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2H-NbS2 is a classic example of an anisotropic multi-band superconductor, with significant recent
work focussing on the interesting responses seen when high magnetic fields are applied precisely
parallel to the hexagonal niobium planes. It is often contrasted with its sister compound 2H-
NbSe2 because they have similar onset temperatures for superconductivity, but 2H-NbS2 has no
charge density wave whereas in 2H-NbSe2 the charge density wave order couples strongly to the
superconductivity. Using small-angle neutron scattering, a bulk-sensitive probe, we have studied
the vortex lattice and how it responds to the underlying superconducting anisotropy. This is done
by controlling the orientation of the field with respect to the Nb planes. The superconducting
anisotropy, Γac = 7.07± 0.2, is found to be field independent over the range measured (0.15 to 1.25
T), and the magnetic field distribution as a function of the applied magnetic field is found to be in
excellent quantitative agreement with anisotropic London theory modified with a core-size cut-off
correction, providing the first complete validation of this model. We find values of λab = 141.9±1.5
nm for the in-plane London penetration depth, and λc ∼ 1 µm for the out-of-plane response. The
field-independence indicates that we are primarily sampling the larger of the two gaps generating
the superconductivity in this material.

INTRODUCTION

Recent studies of the superconducting phase diagram
of 2H-NbS2 [1] and 2H-NbSe2 [2] have revealed that the
superconducting state in these sister materials is very
sensitive to the orientation of the magnetic field with
respect to the basal plane. Different types of spatially
textured superconductivity [3, 4] have been conjectured
at high magnetic fields in both materials.

These two compounds belong to the larger family
of transition metal dichalcogenides (TMDCs). This is
a class of highly 2D materials, with hexagonal planes
of transition metals weakly coupled along the c axis,
with members displaying multiple types of electronic or-
der, including charge density wave (CDW) order, Mott-
insulating behaviour and superconductivity [5]. 2H-
NbSe2 is a classic example of the interaction between a
charge density wave state and superconductivity, and the
family 2H-MX2 (M = Nb, Ti, Ta; X = S, Se) all have
similar electronic band structures in the normal state.
When they become superconducting, typically a larger
gap develops on Fermi surface sheets with a more 2D na-
ture, and the smaller gap appears on Fermi surface sheets
with a more 3D character. Within this family, 2H-NbS2
stands out because it is the only one in which CDW order
has not been seen in the bulk (see Table I); in the liter-
ature there is some dispute if it exists in the monolayer
1H-NbS2 [6, 7]. This means that comparing 2H-NbS2
and 2H-NbSe2 is a clean way to check out how the CDW
affects the physics observed in these materials.

Both materials are considered to be excellent examples

TMDC TCDW (K) Tc (K)

2H-NbSe2 33.5 7.3

2H-NbS2 none 5.5

2H-TaSe2 122.3 0.15

2H-TaS2 78 0.8

TABLE I. Transition temperatures for the charge den-
sity wave and superconducting states in selected tran-
sition metal dichalcogenides. Values are taken from
Refs. [8–10].

of two-band superconductors with two different s-wave
gaps, from scanning tunnelling spectroscopy [11], spe-
cific heat [12, 13] and Andreev reflection [14] studies. For
both materials, the Fermi surfaces are similar, with three
types of Fermi surface sheet. The Fermi surface sheets
that arise from the Nb 4d bands and exhibit supercon-
ductivity are cylinders centred around the Γ and K points
in the Brillouin zone. They have different levels of corru-
gation leading to more 3D character in those around the
Γ point. There is also a (non-superconducting) smaller
pancake-like sheet at Γ associated with the chalcogen.
This has been reported by many independent groups; a
nice description is given by Noat et al. [15]. Where there
are two superconducting sheets, one may expect differ-
ent gap magnitudes and superconducting anisotropies,
although the effective vortex core radii (related to the
coherence lengths) are expected to lock together in most
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FIG. 1. Schematic diagram of the experimental setup. (a) Typical small-angle neutron scattering (SANS) instrument
setup for diffraction by a superconducting vortex lattice. The neutrons pass through a velocity selector, which sets their
average wavelength (usually with a full-width half-maximum (FWHM) spread ∼ 10%). The beam is well collimated, with
a long evacuated flight path before and after the sample to minimize air scattering. The transmitted main beam is caught
on a neutron-absorbing beamstop to allow the Bragg reflections, which are scattered at small angles, to be visible on a 2D
multidetector. (b) Sketch of the ‘parallel’ field geometry used in the experiment; here the individual vortices are aligned parallel
to the applied field, and then by rotating the magnet and sample together through angles Ω or ϕ, the Bragg condition for the
vortex lattice can be met. When the data obtained at different angles are summed together, an image such as that shown on
the multi-detector will be seen. (c) Experimental geometry. The coordinate system is defined with the z direction along B and
the components of observed VL scattering vectors are denoted as qx and qy. The applied magnetic field B is rotated away from
the 2H-NbS2 plane by an angle Ω and the longitudinal and transverse components of the field modulation are denoted by bz
and bx & by, respectively.

