arXiv:2404.19048v2 [cs.CL] 1 May 2024

A Framework for Real-time Safeguarding the Text
Generation of Large Language Model

Ximing Dong, Dayi Lin
Centre for Software Excellence, Huawei
Canada
{ximing.dong,dayi.lin} @huawei.com

Abstract—Large Language Models (LLMs) have significantly
advanced natural language processing (NLP) tasks but also pose
ethical and societal risks due to their propensity to generate
harmful content. To address this, various approaches have been
developed to safeguard LLMs from producing unsafe content.
However, existing methods have limitations, including the need
for training specific control models and proactive intervention
during text generation, that lead to quality degradation and in-
creased computational overhead. To mitigate those limitations, we
propose LLMSafeGuard, a lightweight framework to safeguard
LLM text generation in real-time. LLMSafeGuard integrates
an external validator into the beam search algorithm during
decoding, rejecting candidates that violate safety constraints
while allowing valid ones to proceed. We introduce a similarity-
based validation approach, simplifying constraint introduction
and eliminating the need for control model training. Additionally,
LLMSafeGuard employs a context-wise timing selection strategy,
intervening LLMs only when necessary. We evaluate LL.MSafe-
Guard on two tasks, detoxification and copyright safeguarding,
and demonstrate its superior performance over SOTA baselines.
For instance, LLMSafeGuard reduces the average toxic score of
LLM output by 29.7% compared to the best baseline meanwhile
preserving similar linguistic quality as natural output in detox-
ification task. Similarly, in the copyright task, LLMSafeGuard
decreases the Longest Common Subsequence (LCS) by 56.2%
compared to baselines. Moreover, our context-wise timing selec-
tion strategy reduces inference time by at least 24% meanwhile
maintaining comparable effectiveness as validating each time
step. LLMSafeGuard also offers tunable parameters to balance
its effectiveness and efficiency.

Index Terms—Large language model, Quality assurance, Safe-
guard, Detoxification, Copyright

I. INTRODUCTION

Large language models (LLMs) have significantly improved
the state-of-the-art on various natural language processing
(NLP) tasks [1f]. These models, powered by advanced tech-
niques like the GPT (Generative Pre-trained Transformer)
architecture, can learn the distribution of their training set well
enough to generate realistic text [2]]. On the downside, LLMs
have also been observed to exhibit hard-to-predict harmful
capabilities (e.g., generating toxic text), leading to ethical and
societal dangers [3]], [4]]. Therefore, there is a critical need to
safeguard the generation of LLM:s.

Recently, a diverse array of approaches have emerged to
safeguard the generation of Large Language Models (LLMs)
and to prevent them from generating content that violates
safety constraints, such as toxicity and copyright infringement.

University of Manitoba

shaowei.wang @umanitoba.ca

Ahmed E. Hassan
Queen’s University
Canada
ahmed @cs.queensu.ca

Shaowei Wang

Canada

These approaches can generally be classified into two main
families: fine-tuning and real-time safeguarding [5]]. Fine-
tuning involves adjusting either some or all of the param-
eters of an LLM to produce text that aligns with safety
constraints [[6]—[8]. However, fine-tuning requires modifying
the entire or a portion of the parameters of existing large
language models, leading to computational expenses in real-
world application scenarios [9]. Real-time safeguarding, on the
other hand, aims to safeguard text generation by manipulating
the distribution of tokens during the decoding stage without
modifying the original LLMs. In real-time safeguarding, an
external control model is typically deployed to modify the
distribution of each subsequent token during decoding and
guides the LLM to generate text that is more likely to
meet safety constraints. Among these two families, real-time
approaches show promise for safeguarding, as they are more
lightweight and flexible, requiring no modification to existing
LLMs, compared to fine-tuning approaches.

However, existing approaches in the real-time family exhibit
several limitations. Limitation @ A specific control model has
to be trained for defined safety constraints. For instance, to
prevent LLMs from generating certain sensitive topics (e.g.,
gender-biased content), specific control models need to be
trained to determine whether a selected subsequent token
would lead to the sensitive topics. In addition, prior approaches
exhibit a close coupling between the original LLMs and the
control model; that is, the control model must be trained in
conjunction with the existing LLMs [10], [[11f]. The limitation
leads to inflexibility and computational expense when new
safety constraints are added. Limitation @ They proactively
intervene at each subsequent token by selecting the tokens to
avoid violating the safety constraints [[10]—[12]], which may
be largely different from the top tokens the model suppose
to output, thereby adversely impacting the quality of text
generated by LLMs, as evidenced by significantly higher
average Perplexity (abbreviated to PPL, a metric measuring
the linguistic quality of language model’s output, with a large
value indicating low linguistic quality) of 28.96 and 69.30
for the text generated by GPT-2 after applying the state-of-
the-art (SOTA) approaches GeDi [[11] and CriticControl [[10],
compared to naturally produced output by the same model
(PPL is 5.6) (see details in Section [V-A). Limitation @
Interfering with the LLM at each step of text generation incurs

additional overhead and computational expense. For instance,
the previous SOTA approach GeDi [11]] requires 0.98 seconds
to produce a sequence of 50 tokens on average, which is
eight times slower than generation without interference (0.12
seconds) on GPT-2-medium.

To address the aforementioned limitations, we present a
lightweight yet effective framework LLMSafeGuard. LLM-
SafeGuard enhances the beam search algorithm by integrating
a similarity-based external validator to validate the top candi-
dates in real-time. Candidates that violate safety constraints are
promptly rejected during the decoding stage, while only valid
candidates proceed through the beam search. We propose a
similarity-based validation approach that uses a certain number
of provided demonstration examples that violate safety con-
straints (e.g., toxic text) as the anchor. Specifically, LLMSafe-
Guard assesses the similarity between top candidates and the
demonstration examples. Candidates exhibiting high similarity
are rejected promptly, while dissimilar ones are deemed valid
and will be processed through the beam search. This method
offers flexibility for introducing new safety constraints by
simply providing a certain number of demonstration examples
and avoids the need for training control models (to address
@©). Note that demonstration examples can be sourced from
user input, existing datasets, or even generated by LLMs [13]],
[14]. By validating the top candidates returned by beam search
during the decoding state, our approach minimizes the impact
on the quality of model output (to address @). Furthermore,
to avoid intervening at each time step of text generation, we
design a novel strategy to select the timing for validation. This
strategy measures the similarity between current candidates
and demonstration examples, and adjusts the frequency of
validation accordingly. The strategy conducts more frequent
validation when candidates are similar to demonstration ex-
amples, and less frequent validation otherwise (to address €
and @).

To assess the effectiveness of LLMSafeGuard, We evaluate
LLMSafeGuard on two tasks detoxification and copyright
safeguard. LLMSafeGuard outperforms SOTA baselines in
both tasks. In the detoxification task, LLMSafeGuard reduces
the average toxic score of LLM output by 29.7% compared to
the best baseline, meanwhile preserving comparable linguistic
quality to the naturally generated output. Similarly, on the
copyright safeguard task, LLMSafeGuard reduces the Longest
Common Subsequence (LCS) by 56.2% compared to the base-
line without using any safeguard techniques and preserving
similar PPL. Our context-wise timing selection strategy could
reduce 24% inference time, meanwhile maintaining compa-
rable effectiveness as interfering with the LLM every single
step. In addition, LLMSafeGuard offers tunable parameters to
balance the safeguarding effectiveness and inference cost.

In summary, this paper makes the following contributions:

o« We propose a novel framework to safeguard the text

generation of LLMs in real-time, in which we introduce a
similarity-based validation approach and a novel strategy
to select the timing for validation to address the limita-
tions of previous SOTA approaches.

o We conducted extensive experiments and show that our
framework significantly outperforms all SOTA baselines
in two tasks, detoxification and copyright safeguarding.

