.7458 24.19

Table 8. Quantitative results of ZipNeRF based models on the NeRF-Synthetic dataset.

4 input views 8 input views 12 input views
Model LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑
ZipNeRF 0.4263 0.7548 11.04 0.2877 0.7973 15.01 0.1625 0.8528 20.12
Simple-ZipNeRF 0.3878 0.7715 11.50 0.2461 0.8063 15.88 0.1532 0.8531 20.51

Fig. 19. Estimated depth maps of TensoRF based models on RealEstate-
10K and NeRF-LLFF datasets with three input views. In both examples, the
two rows show the predicted images and the depths respectively. In the
first example, TensoRF and DS-TensoRF incorrectly estimate the depth of
the floor as shown by the orange regions. In the second row, while TensoRF
is unable to estimate the scene geometry, DS-TensoRF is unable to mitigate
all the floaters in orange color. We find that Simple-TensoRF is significantly
better at estimating the scene depth.

Fig. 20. Qualitative examples of Simple-TensoRF ablations on NeRF-
LLFF dataset with three input views. Reducing the tensor resolution only
leads to translucent floaters as shown by the arrows in the second column.
On the other hand, only reducing the number of tensor decomposed com-
ponents leads to small opaque floaters as shown by the arrows in the third
column.

(a) 12 input views. (b) 20 input views. (c) 36 input views.

Fig. 21. Qualitative examples of ZipNeRF and Simple-ZipNeRF on the
MipNeRF360 dataset. In the first column, we observe that ZipNeRF places
large regions of the pink mat close to the camera, occluding the bulldozer. In
the second example, we observe objects being broken or placed at incorrect
positions due to incorrect depth estimation, as well as translucent floaters in
ZipNeRF predictions. Finally, in the third column, we observe that ZipNeRF
fails to reconstruct the tree stump. In all the cases, Simple-ZipNeRF produces
very good reconstructions without any floaters.

Fig. 22. Simple-ZipNeRF estimated depthmaps onMipNeRF360 dataset
with 20 input views. We observe that the depth map estimated by ZipNeRF
contains floaters and that the depth estimates for the bonsai are incorrect.
However, Simple-ZipNeRF does not suffer from such issues and the esti-
mated depth is very close to that of ZipNeRF with dense input views.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

18 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

(a) 4 input views. (b) 8 input views. (c) 12 input views.

Fig. 23. Qualitative examples of ZipNeRF and Simple-ZipNeRF on the
NeRF-Synthetic dataset.While the renders of ZipNeRF contain multiple
floaters, Simple-ZipNeRF outputs are cleaner and free from such artifacts.

Table 9. Training and inference (per frame) time and memory comparison
of various models.

Training Inference
Model Time (hrs) Mem (GB) Time (sec) Mem (GB)
NeRF 14 6.1 54 0.8
Simple-NeRF 21 8.8 54 0.8
TensoRF 2.1 6.8 21 4.0
Simple-TensoRF 3.7 7.2 21 4.0
ZipNeRF 2.0 6.7 13 4.8
Simple-ZipNeRF 4.2 8.6 13 4.8

views, the performance of ZipNeRF saturates, and our augmenta-
tion does not help improve the performance. This shows that our
augmentations are highly effective when the performance of the
base model is moderately good.

7 DISCUSSION

7.1 Computational Complexity
We report the approximate GPU memory utilization and time taken
for training and inference of our family of Simple-RF models in
Tab. 9. We observe that Simple-NeRF with two augmentations takes
only 1.5 times more time than NeRF for training on account of
employing augmentations on the coarse NeRF only. While coarse
NeRF queries the MLPs 64 times, the fine NeRF queries the MLPs

192 times, giving a combined 256 queries per pixel. Simple-NeRF
queries the coarse MLPs 192 times and the fine MLPs 192 times, with
a total of 384 queries per pixel. On the other hand, Simple-TensoRF
and Simple-ZipNeRF take twice the time as TensoRF and ZipNeRF
respectively on account of employing a single augmentation with
exactly the same number of queries as the main model. We note
that it could be possible to further reduce the training time for
ZipNeRF by employing the augmentation only on the proposal
MLP. However, this requires the proposal MLPs to output color
and to be trained with the photometric loss instead of the interval
loss [Barron et al. 2023]. The effect of such a change is unclear and
is left for future work. Interestingly, Simple-TensoRF requires only
a little more memory than TensoRF during training, perhaps due
to the low resolution tensor employed by the augmented model.
Further, while the NeRF models require significantly less memory
during inference, grid based models such as TensoRF and ZipNeRF
require more memory due to the use of a voxel grid in place of
MLPs. Finally, we note that at inference time, Simple-RF models
take exactly the same time and memory as the baseline models
since the augmentations are disabled during inference. All the above
experiments are conducted on a single NVIDIA RTX 2080 Ti 11GB
GPU.

7.2 Limitations and Future Work
Our approach of obtaining reliable depth supervision by learning
simpler solutions is limited to the cases where the base model
achieves a reasonable performance but suffers from various dis-
tortions due to overfitting. Our regularizations may not help signifi-
cantly if the performance of the base model is very poor, as in the
case of learning a highly complex scene with very few input views.
In such cases, we can employ our regularizations on top of other
sparse input radiance fields as we do for the NeRF-LLFF dataset.

Training augmented models adds compute and memory overhead
during training. It would be interesting to explore deriving augmen-
tations from the main model itself, without training an augmented
model separately. For example, instead of training a separate aug-
mented model with a lower resolution grid in Simple-TensoRF, one
could try downsampling the grid from the main model. However,
achieving the same with other augmentations is non-trivial and is
left for future work.

While we perform elementary modifications of radiance fields to
obtain simpler solutions, it would be interesting to explore more
sophisticated augmentations to learn simpler solutions. For exam-
ple, one could explore inducing smoothness through different hash
functions in Simple-ZipNeRF. Such sophisticated augmentations
could help obtain larger improvements in performance. However,
such explorations are beyond the scope of this work.
Our approach to determining reliable depth estimates for super-

vision depends on the reprojection error, which may be high for
specular objects even if the depth estimates are correct. It may be
helpful to explore approaches to determine the reliability of depth
estimates without employing the reprojection error.
Our model requires accurate camera poses of the sparse input

images. While the joint optimization of camera poses and scene
geometry is explored when dense input views are available [Jeong

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 19

Fig. 24. Qualitative examples to visualize the effect of our augmentation. We observe that the ZipNeRF render contains severe distortions. The output
of our augmented model is significantly better in reconstructing the scene, but the render contains severe blur on account of smoothing introduced by small
hash table. Learning from the depth provided by the augmented model, Simple-ZipNeRF is able to reconstruct the scene better as well as retain sharpness by
utilizing the larger hash table.

(a) MipNeRF360 Bicycle scene. (b) MipNeRF360 Counter scene.

Fig. 25. Performance of ZipNeRF and Simple-ZipNeRF with increas-
ing number of input views. We observe that our augmentation improves
performance significantly over ZipNeRF, when the performance of the base
model is moderate. When the performance of the base model is extremely
poor or extremely good, the augmentation does not have a significant im-
pact. However, our augmentation does not lead to significant degradation
in performance in either case.

et al. 2021; Park et al. 2023], it would be helpful to explore the
same with sparse input views. In our experiments, we found that
a trivial combination of a pose optimization radiance field such as
NeRF- - [Wang et al. 2021c] and a sparse input radiance field such as
Simple-NeRF or DS-NeRF leads to very poor performances. While
some approaches [Lin et al. 2021] for camera pose optimization are
limited to NeRF and do not extend to explicit radiance fields, other
approaches [Bian et al. 2023; Han et al. 2024; Truong et al. 2023]
require pre-training on a large dataset. We believe this problem
requires a deeper study and is a very important direction to be
pursued in the future.

Finally, our approach of employing augmentations to obtain better
supervision can be explored in sparse input novel view synthesis of
highly specular objects [Verbin et al. 2022], refractive objects [Deng
et al. 2024], low-light scenes [Mildenhall et al. 2022], blurred im-
ages [Ma et al. 2022] and high dynamic range images [Lu et al. 2024].
Further, it would be interesting to explore the use of augmentations
in related inverse problems such as surface reconstruction [Long
et al. 2022; Wang et al. 2021a], dynamic view synthesis [Fridovich-
Keil et al. 2023; Pumarola et al. 2021; Somraj et al. 2024, 2022] and
style transfer [Wang et al. 2024] when only sparse input viewpoints
are available.

8 CONCLUSION
We address the problem of few-shot radiance fields by obtaining
depth supervision from simpler solutions learned by lower capa-
bility augmented models that are trained in tandem with the main
radiance field model. We show that augmentations can be designed
for both implicit models, such as NeRF, and explicit radiance fields,
such as TensoRF and ZipNeRF. Since the shortcomings of various
radiance fields are different, we design the augmentations appro-
priately for each model. We show that our augmentations improve
performance significantly on all three models, and we achieve state-
of-the-art performance on forward-facing scenes as well as 360◦
scenes. Notably, our models achieve a significant improvement in
the depth estimation of the scene, which indicates a superior geom-
etry estimation.

ACKNOWLEDGMENTS
This work was supported in part by a grant from Qualcomm. The
first author was supported by the Prime Minister’s Research Fellow-
ship awarded by the Ministry of Education, Government of India.

REFERENCES
Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation for
Anti-Aliasing Neural Radiance Fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV).

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.
2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.
2023. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV).

Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan,
Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020. Neural
Reflectance Fields for Appearance Acquisition. arXiv e-prints (2020). arXiv:2008.
03824

Wenjing Bian, Zirui Wang, Kejie Li, Jia-Wang Bian, and Victor Adrian Prisacariu. 2023.
NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior. (June 2023).

Matteo Bortolon, Alessio Del Bue, and Fabio Poiesi. 2022. Data augmentation for NeRF:
a geometric consistent solution based on view morphing. arXiv e-prints (2022).
arXiv:2210.04214

Joel Carranza, Christian Theobalt, Marcus A. Magnor, and Hans-Peter Seidel. 2003.
Free-Viewpoint Video of Human Actors. ACM Transactions on Graphics (TOG) 22, 3
(July 2003), 569–577. https://doi.org/10.1145/882262.882309

Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum. 2000. Plenoptic
Sampling. In Proceedings of the ACMConference on Computer Graphics and Interactive
Techniques (SIGGRAPH). https://doi.org/10.1145/344779.344932

Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis.
2013. Depth Synthesis and Local Warps for Plausible Image-Based Navigation. ACM

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

arXiv:2008.03824
arXiv:2008.03824
arXiv:2210.04214
https://doi.org/10.1145/882262.882309
https://doi.org/10.1145/344779.344932

20 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Transactions on Graphics (TOG) 32, 3 (July 2013). https://doi.org/10.1145/2487228.
2487238

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022b. TensoRF:
Tensorial Radiance Fields. In Proceedings of the European Conference on Computer
Vision (ECCV).

Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and
Hao Su. 2021. MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo. arXiv e-prints (March 2021). arXiv:2103.15595

Di Chen, Yu Liu, Lianghua Huang, Bin Wang, and Pan Pan. 2022a. GeoAug: Data
Augmentation for Few-Shot NeRF with Geometry Constraints. In Proceedings of the
European Conference on Computer Vision (ECCV).

Shenchang Eric Chen and Lance Williams. 1993. View Interpolation for Image Syn-
thesis. In Proceedings of the ACM Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH). https://doi.org/10.1145/166117.166153

Yuedong Chen, Haofei Xu, Qianyi Wu, Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai.
2023. Explicit Correspondence Matching for Generalizable Neural Radiance Fields.
arXiv e-prints (2023). arXiv:2304.12294

Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas
Geiger, Tat-Jen Cham, and Jianfei Cai. 2024. MVSplat: Efficient 3DGaussian Splatting
from Sparse Multi-View Images. arXiv e-prints (2024). arXiv:2403.14627

Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard Pons-Moll. 2021. Stereo
Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Jea-Hyung Cho, Wonseok Song, Hyuk Choi, and Taejeong Kim. 2017. Hole Filling
Method for Depth Image Based Rendering Based on Boundary Decision. IEEE Signal
Processing Letters (SPL) 24, 3 (2017), 329–333.

Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese,
Hugues Hoppe, Adam Kirk, and Steve Sullivan. 2015. High-Quality Streamable
Free-Viewpoint Video. ACM Transactions on Graphics (TOG) 34, 4 (July 2015).
https://doi.org/10.1145/2766945

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. 2022. Depth-Supervised
NeRF: Fewer Views and Faster Training for Free. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Weijian Deng, Dylan Campbell, Chunyi Sun, Shubham Kanitkar, Matthew Shaffer, and
Stephen Gould. 2024. Ray Deformation Networks for Novel View Synthesis of
Refractive Objects. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV).

Christoph Fehn. 2004. Depth-Image-Based Rendering (DIBR), Compression and Trans-
mission for a New Approach on 3D-TV. In Proceedings of the Stereoscopic Displays
and Virtual Reality Systems XI. https://doi.org/10.1117/12.524762

John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. 2016. DeepStereo:
Learning to Predict New Views From the World’s Imagery. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and
Angjoo Kanazawa. 2023. K-Planes: Explicit Radiance Fields in Space, Time, and
Appearance. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields Without Neural Networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Zelin Gao, Weichen Dai, and Yu Zhang. 2024. HG3-NeRF: Hierarchical Geometric,
Semantic, and Photometric Guided Neural Radiance Fields for Sparse View Inputs.
arXiv e-prints (2024). arXiv:2401.11711

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996.
The Lumigraph. In Proceedings of the ACM Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH). https://doi.org/10.1145/237170.237200

Shuai Guo, Qiuwen Wang, Yijie Gao, Rong Xie, and Li Song. 2024. Depth-Guided
Robust and Fast Point Cloud Fusion NeRF for Sparse Input Views. Proceedings
of the AAAI Conference on Artificial Intelligence 38, 3 (March 2024), 1976–1984.
https://doi.org/10.1609/aaai.v38i3.27968

Xinyang Han, Zelin Gao, Angjoo Kanazawa, Shubham Goel, and Yossi Gandelsman.
2024. The More You See in 2D, the More You Perceive in 3D. arXiv e-prints (2024).
arXiv:2404.03652

Ajay Jain, Matthew Tancik, and Pieter Abbeel. 2021. Putting NeRF on a Diet: Se-
mantically Consistent Few-Shot View Synthesis. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV).

Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Anima Anandkumar, Minsu Cho,
and Jaesik Park. 2021. Self-Calibrating Neural Radiance Fields. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).

Mohammad Mahdi Johari, Yann Lepoittevin, and François Fleuret. 2022. GeoNeRF:
Generalizing NeRFWith Geometry Priors. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. 2016. Learning-
Based View Synthesis for Light Field Cameras. ACM Transactions on Graphics (TOG)

35, 6 (December 2016). https://doi.org/10.1145/2980179.2980251
Vijayalakshmi Kanchana, Nagabhushan Somraj, Suraj Yadwad, and Rajiv Soundararajan.

2022. Revealing Disocclusions in Temporal View Synthesis through Infilling Vector
Prediction. In Proceedings of the IEEE Winter Conference on Applications of Computer
Vision (WACV).

Zhanghan Ke, Daoye Wang, Qiong Yan, Jimmy Ren, and Rynson W.H. Lau. 2019.
Dual Student: Breaking the Limits of the Teacher in Semi-Supervised Learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.
3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions
on Graphics (TOG) 42, 4 (2023).

Mijeong Kim, Seonguk Seo, and Bohyung Han. 2022. InfoNeRF: Ray Entropy Mini-
mization for Few-Shot Neural Volume Rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classification
with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS).