cases [16].
In this context, we use the vortex lattice (VL) that de-

velops in the superconducting state to probe the super-
conducting response, with a particular eye on the effects
of anisotropy. In 2H-NbSe2, the vortex lattice has been
studied using a variety of methods. Two results stand
out. Firstly, the individual vortex cores have a six-fold
star-shaped structure [11], reflecting the symmetry of the
CDW order. Secondly, the vortex lattice consists of one
hexagonal domain; to a first approximation the vortices
lie parallel to the external field (see Fig. 1b). On ro-
tating the magnetic field towards the basal plane, this
domain distorts, reflecting the underlying effective mass
anisotropy. However, the unit cell vectors of this domain
do not change direction and are, in fact, pinned to the
crystallographic a∗ axis [17, 18]. This unexpected obser-
vation indicates that in 2H-NbSe2 the orientation of the

VL is not in agreement with the predictions of anisotropic
London theory, as seen in, for example, YBa2Cu3O7−δ

[19], Sr2RuO4 [20] and KFe2As2 [21].
In contrast, there are relatively few direct studies of

the vortex lattice in 2H-NbS2, with a scanning tunnel-
ing microscopy and spectroscopy study by Guillamon et
al. [11] confirming that a well-ordered vortex lattice can
be seen at the sample surface, and that the vortex core
has a standard circular shape.
Here we present a study of the vortex lattice as mea-

sured deep inside the superconducting state at 1.5 K, ex-
tracting information on the superconducting anisotropy,
the penetration depth λ and the coherence length ξ. This
is done by neutron diffraction from the magnetic field
distribution associated with the vortex lattice, whereby
the Fourier components of this periodic distribution can
be extracted from the resulting Bragg reflections. A



3

(a) (b) (c) (d)

(e) (h)(g)(f)

Ω = 0° Ω = 30° Ω = 60° 

Ω = 70° Ω = 80° Ω = 85° Ω = 87.5° 

Ω = 60° 

0.15T 0.15T 

0.15T 0.15T 

0.15T 

0.25T 

0.25T 

0.25T 

b

a*

� B

4

3

2

1

0

7

6

5

4

3

2

1

0

9
8
7
6
5
4
3
2
1
0

12

10

8

6

4

2

0

10

8

6

4

2

0

1.0

0.5

0.0

  -0.5

-1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

10

8

6

4

2

0

10

8

6

4

2

0

1.0

0.5

0.0

  -0.5

-1.0

1.0

0.5

0.0

  -0.5

-1.0

1.0

0.5

0.0

  -0.5

-1.0

1.0

0.5

0.0

  -0.5

-1.0

1.0

0.5

0.0

  -0.5

-1.0

1.0

0.5

0.0

  -0.5

-1.0

1.0

0.5

0.0

  -0.5

-1.0

  -1.0    -0.5     0.0     0.5     1.0

  -1.0    -0.5     0.0     0.5     1.0  -1.0    -0.5     0.0     0.5     1.0   -1.0    -0.5     0.0     0.5     1.0   -1.0    -0.5     0.0     0.5     1.0

  -1.0    -0.5     0.0     0.5     1.0   -1.0    -0.5     0.0     0.5     1.0   -1.0    -0.5     0.0     0.5     1.0