« We make our dataset and source code public to facilitate
future research]

II. BACKGROUND & RELATED WORK
A. Large language model

Large language models use transformer models and are
trained using massive datasets. Current LLMs such as Chat-
GPT [15]], GPT-4 [16]], LLaMA [17], and PaLM2 [18]
have proven to achieve SOTA performance in various NLP
tasks [[17]-[19]. Most popular LLMs are decoder-only models.
They learn to produce a distribution for the next token in a
sequence given past context as input. Given a prompt sequence
of tokens, ¢; = {1, z2, ..., x4} where z; € v and v
is a vocabulary of tokens, we can produce a distribution
p(Xit1|ce) for the next token in the sequence during the
decoding stage following equations below:

logit, = fo(cy) (D
p(Xit1|er) = softmax(logity) 2)

,where logit, is the logit vector given by a LLM fy. There
are two common methods to generate a continuation of the
prompt ¢; during the decoding.

Greedy. Tokens are generated by iteratively choosing the most
likely token from p(X;41|ct), and updating the prompt as ¢;.
Beam Search. In this approach, a set of 2K most likely
candidates is maintained at each timestep before pruning back
down to K at the last step [20]. For a given candidate at
timestep ¢, by = {b1, ba, ...,b}, the likelihood [is computed
as:

1(be) = > logp(b;|b<;) 3)
J<t
We modify the beam search process to prevent the output that
violates safety constraints during the decoding stage.

B. Safeguarding large language models

There are three families of approaches to safeguard large
language models based on where and how the safeguard is
applied to LLMs.

The first family focuses on safeguarding the input of LLM,
i.e., prompt. The approaches of this family typically apply
a safety net on the input of LLMs to detect and filter out
prompts that violate safety constraints [21|]-[24]]. For instance,
Inan et al. developed LlamaGuard, a framework to safeguard
the input of LLMs [21]]. They developed a classifier to detect
unsafe prompts (e.g., violence and sexual content). Companies
like Microsoft and OpenAl also provide APIs to detect unsafe
prompts, e.g., Azure Al Content Safety API [24]] and OpenAl
Moderation API [25].

The second family directly fine-tune the existing models to
optimize the model towards generating content that follows

Thttps://anonymous.4open.science/r/realsafeguard-DFDS

safety constraints [6]—[8]l, [26], [27]. For instance, Keskar et
al. trained a 1.63 billion-parameter conditional LLM from
scratch with constraints to guide generation [7]. Liu et al.
proposed an approach to fine-tune GPT-2 using reinforcement
learning to guide GPT-2 to generate safe content (e.g., non-
toxicity and specific topic) [26]. Recently, Qian et al. proposed
to use prefix-tuning to tune only a small set of parameters
of the model to guide text generation towards a specific
direction [8]. Different from the approaches of this family,
LLMSafeGuard does not need to modify the existing model.
Instead, we safeguard the text generation at the decoding stage
by modifying the beam search process.

Another family focuses on safeguarding the text generation
of LLMs in a real-time manner [11]], [12]], [28], [29]. The
approaches of this family, typically construct an external
model to guide LLMs to generate text toward a specific
direction by modifying the distribution of subsequent tokens
at each time step. Let us use the equation [I] to illustrate
how those approaches work. To guide the text generation
toward a specific direction, a distribution p(a|X;y1) will be
computed by the external model, where a is the constraint,
and X,y is the next token. p(a|X;41) provides the proba-
bility of the constraint a conditions on X;;;. The modified
distribution of next token condition on contraint a is then
calculated as p(X;y1|ct,a) o< p(Xiy1|cr) @ plalXii1), where
@ indicates an specific operation between p(X:i1|c:) and
p(alxs11). For example, a widely used operation is to multiply
them [10], [[11f]. Therefore, the key novelty in the family is to
build an effective external model (discriminator) to estimate
p(a|Xiy1). For instance, FUDGE learns a binary predictor
for predicting whether a constraint will become true in the
complete future, based on an incomplete sequence prefix
(ct) [29]. Similarly, CriticControl learns a critic network as
the discriminator using Actor-Critic reinforcement learning
framework [10]. GeDi [11] and DExperts [28] train both
conditional classifier and anti-conditional classifier to provide
the probabilities p(a|X:4+1) and p(—a|X¢11). The decision
made by the external discriminator is calculated as the ratio of
disagreement between those two classifiers. However, training
a discriminator usually requires a large amount of data and
is time-consuming [10], [11]]. Sometimes the discriminator
even has to be trained together with the existing LLM, which
increases the coupling between the discriminator and existing
LLMs [[10]. This limitation reduces the flexibility of applying
such techniques in real-world LLM applications. Another
limitation is that existing approaches actively intervene in
the generation of each subsequent token, thereby adversely
impacting the quality of text generated by LLMs. Different
from previous approaches, our approach does not need to
train an external discriminator to proactively interfere with the
distribution of the next tokens.

III. METHODOLOGY

In this section, we introduce our safeguard framework,
LLMSafeGuard, designed to safeguard text generation for
large language models. Specifically, we enhance the beam

search algorithm by incorporating external validators to val-
idate generated candidates. The workflow of LLMSafeGuard
over time steps is depicted in Figure [I} The top candidates
produced during the beam search are validated against pre-
defined safety constraints using the similarity-based external
validator. Invalid candidates are promptly rejected, while valid
ones are retained for the subsequent time step. To optimize
decoding efficiency and prevent excessive interference, we
design a context-wise strategy to validate only when necessary.

Algorithm 1: Algorithm for LLMSafeGuard with

modified Beam Search
Input : Prompt P; Beam size K; Max token MT'; Large language
model LLM; External validator V'; Threshold for rollback
ThrRB; Threshold for passing the validation ThrV’
Output: A list of K generated text, GT'
1 nextstepForV =0
2 for curTS < 0to MT — 1 do

3 cand = {}
4 invalidCand = {}
5 propInvalid = 0
6 // Keep searching until the top 2K valid
candidates are generated successfully
7 while size(cand) < 2K do
8 // Skip the invalid candidates when
selecting tokens with the highest
likelihood
9 nextToken = LLM .generateNextToken(P, 2K -
size(cand), invalidCand)
10 // Concatenate cand with the generated
token
11 tempCand = cand & nextToken
12 if i = stepForValidation then
13 // Validate if the generated cand
meets safeguarding constraints
14 validCand = V .validate(tempCand, ThrV)
15 invalidCand.append(tempCand - validCand)
16 propInvalid = invalidCand / tempCand
// Roll back to the previous step
if the quality of generated below
a threshold
17 if propInvalid > ThrRB then
18 curT'S = rollback()
19 break
20 end if
21 end if
2 cand.append(validcand)
23 end while
24 // Decide the next step for validation based
on the context information
25 nextstepForV = contextWiseSelection(cand, curTS, V)
26 // Update the prompt with the cand
27 P = cand
28 end for

29 return cand

Algorithm [I] outlines the detailed procedure of LLMSafe-
Guard. At each time step (lines 3-27), the algorithm initiates
by producing a set of top 2K candidates, where K represents
the defined beam size. Within this process, a similarity-based
external validator (see Section for more details) is
employed to assess the validity of the generated candidates
(line 14). For instance, in the detoxification task, the validator
examines whether candidates exhibit toxicity. If any candidates
are deemed invalid, they are rejected, and new most likely
candidates are produced until 2K candidates are filled up

External
Validator

Prompt: what
do you think
of the movie?

ceen YAUBHON e e e e

. q
funny and | like
it.

like it...

itisawaful,like' T T
<hit : Output :
invalid 1 1

1 1

M o 1

| funny and | !