Minseop Kwak, Jiuhn Song, and Seungryong Kim. 2023. GeCoNeRF: Few-shot Neural
Radiance Fields via Geometric Consistency. arXiv e-prints (2023). arXiv:2301.10941

SeokYeong Lee, JunYong Choi, Seungryong Kim, Ig-Jae Kim, and Junghyun Cho. 2023.
ExtremeNeRF: Few-shot Neural Radiance Fields Under Unconstrained Illumination.
arXiv e-prints (2023). arXiv:2303.11728

Seoyoung Lee and Joonseok Lee. 2024. PoseDiff: Pose-Conditioned Multimodal Diffu-
sion Model for Unbounded Scene Synthesis From Sparse Inputs. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

Marc Levoy and Pat Hanrahan. 1996. Light Field Rendering. In Proceedings of the
ACM Conference on Computer Graphics and Interactive Techniques (SIGGRAPH).
https://doi.org/10.1145/237170.237199

Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, and Lin Gu. 2024.
DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with Global-
Local Depth Normalization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. 2021. BARF:
Bundle-Adjusting Neural Radiance Fields. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV).

Kai-En Lin, Yen-Chen Lin, Wei-Sheng Lai, Tsung-Yi Lin, Yi-Chang Shih, and Ravi
Ramamoorthi. 2023. Vision Transformer for NeRF-Based View Synthesis From a
Single Input Image. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV).

Xinhang Liu, Shiu-hong Kao, Jiaben Chen, Yu-Wing Tai, and Chi-Keung Tang. 2023.
Deceptive-NeRF: Enhancing NeRF Reconstruction using Pseudo-Observations from
Diffusion Models. arXiv e-prints (2023). arXiv:2305.15171

Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng Wang, Christian Theobalt,
Xiaowei Zhou, and Wenping Wang. 2022. Neural Rays for Occlusion-Aware Image-
Based Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping Wang. 2022.
SparseNeuS: Fast Generalizable Neural Surface Reconstruction from Sparse Views.
In Proceedings of the European Conference on Computer Vision (ECCV).

Zhan Lu, Qian Zheng, Boxin Shi, and Xudong Jiang. 2024. Pano-NeRF: Synthesizing
High Dynamic Range Novel Views with Geometry from Sparse Low Dynamic Range
Panoramic Images. Proceedings of the AAAI Conference on Artificial Intelligence 38, 4
(March 2024), 3927–3935. https://doi.org/10.1609/aaai.v38i4.28185

Li Ma, Xiaoyu Li, Jing Liao, Qi Zhang, Xuan Wang, Jue Wang, and Pedro V. Sander.
2022. Deblur-NeRF: Neural Radiance Fields From Blurry Images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

William R Mark. 1999. Post-Rendering 3D Image Warping: Visibility, Reconstruction, and
Performance for Depth-Image Warping. The University of North Carolina at Chapel
Hill.

Leonard McMillan and Gary Bishop. 1995. Plenoptic Modeling: An Image-Based
Rendering System. In Proceedings of the ACM Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH). https://doi.org/10.1145/218380.218398

Leonard McMillan Jr. 1997. An Image-Based Approach to Three-Dimensional Computer
Graphics. The University of North Carolina at Chapel Hill.

Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul P. Srinivasan, and
Jonathan T. Barron. 2022. NeRF in the Dark: High Dynamic Range View Synthesis
From Noisy Raw Images. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari,
Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. 2019. Local Light Field Fusion:
Practical View Synthesis with Prescriptive Sampling Guidelines. ACM Transactions
on Graphics (TOG) 38, 4 (July 2019), 1–14. https://doi.org/10.1145/3306346.3322980

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. In Proceedings of the European Conference on Computer Vision
(ECCV).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

https://doi.org/10.1145/2487228.2487238
https://doi.org/10.1145/2487228.2487238
arXiv:2103.15595
https://doi.org/10.1145/166117.166153
arXiv:2304.12294
arXiv:2403.14627
https://doi.org/10.1145/2766945
https://doi.org/10.1117/12.524762
arXiv:2401.11711
https://doi.org/10.1145/237170.237200
https://doi.org/10.1609/aaai.v38i3.27968
arXiv:2404.03652
https://doi.org/10.1145/2980179.2980251
arXiv:2301.10941
arXiv:2303.11728
https://doi.org/10.1145/237170.237199
arXiv:2305.15171
https://doi.org/10.1609/aaai.v38i4.28185
https://doi.org/10.1145/218380.218398
https://doi.org/10.1145/3306346.3322980

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 21

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neu-
ral Graphics Primitives with a Multiresolution Hash Encoding. ACM Transactions
on Graphics (TOG) 41, 4 (2022), 1–15.

Zhangkai Ni, Peiqi Yang,Wenhan Yang, Hanli Wang, LinMa, and Sam Kwong. 2024. Col-
NeRF: Collaboration for Generalizable Sparse Input Neural Radiance Field. Proceed-
ings of the AAAI Conference on Artificial Intelligence 38, 5 (March 2024), 4325–4333.
https://doi.org/10.1609/aaai.v38i5.28229

Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall, Mehdi S. M. Sajjadi, Andreas
Geiger, and Noha Radwan. 2022. RegNeRF: Regularizing Neural Radiance Fields for
View Synthesis From Sparse Inputs. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Keunhong Park, Philipp Henzler, Ben Mildenhall, Jonathan T. Barron, and Ricardo
Martin-Brualla. 2023. CamP: Camera Preconditioning for Neural Radiance Fields.
ACM Transactions on Graphics (TOG) 42, 6 (December 2023). https://doi.org/10.
1145/3618321

Eric Penner and Li Zhang. 2017. Soft 3D Reconstruction for View Synthesis. ACM
Transactions on Graphics (TOG) 36, 6 (November 2017), 1–11. https://doi.org/10.
1145/3130800.3130855

Julien Philip and Valentin Deschaintre. 2023. Floaters No More: Radiance Field Gradient
Scaling for Improved Near-Camera Training. In Proceedings of the Eurographics
Symposium on Rendering. https://doi.org/10.2312/sr.20231122

Malte Prinzler, Otmar Hilliges, and Justus Thies. 2023. DINER: Depth-Aware Image-
Based NEural Radiance Fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. 2021.
D-NeRF: Neural Radiance Fields for Dynamic Scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Ravi Ramamoorthi. 2023. NeRFs: The Search for the Best 3D Representation. arXiv
e-prints (2023). arXiv:2308.02751

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. KiloNeRF: Speed-
ing Up Neural Radiance Fields With Thousands of Tiny MLPs. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).

Barbara Roessle, Jonathan T. Barron, Ben Mildenhall, Pratul P. Srinivasan, and Matthias
Nießner. 2022. Dense Depth Priors for Neural Radiance Fields From Sparse Input
Views. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Seunghyeon Seo, Yeonjin Chang, and Nojun Kwak. 2023a. FlipNeRF: Flipped Reflection
Rays for Few-shot Novel View Synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV).

Seunghyeon Seo, Donghoon Han, Yeonjin Chang, and Nojun Kwak. 2023b. MixNeRF:
Modeling a Ray with Mixture Density for Novel View Synthesis from Sparse Inputs.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered Depth
Images. In Proceedings of the ACM Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH). https://doi.org/10.1145/280814.280882

Ruoxi Shi, Xinyue Wei, Cheng Wang, and Hao Su. 2024. ZeroRF: Fast Sparse View 360◦
Reconstruction with Zero Pretraining. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Yue Shi, Dingyi Rong, Bingbing Ni, Chang Chen, and Wenjun Zhang. 2022. GARF:
Geometry-Aware Generalized Neural Radiance Field. arXiv e-prints (2022). arXiv:
2212.02280

Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 2020. 3D Photogra-
phy Using Context-Aware Layered Depth Inpainting. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Aljoscha Smolic, KarstenMueller, PhilippMerkle, Christoph Fehn, Peter Kauff, Peter Eis-
ert, and Thomas Wiegand. 2006. 3D Video and Free Viewpoint Video - Technologies,
Applications and MPEG Standards. In Proceedings of the IEEE International Confer-
ence on Multimedia and Expo (ICME). https://doi.org/10.1109/ICME.2006.262683

Nagabhushan Somraj, Kapil Choudhary, Sai Harsha Mupparaju, and Rajiv Soundarara-
jan. 2024. Factorized Motion Fields for Fast Sparse Input Dynamic View Synthesis. In
Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive
Techniques (SIGGRAPH). https://doi.org/10.1145/3641519.3657498

Nagabhushan Somraj, Pranali Sancheti, and Rajiv Soundararajan. 2022. Temporal
View Synthesis of Dynamic Scenes through 3D Object Motion Estimation with
Multi-Plane Images. In Proceedings of the IEEE International Symposium on Mixed
and Augmented Reality (ISMAR). https://doi.org/10.1109/ISMAR55827.2022.00100

Nagabhushan Somraj and Rajiv Soundararajan. 2023. ViP-NeRF: Visibility Prior for
Sparse Input Neural Radiance Fields. In Proceedings of the ACM Special Interest Group
on Computer Graphics and Interactive Techniques (SIGGRAPH). https://doi.org/10.
1145/3588432.3591539

Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall,
and Jonathan T. Barron. 2021. NeRV: Neural Reflectance and Visibility Fields
for Relighting and View Synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng,
and Noah Snavely. 2019. Pushing the Boundaries of View Extrapolation With
Multiplane Images. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct Voxel Grid Optimization:
Super-Fast Convergence for Radiance Fields Reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Wenxiu Sun, Lingfeng Xu, Oscar C Au, Sung Him Chui, and ChunWing Kwok. 2010. An
Overview of Free View-Point Depth-Image-Based Rendering (DIBR). In Proceedings
of the APSIPA Annual Summit and Conference.

Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan,
Jonathan T. Barron, and Ren Ng. 2021. Learned Initializations for Optimizing
Coordinate-Based Neural Representations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Alex Trevithick and Bo Yang. 2021. GRF: Learning a General Radiance Field for 3D Rep-
resentation and Rendering. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV).

Prune Truong, Marie-Julie Rakotosaona, Fabian Manhardt, and Federico Tombari. 2023.
SPARF: Neural Radiance Fields From Sparse and Noisy Poses. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2018. Deep Image Prior.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Mikaela Angelina Uy, RicardoMartin-Brualla, Leonidas Guibas, and Ke Li. 2023. SCADE:
NeRFs from Space Carving With Ambiguity-Aware Depth Estimates. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and
Pratul P. Srinivasan. 2022. Ref-NeRF: Structured View-Dependent Appearance for
Neural Radiance Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR52688.2022.00541

Guangcong Wang, Zhaoxi Chen, Chen Change Loy, and Ziwei Liu. 2023. SparseNeRF:
Distilling Depth Ranking for Few-shot Novel View Synthesis. arXiv e-prints (2023).
arXiv:2303.16196

Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venugopalan, Zhangyang Wang,
et al. 2022. Is Attention All That NeRF Needs? arXiv e-prints (2022). arXiv:2207.13298

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021a. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. arXiv e-prints (2021). arXiv:2106.10689

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P. Srinivasan, Howard Zhou,
Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser.
2021b. IBRNet: Learning Multi-View Image-Based Rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Yifan Wang, Ang Gao, Yi Gong, and Yuan Zeng. 2024. Stylizing Sparse-View 3D Scenes
with Hierarchical Neural Representation. arXiv e-prints (2024). arXiv:2404.05236

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing (TIP) 13, 4 (2004), 600–612.

Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. 2021c.
NeRF–: Neural Radiance Fields without Known Camera Parameters. arXiv e-prints
(2021). arXiv:2102.07064

Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson,
Pratul P Srinivasan, Dor Verbin, Jonathan T Barron, Ben Poole, et al. 2024. Recon-
Fusion: 3D Reconstruction with Diffusion Priors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Jamie Wynn and Daniyar Turmukhambetov. 2023. DiffusioNeRF: Regularizing Neural
Radiance Fields with Denoising Diffusion Models. arXiv e-prints (2023). arXiv:
2302.12231

Haolin Xiong, Sairisheek Muttukuru, Rishi Upadhyay, Pradyumna Chari, and Achuta
Kadambi. 2023. SparseGS: Real-Time 360◦ Sparse View Synthesis using Gaussian
Splatting. arXiv e-prints (2023). arXiv:2312.00206

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, and Zhangyang Wang.
2022. SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single
Image. In Proceedings of the European Conference on Computer Vision (ECCV).

Chen Yang, Sikuang Li, Jiemin Fang, Ruofan Liang, Lingxi Xie, Xiaopeng Zhang, Wei
Shen, and Qi Tian. 2024. GaussianObject: Just Taking Four Images to Get A High-
Quality 3D Object with Gaussian Splatting. arXiv e-prints (2024). arXiv:2402.10259

Jiawei Yang, Marco Pavone, and Yue Wang. 2023. FreeNeRF: Improving Few-shot
Neural Rendering with Free Frequency Regularization. (June 2023).

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021a.
PlenOctrees for Real-Time Rendering of Neural Radiance Fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV).

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. 2021b. pixelNeRF: Neural
Radiance Fields From One or Few Images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Jason Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ramanan. 2021b. NeRS:
Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild. In

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

https://doi.org/10.1609/aaai.v38i5.28229
https://doi.org/10.1145/3618321
https://doi.org/10.1145/3618321
https://doi.org/10.1145/3130800.3130855
https://doi.org/10.1145/3130800.3130855
https://doi.org/10.2312/sr.20231122
arXiv:2308.02751
https://doi.org/10.1145/280814.280882
arXiv:2212.02280
arXiv:2212.02280
https://doi.org/10.1109/ICME.2006.262683
https://doi.org/10.1145/3641519.3657498
https://doi.org/10.1109/ISMAR55827.2022.00100
https://doi.org/10.1145/3588432.3591539
https://doi.org/10.1145/3588432.3591539
https://doi.org/10.1109/CVPR52688.2022.00541
arXiv:2303.16196
arXiv:2207.13298
arXiv:2106.10689
arXiv:2404.05236
arXiv:2102.07064
arXiv:2302.12231
arXiv:2302.12231
arXiv:2312.00206
arXiv:2402.10259

22 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Proceedings of the Advances in Neural Information Processing Systems (NeurIPS).
Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. 2020. NeRF++: Analyzing

and Improving Neural Radiance Fields. arXiv e-prints (2020). arXiv:2010.07492
Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018. The

Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul Debevec, William T. Freeman,
and Jonathan T. Barron. 2021a. NeRFactor: Neural Factorization of Shape and
Reflectance Under an Unknown Illumination. ACM Transactions on Graphics (TOG)
40, 6 (December 2021). https://doi.org/10.1145/3478513.3480496

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. 2018.
Stereo Magnification: Learning View Synthesis Using Multiplane Images. ACM
Transactions on Graphics (TOG) 37, 4 (July 2018).

Bingfan Zhu, Yanchao Yang, Xulong Wang, Youyi Zheng, and Leonidas Guibas. 2023b.
VDN-NeRF: Resolving Shape-Radiance Ambiguity via View-Dependence Normal-
ization. arXiv e-prints (2023). arXiv:2303.17968

Hanxin Zhu, Tianyu He, Xin Li, Bingchen Li, and Zhibo Chen. 2024. Is Vanilla MLP in
Neural Radiance Field Enough for Few-shot View Synthesis?. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang. 2023a. FSGS: Real-Time
Few-shot View Synthesis using Gaussian Splatting. arXiv e-prints (2023). arXiv:
2312.00451

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

arXiv:2010.07492
https://doi.org/10.1145/3478513.3480496
arXiv:2303.17968
arXiv:2312.00451
arXiv:2312.00451

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 23

Supplement
The contents of this supplement include

A. Details on evaluation measures.
B. Video examples on LLFF, RealEstate-10K and MipNeRF360

datasets.
C. Additional analysis - positional encoding frequency, and depth

reliability masks.
D. Extensive quantitative evaluation reports.

A DETAILS ON EVALUATION MEASURES

A.1 Evaluation Details
As mentioned in the main paper, we evaluate the model predictions
only in the regions visible in the training images. We now explain
our reasoning behind masking the model predictions for evaluation
and then provide the details of how we compute the masks.

Recall that radiance fields are designed to memorize a scene and
are therefore not equipped to predict unseen regions by design.
Further, many regularization based sparse input NeRF models do
not employ pre-trained prior. As a result, radiance fields are also ill-
equipped to predict the depth of objects seen in only one of the input
views, again by design. Thus, radiance fields require the objects to be
visible in at least two views to estimate their 3D geometry accurately.
Hence, we generate a mask that denotes the pixels visible in at least
two input views, and evaluate the predictions in such regions only.