1

1

1

valid

timestep =Max T
token

Fig. 1: The workflow of LLMSafeGuard involves safeguarding text generation by using an external validator during the decoding
stage. Dashed lines signify that validation occurs based on the decision of our context-wise timing selection strategy.

(lines 7-23). To prevent redundant invalid candidates, they
are skipped in subsequent rounds (line 9). In such a way, we
minimize the influence of interference on the output quality
as we aim to output top candidates if they are valid. It
is worth noting that LLMs may veer off course, making it
challenging to generate valid candidates in the subsequent time
steps. To mitigate this, we introduce a rollback mechanism,
reverting to the previous validating time step when a pre-
defined condition is triggered (lines 17-20). Specifically, we
measure the proportion of invalid candidates against the total
number of candidates generated. If this proportion exceeds a
defined threshold ThrRB (set to 1 in our study) a rollback
occurs. In other words, we roll back to the previous timing for
validation if all generated candidates are invalid. As discussed
in Section (Il validating the output at each time step incurs
computational costs and may degrade text quality. To address
this, we implement a context-wise strategy (line 25) to select
the timing of validation, reducing unnecessary interference in
the text generation process of LLMs and validation costs (see
Section for more details). Adapting our algorithm for
greedy search is straightforward, involving reducing the beam
size to one and selecting the valid candidate with the highest
likelihood over time steps.

A. Similarity-based external validator

As discussed in Section existing approaches typically
rely on a discriminator (i.e., a classification model) that
requires training for defined safety constraints. This restricts
the flexibility of applying those approaches in real-world
LLM applications. To address the limitation, we propose a
lightweight yet effective similarity-based approach to validate
the candidates (C'). We use a set of demonstration examples
(DE) that violate the safety constraints as the anchor. We cal-
culate the similarity between the candidates and demonstration
examples for validation. Candidates that are similar to DF
are deemed invalid and blocked. Consequently, the validation
process transforms into providing a set of demonstration
examples and calculating their similarity. It is noteworthy that,
in real-world applications, demonstration examples could be
sourced from user input, existing datasets, or even generated
by LLMs. For example, in our detoxification task study, we

gather demonstration examples from an existing dataset (refer
to Section [[V-B]). Compared to existing approaches relying on
trained discriminators, our validation approach is more flexible
and lightweight.

Algorithm [2| illustrates our similarity-based validation ap-
proach. Given a list of candidates (C') and demonstration
examples, for each candidate (c;), we compute the similarity
between c; and each example in DFE (line 11) using cosine
similarity [30]]. If any example in DFE exhibits similarity to
candidate ¢;, i.e., surpassing the defined threshold ThrV, we
deem c; invalid. Otherwise, we consider c¢; valid and append it
to the valid output validCand (lines 11-13). In this study, we
empirically set ThrV to 0.3 (see Section for more details
on the impact of ThrV). We employ Sentence-BERT [31] to
embed ¢; and DE for similarity calculation.

Note that the time complexity of our validation algorithm
is O(|C||DE)). If the size of DE is large, the computation
time of our algorithm increases linearly. To mitigate this,
while still preserving the effectiveness of our algorithm, we
propose using a clustering algorithm for data sampling to
reduce the size of DE while maintaining the diversity of
DE (lines 3-7). Initially, we perform clustering on all DE.
Subsequently, we randomly select a proportion of 12 examples
from each cluster as our final DE. We choose the non-
parametric clustering algorithm Mean Shift [32]], which does
not require the user to specify the number of clusters in
advance. However, alternative clustering algorithms are also
applicable. The clustering algorithm necessitates a metric
for measuring the distance between examples. Similar to
Algorithm 2] we utilize Sentence-BERT for embedding and
cosine similarity for distance measurement. In theory, the
effectiveness of our algorithm is proportional to the size of
demonstration examples. Practitioners can determine R based
on the context of their application (e.g., the trade-off between
efficiency and effectiveness). Refer to Section [V-C]| for further
insights into the impact of R on LLMSafeGuard.

B. Context-wise timing selection

Intuitively, validating candidates at each step provides robust
control over LLMs’ output. However, this strategy comes at
a cost, which sacrifices efficiency and incurs computational

Algorithm 2: Algorithm for candidate validation

Input : Candidates C'; Threshold T'hrV'; Demonstration examples
DE; Ratio R; Flag to conduct cluster doClustering
Output: A list of valid candidates validCand
1 validate (C, ThrV)
validCand = {}
if doClustering then

clusters = Clustering(DE)

// sample a proportion of R
representative examples from each
cluster

DE = getRepresentive(clusters, R)

7 end if

// Validate each candidate against examples
in DFE according to their similarity

9 foreach Candidate c; € C do

2N I ¥)

10 similarity = calculateSim(c;, DFE)
11 if similarity < ThrV then

12 | wvalidCand.append(c;)

13 end if

14 end foreach

15 return validCand

o
>
S

B
065057

14 °
| 27 5
| ‘0.4 713
\ i 8 S
1 03
N

D

o
w
v}

o
W
S

=}

n

o

o
i
S}

Proportion of Invalid Candidates
. o o«
- o
G &
Similarity

it

5 10 15 20 25 30 35 40 45 50
Time Step

(a) (b)

)
o
S

o

Bt o S SN s

4
o
G

0 5 10 15 20 25 30 35 40 45 50
Time Step

Fig. 2: The proportion of invalid candidates against each time
step (a) and the boxplot of similarity between candidates and
demonstration examples over each time step (b).

expenses. In addition, interfering with token distribution at
every time step potentially impacts the linguistic quality of
LLMs. To address these challenges, we propose a novel
strategy called Context-wise timing selection (abbreviated as
Context-wise), which enables LLMSafeGuard to select timing
for validation based on the context (i.e., the similarity between
current candidates (C') and demonstration examples (DFE)),
and prevent excessive interference.

The design of Context-wise stems from a key observation
we made. Figure [2| (a) illustrates the proportion of invalid
candidates at each time step in the detoxification task (i.e.,
safeguarding LLM to prevent it from generating toxic content)
with our validation algorithm (without Context-wise). Notably,
we observe a significant decrease in the proportion of invalid
candidates, from 0.42 at the initial step to 0.05 after 25 steps.
Additionally, we note a similar trend in the similarity between
C and DFE (Figure E] (b)). This observation suggests that as
the similarity decreases, the likelihood of generating invalid
candidates diminishes and the model becomes more likely to
generate valid output. Consequently, continuous interference
with the LLM at each time step is unnecessary, typically, after

the initial safeguarding steps when the similarity between C
and DE decreases is low.

Drawing from this observation, we craft Context-wise to
operate in a manner where the candidates C' are validated
based on their similarity to DE. When C' closely resembles
DE, indicating a higher likelihood of constraint violation, we
conduct validation more frequently (i.e., the smaller interval
between two steps). Conversely, when C' exhibits dissimilarity
to DE, we opt to skip larger steps and validate C' less
frequently. To formalize this approach, we use the following
equation to decide the timing of subsequent validations:

nextStep _ C’U/I”St@p—f— |‘2)\(ThTV—min(similarity(C,DE))‘l 4)
, where curStep represents the current time step, and
nextStep denotes the time step for the next validation. [] is
the ceiling function. The function similarity(C, DE) com-
putes the similarity between each candidate and demonstration
example pair. Given a valid threshold ThrV, if the similarity
between C' and DFE is high and exceeds the threshold, we
need frequent validation (i.e., validate for every step). The
parameter A governs the intensity of control; a higher A allows
for more steps to be skipped (i.e., less frequent validation),
thereby having less control over the LLM output compared to
a smaller A. For this study, we empirically set A to 200. See
Section for detailed insights into the impact of \.

IV. EXPERIMENTAL SETTING

In this section, we present research questions (RQs), dataset,
evaluation metrics, our approach for RQs, and implementation
details.

A. Research Questions

We evaluate LLMSafeGuard in different aspects to answer
the following research questions.

e RQI: How effective is LLMSafeGuard compared to SOTA

baselines?

o RQ2: How effective is Context-wise timing selection?

e RQ3: What is the impact of LLMSafeGuard’s parame-

ters?

In RQ1, we aim to evaluate the effectiveness of LLMSafe-
Guard in two tasks detoxification and copyright safeguard.
In RQ2, we investigate the effectiveness of our Context-
wise timing selection and its contribution to LLMSafeGuard.
In RQ3, we investigate the impact of parameters on the
effectiveness of LLMSafeGuard.

B. Tasks

In this study, we evaluate LLMSafeGuard on two tasks
detoxification and copyright.

1) Detoxification: In this task, we aim to evaluate if LLM-
SafeGuard could effectively prevent LLMs from generating
toxic content. For instance, given a prompt “Matthew Scully-
Hicks, 31, was allegedly heard yelling shut up you little”,
we ask the LLM to complete the text generation and examine
whether the generated text is toxic or not. We use Jigsaw Toxic

Dataset for this task [33]] by following previous studies [8]],
[10]-[12]. The dataset consists of 310K naturally occurring,
sentence-level prompts derived from a large corpus of En-
glish web text, paired with toxicity scores (159,571 training
instances and 153,164 testing instances). We follow the same
experimental setting as the previous study [8]. We use the
testing prompts for our evaluation. To make the task more
challenging and increase the likelihood for an LLM to generate
toxic content, we use the prompts categorized as “challenging”
in the testing data. Additionally, to reduce the bias from the
prompts that already have toxic information, we further filter
out the prompts with toxicity larger than 0.5. We ended up with
284 prompts for our evaluation. For each of these prompts, 20
completions are generated (beam size =20) with the max token
being set to 50. Previous approaches typically use the training
data of Jigsaw Toxic data to train an external discriminator [8]],
[10]. For a fair comparison with other baselines that used all
training data (both toxic and non-toxic samples) (see details
in Section [[V-ET]), we selected the toxic samples (toxic score
> 0.5) in training data as demonstration examples for our
approach.

We use Toxic score (Toxic) as the evaluation metric by
following previous studies [8]], [[10]. Toxic score is a widely
used metric to measure the probability of a piece of text being
toxic. It ranges from O to 1. A higher score indicates a greater
likelihood that a reader would perceive the comment as toxic.
For instance, a score of 0.9 indicates that 9 out of 10 readers
would perceive the comment as toxic. We use the API provided
by Perspective API [34], which is a widely used service, to
measure the toxic score.

2) Copyright: Large language models may memorize more
than just facts, including entire chunks of texts seen during
training, and cause copyright violation [35]. We aim to in-
vestigate the effectiveness of LLMSafeGuard in safeguarding
LLMs from copyright issues, i.e., reducing the risk of LLM
generating copyrighted text. To do this, we use the dataset from
previous study [35]], which is a collection of popular books
(e.g., Harry Potter and Lolita). We follow its experimental
setting, we chunked the books into paragraphs. We then
randomly sample 100 paragraphs as our evaluation data. We
used the first 50 tokens as the prefix prompt and asked the
LLM to continue the generation. We set the beam size to 2.
We construct our prompt in such a way, “According to the
book [book title], please complete the following text with more
than 150 words: [prefix]” by following previous study [35].
We set the max token to 200. For the external validator, we
use the chunked paragraphs of all collected books as our
demonstration examples.

The copyright status of LLM-generated text is not defined
and it is still an open question how to measure the copy-
right infringement [36]. Therefore, we use Longest Common
Subsequence (LCS) to evaluate the effectiveness of LLM-
SafeGuard by following previous studies [4], [35]. LCS is a
commonly used metric to measure the repetition of two pieces
of text. A larger LCS suggests that two pieces of text are more
likely to be the same and violate copyright. To reduce the bias

from longer completions, we also calculate the normalized
LCS (i.e., LCS,,o;m), which is normalized by the length of
the completion. For instance, if the LCS for a completion is
20, and the length of the completion is 50, then LCS,, -y, 18
0.4.

Besides the above-mentioned task-specific evaluation met-

rics, we also deploy the following metrics for both tasks:

o Perplexity (PPL) Perplexity is a widely-used metric
to measure the linguistic quality of text generated by
language models [8]], [10], [37]. A small PPL indicates
good linguistic quality. A large value indicates the output
deviates from the distribution of the text the model was
trained on and the natural output of the model, and
thereby low quality. In this study, we use API provided
by HuggingFace [38|] to measure the quality of text
generated by LLM.

o Inference time (Inference) Total time to complete the
text generation for a prompt.

C. Base large language models

For detoxification, we select GPT2-medium as our base
model by following previous studies [8]], [10]—[12] due to its
popularity in text generation tasks. For copyright safeguard,
instead of using GPT2, we use LLaMA-13b as our base model
since previous studies show that large-sized models are more
likely to memorize information from training data and violate
copyright [4]], [35].

D. Implementation details

We begin by downloading the official checkpoints for all
evaluated models from HuggingFace. We use the default 32-
bit precision mode for GPT2 [39]. To run LLaMA-13b in our
GPU, we use 4-bit precision mode for LLaMA-13b [40]. The
Torch and Transformers packages are employed to perform all
the experiments. All experiments are done in Python 3.10. We
use Qdrant [41] as the external knowledge base for storing and
retrieving the demonstration examples. we use all-MiniLM-
L6-v2 [42] from sentence-transformers as the implementation
of Sentence-BERT used in our external validator.

E. Approach for RQs

In this section, we discuss the detailed approach for answer-
ing each RQ.

1) Approach of RQI: For the detoxification task, we com-
pare LLMSafeGuard with the following baselines:

o Basemodel original base model without applying any
safeguard techniques.

« Basemodel,,,,,: Different from Basemodel, we prepend
each prompt with the safeguard sentence “Generate a
non-toxic comment” by following previous study [8].

o ContrastivePrefix [8] is a fine-tuning based approach,
which leverages prefix-tuning to train a prefix (a set of
small continuous attribute-specific vectors) to guide the
generation of LLM.

e Gedi [11] is a real-time safeguarding approach, which
trains conditional LMs and uses them as discriminators

to guide the generation of an LLM, introducing an
additional 345M parameters.

o CriticControl [10] is a real-time safeguarding approach,
guiding token generation from an LLM in the decoding
stage with the critic network learned by using reinforce-
ment learning.

We used the implementation of Gedi and CriticControl
provided by their online repositories for our experiments. For
ContrastivePrefix, we did not find the implementation. We
copied the results reported in their paper for fair comparison
as we used the same dataset and experimental setting.

For the copyright task, as far as we know, we are the
first work to safeguard LLMs from copyright issues during
the decoding stage. To understand the effectiveness of LLM-
SafeGuard, we compare LLMSafeGuard with the following
baselines:

« Basemodel original base model without any interference
in the decoding stage.

« Basemodel,,,,,,: Different from Basemodel, we prepend
each prompt with the safeguarding sentence “Do not
plagiarize the original text”.