We generate the mask by using the depths predicted by the dense
input NeRFmodel as follows. For every train view, we warp its depth
predicted by Dense-NeRF to every other test view and compare it
with the Dense-NeRF predicted depth of the test view. Intuitively, if
a pixel in a test view is visible in the considered train view, then the
two depths should be close to each other. Thus, we threshold the
depth difference to obtain the mask. That is, if the difference in the
two depths is less than a threshold, then we mark the pixel in the
test view as visible in the considered train view. Our final mask for
every test view is generated by marking pixels as visible if they are
visible in at least two input views. We warp the depth maps using
depth based reprojection similar to Cho et al. [2017]; Kanchana et al.
[2022] and set the threshold to 0.05 times the maximum depth of
the train view. By computing the mask using depths and not color,
our approach is robust to the presence of specular objects, as long
as the depth estimated by Dense-NeRF is accurate. We will release
the code used to generate the masks and the masks along with the
main code release.
Nonetheless, we report the performance without masking the

unseen regions in Tabs. 10 to 17.

B VIDEO COMPARISONS
We compare various models by rendering videos along a continuous
trajectory. For the LLFF dataset, we render the videos along the spiral
trajectory that is commonly used in the literature. Since RealEstate-
10K is a dataset of videos, we combine the train and test frames to
get the continuous trajectories. For the MipNeRF360 dataset, we
render the videos along the elliptical trajectory that is commonly
used in the literature.

Fig. 26. LPIPS scores on the horns scene as 𝑙ap𝑝 of Simple-NeRF is varied.

We group the video comparisons based on Simple-NeRF, Simple-
TensoRF and Simple-ZipNeRF models. In each group, we divide the
video comparisons into two sets. In the first set, we show how our
regularizations reduce various artifacts by comparing the videos
rendered by our model with those of the competing models and the
ablated models. In the second set, we compare the videos rendered
by our model with those of the competing models. Finally, we also
include a few videos to support certain arguments made in the
main paper. The videos are available on our project website https:
//nagabhushansn95.github.io/publications/2024/Simple-RF.html

C ADDITIONAL ANALYSIS

C.1 Ablation on Positional Encoding Frequency in
Simple-NeRF

We analyze the variation in the performance of Simple-NeRF as
𝑙as𝑝 varies. We vary 𝑙as𝑝 from 1 to 6 and test the performance of
Simple-NeRF on the horns scene of the NeRF-LLFF dataset. We
show the quantitative performance in terms of LPIPS in Fig. 26. We
observe only small variations in the performance as 𝑙ap𝑝 is varied,
and thus, we conclude that our framework is robust to the choice of
𝑙
ap
𝑝 . Further, we note that using 𝑙ap𝑝 = 𝑙𝑝 = 10 is equivalent to using
an identical augmentation.

C.2 Visualization of Depth Reliability Masks
In Fig. 27, we present visualizations that motivate the design of our
augmentations in Simple-NeRF, namely the smoothing and Lamber-
tian augmentations. We train our model without augmentations and
the individual augmentations separately with only Lcolor and Lsd
for 100k iterations. Using the depth maps predicted by the models
for an input training view, we determine the mask that indicates
which depth estimates are more accurate, as explained in Sec 4.4
of the main paper Verify if this is correct. For two scenes from the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

https://nagabhushansn95.github.io/publications/2024/Simple-RF.html
https://nagabhushansn95.github.io/publications/2024/Simple-RF.html

24 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

(a) Smoothing augmentation: The green and blue boxes focus on the two
horns, where we observe that the augmented model depth is preferred in the
depth-wise smooth regions on horns, and the main model depth is preferred
at the edges. The magenta box focuses on a completely smooth region, so
the augmented model depth is preferred for most pixels. In the red box,
augmented model depth is preferred along the horizontal bar. The main
model depth is preferred on either side of the bar that contains multiple
depth discontinuities.

(b) Lambertian augmentation: The green and magenta boxes focus on the
TV and the table, respectively, which are highly specular in this scene (please
view the supplementary videos of the room scene to observe the specularity
of these objects). In these regions, the main model depth is determined to
be more accurate since the main model can handle specular regions. The red
and blue boxes focus on Lambertian regions of the scene where the depth
estimated by the augmented model is preferred.

Fig. 27. Visualizations of depth reliability mask for the two augmentations of Simple-NeRF. White pixels in the mask indicate that the main model depth is
determined to be more accurate at the corresponding locations. Black pixels indicate that the augmented model depth is determined to be more accurate.

LLFF dataset, we show an input training view and focus on a small
region to visualize the corresponding masks.
We observe that the smoothing augmentation is determined to

have estimated better depths in smooth regions. At edges, the depth
estimated by the main model is more accurate. Similarly, the Lam-
bertian augmentation estimates better depth in Lambertian regions,
while the main model estimates better depth in specular regions.
We note that the masks shown are not the masks obtained by our
final model. Since the masks are computed at every iteration, and
the training of the main and augmented models are coupled, it is
not possible to determine the exact locations where the augmented
models help the main model learn better.

D PERFORMANCE ON INDIVIDUAL SCENES
For the benefit of follow-up work, where researchers may want to
analyze the performance of different models or compare the models
on individual scenes, we provide the performance of various models
on individual scenes in Tabs. 18 to 33.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 25

Table 10. Quantitative Results of NeRF based models on LLFF dataset with two input views. The values within parenthesis show unmasked scores.

Model LPIPS SSIM PSNR Depth MAE Depth SROCC
InfoNeRF 0.6024(0.7561) 0.2219(0.2095) 9.16(9.23) 0.9797(1.1000) -0.0188(-0.0092)
DietNeRF 0.5465(0.7265) 0.3283(0.3209) 11.94(11.89) 0.8886(1.0105) -0.0099(-0.0045)
RegNeRF 0.3056(0.4297) 0.5712(0.4885) 18.52(16.88) – 0.7141(0.6513)
DS-NeRF 0.3106(0.4176) 0.5862(0.5074) 18.24(16.93) 0.2074(0.3372) 0.7230(0.5787)
DDP-NeRF 0.2851(0.3920) 0.6218(0.5424) 18.73(17.19) 0.2048(0.3494) 0.7480(0.6109)
FreeNeRF 0.2638(0.3760) 0.6322(0.5432) 19.52(17.55) – 0.8066(0.7137)
ViP-NeRF 0.2768(0.3725) 0.6225(0.5230) 18.61(16.66) 0.1999(0.3413) 0.7344(0.6221)
Simple-NeRF 0.2688(0.3899) 0.6501(0.5529) 19.57(17.57) 0.1420(0.2777) 0.8480(0.7531)
Simple-NeRF w/o smoothing aug 0.2832(0.4100) 0.6402(0.5448) 19.33(17.38) 0.1505(0.2805) 0.8334(0.7465)
Simple-NeRF w/o Lambertian aug 0.2834(0.4115) 0.6396(0.5438) 19.27(17.37) 0.1529(0.2760) 0.8306(0.7481)
Simple-NeRF w/o coarse-fine cons 0.3002(0.4240) 0.6068(0.5226) 19.02(17.25) 0.1864(0.3308) 0.8028(0.7031)
Simple-NeRF w/o reliable depth 0.3020(0.4212) 0.6012(0.5115) 18.41(16.68) 0.2186(0.3644) 0.7564(0.6724)
Simple-NeRF w/o residual pos enc 0.2837(0.4114) 0.6397(0.5436) 19.20(17.27) 0.1588(0.2890) 0.8160(0.7231)
Simple-NeRF w/ identical augs 0.2849(0.4110) 0.6379(0.5433) 19.27(17.38) 0.1509(0.2803) 0.8354(0.7466)

Table 11. Quantitative Results of NeRF based models on LLFF dataset with three input views. The values within parenthesis show unmasked scores.

Model LPIPS SSIM PSNR Depth MAE Depth SROCC
InfoNeRF 0.6732(0.7679) 0.1953(0.1859) 8.38(8.52) 1.0012(1.1149) -0.0144(-0.0176)
DietNeRF 0.6120(0.7254) 0.3405(0.3297) 11.76(11.77) 0.9093(1.0242) -0.0598(-0.0471)
RegNeRF 0.2908(0.3602) 0.6334(0.5677) 20.22(18.65) – 0.8238(0.7589)
DS-NeRF 0.3031(0.3641) 0.6321(0.5774) 20.20(18.97) 0.1787(0.2699) 0.7852(0.7173)
DDP-NeRF 0.3250(0.3869) 0.6152(0.5628) 18.73(17.71) 0.1941(0.3032) 0.7433(0.6707)
FreeNeRF 0.2754(0.3415) 0.6583(0.5960) 20.93(19.30) – 0.8379(0.7656)
ViP-NeRF 0.2798(0.3365) 0.6548(0.5907) 20.54(18.89) 0.1721(0.2795) 0.7891(0.7082)
Simple-NeRF 0.2559(0.3259) 0.6940(0.6222) 21.37(19.47) 0.1199(0.2201) 0.8935(0.8153)

Table 12. Quantitative Results of NeRF based models on LLFF dataset with four input views. The values within parenthesis show unmasked scores.

Model LPIPS SSIM PSNR Depth MAE Depth SROCC
InfoNeRF 0.6985(0.7701) 0.2270(0.2188) 9.18(9.25) 1.0411(1.1119) -0.0394(-0.0390)
DietNeRF 0.6506(0.7396) 0.3496(0.3404) 11.86(11.84) 0.9546(1.0259) -0.0368(-0.0249)
RegNeRF 0.2794(0.3227) 0.6645(0.6159) 21.32(19.89) – 0.8933(0.8528)
DS-NeRF 0.2979(0.3376) 0.6582(0.6135) 21.23(20.07) 0.1451(0.2097) 0.8506(0.8130)
DDP-NeRF 0.3042(0.3467) 0.6558(0.6121) 20.17(19.19) 0.1704(0.2487) 0.8322(0.7664)
FreeNeRF 0.2848(0.3280) 0.6764(0.6303) 21.91(20.45) – 0.9091(0.8626)
ViP-NeRF 0.2854(0.3203) 0.6675(0.6182) 20.75(19.34) 0.1555(0.2316) 0.8622(0.8070)
Simple-NeRF 0.2633(0.3083) 0.7016(0.6521) 21.99(20.44) 0.1110(0.1741) 0.9355(0.8952)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

26 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Table 13. Quantitative Results of NeRF based models on RealEstate-10K dataset with two input views. The values within parenthesis show unmasked scores.

Model LPIPS SSIM PSNR Depth MAE Depth SROCC
InfoNeRF 0.5924(0.6384) 0.4342(0.4343) 12.27(12.17) 2.1793(2.2314) 0.0912(0.0942)
DietNeRF 0.4381(0.4862) 0.6534(0.6520) 18.06(17.83) 2.0247(2.0807) 0.2339(0.2452)
RegNeRF 0.4129(0.4483) 0.5916(0.5864) 17.14(16.87) – 0.1118(0.1117)
DS-NeRF 0.2709(0.3171) 0.7983(0.7859) 26.26(25.44) 0.7164(0.8323) 0.6660(0.6433)
DDP-NeRF 0.1290(0.1481) 0.8640(0.8502) 27.79(26.15) 0.4831(0.5944) 0.7921(0.7663)
FreeNeRF 0.5036(0.5471) 0.5354(0.5336) 14.70(14.50) – -0.1937(-0.1813)
ViP-NeRF 0.0687(0.0783) 0.8889(0.8717) 32.32(29.55) 0.3856(0.5337) 0.8446(0.7851)
Simple-NeRF 0.0635(0.0745) 0.8942(0.8783) 33.10(30.30) 0.3269(0.4584) 0.9215(0.8781)
Simple-NeRF w/o smoothing aug 0.0752(0.0889) 0.8886(0.8722) 32.54(29.85) 0.3795(0.5109) 0.8973(0.8487)
Simple-NeRF w/o Lambertian aug 0.0790(0.0925) 0.8884(0.8714) 32.13(29.62) 0.3870(0.5110) 0.8837(0.8428)
Simple-NeRF w/o coarse-fine cons 0.0740(0.0865) 0.8869(0.8693) 31.86(29.47) 0.4223(0.5526) 0.8576(0.8140)
Simple-NeRF w/o reliable depth 0.0687(0.0802) 0.8913(0.8754) 32.63(30.33) 0.4485(0.5778) 0.8729(0.8404)
Simple-NeRF w/o residual pos enc 0.0790(0.0909) 0.8875(0.8715) 32.00(29.91) 0.4040(0.5255) 0.8838(0.8392)
Simple-NeRF w/ identical augs 0.0777(0.0916) 0.8875(0.8713) 32.31(29.85) 0.4037(0.5269) 0.8949(0.8453)

Table 14. Quantitative Results of NeRF based models on RealEstate-10K dataset with three input views. The values within parenthesis show unmasked scores.

Model LPIPS SSIM PSNR Depth MAE Depth SROCC
InfoNeRF 0.6561(0.6846) 0.3792(0.3780) 10.57(10.57) 2.2198(2.2830) 0.1929(0.1994)
DietNeRF 0.4636(0.4886) 0.6456(0.6445) 18.01(17.89) 2.0355(2.1023) 0.0240(0.0438)
RegNeRF 0.4171(0.4362) 0.6132(0.6078) 17.86(17.73) – 0.0574(0.0475)
DS-NeRF 0.2893(0.3211) 0.8004(0.7905) 26.50(25.94) 0.5400(0.6524) 0.8106(0.7910)
DDP-NeRF 0.1518(0.1601) 0.8587(0.8518) 26.67(25.92) 0.4139(0.5222) 0.8612(0.8331)
FreeNeRF 0.5146(0.5414) 0.5708(0.5675) 15.26(15.12) – -0.2590(-0.2445)
ViP-NeRF 0.0758(0.0832) 0.8967(0.8852) 31.93(30.27) 0.3365(0.4683) 0.9009(0.8558)
Simple-NeRF 0.0726(0.0829) 0.8984(0.8879) 33.21(31.40) 0.2770(0.3885) 0.9266(0.8931)

Table 15. Quantitative Results of NeRF based models on RealEstate-10K dataset with four input views. The values within parenthesis show unmasked scores.

Model LPIPS SSIM PSNR Depth MAE Depth SROCC
InfoNeRF 0.6651(0.6721) 0.3843(0.3830) 10.62(10.59) 2.1874(2.2742) 0.2549(0.2594)
DietNeRF 0.4853(0.4954) 0.6503(0.6475) 18.01(17.89) 2.0398(2.1273) 0.0990(0.1011)
RegNeRF 0.4316(0.4383) 0.6257(0.6198) 18.34(18.25) – 0.1422(0.1396)
DS-NeRF 0.3103(0.3287) 0.7999(0.7920) 26.65(26.28) 0.5154(0.6171) 0.8145(0.8018)
DDP-NeRF 0.1563(0.1584) 0.8617(0.8557) 27.07(26.48) 0.3832(0.4813) 0.8739(0.8605)
FreeNeRF 0.5226(0.5323) 0.6027(0.5989) 16.31(16.25) – -0.2152(-0.2162)
ViP-NeRF 0.0892(0.0909) 0.8968(0.8894) 31.95(30.83) 0.3658(0.4761) 0.8414(0.8080)
Simple-NeRF 0.0847(0.0891) 0.8987(0.8917) 32.88(31.73) 0.2692(0.3565) 0.9209(0.9035)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 27

Table 16. Quantitative Results of TensoRF based models on LLFF dataset with three input views. The values within parenthesis show unmasked scores.

Model LPIPS SSIM PSNR Depth MAE Depth SROCC
TensoRF 0.5474(0.6177) 0.3163(0.3002) 12.29(12.14) 0.6682(0.7824) 0.0252(0.0324)
DS-TensoRF 0.2897(0.3549) 0.6291(0.5702) 18.58(17.41) 0.2276(0.3483) 0.7279(0.6478)
Simple-TensoRF 0.2461(0.3037) 0.6749(0.6099) 20.22(18.71) 0.1671(0.2897) 0.8272(0.7451)
Simple-TensoRF w/ 𝑅𝑠𝜎 = 𝑅𝜎 0.2536(0.3136) 0.6677(0.6020) 19.85(18.44) 0.1777(0.2986) 0.8112(0.7298)
Simple-TensoRF w/ 𝑁 𝑠𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥 0.2568(0.3182) 0.6579(0.5946) 19.95(18.54) 0.1902(0.3106) 0.7945(0.7128)
Simple-TensoRF w/ 𝑅𝑠𝜎 = 𝑅𝜎 ;𝑁 𝑠𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥 0.2728(0.3356) 0.6424(0.5814) 19.50(18.25) 0.2190(0.3425) 0.7446(0.6625)

Table 17. Quantitative Results of TensoRF based models on RealEstate-10K dataset with three input views. The values within parenthesis show unmasked
scores.