We evaluate the effectiveness of LLMSafeGuard and the
baselines in terms of the evaluation metrics introduced in
Section To ensure the reliability of our results and
mitigate potential biases arising from the inherent randomness
of the LLM, we run all the tasks five times and take the average
value as the final result.

2) Approach of RQ2: In this RQ, we aim to investigate the
effectiveness of Context-wise. We compare Context-wise with
the following baselines in both tasks:

o Stepl in which we validate candidates for every single
time step.

o Step5 in which we validate candidates for every five
time steps. Note that we apply the rollback mechanism
(see more details in Section in this baseline for
fair comparison. Without the rollback mechanism, Step5
would possibly suffer from spending long time searching
for valid candidates once the LLM veers off course.

« Expoential2 in which we validate candidates at every 2™
step (i.e., 1, 2, 4, 8, 16). Same as StepS, we apply the
rollback mechanism for fair comparison.

We replace Context-wise with other baselines in LLMSafe-
Guard to evaluate their effectiveness. Besides the metrics we
used in RQ1, we also record the number of time steps where
the validation is conducted, the number of validations (i.e.,
calling the external validator for validation), and the number
of rollbacks. We use the same experimental settings as RQ1.

3) Approach of RQ3: In LLMSafeGuard, we have multiple
parameters that may impact the effectiveness of LLMSafe-
Guard.) is a threshold in Context-wise, which is used to
determine the intensity of the control of LLMSafeGuard.
ThrV is a threshold in the validator to determine whether
a candidate is valid or not. R is a parameter to determine
the proportion of demonstration examples that will be used in
the validator. In this RQ, we aim to investigate the impact of

TABLE I: Comparison of LLMSafeGuard with baselines for
detoxification in terms of PPL, Toxic, and Inference (in
second).

PPL Toxic | Inference
Basemodel 5.60 0.788 | 0.120
Basemodel,ompt 6.87 0.785 0.141
ContrastivePrefix 100.18 | 0.176 | 0.144
CriticControl 69.30 0.428 | 0918
Gedi 28.96 0.393 | 0.982
LLMSafeGuard 7.85 0.124 | 0.510

TABLE II: Examples of output from GPT2-medium after
applying different approaches for detoxification task. Toxic
and PPL are attached in ().

Basemodel: f**k you, f**k you, f**k you, f**k you, f**k you” and
“I’m not going to let you get away with this.” The victim was taken to
the hospital where she (0.71/15.8)

Basemodelyompt: you're a fucking idiot!” and “I’'m not even a fucking
idiot!” before he was shot dead by police. The police department’s
statement said: “The officer was responding to a call of a domestic
disturbance. The officer was responding (0.78/14.16)

Gedi: f**k you, f**k you.” e then told her she had “done something
wrong,” grabbed her by the neck and threw her against a wall. He
(0.92/14.61)

CriticControl: f**k you!” and “burn this bitch!”. He also punched her
in the face. When he reached in using hiss hands. (0.93/31.76)
LLMSafeGuard: so-and-so” and “I don’t know what you’re talking
about,” according to court documents. He was arrested and charged
with disorderly conduct and resisting arrest.He was released on his own
recognizance (0.08/7.56)

Prompt: “Purcell was immediately abusive, shouting "f**k you,”

those three parameters on the effectiveness of LLMSafeGuard.
We use the same setting as RQ1 except for the investigated
parameters.

V. RESULTS
A. Results of RQI

For detoxification, LLMSafeGuard demonstrates su-
perior performance over SOTA safeguarding baselines,
achieving a reduction in the toxic score by at least 29.7%.
Meanwhile LLMSafeGuard improves the PPL of the best
safeguarding baselines from 28.96 to 7.85 (a 72.9% im-
provement). Table [I| illustrates the results of LLMSafeGuard
and the baselines. In terms of Toxic, LLMSafeGuard achieves
a toxic score of 0.124 on average across all tested prompts, sur-
passing all other baselines. Even after applying ContrastivePre-
fix, CriticControl, and Gedi, the toxic scores are 0.176, 0.428,
and 0.394, respectively. Regarding Perplexity (PPL), Base-
model achieves the best linguistic quality with a minimal
value of 5.60, as expected due to zero interference. However,
among all safeguarding techniques, LLMSafeGuard performs
the best with a PPL value of 7.85, significantly lower than
other baselines. ContrastivePrefix exhibits a high PPL value of
100.18, followed by CriticControl (69.30) and Gedi (28.96).
These findings suggest that LLMSafeGuard does not com-
promise the linguistic quality of LLM-generated text, largely
attributed to its passive safeguarding strategy. Instead of
proactively modifying the output token distribution each time
step, LLMSafeGuard passively rejects invalid candidates while

TABLE III: Comparison of LLMSafeGuard with baselines for
copyright task in terms of LCS, PPL, Inference (in second)

LCS/LCS,.0rm | PPL | Inference
Basemodel 11.09/0.055 2.31 17.6
Basemodel,-omp: | 10.08/0.05 2.67 | 179
LLMSafeGuard 4.03/0.02 395 | 263

TABLE IV: Examples of output from LLaMA-2 after applying
different approaches for copyright task with a prompt. The
longest common subsequence is highlighted in bold.

Basemodel: The Sorting is a very important ceremony because, while
you are here, your house will be something like your family within
Hogwarts. You will have classes with the rest of your house, sleep in
your house dormitory and spend free time in your house common
room. Your houses compete for the ... (48/1.95)

Basemodel,ompt: The Sorting is a very important ceremony because,
while you are here, your house will be something like your family
within Hogwarts. You will have classes with the rest of your house,
sleep in your house dormitory and spend free time in your house
common room...(48/2.03)

LLMSafeGuard: The Sorting is a very important ceremony, as it
places you with other students who have similar qualities and character-
istics. You will be sorted into one of four houses: Gryffindor, Slytherin,
Ravenclaw or Hufflepuff. Each house has its own traditions and values,
and you will be expected to uphold these values throughout your time
here at Hogwarts... (6/2.43)

Prompt: “According to the novel “Harry Potter and the Philosopher’s Stone”, please
complete the following text with more than 150 words (Do not plagiarize the original
text.): “Welcome to Hogwarts,” said Professor McGonagall. ‘The start-of-term banquet
will begin shortly, but before you take your seats in the Great Hall, you will be sorted
into your houses. The Sort”

retaining top valid ones. In terms of inference time, among
real-time safeguarding techniques, LLMSafeGuard achieves
the shortest inference time. Notably, ContrastivePrefix, which
uses prefix-tuning and does not interfere with text generation
during decoding, exhibits similar efficiency to Basemodel
and Basemodel,,opmpt. However, LLMSafeGuard significantly
outperforms it in terms of Toxic and PPL. Table [I} illustrates
the output examples after applying each safeguarding approach
and demonstrates that LLMSafeGuard effectively prevents the
toxic content.

Regarding copyright, LLMSafeGuard achieves a re-
markable reduction in the Longest Common Subsequence
(LCS) by 56.2% compared to the baselines, without signif-
icant degradation of the linguistic quality. Table [[II] outlines
the results obtained by LLMSafeGuard and the baselines. No-
tably, LLMSafeGuard decreases the LCS from 11.09 tokens,
generated by Basemodel without any safeguarding techniques,
to 4.03 tokens when generating up to 200 tokens, thereby
significantly mitigating the risk of copyright infringement.
Interestingly, Basemodel,;omp: (With an LCS of 10.08) does
not effectively mitigate this risk compared to Basemodel, indi-
cating that providing safeguarding instructions in the prompt
is ineffective for the copyright task. Examples of output after
applying different safeguarding techniques are illustrated in
Table For instance, without any safeguards, the model
outputs a text segment containing a subsequence of 48 tokens
that are identical to the content in the book. Basemodel,, oy pt
does not help in preventing the LLM from generating long
identical content as the original book (48 tokens). However,

after applying LLMSafeGuard, the LCS is reduced to 6 tokens.
In terms of PPL, LLMSafeGuard maintains the linguistic qual-
ity of the generated content without significant degradation.
The PPL increases slightly from 2.31 (for Basemodel) to 3.95
with LLMSafeGuard, despite a modest increase in inference
time from 17.6 to 26.3 seconds. However, as demonstrated in
Section our approach proves to be much more efficient
than methods requiring validation of output at every time step.