Model LPIPS SSIM PSNR Depth MAE Depth SROCC
TensoRF 0.0986(0.1050) 0.8532(0.8427) 29.62(28.00) 0.4394(0.4841) 0.6314(0.6077)
DS-TensoRF 0.0739(0.0827) 0.8872(0.8748) 32.50(30.20) 0.2720(0.3321) 0.7527(0.7227)
Simple-TensoRF 0.0706(0.0780) 0.8920(0.8809) 32.70(30.79) 0.2229(0.2882) 0.7983(0.7621)
Simple-TensoRF w/ 𝑅𝑠𝜎 = 𝑅𝜎 0.0850(0.0919) 0.8821(0.8709) 30.94(29.51) 0.2742(0.3317) 0.7650(0.7238)
Simple-TensoRF w/ 𝑁 𝑠𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥 0.0735(0.0809) 0.8896(0.8773) 32.22(30.29) 0.2200(0.2888) 0.8223(0.7751)
Simple-TensoRF w/ 𝑅𝑠𝜎 = 𝑅𝜎 ;𝑁 𝑠𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥 0.0787(0.0867) 0.8871(0.8743) 31.73(29.88) 0.2346(0.3083) 0.7939(0.7458)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

28 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Table 18. Per-scene performance of various NeRF based models with two input views on LLFF dataset. The five rows show LPIPS, SSIM, PSNR, Depth MAE
and Depth SROCC scores, respectively. The values within parenthesis show unmasked scores.

Model \
Scene Name Fern Flower Fortress Horns Leaves Orchids Room Trex Average

InfoNeRF

0.66(0.78)
0.26(0.26)
10.7(11.0)
0.96(1.05)
-0.00(-0.04)

0.57(0.69)
0.21(0.19)
10.8(11.0)
0.76(0.89)
-0.25(-0.18)

0.65(0.82)
0.18(0.18)
6.6(6.5)
1.18(1.41)
0.09(0.06)

0.58(0.76)
0.20(0.20)
8.9(8.9)
1.08(1.26)
0.07(0.08)

0.45(0.64)
0.15(0.10)
9.7(9.5)
0.85(0.92)
-0.14(-0.12)

0.60(0.69)
0.17(0.11)
9.1(9.4)
0.87(1.12)
0.00(0.01)

0.68(0.80)
0.36(0.38)
10.4(10.8)
1.05(1.06)
-0.01(0.00)

0.61(0.79)
0.23(0.21)
8.5(8.4)
0.94(0.95)
-0.00(0.01)

0.60(0.76)
0.22(0.21)
9.2(9.2)
0.98(1.10)
-0.02(-0.01)

DietNeRF

0.63(0.77)
0.30(0.29)
12.1(12.3)
0.83(0.92)
-0.02(-0.05)

0.54(0.69)
0.29(0.26)
12.1(12.2)
0.70(0.84)
-0.02(0.00)

0.50(0.66)
0.44(0.44)
15.2(14.2)
0.94(1.17)
0.13(0.13)

0.54(0.76)
0.27(0.28)
10.5(10.7)
1.02(1.20)
-0.01(-0.01)

0.43(0.67)
0.18(0.12)
10.8(10.6)
0.83(0.90)
-0.13(-0.10)

0.57(0.73)
0.21(0.15)
10.5(10.6)
0.78(1.03)
0.02(-0.01)

0.62(0.77)
0.49(0.52)
13.0(13.1)
0.95(0.97)
0.02(0.03)

0.54(0.75)
0.35(0.37)
11.1(11.3)
0.89(0.90)
-0.09(-0.07)

0.55(0.73)
0.33(0.32)
11.9(11.9)
0.89(1.01)
-0.01(-0.00)

RegNeRF

0.42(0.51)
0.50(0.45)
16.1(15.8)

–
0.70(0.64)

0.28(0.43)
0.62(0.51)
19.9(17.0)

–
0.88(0.68)

0.28(0.37)
0.47(0.46)
21.2(20.6)

–
0.58(0.61)

0.34(0.51)
0.49(0.42)
17.5(15.9)

–
0.67(0.67)

0.19(0.35)
0.54(0.37)
17.4(14.5)

–
0.82(0.60)

0.38(0.45)
0.45(0.30)
15.1(13.9)

–
0.74(0.60)

0.30(0.38)
0.81(0.74)
21.1(18.7)

–
0.76(0.69)

0.30(0.42)
0.64(0.54)
17.8(16.7)

–
0.65(0.68)

0.31(0.43)
0.57(0.49)
18.5(16.9)

–
0.71(0.65)

DS-NeRF

0.41(0.50)
0.50(0.46)
16.7(16.4)
0.18(0.28)
0.56(0.37)

0.32(0.43)
0.52(0.44)
17.3(16.1)
0.30(0.43)
0.71(0.55)

0.21(0.30)
0.68(0.65)
23.6(23.0)
0.04(0.19)
0.99(0.99)

0.34(0.49)
0.56(0.49)
18.1(16.6)
0.21(0.35)
0.76(0.68)

0.29(0.47)
0.35(0.24)
13.3(12.4)
0.54(0.60)
0.33(0.18)

0.38(0.43)
0.45(0.32)
14.7(13.7)
0.21(0.38)
0.75(0.63)

0.27(0.35)
0.82(0.76)
21.3(18.9)
0.14(0.24)
0.76(0.73)

0.31(0.41)
0.64(0.53)
17.4(15.7)
0.15(0.31)
0.71(0.29)

0.31(0.42)
0.59(0.51)
18.2(16.9)
0.21(0.34)
0.72(0.58)

DDP-NeRF

0.35(0.44)
0.55(0.49)
17.8(17.2)
0.13(0.23)
0.72(0.56)

0.33(0.46)
0.53(0.45)
17.3(16.2)
0.33(0.46)
0.60(0.44)

0.12(0.17)
0.80(0.77)
23.4(22.7)
0.06(0.27)
0.99(0.98)

0.30(0.46)
0.60(0.52)
19.3(17.1)
0.21(0.39)
0.85(0.71)

0.31(0.52)
0.34(0.23)
13.5(12.6)
0.58(0.64)
0.25(0.08)

0.33(0.41)
0.53(0.38)
16.6(15.1)
0.15(0.32)
0.85(0.74)

0.25(0.30)
0.82(0.76)
21.6(18.7)
0.10(0.19)
0.94(0.92)

0.33(0.43)
0.64(0.54)
17.2(15.7)
0.18(0.32)
0.60(0.29)

0.29(0.39)
0.62(0.54)
18.7(17.2)
0.20(0.35)
0.75(0.61)

FreeNeRF

0.36(0.46)
0.55(0.49)
17.7(17.1)

–
0.64(0.62)

0.24(0.38)
0.66(0.55)
20.6(17.6)

–
0.97(0.80)

0.25(0.33)
0.55(0.53)
22.0(21.3)

–
0.71(0.71)

0.27(0.43)
0.62(0.53)
19.5(17.1)

–
0.86(0.74)

0.19(0.36)
0.56(0.38)
17.9(14.4)

–
0.82(0.55)

0.35(0.42)
0.51(0.35)
15.6(14.1)

–
0.76(0.61)

0.26(0.34)
0.81(0.76)
20.4(18.3)

–
0.83(0.80)

0.24(0.33)
0.70(0.60)
19.8(18.1)

–
0.78(0.74)

0.26(0.38)
0.63(0.54)
19.5(17.6)

–
0.81(0.71)

ViP-NeRF

0.37(0.45)
0.51(0.45)
16.7(16.2)
0.17(0.26)
0.51(0.41)

0.31(0.42)
0.53(0.43)
16.2(14.9)
0.27(0.42)
0.70(0.45)

0.15(0.21)
0.77(0.71)
24.6(22.6)
0.04(0.24)
0.99(0.99)

0.25(0.39)
0.65(0.54)
19.9(17.1)
0.19(0.37)
0.86(0.73)

0.29(0.46)
0.33(0.21)
12.5(11.7)
0.61(0.68)
0.21(0.07)

0.34(0.40)
0.53(0.36)
15.8(14.2)
0.16(0.35)
0.81(0.70)

0.29(0.36)
0.80(0.72)
21.0(17.7)
0.14(0.25)
0.84(0.76)

0.29(0.38)
0.66(0.54)
17.5(15.9)
0.15(0.25)
0.65(0.54)

0.28(0.37)
0.62(0.52)
18.6(16.7)
0.20(0.34)
0.73(0.62)

Simple-NeRF

0.39(0.51)
0.54(0.50)
17.4(17.0)
0.14(0.21)
0.72(0.68)

0.28(0.43)
0.65(0.53)
20.1(16.9)
0.10(0.25)
0.94(0.72)

0.16(0.25)
0.72(0.67)
23.8(22.5)
0.05(0.25)
0.99(0.99)

0.26(0.42)
0.64(0.54)
19.6(17.1)
0.18(0.35)
0.88(0.76)

0.25(0.44)
0.45(0.30)
15.2(13.5)
0.31(0.44)
0.64(0.38)

0.33(0.41)
0.52(0.37)
16.3(14.7)
0.15(0.34)
0.85(0.74)

0.27(0.35)
0.83(0.77)
22.5(19.5)
0.12(0.21)
0.86(0.84)

0.28(0.39)
0.68(0.58)
18.3(16.8)
0.13(0.19)
0.78(0.73)

0.27(0.39)
0.65(0.55)
19.6(17.6)
0.14(0.28)
0.85(0.75)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 29

Table 19. Per-scene performance of various NeRF based models with three input views on LLFF dataset. The five rows show LPIPS, SSIM, PSNR, Depth MAE
and Depth SROCC scores, respectively. The values within parenthesis show unmasked scores.

Model \
Scene Name Fern Flower Fortress Horns Leaves Orchids Room Trex Average

InfoNeRF

0.74(0.86)
0.22(0.21)
7.5(7.5)
0.99(1.08)
0.01(-0.07)

0.62(0.69)
0.24(0.23)
10.3(10.8)
0.84(0.94)
-0.18(-0.11)

0.76(0.83)
0.16(0.17)
5.1(5.2)
1.21(1.42)
0.17(0.17)

0.63(0.76)
0.18(0.18)
8.9(8.9)
1.07(1.26)
0.04(0.05)

0.50(0.65)
0.16(0.11)
10.2(9.9)
0.87(0.92)
-0.12(-0.10)

0.68(0.71)
0.12(0.08)
7.9(8.3)
0.95(1.15)
0.07(0.08)

0.75(0.83)
0.29(0.29)
8.7(8.9)
1.04(1.07)
-0.11(-0.15)

0.69(0.79)
0.19(0.18)
8.6(8.7)
0.93(0.96)
-0.03(-0.06)

0.67(0.77)
0.20(0.19)
8.4(8.5)
1.00(1.11)
-0.01(-0.02)

DietNeRF

0.68(0.80)
0.33(0.32)
11.9(12.0)
0.86(0.95)
-0.06(-0.03)

0.58(0.67)
0.33(0.31)
13.2(13.1)
0.73(0.84)
-0.16(-0.15)

0.63(0.70)
0.40(0.41)
12.6(12.4)
1.00(1.22)
-0.08(-0.09)

0.60(0.75)
0.28(0.29)
10.9(11.1)
1.03(1.21)
0.03(0.06)

0.49(0.67)
0.18(0.13)
10.8(10.6)
0.85(0.90)
-0.03(-0.03)

0.65(0.75)
0.19(0.15)
10.0(10.1)
0.86(1.06)
-0.07(-0.08)

0.68(0.76)
0.54(0.55)
12.6(12.6)
0.95(0.97)
0.03(0.09)

0.60(0.72)
0.36(0.35)
11.8(11.9)
0.88(0.91)
-0.16(-0.17)

0.61(0.73)
0.34(0.33)
11.8(11.8)
0.91(1.02)
-0.06(-0.05)

RegNeRF

0.40(0.47)
0.53(0.48)
18.3(17.9)

–
0.59(0.59)

0.22(0.27)
0.67(0.58)
21.5(19.6)

–
0.80(0.64)

0.26(0.31)
0.66(0.64)
24.6(22.7)

–
0.92(0.90)

0.33(0.44)
0.59(0.53)
20.2(18.2)

–
0.84(0.81)

0.26(0.39)
0.48(0.37)
16.6(14.6)

–
0.79(0.66)

0.42(0.44)
0.41(0.31)
15.1(14.2)

–
0.70(0.61)

0.22(0.25)
0.84(0.81)
22.1(21.0)

–
0.89(0.86)

0.28(0.36)
0.70(0.63)
19.7(18.4)

–
0.87(0.79)

0.29(0.36)
0.63(0.57)
20.2(18.7)

–
0.82(0.76)

DS-NeRF

0.40(0.47)
0.56(0.52)
19.0(18.5)
0.15(0.22)
0.58(0.51)

0.22(0.25)
0.72(0.66)
22.8(21.3)
0.08(0.17)
0.93(0.81)

0.21(0.25)
0.74(0.72)
26.3(24.8)
0.07(0.20)
1.00(1.00)

0.37(0.47)
0.58(0.52)
19.0(17.5)
0.19(0.31)
0.87(0.77)

0.37(0.50)
0.33(0.25)
13.5(12.6)
0.52(0.57)
0.29(0.17)

0.43(0.45)
0.43(0.33)
14.9(14.1)
0.22(0.34)
0.76(0.70)

0.19(0.22)
0.87(0.84)
24.5(23.0)
0.10(0.17)
0.92(0.91)

0.31(0.37)
0.65(0.59)
18.1(17.1)
0.20(0.25)
0.67(0.60)

0.30(0.36)
0.63(0.58)
20.2(19.0)
0.18(0.27)
0.79(0.72)

DDP-NeRF

0.38(0.47)
0.58(0.53)
19.4(18.5)
0.13(0.21)
0.67(0.54)

0.25(0.29)
0.70(0.63)
21.3(20.2)
0.10(0.19)
0.94(0.82)

0.18(0.20)
0.78(0.75)
22.7(22.1)
0.09(0.27)
0.99(0.99)

0.38(0.48)
0.58(0.53)
19.3(17.4)
0.18(0.36)
0.88(0.76)

0.37(0.52)
0.32(0.24)
13.5(12.8)
0.59(0.63)
0.07(0.01)

0.41(0.45)
0.46(0.35)
16.1(15.1)
0.17(0.32)
0.83(0.75)

0.31(0.32)
0.78(0.76)
19.3(18.3)
0.12(0.19)
0.92(0.92)

0.36(0.42)
0.59(0.54)
16.5(16.0)
0.24(0.30)
0.45(0.36)

0.33(0.39)
0.62(0.56)
18.7(17.7)
0.19(0.30)
0.74(0.67)

FreeNeRF

0.34(0.40)
0.59(0.54)
19.6(18.9)

–
0.76(0.72)

0.24(0.28)
0.68(0.61)
22.2(20.7)

–
0.87(0.75)

0.28(0.32)
0.62(0.60)
23.4(22.0)

–
0.67(0.64)

0.30(0.41)
0.65(0.58)
21.3(18.7)

–
0.91(0.80)

0.26(0.40)
0.51(0.40)
17.3(15.0)

–
0.84(0.70)

0.39(0.41)
0.48(0.37)
15.9(14.7)

–
0.81(0.73)

0.19(0.22)
0.88(0.85)
24.2(22.6)

–
0.88(0.88)

0.26(0.33)
0.71(0.64)
20.2(19.0)

–
0.89(0.83)

0.28(0.34)
0.66(0.60)
20.9(19.3)

–
0.84(0.77)

ViP-NeRF

0.43(0.51)
0.53(0.49)
17.9(17.3)
0.21(0.30)
0.31(0.22)

0.21(0.24)
0.73(0.65)
22.6(20.8)
0.10(0.20)
0.93(0.79)

0.16(0.19)
0.80(0.76)
27.0(24.5)
0.06(0.22)
1.00(0.99)

0.32(0.42)
0.64(0.57)
20.7(18.2)
0.16(0.32)
0.89(0.78)

0.33(0.44)
0.34(0.25)
13.5(12.4)
0.54(0.59)
0.20(0.11)

0.40(0.41)
0.45(0.34)
15.2(14.2)
0.20(0.34)
0.79(0.73)

0.24(0.27)
0.84(0.81)
23.1(21.7)
0.12(0.20)
0.91(0.89)

0.26(0.32)
0.69(0.62)
19.4(18.1)
0.14(0.19)
0.83(0.71)

0.28(0.34)
0.65(0.59)
20.5(18.9)
0.17(0.28)
0.79(0.71)

Simple-NeRF

0.37(0.43)
0.57(0.52)
18.8(18.2)
0.14(0.22)
0.68(0.62)

0.19(0.24)
0.75(0.66)
23.1(20.7)
0.09(0.19)
0.94(0.79)

0.12(0.17)
0.82(0.78)
27.5(24.7)
0.05(0.19)
1.00(0.99)

0.31(0.42)
0.65(0.57)
20.6(18.4)
0.16(0.31)
0.89(0.78)

0.28(0.42)
0.50(0.38)
17.0(14.8)
0.20(0.27)
0.85(0.71)

0.37(0.39)
0.50(0.38)
16.2(15.0)
0.15(0.29)
0.87(0.81)

0.22(0.26)
0.86(0.83)
23.6(22.0)
0.11(0.17)
0.88(0.83)

0.26(0.34)
0.74(0.66)
20.4(18.9)
0.09(0.14)
0.93(0.86)

0.26(0.33)
0.69(0.62)
21.4(19.5)
0.12(0.22)
0.89(0.82)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

30 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Table 20. Per-scene performance of various NeRF based models with four input views on LLFF dataset. The five rows show LPIPS, SSIM, PSNR, Depth MAE
and Depth SROCC scores, respectively. The values within parenthesis show unmasked scores.