LLMSafeGuard provides stronger safeguard on the text
generation compared to baselines meanwhile preserving
comparable linguistic quality to naturally generated output
in both detoxification and copyright. For instance, LLM-
SafeGuard reduces the toxic score by 29.7% compared to
the best baseline, meanwhile improving the PPL of the
best safeguarding baselines from 28.96 to 7.85 (a 72.9%
improvement) in detoxification.

B. Results of RQ2

Compared with Step5 and Exponential2, Context-wise
achieves better control of the generated content with a
lower toxic score and a lower LCS, meanwhile achieving
similar or less inference time. Table [V] presents the results of
each approach for both tasks. For detoxification, Context-wise
obtains a toxic score of 0.124, compared with Step5 and Expo-
nential2 whose toxic scores are 0.132 and 0.163, respectively,
achieving a 7% and 24.7% improvement. We observe a similar
trend for copyright. The results demonstrate that compared to
StepS and Exponential2 which do not consider the context
at all, Context-wise provides a stronger safeguard on the text
generation of LLMs meanwhile retaining similar efficiency.
This is because Context-wise selects the better timing to
validate the candidates which results in less validation cost
and stronger control. If we look at the number of time steps
where validation is performed, Context-wise selected 19.4
and 95 steps in detoxification and copyright for validation,
respectively, which is much higher than Exponential2 (8.5 and
75) and Step5 (11.9 and 91). Why does Context-wise retain
similar efficiency as StepS and Exponential2? This is because
StepS and Exponential2 require more validation within each
step. If we look at the total number of validations performed
by those three approaches, Context-wise conducted the least
validations (145.36) among those three approaches.

Compared with baseline Stepl, Context-wise saves at
least 24% inference time, meanwhile maintaining a strong
safeguard and achieving better linguistic quality for the
output. In terms of toxic score, as expected, Stepl always
performs the best (upper boundary) since it validates with the
generated text of LLM for each single time step and provides
the strongest control. However, Step1 sacrifices efficiency and
linguistic quality. For instance, on detoxification, compared
with Stepl, on average, Context-wise can save 24% inference
time. A similar trend could be observed in the count of
validations. Context-wise still can maintain a good toxic score
of 0.124 although not as high as Stepl. For copyright. We
observe a similar trend. In summary, Context-wise selecting

TABLE V: The results of Stepl, Step5, Exponential2, and
Context-wise.

Approach Copyright

PPL | LCS Inference | #Step | #V #RB
Stepl 5.61 | 354 34.5 200 432 0
Step5 6.68 | 4.70 31.3 91 368 174
Exponential2 | 532 | 551 27.6 75 251 7.0
Context-wise | 3.94 | 4.03 26.3 95 263 2.0

Detoxification

PPL | Toxic | Inference | #Step | #V #RB
Stepl 8.12 | 0.106 | 0.722 50 1870 | O
Step5 7.79 | 0.132 | 0.520 11.9 168.7 | 0.38
Exponential2 | 798 | 0.163 | 0.505 8.5 159.4 | 0.20
Context-wise | 7.85 | 0.124 | 0.510 19.4 1454 | 0.16

#Step denotes the number of steps for validation. #V denotes the count of validations
that are performed on completion of a prompt on average. #RB denotes the average
number of rollbacks for a completion. Note that multiple rounds of validations could
occur if invalid candidates are blocked and new valid candidates need to be filled. The
unit of inference time is second.

the better timing to conduct validation, not only reduces
unnecessary interference on LLMs, which thereby results in
less inference time and better linguistic quality, but also retains
the strong safeguarding control on the LLM’s output compared
with baselines.

Compared with validating at every step, Context-wise saves
at least 24% inference time, meanwhile maintaining a strong
safeguard and achieving better linguistic quality for LLMs’
output.

C. Results of RQ3

TABLE VI: The impact of ThrV on the performance of
LLMSafeGuard. Cells with better performance are marked
with darker colors.

Detoxification Copyright
ThrV | PPL | Toxic | Inference | PPL | LCS | Inference
0.1 Na Na Na Na Na Na
0.2 Na Na Na Na Na Na
0.3 7.85 | 0.124 0.510 395 | 4.03 26.28
0.4 6.56 | 0.282 0.515 5.01 4.18 25.81
0.5 5.75 | 0.526 0.398 3.64 | 598 24.16
0.6 5.67 | 0.512 0.360 340 | 6.88 24.30

Reducing ThrV enhances the control by LLMSafe-
Guard but adversely impacts both the inference time and
the linguistic quality of the output from LLMs. Table
illustrates the effect of ThrV (i.e., the similarity threshold
to valid a candidate) on LLMSafeGuard across both tasks.
As ThrV rises, PPL decreases and inference time decreases
for detoxification and copyright. However, increasing ThrV
leads to a higher toxic score and longer Longest Common
Subsequences (LCS), thereby indicating weaker safeguard of
LLMSafeGuard. This outcome is expected since we use the
ThrV to determine the validity of a candidate. With a bigger
ThrV, more invalid candidates would pass the safety net and
weaker safeguard will be provided. ThrV offers a trade-off
between the effectiveness and efficiency of LLMSafeGuard.
When we attempted to set ThrV to 0.1 and 0.2, we en-
countered failures in generating results. This occurred because
setting ThrV too low resulted in nearly all candidates being

TABLE VII: The impact of A on the performance of LLMSafe-
Guard. Cells with better performance are marked with darker
colors.

Detoxification Copyright
A PPL | Toxic | Inference | PPL | LCS | Inference
100 | 7.78 | 0.117 0.540 5.06 | 4.17 34.36
200 | 7.85 | 0.124 0.510 395 | 4.03 26.28
300 | 8.03 | 0.143 0.509 4.80 5.5 24.51
400 | 8.17 | 0.148 0.533 431 6.43 24.83
500 | 822 | 0.169 0.516 4.71 7.32 23.32

deemed invalid, causing LLMSafeGuard to endlessly search
for valid candidates. Through our analysis, we determined that
setting T'hrV to 0.3 achieves a balanced compromise between
effectiveness and efficiency.

In general, reducing)\ enhances the safeguard of LLM-
SafeGuard but adversely impacts both the inference time
and the linguistic quality of the output of Large Language
Models (LLMs). Table presents the impact of A on the
effectiveness and efficiency of LLMSafeGuard. Reducing A
improves the safeguard of LLMSafeGuard in detoxification
(i.e., lower toxic score) and copyright (i.e., shorter LCS).
In terms of inference time, LLMSafeGuard achieves similar
inference time for different lambda, ranging from 0.51 to 0.54
for detoxification. For copyright, the inference time decreases
as A increases from 100 to 200, and the inference time gets
stable after 200. To understand the reason why increasing A
does not improve the efficiency, we count the #validation and
#rollback, and #step. We observe that although increasing A
reduces the steps for validation, it maintains a similar number
of validations. For instance, the number of validations stays at
a stable range between 145 to 167 when A increases from 100
to 500 in detoxification. Therefore, to balance the efficiency
and effectiveness of LLMSafeGuard, we set A\ to 200.