Model \
Scene Name Fern Flower Fortress Horns Leaves Orchids Room Trex Average

InfoNeRF

0.71(0.80)
0.20(0.19)
9.6(9.8)
0.95(1.03)
0.02(0.00)

0.63(0.68)
0.24(0.23)
11.4(11.5)
0.83(0.91)
-0.27(-0.21)

0.84(0.87)
0.16(0.16)
4.7(4.7)
1.29(1.41)
0.09(0.08)

0.68(0.77)
0.19(0.19)
8.9(8.8)
1.18(1.27)
0.08(0.09)

0.58(0.66)
0.12(0.09)
9.4(9.3)
0.89(0.92)
-0.12(-0.11)

0.72(0.76)
0.11(0.09)
7.8(8.1)
1.00(1.18)
0.03(0.04)

0.72(0.78)
0.45(0.45)
11.9(11.9)
1.05(1.06)
-0.06(-0.06)

0.69(0.80)
0.26(0.26)
9.9(10.1)
0.97(0.97)
-0.13(-0.17)

0.70(0.77)
0.23(0.22)
9.2(9.2)
1.04(1.11)
-0.04(-0.04)

DietNeRF

0.66(0.80)
0.36(0.35)
12.7(12.9)
0.85(0.93)
-0.11(-0.08)

0.62(0.69)
0.31(0.29)
12.6(12.6)
0.76(0.84)
-0.05(-0.06)

0.67(0.70)
0.42(0.42)
12.8(12.6)
1.07(1.19)
-0.04(-0.04)

0.66(0.78)
0.30(0.30)
10.9(10.8)
1.13(1.22)
-0.00(0.02)

0.57(0.70)
0.18(0.14)
11.0(10.8)
0.87(0.90)
-0.12(-0.10)

0.69(0.77)
0.20(0.16)
10.2(10.1)
0.88(1.06)
-0.02(-0.02)

0.68(0.73)
0.59(0.59)
14.0(13.9)
0.98(0.99)
0.08(0.12)

0.64(0.75)
0.34(0.35)
10.9(11.2)
0.91(0.92)
-0.10(-0.10)

0.65(0.74)
0.35(0.34)
11.9(11.8)
0.95(1.03)
-0.04(-0.02)

RegNeRF

0.28(0.35)
0.67(0.63)
21.6(20.8)

–
0.90(0.87)

0.24(0.29)
0.71(0.64)
22.3(19.8)

–
0.94(0.83)

0.35(0.37)
0.56(0.55)
23.0(22.4)

–
0.94(0.94)

0.27(0.34)
0.69(0.64)
22.3(20.1)

–
0.93(0.91)

0.26(0.32)
0.52(0.44)
17.3(15.9)

–
0.83(0.75)

0.42(0.43)
0.43(0.34)
15.6(14.8)

–
0.78(0.71)

0.17(0.19)
0.89(0.87)
25.6(23.9)

–
0.93(0.90)

0.28(0.32)
0.71(0.66)
19.7(18.9)

–
0.85(0.82)

0.28(0.32)
0.66(0.62)
21.3(19.9)

–
0.89(0.85)

DS-NeRF

0.28(0.35)
0.67(0.63)
21.5(20.9)
0.07(0.12)
0.88(0.83)

0.24(0.28)
0.70(0.64)
22.6(20.6)
0.08(0.15)
0.95(0.86)

0.29(0.31)
0.67(0.66)
24.9(24.1)
0.12(0.21)
1.00(0.99)

0.35(0.41)
0.64(0.59)
21.0(19.5)
0.15(0.21)
0.93(0.90)

0.34(0.41)
0.47(0.39)
16.9(15.8)
0.25(0.30)
0.77(0.69)

0.41(0.41)
0.47(0.38)
16.0(15.2)
0.16(0.28)
0.86(0.82)

0.14(0.16)
0.91(0.89)
27.2(25.6)
0.09(0.14)
0.96(0.96)

0.34(0.39)
0.63(0.59)
17.6(17.1)
0.21(0.25)
0.49(0.46)

0.30(0.34)
0.66(0.61)
21.2(20.1)
0.15(0.21)
0.85(0.81)

DDP-NeRF

0.32(0.40)
0.65(0.60)
21.1(20.1)
0.11(0.19)
0.77(0.58)

0.26(0.30)
0.69(0.63)
21.5(20.0)
0.09(0.17)
0.94(0.84)

0.18(0.18)
0.74(0.73)
23.9(23.4)
0.16(0.26)
0.99(0.99)

0.36(0.42)
0.63(0.59)
20.6(19.3)
0.19(0.27)
0.93(0.88)

0.35(0.45)
0.44(0.37)
16.1(15.1)
0.29(0.34)
0.66(0.57)

0.41(0.42)
0.50(0.41)
16.8(15.8)
0.16(0.30)
0.85(0.79)

0.25(0.26)
0.84(0.82)
22.0(20.8)
0.14(0.19)
0.92(0.91)

0.35(0.39)
0.64(0.60)
17.9(17.3)
0.21(0.26)
0.55(0.45)

0.30(0.35)
0.66(0.61)
20.2(19.2)
0.17(0.25)
0.83(0.77)

FreeNeRF

0.29(0.37)
0.68(0.64)
21.8(21.1)

–
0.89(0.86)

0.25(0.30)
0.70(0.64)
22.9(20.5)

–
0.95(0.85)

0.34(0.35)
0.60(0.60)
23.8(23.2)

–
0.95(0.95)

0.30(0.37)
0.68(0.63)
22.4(20.4)

–
0.95(0.89)

0.27(0.35)
0.54(0.47)
18.1(16.6)

–
0.87(0.80)

0.41(0.42)
0.46(0.37)
15.7(14.9)

–
0.77(0.69)

0.16(0.19)
0.90(0.88)
27.0(24.8)

–
0.91(0.89)

0.28(0.31)
0.72(0.68)
20.5(19.6)

–
0.90(0.87)

0.28(0.33)
0.68(0.63)
21.9(20.5)

–
0.91(0.86)

ViP-NeRF

0.33(0.39)
0.63(0.58)
19.3(18.2)
0.12(0.19)
0.70(0.60)

0.24(0.27)
0.70(0.63)
21.8(19.5)
0.09(0.18)
0.93(0.81)

0.24(0.25)
0.71(0.70)
24.3(23.3)
0.16(0.27)
0.99(0.98)

0.33(0.38)
0.65(0.60)
20.7(19.0)
0.20(0.28)
0.90(0.85)

0.30(0.36)
0.47(0.40)
16.0(14.8)
0.28(0.33)
0.65(0.55)

0.40(0.40)
0.48(0.39)
15.8(14.8)
0.18(0.32)
0.82(0.77)

0.21(0.23)
0.87(0.85)
24.9(23.2)
0.11(0.14)
0.90(0.90)

0.29(0.32)
0.69(0.64)
19.5(18.6)
0.12(0.16)
0.85(0.79)

0.29(0.32)
0.67(0.62)
20.7(19.3)
0.16(0.23)
0.86(0.81)

Simple-NeRF

0.27(0.33)
0.69(0.65)
21.9(21.1)
0.07(0.12)
0.90(0.87)

0.21(0.27)
0.74(0.67)
23.2(20.8)
0.07(0.13)
0.97(0.89)

0.26(0.28)
0.70(0.69)
25.4(24.3)
0.10(0.18)
1.00(0.99)

0.31(0.38)
0.68(0.63)
21.7(19.7)
0.16(0.24)
0.94(0.89)

0.27(0.35)
0.54(0.46)
17.7(16.3)
0.17(0.21)
0.85(0.78)

0.36(0.36)
0.51(0.42)
16.8(15.7)
0.14(0.27)
0.90(0.85)

0.17(0.19)
0.90(0.88)
26.3(24.3)
0.07(0.10)
0.97(0.96)

0.27(0.32)
0.74(0.68)
20.4(19.3)
0.10(0.13)
0.91(0.88)

0.26(0.31)
0.70(0.65)
22.0(20.4)
0.11(0.17)
0.94(0.90)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 31

Table 21. Per-scene performance of Simple-NeRF ablated models with two input views on LLFF dataset. The five rows show LPIPS, SSIM, PSNR, Depth MAE
and Depth SROCC scores, respectively. The values within parenthesis show unmasked scores.

Model \
Scene Name Fern Flower Fortress Horns Leaves Orchids Room Trex Average

Simple-NeRF

0.39(0.51)
0.54(0.50)
17.4(17.0)
0.14(0.21)
0.72(0.68)

0.28(0.43)
0.65(0.53)
20.1(16.9)
0.10(0.25)
0.94(0.72)

0.16(0.25)
0.72(0.67)
23.8(22.5)
0.05(0.25)
0.99(0.99)

0.26(0.42)
0.64(0.54)
19.6(17.1)
0.18(0.35)
0.88(0.76)

0.25(0.44)
0.45(0.30)
15.2(13.5)
0.31(0.44)
0.64(0.38)

0.33(0.41)
0.52(0.37)
16.3(14.7)
0.15(0.34)
0.85(0.74)

0.27(0.35)
0.83(0.77)
22.5(19.5)
0.12(0.21)
0.86(0.84)

0.28(0.39)
0.68(0.58)
18.3(16.8)
0.13(0.19)
0.78(0.73)

0.27(0.39)
0.65(0.55)
19.6(17.6)
0.14(0.28)
0.85(0.75)

Simple-NeRF w/o
Smoothing Aug

0.40(0.52)
0.54(0.49)
17.4(17.0)
0.14(0.21)
0.68(0.64)

0.27(0.43)
0.64(0.54)
20.4(17.6)
0.11(0.24)
0.95(0.77)

0.17(0.27)
0.71(0.65)
22.9(21.5)
0.06(0.25)
0.99(0.98)

0.29(0.46)
0.62(0.52)
19.7(17.2)
0.20(0.37)
0.84(0.72)

0.25(0.44)
0.47(0.32)
16.3(13.9)
0.28(0.42)
0.66(0.39)

0.36(0.43)
0.50(0.35)
15.9(14.5)
0.16(0.35)
0.83(0.72)

0.31(0.39)
0.81(0.74)
21.3(18.5)
0.14(0.23)
0.85(0.81)

0.29(0.40)
0.68(0.58)
18.0(16.7)
0.14(0.18)
0.77(0.76)

0.28(0.41)
0.64(0.54)
19.3(17.4)
0.15(0.28)
0.83(0.75)

Simple-NeRF w/o
Lambertian Aug

0.41(0.52)
0.54(0.49)
17.5(17.2)
0.14(0.20)
0.69(0.66)

0.29(0.45)
0.63(0.52)
20.4(17.5)
0.11(0.24)
0.95(0.77)

0.15(0.24)
0.74(0.68)
23.6(22.0)
0.05(0.24)
0.99(0.98)

0.30(0.47)
0.60(0.51)
18.7(16.5)
0.21(0.37)
0.82(0.72)

0.25(0.44)
0.46(0.31)
15.6(13.6)
0.29(0.43)
0.70(0.43)

0.34(0.41)
0.52(0.36)
16.1(14.6)
0.16(0.34)
0.84(0.73)

0.31(0.41)
0.80(0.73)
21.4(18.7)
0.15(0.22)
0.79(0.77)

0.28(0.40)
0.68(0.57)
18.3(16.9)
0.13(0.19)
0.78(0.77)

0.28(0.41)
0.64(0.54)
19.3(17.4)
0.15(0.28)
0.83(0.75)

Simple-NeRF w/o
Coarse-fine
Consistency

0.38(0.50)
0.56(0.51)
17.8(17.4)
0.15(0.23)
0.70(0.65)

0.31(0.47)
0.57(0.48)
18.4(16.3)
0.25(0.40)
0.78(0.56)

0.22(0.31)
0.69(0.64)
23.2(21.9)
0.06(0.30)
0.99(0.98)

0.33(0.52)
0.57(0.50)
19.4(17.0)
0.20(0.39)
0.87(0.74)

0.29(0.49)
0.34(0.23)
13.4(12.3)
0.58(0.65)
0.28(0.10)

0.34(0.41)
0.54(0.38)
16.2(14.4)
0.15(0.34)
0.85(0.73)

0.29(0.36)
0.79(0.72)
21.5(18.9)
0.10(0.21)
0.93(0.88)

0.28(0.38)
0.66(0.56)
18.6(17.2)
0.12(0.20)
0.78(0.72)

0.30(0.42)
0.61(0.52)
19.0(17.2)
0.19(0.33)
0.80(0.70)

Simple-NeRF w/o
reliable depth

0.39(0.50)
0.55(0.50)
17.7(17.3)
0.15(0.23)
0.71(0.65)

0.54(0.69)
0.28(0.25)
10.9(10.7)
0.58(0.71)
0.16(0.18)

0.16(0.25)
0.72(0.66)
23.3(22.0)
0.06(0.31)
0.99(0.97)

0.26(0.42)
0.65(0.54)
19.9(17.1)
0.20(0.38)
0.87(0.75)

0.27(0.46)
0.38(0.25)
14.1(12.7)
0.51(0.60)
0.52(0.27)

0.34(0.42)
0.52(0.36)
16.2(14.6)
0.16(0.34)
0.83(0.72)

0.28(0.35)
0.82(0.75)
22.0(19.1)
0.12(0.22)
0.91(0.87)

0.27(0.37)
0.69(0.57)
18.8(17.0)
0.11(0.20)
0.83(0.73)

0.30(0.42)
0.60(0.51)
18.4(16.7)
0.22(0.36)
0.76(0.67)

Simple-NeRF w/o
Residual
Positional
Encodings

0.41(0.53)
0.54(0.49)
17.5(17.1)
0.14(0.22)
0.68(0.61)

0.30(0.47)
0.62(0.52)
20.4(17.4)
0.11(0.23)
0.96(0.79)

0.16(0.26)
0.72(0.65)
22.9(21.7)
0.06(0.29)
0.99(0.97)

0.28(0.45)
0.62(0.53)
19.2(16.9)
0.20(0.35)
0.84(0.72)

0.25(0.45)
0.44(0.30)
15.3(13.5)
0.35(0.47)
0.60(0.35)

0.34(0.41)
0.53(0.37)
16.1(14.5)
0.16(0.34)
0.84(0.74)

0.32(0.41)
0.80(0.73)
21.3(18.2)
0.16(0.25)
0.76(0.68)

0.28(0.39)
0.68(0.58)
18.1(16.8)
0.14(0.19)
0.76(0.75)

0.28(0.41)
0.64(0.54)
19.2(17.3)
0.16(0.29)
0.82(0.72)

Simple-NeRF w/
Identical
Augmentations

0.40(0.52)
0.54(0.49)
17.4(17.0)
0.14(0.20)
0.71(0.69)

0.28(0.44)
0.64(0.53)
20.5(17.6)
0.10(0.22)
0.96(0.79)

0.16(0.25)
0.73(0.67)
23.6(22.1)
0.05(0.24)
0.99(0.99)

0.30(0.46)
0.60(0.51)
19.0(16.8)
0.20(0.37)
0.84(0.74)

0.24(0.44)
0.47(0.32)
15.7(13.7)
0.27(0.41)
0.72(0.45)

0.34(0.42)
0.51(0.36)
16.2(14.6)
0.16(0.33)
0.85(0.74)

0.32(0.40)
0.80(0.73)
21.4(18.9)
0.15(0.26)
0.78(0.72)

0.29(0.40)
0.67(0.57)
17.8(16.5)
0.15(0.20)
0.77(0.75)

0.28(0.41)
0.64(0.54)
19.3(17.4)
0.15(0.28)
0.84(0.75)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

32 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Table 22. Per-scene performance of various NeRF based models with two input views on RealEstate-10K dataset. The five rows show LPIPS, SSIM, PSNR,
Depth MAE and Depth SROCC scores, respectively. The values within parenthesis show unmasked scores.

Model \ Scene Name 0 1 3 4 6 Average

InfoNeRF

0.5711(0.6035)
0.4396(0.4356)
11.70(11.68)
2.2791(2.2552)
-0.0335(-0.0449)

0.4592(0.5016)
0.6275(0.6339)
16.20(15.61)
2.0442(2.0017)
0.1286(0.1617)

0.5959(0.6686)
0.2549(0.2469)
10.66(10.64)
2.8117(2.9467)
0.0727(0.0663)

0.7184(0.7605)
0.3873(0.3936)
10.70(10.83)
2.3704(2.3495)
0.0867(0.0712)

0.6175(0.6580)
0.4616(0.4614)
12.10(12.09)
1.3912(1.6040)
0.2014(0.2166)

0.5924(0.6384)
0.4342(0.4343)
12.27(12.17)
2.1793(2.2314)
0.0912(0.0942)

DietNeRF

0.4738(0.5162)
0.6335(0.6295)
14.80(14.72)
2.2511(2.2272)
0.0047(0.0032)

0.3748(0.4149)
0.8289(0.8387)
21.04(20.58)
1.9828(1.9476)
0.5266(0.5465)

0.5748(0.6718)
0.3356(0.3284)
12.93(12.59)
2.8672(3.0125)
0.2821(0.3065)

0.4712(0.4986)
0.6972(0.7016)
18.47(18.50)
2.0381(2.0190)
-0.1165(-0.0861)

0.2956(0.3296)
0.7718(0.7617)
23.05(22.74)
0.9844(1.1973)
0.4725(0.4559)

0.4381(0.4862)
0.6534(0.6520)
18.06(17.83)
2.0247(2.0807)
0.2339(0.2452)

RegNeRF

0.3357(0.3480)
0.6175(0.6010)
16.77(16.51)

–
-0.0420(-0.0269)

0.2898(0.3179)
0.8226(0.8290)
21.62(21.04)

–
-0.3059(-0.2176)

0.4428(0.4944)
0.3103(0.2973)
14.16(13.88)

–
0.1796(0.1485)

0.4969(0.5390)
0.6177(0.6148)
17.46(17.13)

–
0.2285(0.1764)

0.4992(0.5421)
0.5902(0.5901)
15.68(15.79)

–
0.4986(0.4781)

0.4129(0.4483)
0.5916(0.5864)
17.14(16.87)

–
0.1118(0.1117)

DS-NeRF

0.2331(0.2588)
0.8248(0.8111)
25.42(24.68)
1.0798(1.0705)
0.2650(0.2633)

0.2340(0.2727)
0.9137(0.9085)
29.86(27.93)
0.7518(0.8238)
0.7431(0.6798)

0.4074(0.5095)
0.5264(0.4999)
19.49(19.24)
0.9077(1.1926)
0.9088(0.8864)

0.2117(0.2369)
0.8835(0.8767)
29.81(29.18)
0.2362(0.2607)
0.9117(0.8934)

0.2685(0.3074)
0.8433(0.8332)
26.71(26.18)
0.6065(0.8138)
0.5014(0.4934)

0.2709(0.3171)
0.7983(0.7859)
26.26(25.44)
0.7164(0.8323)
0.6660(0.6433)

DDP-NeRF

0.1017(0.1099)
0.8973(0.8858)
27.01(25.90)
0.4971(0.5310)
0.7288(0.6851)

0.0966(0.1167)
0.9579(0.9490)
30.45(25.87)
0.5727(0.6260)
0.6975(0.6481)

0.2827(0.3438)
0.5931(0.5589)
19.59(18.97)
0.7513(1.0264)
0.9424(0.9238)

0.0506(0.0563)
0.9419(0.9356)
33.27(32.01)
0.0855(0.1074)
0.9304(0.9070)

0.1131(0.1140)
0.9296(0.9215)
28.62(28.00)
0.5091(0.6813)
0.6616(0.6674)

0.1290(0.1481)
0.8640(0.8502)
27.79(26.15)
0.4831(0.5944)
0.7921(0.7663)

FreeNeRF

0.4362(0.4490)
0.5537(0.5446)
15.14(15.00)

–
-0.0933(-0.0896)

0.4395(0.4970)
0.7697(0.7719)
17.78(17.00)

–
-0.3832(-0.3058)

0.5543(0.6376)
0.2879(0.2766)
12.54(12.15)

–
0.1582(0.1591)

0.6310(0.6736)
0.4863(0.4914)
12.76(12.84)

–
-0.1832(-0.1963)

0.4571(0.4786)
0.5795(0.5833)
15.30(15.50)

–
-0.4668(-0.4741)

0.5036(0.5471)
0.5354(0.5336)
14.70(14.50)

–
-0.1937(-0.1813)

ViP-NeRF

0.0347(0.0422)
0.9578(0.9431)
32.93(30.42)
0.3975(0.4451)
0.7263(0.6812)

0.0354(0.0497)
0.9791(0.9666)
37.48(31.96)
0.2310(0.3632)
0.9423(0.8487)

0.1793(0.1944)
0.6061(0.5675)
19.36(18.90)
0.7525(1.0708)
0.9392(0.8270)

0.0315(0.0344)
0.9572(0.9498)
38.05(34.75)
0.0840(0.1069)
0.9470(0.9174)

0.0626(0.0708)
0.9442(0.9316)
33.76(31.73)
0.4631(0.6827)
0.6683(0.6509)

0.0687(0.0783)
0.8889(0.8717)
32.32(29.55)
0.3856(0.5337)
0.8446(0.7851)

Simple-NeRF

0.0276(0.0369)
0.9662(0.9532)
34.94(31.89)

0.3299(0.3764)
0.8490(0.8007)

0.0273(0.0392)
0.9823(0.9728)
38.36(33.80)

0.2283(0.3202)
0.9733(0.9309)

0.1913(0.2130)
0.5968(0.5590)
19.23(18.65)

0.7286(1.0194)
0.9414(0.8582)

0.0300(0.0336)
0.9592(0.9511)
38.51(34.93)

0.0730(0.0960)
0.9624(0.9363)

0.0413(0.0500)
0.9663(0.9553)
34.47(32.24)

0.2747(0.4803)
0.8812(0.8647)

0.0635(0.0745)
0.8942(0.8783)
33.10(30.30)

0.3269(0.4584)
0.9215(0.8781)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 33

Table 23. Per-scene performance of various NeRF based models with three input views on RealEstate-10K dataset. The five rows show LPIPS, SSIM, PSNR,
Depth MAE and Depth SROCC scores, respectively. The values within parenthesis show unmasked scores.

Model \ Scene Name 0 1 3 4 6 Average

InfoNeRF

0.6722(0.6983)
0.3622(0.3593)
9.74(9.73)

2.3079(2.2937)
0.0640(0.0560)

0.6151(0.6280)
0.4916(0.4871)
12.08(11.75)
2.1419(2.1368)
0.3196(0.3379)

0.6187(0.6621)
0.1892(0.1848)
9.08(9.23)

2.8991(3.0636)
0.0813(0.0884)

0.7524(0.7785)
0.3749(0.3790)
10.19(10.28)
2.3476(2.3454)
0.1210(0.1273)

0.6220(0.6562)
0.4779(0.4797)
11.74(11.87)
1.4028(1.5757)
0.3788(0.3875)

0.6561(0.6846)
0.3792(0.3780)
10.57(10.57)
2.2198(2.2830)
0.1929(0.1994)

DietNeRF

0.4698(0.4893)
0.6226(0.6166)
16.44(16.36)
2.1863(2.1710)
0.0856(0.0728)

0.4979(0.5115)
0.8046(0.8158)
18.51(18.29)
2.0866(2.0870)
-0.1136(-0.0664)

0.5759(0.6289)
0.3235(0.3233)
13.44(13.30)
2.8594(3.0383)
0.3096(0.3401)

0.4600(0.4719)
0.7144(0.7151)
18.98(18.95)
1.9957(1.9918)
-0.2370(-0.2100)

0.3142(0.3413)
0.7630(0.7514)
22.65(22.54)
1.0496(1.2234)
0.0754(0.0823)

0.4636(0.4886)
0.6456(0.6445)
18.01(17.89)
2.0355(2.1023)
0.0240(0.0438)

RegNeRF

0.3877(0.3952)
0.6084(0.5950)
16.22(15.99)

–
-0.0854(-0.0849)

0.3179(0.3220)
0.8178(0.8237)
21.06(20.89)

–
0.2210(0.2376)

0.4885(0.5302)
0.3008(0.2893)
14.07(13.87)

–
-0.0298(-0.0517)

0.5406(0.5635)
0.6227(0.6221)
17.61(17.60)

–
0.3273(0.2715)

0.3506(0.3699)
0.7162(0.7087)
20.35(20.28)

–
-0.1459(-0.1349)

0.4171(0.4362)
0.6132(0.6078)
17.86(17.73)

–
0.0574(0.0475)

DS-NeRF

0.2273(0.2436)
0.8395(0.8264)
26.09(25.24)
0.4587(0.4890)
0.7501(0.7227)

0.2404(0.2606)
0.9124(0.9099)
29.43(28.68)
0.7153(0.7774)
0.7428(0.7184)

0.4562(0.5346)
0.5121(0.4930)
19.44(19.14)
0.8878(1.1777)
0.9158(0.8939)

0.2463(0.2602)
0.8750(0.8710)
29.40(29.08)
0.2076(0.2207)
0.8619(0.8490)

0.2761(0.3067)
0.8631(0.8521)
28.12(27.58)
0.4305(0.5970)
0.7826(0.7711)

0.2893(0.3211)
0.8004(0.7905)
26.50(25.94)
0.5400(0.6524)
0.8106(0.7910)

DDP-NeRF

0.1138(0.1143)
0.9046(0.8940)
26.17(25.27)
0.3632(0.4007)
0.7805(0.7418)

0.1229(0.1069)
0.9557(0.9583)
27.99(26.67)
0.4621(0.5204)
0.8822(0.8365)

0.3283(0.3821)
0.5709(0.5548)
19.11(18.81)
0.7746(1.0395)
0.9494(0.9272)

0.0591(0.0623)
0.9389(0.9352)
32.68(31.84)
0.1057(0.1155)
0.9022(0.8939)

0.1348(0.1349)
0.9234(0.9166)
27.40(26.99)
0.3640(0.5347)
0.7918(0.7661)

0.1518(0.1601)
0.8587(0.8518)
26.67(25.92)
0.4139(0.5222)
0.8612(0.8331)

FreeNeRF

0.5272(0.5429)
0.5337(0.5250)
13.87(13.79)

–
-0.1174(-0.1177)

0.4975(0.5138)
0.7487(0.7504)
16.07(15.59)

–
-0.2051(-0.1583)

0.5800(0.6407)
0.2937(0.2863)
12.60(12.45)

–
-0.0762(-0.0521)

0.5668(0.5905)
0.6111(0.6122)
15.74(15.72)

–
-0.3930(-0.3889)

0.4016(0.4193)
0.6671(0.6634)
18.01(18.05)

–
-0.5031(-0.5058)

0.5146(0.5414)
0.5708(0.5675)
15.26(15.12)

–
-0.2590(-0.2445)

ViP-NeRF

0.0405(0.0432)
0.9567(0.9450)
32.88(30.68)
0.3021(0.3488)
0.8391(0.7931)

0.0517(0.0541)
0.9715(0.9638)
33.82(31.50)
0.3589(0.4690)
0.9002(0.8319)

0.1939(0.2170)
0.6409(0.6148)
19.91(19.59)
0.6819(0.9977)
0.9427(0.8559)

0.0351(0.0352)
0.9518(0.9484)
37.13(35.78)

0.0850(0.0956)
0.9268(0.9173)

0.0579(0.0663)
0.9624(0.9537)
35.90(33.79)

0.2548(0.4306)
0.8956(0.8805)

0.0758(0.0832)
0.8967(0.8852)
31.93(30.27)
0.3365(0.4683)
0.9009(0.8558)

Simple-NeRF

0.0327(0.0379)
0.9646(0.9546)
34.77(32.23)

0.2606(0.3062)
0.8791(0.8347)

0.0263(0.0350)
0.9817(0.9765)
39.32(36.44)

0.2189(0.2822)
0.9797(0.9687)

0.2059(0.2325)
0.6347(0.6111)
19.93(19.65)

0.5466(0.8178)
0.9462(0.8691)

0.0324(0.0328)
0.9542(0.9498)
37.67(35.85)
0.0798(0.0989)
0.9405(0.9179)

0.0660(0.0761)
0.9568(0.9477)
34.37(32.81)
0.2791(0.4375)
0.8876(0.8747)

0.0726(0.0829)
0.8984(0.8879)
33.21(31.40)

0.2770(0.3885)
0.9266(0.8931)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

34 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Table 24. Per-scene performance of various NeRF based models with four input views on RealEstate-10K dataset. The five rows show LPIPS, SSIM, PSNR,
Depth MAE and Depth SROCC scores, respectively. The values within parenthesis show unmasked scores.