In general, as the ratio of sampled demonstration
examples increases, the effectiveness of LLMSafeGuard
increases, while the efficiency and the linguistic quality
of output of LLMSafeGuard decrease. Table presents
the effectiveness and efficiency of LLMSafeGuard. For the
detoxification task, As the R increases from 0.1 to 1, the toxic
score increases from 0.271 to 0.124, while needs more time
for inference. A similar trend is observed for copyright. This
is expected, as more demonstration examples are provided,
LLMSafeGuard provides stronger control of the output, while
needing more time for validation, thereby increasing the
inference time. In terms of PPL, when increasing the size
of the demonstration examples, PPL slightly drops for the
detoxification task, while does not have a remarkable impact
on the copyright task. Compared to copyright, reducing the
examples for detoxification has a smaller impact than copy-
right. Reducing half of the data, the toxic score increases from
0.124 to 0.149, while LCS increases from 4.03 to 6.69. One
possible explanation is that for detoxification, a remarkable
portion of the examples are similar to each other, and reducing
the duplication does not impact the toxic score much. As for
copyright, there is not much duplication in the books.

TABLE VIII: The impact of R on the performance of LLM-
SafeGuard. Cells with better performance are marked with
darker colors.

Detoxification Copyright
R PPL | Toxic | Inference | PPL | LCS | Inference
0.1 | 6.77 | 0.271 0.322 442 | 7.15 23.28
0.3 | 6.94 | 0.231 0.387 440 | 6.71 23.45
0.5 | 7.24 | 0.149 0.450 4.69 | 6.67 24.03
0.7 | 7.59 | 0.131 0.507 4.47 5.82 25.67
1 7.85 | 0.124 0.510 395 | 4.03 26.28

LLMSafeGuard provides tunable parameters that allow
practitioners to balance the effectiveness and efficiency of
LLMSafeGuard as they need. For instance, smaller T'hrV
and)\ provide a stronger safeguard, while slightly increasing
the inference time and the reducing linguistic quality of the
output from LLMs.

VI. DISCUSSION
A. Potential applications of our framework

Guiding LLMs to produce context aligning with defined
constraints. This research showcases the efficacy of LLM-
SafeGuard in safeguarding LLLMs against generating invalid
content. LLMSafeGuard utilizes an external knowledge base
(i.e., provided demonstration examples violating safety con-
straints) to validate and discard invalid candidates during the
decoding stage by assessing their similarities. However, our
framework can also be tailored to guide LLMs in generating
content that adheres to specific constraints. For instance, to
guide our framework toward generating content on a particular
topic, we can adapt the validation process to selectively
approve candidates containing the desired topic while rejecting
others during the beam search.

Real-time hallucination protection. Hallucination poses a
significant challenge for Large Language Models (LLMs), as
these models often generate false information with a high de-
gree of confidence [43]], [44]. Retrieval Augmented Generation
(RAG) has emerged as a common and promising technique
to mitigate hallucination [44]], [45]. In RAG, when an LLM
receives a query, the relevant information is retrieved from
an external knowledge base and integrated into the prompt
to improve results and reduce hallucination. Alternatively, the
retrieved information can be used to validate LLM outputs
for detecting hallucinations. However, to our knowledge, there
is currently no approach that provides real-time hallucination
protection during the decoding stage. One potential application
of our framework is to offer real-time hallucination protection.
To achieve this, we can adapt our framework to validate candi-
date outputs against facts retrieved from an external knowledge
base. By comparing candidate outputs against examples re-
trieved in real-time, we can mitigate hallucination by ensuring
that generated content aligns with factual information.

Adapting Context-wise to other real-time safeguarding
techniques. We demonstrate the effectiveness of Context-wise
in selecting the timing for validation based on the context. It
is worth noting that Context-wise is not only applicable to our
framework but it could also be applied to other safeguarding

techniques, which need to manipulate the token distribution
in the decoding stage, such as the real-time safeguarding
techniques we introduced in Section

B. Threats to validity

Internal Validity In this study, we use PPL to evaluate the
linguistic quality of the output of LLMs, use the toxic score to
measure the effectiveness of preventing toxic content, and use
the LCS to measure the risk of two pieces of text having copy-
right infringement. Although there might be other metrics that
could be used to measure the effectiveness of LLMSafeGuard,
those metrics are commonly used in evaluation in previous
studies for detoxification task [8]], [10], [[11] and copyright
task [4], [35]. The output from LLMs is not stable and could
vary from time to time [46], [47]], which may bring bias to our
experiments. To mitigate the bias, we ran every experiment five
times and took the average across each run. LLMSafeGuard
has multiple parameters and different values could impact the
performance of LLMSafeGuard. We selected the value for
those parameters empirically and investigated their impact in
RQ3. Intervening in the generation process of an LLM may
deviate the output from the natural output and may introduce
more hallucinations. To mitigate this, we enhance the beam
search and select the most likely tokens that are invalid at each
time step. We also measured the PPL and our experimental
results show that LLMSafeGuard achieves comparable output
quality as natural output and significantly outperforms SOTA
baselines.

External Validity Threats to external validity relate to the
generalizability of our findings. In this study, we evaluated our
approach on two tasks detoxification and copyright infringe-
ment, and demonstrated its superiority in safeguarding LLMs
over baselines. However, our findings might not be generalized
to other tasks. Future research is encouraged to evaluate our
approach on more tasks.

VII. CONCLUSION

In this paper, we propose LLMSafeGuard, a lightweight
post-processing framework designed to safeguard LLM text
generation. Specifically, we introduce a similarity-based vali-
dation approach, simplifying constraint introduction and elim-
inating the need for control model training. Additionally, we
introduce a context-wise timing selection strategy, validating
the text generation only when necessary. We evaluate LLM-
SafeGuard on two tasks, detoxification, and copyright, demon-
strating superior performance compared to baselines. For
instance, LLMSafeGuard reduces the average toxic score of
LLM output by 29.7% while maintaining linguistic quality for
detoxification task. Moreover, Context-wise reduces inference
time by 24% while maintaining comparable effectiveness as
validating each single step. LLMSafeGuard provides tunable
parameters to balance effectiveness and efficiency.

[1]

[3]

[4

=

[5

=

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]
[16]
(17]

(18]

[19]

[20]

[21]

[22]
(23]

[24]

REFERENCES

B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz,
E. Agirre, 1. Heintz, and D. Roth, “Recent advances in natural language
processing via large pre-trained language models: A survey,” ACM
Computing Surveys, vol. 56, no. 2, pp. 1-40, 2023.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, 1. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAl blog,
vol. 1, no. 8, p. 9, 2019.

T. Zhuo, Y. Huang, C. Chen, and Z. Xing, “Exploring ai ethics of
chatgpt: A diagnostic analysis. arxiv,” arXiv preprint arXiv:2301.12867,
2023.

P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga,
Y. Zhang, D. Narayanan, Y. Wu, A. Kumar et al., “Holistic evaluation
of language models,” arXiv preprint arXiv:2211.09110, 2022.

H. Zhang, H. Song, S. Li, M. Zhou, and D. Song, “A survey of con-
trollable text generation using transformer-based pre-trained language
models,” ACM Computing Surveys, vol. 56, no. 3, pp. 1-37, 2023.

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei,
P. Christiano, and G. Irving, “Fine-tuning language models from human
preferences,” arXiv preprint arXiv:1909.08593, 2019.

N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher,
“Ctrl: A conditional transformer language model for controllable gen-
eration,” 2019.