Model \ Scene Name 0 1 3 4 6 Average

InfoNeRF

0.5948(0.6030)
0.5023(0.5002)
12.80(12.74)
2.2648(2.2692)
0.2109(0.2053)

0.7054(0.6927)
0.3621(0.3621)
8.76(8.60)

2.0969(2.1482)
0.2990(0.3040)

0.6889(0.6976)
0.1767(0.1725)
8.68(8.71)

2.8542(3.0882)
0.2874(0.2812)

0.7918(0.8068)
0.3119(0.3176)
8.76(8.79)

2.3608(2.3658)
0.1548(0.1696)

0.5447(0.5604)
0.5683(0.5625)
14.12(14.12)
1.3605(1.4993)
0.3227(0.3369)

0.6651(0.6721)
0.3843(0.3830)
10.62(10.59)
2.1874(2.2742)
0.2549(0.2594)

DietNeRF

0.5095(0.5189)
0.6163(0.6125)
15.78(15.63)
2.2313(2.2346)
0.0064(0.0055)

0.4664(0.4628)
0.8352(0.8399)
19.91(19.64)
2.0104(2.0647)
0.1436(0.1283)

0.6182(0.6399)
0.3243(0.3198)
13.29(13.27)
2.7825(3.0206)
0.3925(0.3897)

0.4881(0.4966)
0.7157(0.7156)
19.06(19.01)
1.9930(1.9969)
-0.1838(-0.1637)

0.3442(0.3589)
0.7598(0.7495)
21.99(21.93)
1.1820(1.3199)
0.1363(0.1458)

0.4853(0.4954)
0.6503(0.6475)
18.01(17.89)
2.0398(2.1273)
0.0990(0.1011)

RegNeRF

0.4215(0.4252)
0.5922(0.5824)
16.29(16.09)

–
-0.0032(-0.0018)

0.3498(0.3461)
0.8249(0.8256)
21.14(20.98)

–
0.2630(0.2456)

0.5737(0.5903)
0.3036(0.2936)
13.93(13.91)

–
0.2565(0.2652)

0.5450(0.5581)
0.6484(0.6479)
18.49(18.48)

–
0.4133(0.4104)

0.2678(0.2719)
0.7595(0.7497)
21.86(21.78)

–
-0.2187(-0.2214)

0.4316(0.4383)
0.6257(0.6198)
18.34(18.25)

–
0.1422(0.1396)

DS-NeRF

0.2663(0.2746)
0.8230(0.8156)
25.95(25.40)
0.4308(0.4611)
0.7511(0.7254)

0.2513(0.2580)
0.9202(0.9176)
29.99(29.40)
0.6204(0.6904)
0.7074(0.6988)

0.5061(0.5550)
0.5184(0.5014)
19.73(19.64)
0.8457(1.1119)
0.9340(0.9191)

0.2380(0.2461)
0.8758(0.8734)
29.48(29.26)
0.2160(0.2265)
0.8703(0.8603)

0.2899(0.3100)
0.8621(0.8520)
28.08(27.69)
0.4644(0.5954)
0.8097(0.8055)

0.3103(0.3287)
0.7999(0.7920)
26.65(26.28)
0.5154(0.6171)
0.8145(0.8018)

DDP-NeRF

0.1235(0.1196)
0.8989(0.8921)
25.67(25.14)
0.3369(0.3668)
0.8081(0.7767)

0.0893(0.0797)
0.9633(0.9629)
30.10(28.57)
0.3465(0.4096)
0.9270(0.9187)

0.3667(0.3938)
0.5926(0.5783)
19.64(19.57)
0.7186(0.9760)
0.9529(0.9422)

0.0648(0.0641)
0.9329(0.9306)
32.44(31.73)
0.1030(0.1135)
0.9067(0.8976)

0.1371(0.1346)
0.9206(0.9144)
27.52(27.36)
0.4109(0.5405)
0.7747(0.7674)

0.1563(0.1584)
0.8617(0.8557)
27.07(26.48)
0.3832(0.4813)
0.8739(0.8605)

FreeNeRF

0.5569(0.5630)
0.5398(0.5335)
13.91(13.84)

–
-0.0622(-0.0616)

0.4786(0.4750)
0.7945(0.7990)
18.05(17.93)

–
-0.2656(-0.2658)

0.6252(0.6458)
0.3130(0.3063)
12.71(12.69)

–
0.3116(0.3100)

0.5672(0.5839)
0.6635(0.6623)
17.37(17.29)

–
-0.4956(-0.5005)

0.3852(0.3938)
0.7027(0.6936)
19.52(19.48)

–
-0.5640(-0.5630)

0.5226(0.5323)
0.6027(0.5989)
16.31(16.25)

–
-0.2152(-0.2162)

ViP-NeRF

0.0438(0.0437)
0.9569(0.9507)
33.96(32.32)
0.2883(0.3216)
0.8421(0.8097)

0.0719(0.0702)
0.9636(0.9591)
33.23(31.95)
0.5206(0.6261)
0.6288(0.5661)

0.2232(0.2305)
0.6563(0.6401)
20.61(20.42)
0.6319(0.8927)
0.9222(0.8849)

0.0390(0.0387)
0.9474(0.9445)
36.76(35.65)
0.0842(0.1009)
0.9232(0.9026)

0.0681(0.0716)
0.9599(0.9527)
35.20(33.81)
0.3039(0.4392)
0.8908(0.8766)

0.0892(0.0909)
0.8968(0.8894)
31.95(30.83)
0.3658(0.4761)
0.8414(0.8080)

Simple-NeRF

0.0373(0.0381)
0.9616(0.9562)
34.52(32.95)

0.2668(0.2977)
0.8631(0.8362)

0.0417(0.0459)
0.9777(0.9746)
38.01(36.44)

0.2254(0.2825)
0.9719(0.9613)

0.2308(0.2427)
0.6513(0.6355)
20.68(20.52)

0.4750(0.6914)
0.9493(0.9278)

0.0341(0.0333)
0.9509(0.9477)
37.29(35.97)

0.0776(0.0944)
0.9417(0.9210)

0.0796(0.0857)
0.9522(0.9446)
33.90(32.77)

0.3014(0.4162)
0.8784(0.8710)

0.0847(0.0891)
0.8987(0.8917)
32.88(31.73)

0.2692(0.3565)
0.9209(0.9035)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 35

Table 25. Per-scene performance of Simple-NeRF ablated models with two input views on RealEstate-10K dataset. The five rows show LPIPS, SSIM, PSNR,
Depth MAE and Depth SROCC scores, respectively. The values within parenthesis show unmasked scores.

Model \ Scene Name 0 1 3 4 6 Average

Simple-NeRF

0.0276(0.0369)
0.9662(0.9532)
34.94(31.89)

0.3299(0.3764)
0.8490(0.8007)

0.0273(0.0392)
0.9823(0.9728)
38.36(33.80)

0.2283(0.3202)
0.9733(0.9309)

0.1913(0.2130)
0.5968(0.5590)
19.23(18.65)

0.7286(1.0194)
0.9414(0.8582)

0.0300(0.0336)
0.9592(0.9511)
38.51(34.93)

0.0730(0.0960)
0.9624(0.9363)

0.0413(0.0500)
0.9663(0.9553)
34.47(32.24)

0.2747(0.4803)
0.8812(0.8647)

0.0635(0.0745)
0.8942(0.8783)
33.10(30.30)

0.3269(0.4584)
0.9215(0.8781)

Simple-NeRF w/o
Smoothing Augmentation

0.0334(0.0426)
0.9618(0.9487)
34.26(31.31)
0.3632(0.4080)
0.8279(0.7849)

0.0387(0.0543)
0.9768(0.9672)
37.15(32.80)
0.3145(0.3992)
0.9211(0.8817)

0.1988(0.2215)
0.5927(0.5540)
19.28(18.76)
0.7602(1.0816)
0.9074(0.7931)

0.0315(0.0365)
0.9582(0.9492)
38.27(34.50)
0.0862(0.1146)
0.9601(0.9296)

0.0736(0.0898)
0.9533(0.9418)
33.75(31.87)
0.3733(0.5510)
0.8699(0.8540)

0.0752(0.0889)
0.8886(0.8722)
32.54(29.85)
0.3795(0.5109)
0.8973(0.8487)

Simple-NeRF w/o
Lambertian Augmentation

0.0351(0.0449)
0.9606(0.9461)
33.84(30.91)
0.4028(0.4448)
0.7597(0.7208)

0.0559(0.0685)
0.9717(0.9625)
35.74(32.62)
0.3687(0.4311)
0.9366(0.9130)

0.2018(0.2258)
0.5971(0.5565)
19.20(18.44)

0.7095(1.0231)
0.9205(0.8209)

0.0308(0.0365)
0.9584(0.9493)
38.35(34.51)
0.0907(0.1191)
0.9582(0.9264)

0.0713(0.0870)
0.9541(0.9423)
33.50(31.61)
0.3633(0.5370)
0.8437(0.8327)

0.0790(0.0925)
0.8884(0.8714)
32.13(29.62)
0.3870(0.5110)
0.8837(0.8428)

Simple-NeRF w/o
Coarse-fine
Consistency

0.0407(0.0497)
0.9525(0.9371)
32.03(29.63)
0.4844(0.5346)
0.6863(0.6411)

0.0482(0.0605)
0.9733(0.9653)
36.02(33.23)
0.4072(0.4644)
0.9236(0.9177)

0.2017(0.2288)
0.5890(0.5466)
19.09(18.39)
0.8111(1.1278)
0.9083(0.7955)

0.0309(0.0353)
0.9584(0.9486)
38.24(34.21)
0.0826(0.1163)
0.9590(0.9206)

0.0484(0.0580)
0.9612(0.9492)
33.89(31.89)
0.3263(0.5198)
0.8108(0.7950)

0.0740(0.0865)
0.8869(0.8693)
31.86(29.47)
0.4223(0.5526)
0.8576(0.8140)

Simple-NeRF w/o
reliable depth

0.0304(0.0402)
0.9631(0.9519)
34.95(32.35)
0.5129(0.5538)
0.6705(0.6365)

0.0548(0.0670)
0.9685(0.9597)
34.67(32.08)
0.5654(0.6359)
0.9246(0.9088)

0.1875(0.2104)
0.5991(0.5600)
19.49(19.04)
0.7689(1.0549)
0.9452(0.8952)

0.0296(0.0327)
0.9595(0.9516)
38.53(35.17)
0.0737(0.0994)
0.9602(0.9304)

0.0414(0.0506)
0.9661(0.9540)
35.52(33.00)
0.3214(0.5452)
0.8641(0.8312)

0.0687(0.0802)
0.8913(0.8754)
32.63(30.33)
0.4485(0.5778)
0.8729(0.8404)

Simple-NeRF w/o
Residual
Positional
Encodings

0.0353(0.0442)
0.9605(0.9468)
33.64(30.97)
0.4173(0.4567)
0.7540(0.7167)

0.0627(0.0726)
0.9681(0.9607)
35.19(32.53)
0.3882(0.4344)
0.9422(0.9137)

0.1967(0.2205)
0.5959(0.5552)
19.16(18.47)
0.7512(1.0759)
0.9016(0.7851)

0.0306(0.0329)
0.9586(0.9526)
38.44(35.86)
0.0866(0.1046)
0.9595(0.9343)

0.0697(0.0844)
0.9544(0.9424)
33.57(31.74)
0.3764(0.5560)
0.8618(0.8462)

0.0790(0.0909)
0.8875(0.8715)
32.00(29.91)
0.4040(0.5255)
0.8838(0.8392)

Simple-NeRF w/
Identical
Augmentations

0.0317(0.0410)
0.9621(0.9494)
34.36(31.72)
0.3636(0.4079)
0.8239(0.7811)

0.0491(0.0623)
0.9740(0.9651)
36.22(32.63)
0.3754(0.4348)
0.9569(0.9145)

0.1996(0.2257)
0.5911(0.5514)
19.13(18.47)
0.7880(1.1129)
0.8882(0.7710)

0.0311(0.0360)
0.9585(0.9498)
38.36(34.68)
0.0887(0.1169)
0.9583(0.9244)

0.0768(0.0930)
0.9520(0.9409)
33.49(31.73)
0.4028(0.5621)
0.8472(0.8354)

0.0777(0.0916)
0.8875(0.8713)
32.31(29.85)
0.4037(0.5269)
0.8949(0.8453)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

36 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Table 26. Per-scene performance of various TensoRF based models with three input views on LLFF dataset. The five rows show LPIPS, SSIM, PSNR, Depth
MAE and Depth SROCC scores, respectively. The values within parenthesis show unmasked scores.

Model \
Scene Name Fern Flower Fortress Horns Leaves Orchids Room Trex Average

TensoRF

0.61(0.66)
0.28(0.26)
12.4(12.4)
0.47(0.56)
0.13(0.12)

0.47(0.52)
0.37(0.33)
14.4(14.2)
0.59(0.70)
-0.18(-0.10)

0.46(0.51)
0.37(0.38)
14.4(13.8)
0.67(0.88)
0.05(0.05)

0.55(0.64)
0.25(0.25)
11.7(11.6)
0.84(1.02)
0.02(0.03)

0.43(0.57)
0.20(0.14)
11.8(11.3)
0.74(0.79)
-0.04(-0.02)

0.56(0.60)
0.23(0.17)
11.8(11.8)
0.54(0.75)
-0.08(-0.09)

0.66(0.70)
0.50(0.51)
12.2(12.2)
0.79(0.81)
-0.00(-0.00)

0.62(0.70)
0.28(0.27)
10.3(10.5)
0.54(0.58)
0.23(0.21)

0.55(0.62)
0.32(0.30)
12.3(12.1)
0.67(0.78)
0.03(0.03)

DS-TensoRF

0.40(0.46)
0.47(0.44)
17.8(17.5)
0.19(0.27)
0.55(0.49)

0.24(0.30)
0.68(0.59)
20.8(18.8)
0.19(0.32)
0.80(0.59)

0.13(0.17)
0.80(0.76)
23.3(21.2)
0.12(0.33)
0.92(0.85)

0.29(0.38)
0.62(0.55)
17.2(15.8)
0.31(0.49)
0.62(0.55)

0.31(0.46)
0.37(0.28)
14.6(13.3)
0.47(0.55)
0.54(0.41)

0.47(0.52)
0.35(0.26)
14.8(14.2)
0.30(0.47)
0.57(0.49)

0.31(0.33)
0.79(0.77)
19.8(19.3)
0.20(0.23)
0.80(0.83)

0.28(0.34)
0.70(0.65)
18.4(17.5)
0.12(0.17)
0.85(0.77)

0.29(0.35)
0.63(0.57)
18.6(17.4)
0.23(0.35)
0.73(0.65)

Simple-TensoRF

0.38(0.43)
0.50(0.46)
18.3(17.8)
0.20(0.30)
0.51(0.42)

0.19(0.25)
0.72(0.63)
22.4(20.2)
0.15(0.29)
0.83(0.68)

0.11(0.15)
0.81(0.77)
26.0(23.7)
0.10(0.32)
0.97(0.95)

0.23(0.32)
0.69(0.61)
19.9(17.6)
0.21(0.37)
0.80(0.71)

0.24(0.36)
0.48(0.37)
16.5(14.9)
0.27(0.35)
0.77(0.59)

0.40(0.43)
0.42(0.32)
16.0(15.1)
0.25(0.41)
0.77(0.69)

0.25(0.27)
0.83(0.81)
21.7(20.9)
0.14(0.19)
0.88(0.88)

0.28(0.32)
0.71(0.66)
18.1(17.4)
0.10(0.16)
0.89(0.80)

0.25(0.30)
0.67(0.61)
20.2(18.7)
0.17(0.29)
0.83(0.75)

Simple-TensoRF w/
𝑅𝑠𝜎 = 𝑅𝜎

0.40(0.46)
0.48(0.44)
18.1(17.8)
0.21(0.29)
0.52(0.45)

0.21(0.27)
0.71(0.62)
21.9(19.6)
0.17(0.32)
0.80(0.65)

0.13(0.17)
0.80(0.77)
24.3(22.5)
0.11(0.31)
0.96(0.91)

0.24(0.34)
0.67(0.59)
18.8(17.0)
0.25(0.43)
0.74(0.66)

0.25(0.38)
0.46(0.36)
16.1(14.6)
0.28(0.38)
0.74(0.59)

0.40(0.43)
0.42(0.32)
16.1(15.1)
0.23(0.39)
0.78(0.70)

0.24(0.27)
0.83(0.81)
22.0(21.0)
0.13(0.16)
0.87(0.88)

0.27(0.32)
0.71(0.66)
19.0(18.0)
0.10(0.15)
0.90(0.82)

0.25(0.31)
0.67(0.60)
19.9(18.4)
0.18(0.30)
0.81(0.73)

Simple-TensoRF w/
𝑁 𝑠𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥

0.38(0.44)
0.50(0.46)
18.4(18.0)
0.20(0.29)
0.51(0.41)

0.21(0.26)
0.70(0.61)
21.7(19.5)
0.18(0.32)
0.76(0.57)

0.12(0.16)
0.81(0.77)
25.3(23.1)
0.10(0.31)
0.96(0.92)

0.23(0.33)
0.68(0.60)
19.7(17.7)
0.22(0.38)
0.82(0.75)

0.29(0.42)
0.38(0.29)
15.2(14.0)
0.39(0.46)
0.59(0.47)

0.43(0.47)
0.39(0.29)
15.4(14.6)
0.30(0.48)
0.66(0.59)

0.25(0.28)
0.82(0.80)
22.0(21.1)
0.14(0.18)
0.87(0.87)

0.27(0.32)
0.71(0.66)
18.5(17.8)
0.10(0.16)
0.89(0.80)

0.26(0.32)
0.66(0.59)
19.9(18.5)
0.19(0.31)
0.79(0.71)

Simple-TensoRF w/
𝑅𝑠𝜎 = 𝑅𝜎 ;
𝑁 𝑠𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥

0.38(0.44)
0.50(0.46)
18.3(17.8)
0.20(0.29)
0.51(0.40)

0.21(0.27)
0.70(0.61)
21.5(19.6)
0.20(0.37)
0.72(0.55)

0.12(0.16)
0.81(0.77)
25.1(23.0)
0.11(0.31)
0.97(0.93)

0.31(0.40)
0.59(0.52)
17.5(16.2)
0.36(0.53)
0.59(0.51)

0.29(0.43)
0.41(0.32)
15.3(14.0)
0.39(0.45)
0.59(0.45)

0.44(0.49)
0.37(0.28)
15.1(14.5)
0.31(0.49)
0.63(0.54)

0.24(0.26)
0.83(0.81)
22.4(21.4)
0.12(0.16)
0.90(0.90)

0.28(0.33)
0.70(0.65)
18.5(17.7)
0.11(0.17)
0.88(0.78)

0.27(0.34)
0.64(0.58)
19.5(18.2)
0.22(0.34)
0.74(0.66)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 37

Table 27. Per-scene performance of various TensoRF based models with three input views on RealEstate-10K dataset. The five rows show LPIPS, SSIM, PSNR,
Depth MAE and Depth SROCC scores, respectively. The values within parenthesis show unmasked scores.

Model \ Scene Name 0 1 3 4 6 Average

TensoRF

0.0385(0.0407)
0.9580(0.9428)
32.66(29.91)
0.2546(0.2708)
0.6713(0.6488)

0.0498(0.0563)
0.9709(0.9642)
32.19(30.83)
0.3033(0.3398)
0.8540(0.8215)

0.3072(0.3196)
0.4348(0.4228)
16.16(15.91)
0.6816(0.7829)
0.3840(0.3944)

0.0590(0.0628)
0.9378(0.9279)
31.18(29.52)
0.0969(0.1215)
0.8204(0.7474)

0.0386(0.0458)
0.9644(0.9559)
35.90(33.81)
0.8604(0.9056)
0.4272(0.4263)

0.0986(0.1050)
0.8532(0.8427)
29.62(28.00)
0.4394(0.4841)
0.6314(0.6077)

DS-TensoRF

0.0333(0.0390)
0.9616(0.9476)
34.15(31.09)

0.1580(0.1822)
0.7528(0.7036)

0.0303(0.0391)
0.9801(0.9731)
38.01(34.85)
0.2152(0.2471)
0.9446(0.9348)

0.2288(0.2480)
0.5777(0.5531)
18.79(18.29)
0.4200(0.5451)
0.7748(0.7419)

0.0346(0.0381)
0.9533(0.9464)
36.35(33.48)

0.0363(0.0516)
0.9258(0.8734)

0.0423(0.0489)
0.9633(0.9538)
35.21(33.32)
0.5304(0.6343)
0.3654(0.3596)

0.0739(0.0827)
0.8872(0.8748)
32.50(30.20)
0.2720(0.3321)
0.7527(0.7227)

Simple-TensoRF

0.0413(0.0454)
0.9535(0.9423)
33.57(30.98)
0.1979(0.2127)
0.7026(0.6628)

0.0324(0.0395)
0.9793(0.9732)
38.17(34.72)
0.1998(0.2438)
0.9102(0.8768)

0.1957(0.2165)
0.6197(0.5939)
19.65(19.17)
0.3293(0.4552)
0.8654(0.8077)

0.0367(0.0374)
0.9514(0.9480)
36.88(35.51)
0.0508(0.0572)
0.8866(0.8736)

0.0466(0.0514)
0.9562(0.9470)
35.25(33.58)
0.3366(0.4721)
0.6267(0.5896)

0.0706(0.0780)
0.8920(0.8809)
32.70(30.79)
0.2229(0.2882)
0.7983(0.7621)

Simple-TensoRF w/
𝑅𝑠𝜎 = 𝑅𝜎

0.0556(0.0585)
0.9429(0.9303)
31.96(29.66)
0.2579(0.2734)
0.5966(0.5550)

0.0784(0.0833)
0.9426(0.9406)
32.86(31.77)
0.3988(0.4114)
0.8298(0.7942)

0.1941(0.2149)
0.6248(0.5974)
19.59(19.01)

0.3190(0.4456)
0.8539(0.7936)

0.0472(0.0493)
0.9460(0.9415)
35.39(33.83)
0.0662(0.0714)
0.8752(0.8647)

0.0494(0.0535)
0.9542(0.9448)
34.93(33.26)

0.3290(0.4567)
0.6694(0.6118)

0.0850(0.0919)
0.8821(0.8709)
30.94(29.51)
0.2742(0.3317)
0.7650(0.7238)

Simple-TensoRF w/
𝑁 𝑠𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥

0.0503(0.0545)
0.9483(0.9356)
32.49(30.12)
0.2154(0.2294)
0.7102(0.6776)

0.0360(0.0425)
0.9777(0.9714)
36.51(33.82)

0.1612(0.2106)
0.9554(0.9091)

0.1990(0.2183)
0.6132(0.5851)
19.46(18.91)
0.3467(0.4895)
0.8388(0.7518)

0.0329(0.0344)
0.9539(0.9495)
37.50(35.20)
0.0403(0.0456)
0.9083(0.8993)

0.0494(0.0548)
0.9547(0.9447)
35.15(33.41)
0.3362(0.4688)
0.6990(0.6379)

0.0735(0.0809)
0.8896(0.8773)
32.22(30.29)

0.2200(0.2888)
0.8223(0.7751)

Simple-TensoRF w/
𝑅𝑠𝜎 = 𝑅𝜎 ;𝑁 𝑠𝑣𝑜𝑥 = 𝑁𝑣𝑜𝑥

0.0485(0.0523)
0.9495(0.9358)
32.55(30.02)
0.2143(0.2284)
0.7181(0.6866)

0.0522(0.0583)
0.9739(0.9681)
35.56(33.27)
0.2039(0.2483)
0.8937(0.8607)

0.2012(0.2236)
0.6079(0.5793)
19.33(18.80)
0.3522(0.5015)
0.7969(0.7146)

0.0405(0.0428)
0.9504(0.9454)
36.22(34.12)
0.0555(0.0626)
0.8851(0.8694)

0.0512(0.0564)
0.9537(0.9431)
34.97(33.18)
0.3474(0.5006)
0.6756(0.5976)

0.0787(0.0867)
0.8871(0.8743)
31.73(29.88)
0.2346(0.3083)
0.7939(0.7458)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

38 • Nagabhushan Somraj, Adithyan Karanayil, Sai Harsha Mupparaju, and Rajiv Soundararajan

Table 28. Per-scene performance of various ZipNeRF based models with twelve input views on the MipNeRF360 dataset. The five rows show LPIPS, SSIM,
PSNR, Depth MAE and Depth SROCC scores, respectively.

Model \ Scene Name Bicycle Bonsai Counter Garden Kitchen Room Stump Average

ZipNeRF

0.6617
0.2044
14.77
8.4860
-0.3807

0.5722
0.5486
15.79
2.9808
0.4405

0.7258
0.4330
12.41
15.1470
-0.0017

0.4130
0.4385
18.65
1.5437
0.8949

0.5927
0.4072
14.05
15.9720
-0.0473

0.3978
0.7121
18.65
0.4371
0.7352

0.6249
0.2591
17.19
8.7365
0.0952

0.5614
0.4616
15.86
7.4260
0.2755

Augmented ZipNeRF

0.7995
0.2433
14.30

428.2730
-0.0204

0.6486
0.5089
15.73
26.6151
0.5007

0.7180
0.4790
13.78
50.3386
0.2334

0.8011
0.2863
16.16
23.5793
0.7987

0.6239
0.4916
18.92
7.0898
0.9650

0.5824
0.6213
17.65
3.7203
0.5605

0.7060
0.2705
16.31

356.3442
0.0301

0.6825
0.4462
16.27
96.4194
0.4869

Simple-ZipNeRF

0.6588
0.2015
14.77
9.0387
-0.1401

0.5123
0.5851
17.46
3.7980
0.5518

0.6105
0.5094
14.79
3.3017
0.2898

0.4698
0.3995
17.80
0.5187
0.8854

0.2888
0.7017
20.50
1.1201
0.9621

0.3918
0.7115
19.09
2.9600
0.6553

0.6278
0.2616
17.31
6.0815
-0.0605

0.4876
0.5245
17.60
3.5434
0.5103

Table 29. Per-scene performance of various ZipNeRF based models with twenty input views on the MipNeRF360 dataset. The five rows show LPIPS, SSIM,
PSNR, Depth MAE and Depth SROCC scores, respectively.

Model \ Scene Name Bicycle Bonsai Counter Garden Kitchen Room Stump Average

ZipNeRF

0.6554
0.2293
14.97
5.5415
-0.1092

0.3793
0.6912
18.43
2.0900
0.6476

0.7201
0.4716
13.45
2.2907
0.0093

0.2472
0.6358
22.49
0.3442
0.9838

0.2799
0.7406
20.23
1.0369
0.7730

0.3114
0.7889
23.15
0.3183
0.8285

0.6076
0.2732
17.58
5.8841
-0.0517

0.4350
0.5911
18.89
2.1151
0.5032

Augmented ZipNeRF

0.7825
0.2756
15.44
71.2764
0.3799

0.5268
0.6568
21.23
6.4862
0.7704

0.5903
0.6164
18.90
6.0847
0.7391

0.7503
0.3362
19.04
6.7096
0.9282

0.5722
0.5333
20.83
2.2221
0.9753

0.5380
0.6867
20.00
1.2190
0.7951

0.7340
0.3021
17.14

246.0264
-0.0616

0.6190
0.5244
19.31
31.2000
0.7117

Simple-ZipNeRF

0.6415
0.2266
15.11
7.2913
0.2979

0.2783
0.7630
22.39
1.9279
0.8119

0.3624
0.6922
20.23
1.0639
0.7890

0.2311
0.6359
21.85
0.8546
0.9569

0.1777
0.8155
23.80
6.4959
0.9466

0.3096
0.7796
22.68
0.6978
0.8305

0.5890
0.2582
17.30
7.3037
-0.0959

0.3421
0.6456
21.03
3.2887
0.7190

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions • 39

Table 30. Per-scene performance of various ZipNeRF based models with thirty-six input views on the MipNeRF360 dataset. The five rows show LPIPS, SSIM,
PSNR, Depth MAE and Depth SROCC scores, respectively.

Model \ Scene Name Bicycle Bonsai Counter Garden Kitchen Room Stump Average

ZipNeRF

0.5717
0.2810
16.09
12.5203
0.0187

0.1689
0.8687
25.54
0.9944
0.9025

0.7272
0.4546
13.01
2.2470
0.0558

0.1485
0.7571
24.52
0.2896
0.9905

0.1416
0.8636
25.15
0.5732
0.9455

0.2159
0.8515
25.56
0.5515
0.8953

0.5632
0.2733
17.75
5.0126
0.2225

0.3316
0.6737
21.78
2.6502
0.6353

Augmented ZipNeRF

0.7788
0.3422
18.81
14.5803
0.9211

0.4916
0.6942
22.93
4.3221
0.8651

0.5547
0.6623
20.98
4.4459
0.8508

0.7130
0.3682
20.40
5.4332
0.9660

0.5420
0.5589
22.11
3.1258
0.9870

0.5022
0.7275
22.07
0.7287
0.8210

0.7448
0.3397
18.63
94.4808
0.1884

0.5917
0.5646
21.21
11.8336
0.8414

Simple-ZipNeRF

0.4057
0.4448
20.49
4.9626
0.8906

0.1688
0.8638
26.04
2.2896
0.8646

0.2473
0.7872
23.23
3.0641
0.8717

0.1663
0.7417
24.06
0.4073
0.9800

0.1284
0.8702
26.71
12.9376
0.9185

0.2318
0.8398
25.16
4.1386
0.7992

0.4938
0.3699
19.73
10.2534
0.6079

0.2390
0.7458
24.19
5.2852
0.8591

Table 31. Per-scene performance of various ZipNeRF based models with four input views on NeRF-Synthetic dataset. The five rows show LPIPS, SSIM, and
PSNR, respectively.

Model \ Scene Name Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

ZipNeRF
0.3172
0.8372
14.12

0.4762
0.7501
10.75

0.2500
0.8430
14.47

0.4280
0.7869
11.33

0.5128
0.6811
9.39

0.4689
0.7340
8.63

0.3186
0.8562
13.20

0.6389
0.5496
6.43

0.4263
0.7548
11.04

Simple-ZipNeRF
0.2848
0.8454
14.54

0.4635
0.7446
11.28

0.2114
0.8500
15.17

0.4083
0.8087
11.38

0.5021
0.6867
9.40

0.4085
0.7592
9.05

0.2903
0.8609
14.63

0.5331
0.6162
6.54

0.3878
0.7715
11.50

Table 32. Per-scene performance of various ZipNeRF based models with eight input views on NeRF-Synthetic dataset. The five rows show LPIPS, SSIM, and
PSNR, respectively.

Model \ Scene Name Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

ZipNeRF
0.2227
0.8471
16.86

0.3508
0.7706
11.90

0.0813
0.8980
21.91

0.2773
0.8391
14.21

0.4562
0.6991
9.72

0.4464
0.7388
8.67

0.0453
0.9571
26.99

0.4216
0.6282
9.82

0.2877
0.7973
15.01

Simple-ZipNeRF
0.1552
0.8687
18.53

0.2572
0.8084
14.17

0.0879
0.8964
21.68

0.2318
0.8481
14.56

0.4900
0.6871
9.59

0.2418
0.7801
12.30

0.0405
0.9541
26.87

0.4641
0.6075
9.31

0.2461
0.8063
15.88

Table 33. Per-scene performance of various ZipNeRF based models with twelve input views on NeRF-Synthetic dataset. The five rows show LPIPS, SSIM, and
PSNR, respectively.

Model \ Scene Name Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

ZipNeRF
0.1012
0.9062
23.40

0.2181
0.8143
14.72

0.0474
0.9336
25.18

0.1278
0.9055
21.09

0.1149
0.8718
20.24

0.1659
0.8403
18.52

0.0402
0.9613
27.39

0.4844
0.5898
10.39

0.1625
0.8528
20.12

Simple-ZipNeRF
0.1010
0.9013
22.27

0.1458
0.8475
18.27

0.0569
0.9236
24.01

0.1227
0.9055
21.24

0.1116
0.8602
20.12

0.1123
0.8617
20.59

0.0342
0.9614
28.32

0.5411
0.5634
9.27

0.1532
0.8531
20.51

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Implicit Radiance Fields
	2.2 Explicit Radiance Fields
	2.3 Generalized Sparse Input NeRF

	3 Radiance Fields and Volume Rendering Preliminaries
	4 Method
	4.1 Simple-NeRF
	4.2 Simple-TensoRF
	4.3 Simple-ZipNeRF
	4.4 Overall Loss

	5 Experimental Setup
	5.1 Datasets
	5.2 Evaluation measures

	6 Experimental Results
	6.1 Simple-NeRF
	6.2 Simple-TensoRF
	6.3 Simple-ZipNeRF

	7 Discussion
	7.1 Computational Complexity
	7.2 Limitations and Future Work

	8 Conclusion
	Acknowledgments
	References
	A Details on Evaluation Measures
	A.1 Evaluation Details

	B Video Comparisons
	C Additional Analysis
	C.1 Ablation on Positional Encoding Frequency in Simple-NeRF
	C.2 Visualization of Depth Reliability Masks

	D Performance on Individual Scenes