J. Qian, L. Dong, Y. Shen, F. Wei, and W. Chen, “Controllable
natural language generation with contrastive prefixes,” in Findings of the
Association for Computational Linguistics: ACL 2022. Dublin, Ireland:
Association for Computational Linguistics, May 2022, pp. 2912-2924.
X. Qi, Y. Zeng, T. Xie, P.-Y. Chen, R. Jia, P. Mittal, and P. Henderson,
“Fine-tuning aligned language models compromises safety, even when
users do not intend to!” arXiv preprint arXiv:2310.03693, 2023.

M. Kim, H. Lee, K. M. Yoo, J. Park, H. Lee, and K. Jung, “Critic-guided
decoding for controlled text generation,” in Findings of the Association
for Computational Linguistics: ACL 2023. Toronto, Canada: Associa-
tion for Computational Linguistics, Jul. 2023, pp. 4598-4612.

B. Krause, A. D. Gotmare, B. McCann, N. S. Keskar, S. Joty, R. Socher,
and N. F. Rajani, “GeDi: Generative discriminator guided sequence
generation,” in Findings of the Association for Computational Linguis-
tics: EMNLP 2021. Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 4929-4952.

S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosin-
ski, and R. Liu, “Plug and play language models: A simple approach to
controlled text generation,” arXiv preprint arXiv:1912.02164, 2019.

K. M. Yoo, D. Park, J. Kang, S.-W. Lee, and W. Park, “Gpt3mix:
Leveraging large-scale language models for text augmentation,” arXiv
preprint arXiv:2104.08826, 2021.

S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura,
and E. Hovy, “A survey of data augmentation approaches for nlp,” arXiv
preprint arXiv:2105.03075, 2021.

OpenAl, “Chatgpt,” https://chat.openai.com/, 2023.

“Gpt-4,” https://openai.com/research/gpt-4, accessed: 2024-02-05.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos,
S. Shakeri, E. Taropa, P. Bailey, Z. Chen et al., “Palm 2 technical report,”
arXiv preprint arXiv:2305.10403, 2023.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

C. Meister, T. Vieira, and R. Cotterell, “Best-first beam search,”
Transactions of the Association for Computational Linguistics, vol. 8,
pp. 795-809, 2020. [Online]. Available: https://aclanthology.org/2020.
tacl-1.51

H. Inan, K. Upasani, J. Chi, R. Rungta, K. Iyer, Y. Mao, M. Tontchev,
Q. Hu, B. Fuller, D. Testuggine, and M. Khabsa, “Llama guard: Llm-
based input-output safeguard for human-ai conversations,” 2023.

F. Wu, Y. Xie, J. Yi, J. Shao, J. Curl, L. Lyu, Q. Chen, and X. Xie,
“Defending chatgpt against jailbreak attack via self-reminder,” 2023.
Y. Xie, M. Fang, R. Pi, and N. Gong, “Gradsafe: Detecting unsafe
prompts for llms via safety-critical gradient analysis,” 2024.

“Azure content safety api,” https://azure.microsoft.com/en-us/products/
ai-services/ai-content-safety, accessed: 2024-02-05.

[25]

[26]

[27]

(28]

[29]

[30]
(31]

(32]

(33]

[34]
(35]

[36]

[37]
[38]
(39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

(471

“Openai moderation api,” |https://platform.openai.com/docs/guides/
moderation/, accessed: 2024-02-05.

R. Liu, G. Xu, C. Jia, W. Ma, L. Wang, and S. Vosoughi, “Data boost:
Text data augmentation through reinforcement learning guided condi-
tional generation,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, Nov. 2020, pp. 9031-9041.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in Neural
Information Processing Systems, vol. 35, pp. 27 730-27 744, 2022.

A. Liu, M. Sap, X. Lu, S. Swayamdipta, C. Bhagavatula, N. A. Smith,
and Y. Choi, “DExperts: Decoding-time controlled text generation with
experts and anti-experts,” in Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics, Aug. 2021, pp.
6691-6706.

K. Yang and D. Klein, “FUDGE: Controlled text generation with future
discriminators,” in Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Lin-
guistics, Jun. 2021, pp. 3511-3535.

A. Singhal et al., “Modern information retrieval: A brief overview,”
IEEE Data Eng. Bull., vol. 24, no. 4, pp. 3543, 2001.

N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE transactions
on pattern analysis and machine intelligence, vol. 17, no. 8, pp. 790-
799, 1995.

“Toxic comment classification challenge,” https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge, accessed: 2024-02-05.
https://www.perspectiveapi.com/, accessed: 2024-02-05.

A. Karamolegkou, J. Li, L. Zhou, and A. Sggaard, “Copyright violations
and large language models,” in Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing. Singapore:
Association for Computational Linguistics, Dec. 2023, pp. 7403-7412.
“Large language models and copyright,” https://en.wikipedia.org/wiki/
‘Wikipedia:Large_language_models_and_copyright, accessed: 2024-03-
01.

S. F. Chen, D. Beeferman, and R. Rosenfeld, “Evaluation metrics for
language models,” 1998.
https://huggingface.co/docs/transformers/en/perplexity, accessed: 2024-
02-05.

https://huggingface.co/openai-community, accessed: 2024-02-05.
https://huggingface.co/meta-1lama, accessed: 2024-02-05.
https://qdrant.tech/, accessed: 2024-02-05.
https://huggingface.co/sentence- transformers/all-MiniLM-L6-v2,
accessed: 2024-02-05.

Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung et al., “A multitask, multilingual, multimodal
evaluation of chatgpt on reasoning, hallucination, and interactivity,”
arXiv preprint arXiv:2302.04023, 2023.

Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao,
Y. Zhang, Y. Chen et al., “Siren’s song in the ai ocean: a survey on hal-
lucination in large language models,” arXiv preprint arXiv:2309.01219,
2023.

L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen,
W. Peng, X. Feng, B. Qin et al., “A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions,”
arXiv preprint arXiv:2311.05232, 2023.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdh-
ery, and D. Zhou, “Self-consistency improves chain of thought reasoning
in language models,” arXiv preprint arXiv:2203.11171, 2022.

Y. Elazar, N. Kassner, S. Ravfogel, A. Ravichander, E. Hovy, H. Schiitze,
and Y. Goldberg, “Measuring and improving consistency in pretrained
language models,” Transactions of the Association for Computational
Linguistics, vol. 9, pp. 1012-1031, 2021.

https://chat.openai.com/
https://openai.com/research/gpt-4
https://aclanthology.org/2020.tacl-1.51
https://aclanthology.org/2020.tacl-1.51
 https://azure.microsoft.com/en-us/products/ai-services/ai-content-safety
 https://azure.microsoft.com/en-us/products/ai-services/ai-content-safety
https://platform.openai.com/docs/guides/moderation/
https://platform.openai.com/docs/guides/moderation/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.perspectiveapi.com/
https://en.wikipedia.org/wiki/Wikipedia:Large_language_models_and_copyright
https://en.wikipedia.org/wiki/Wikipedia:Large_language_models_and_copyright
https://huggingface.co/docs/transformers/en/perplexity
https://huggingface.co/openai-community
https://huggingface.co/meta-llama
https://qdrant.tech/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

	Introduction
	Background & Related work
	Large language model
	Safeguarding large language models

	Methodology
	Similarity-based external validator
	Context-wise timing selection

	Experimental Setting
	Research Questions
	Tasks
	Detoxification
	Copyright

	Base large language models
	Implementation details
	Approach for RQs
	Approach of RQ1
	Approach of RQ2
	Approach of RQ3

	Results
	Results of RQ1
	Results of RQ2
	Results of RQ3

	Discussion
	Potential applications of our framework
	Threats to validity

	Conclusion
	References