α
β

α
β Ellipse Area = π q2 

Δ
qx

qy

qx (10-2 Å-1)  

q y 
(1

0-2
 Å

-1
)  

qx (10-2 Å-1)  qx (10-2 Å-1)  qx (10-2 Å-1)  

qx (10-2 Å-1)  qx (10-2 Å-1)  qx (10-2 Å-1)  qx (10-2 Å-1)  

q y 
(1

0-2
 Å

-1
)  

q y 
(1

0-2
 Å

-1
)  

q y 
(1

0-2
 Å

-1
)  

q y 
(1

0-2
 Å

-1
)  

q y 
(1

0-2
 Å

-1
)  

q y 
(1

0-2
 Å

-1
)  

q y 
(1

0-2
 Å

-1
)  

FIG. 2. SANS diffraction pattern of the VL in 2H-NbS2 as a function of field rotation angle Ω. We show the
results of measurements made at 1.5 K for seven different field angles, Ω, at either 0.15 T or 0.25 T, depending on the closeness
of the Bragg spots to the direct beam. The images are sums over ϕ rocking scans about the horizontal axis perpendicular to
the incoming beam, minus backgrounds. The direct beam has been masked off in software. The white and green dashed lines
in panels (a), (b) and (c) represent the opening angles of α and β for Domain I ( ) and Domain II ( ), respectively. The
white dashed ellipse depicted in panel (d) lies on top of the Bragg reflections from the distorted VL. It has a major-to-minor

axis ratio ΓVL and the reciprocal-space area of the ellipse is given by πq2△, with q△ = 2π
(
2B/

√
3Φ0

)1/2
.

schematic of the experimental setup is shown in Fig. 1.
This is done in the small-angle scattering regime because
the inter-vortex distances are much larger than available
neutron wavelengths. To probe the anisotropy of the sys-
tem, we create vortex lattices with different angles Ω be-
tween the applied magnetic field and the c axis. Full de-
tails of the experimental protocols are given in the Meth-
ods. Fig. 2 shows a range of diffraction patterns collected
at T = 1.5 K and magnetic fields ranging from 0.15 T
to 0.25 T, for a range of values of Ω, running from 0◦ to
87.5◦, prepared using the field cooling process described
in the Methods. It is clear that rotating the field from
being parallel to c axis (Ω = 0◦) to nearly being in the
basal plane (Ω = 87.5◦) distorts the hexagonal vortex
lattice, indicating the anisotropic nature of 2H-NbS2.

RESULTS AND DISCUSSION

Vortex lattice structure

When the field (B = 0.15 T) is parallel to c axis
(Ω = 0◦), the diffraction pattern is perfectly hexago-
nal (Fig. 2a), with the Bragg peaks appearing at q△ =
5.6(1)×10−3 Å−1, as compared with the ideal value for a

hexagonal VL q△ = 2π
(
2B/

√
3Φ0

)1/2
= 5.7 × 10−3Å−1

at B = 0.15 T. Φ0 = h/2e is the flux quantum. Because
of the six-fold crystal symmetry, one of two hexagonal
domains separated by 30◦ might be expected to be ener-
getically favoured. We observe that one domain (Hexag-
onal Domain I [ ]) is dominant, with trace amounts
of Hexagonal Domain II [ ]. Prior to changing Ω, the
diffraction spots of Domain I lie parallel to the a/b axes,
indicating that, in real space, the vortex lattice planes
are perpendicular to the Nb nearest neighbour directions.
When Ω = 0◦, the qx and qy directions on the detector
are probing directions at right angles within the basal
plane, and we expect the superconducting parameters (λ
and ξ) to be essentially isotropic around this plane.
At Ω = 30◦ at 0.15 T, the ratio of the two domains

has shifted, making Domain II easier to see, and we can
also see the VL begin to distort due to the difference in
the superconducting properties in- and out-of-plane. The
Bragg peaks move further away from the beam centre
along the horizontal axis and closer along the vertical
axis. The same distortion applies to both domains, as
can be seen by considering that all of the Bragg spots lie
on the same ellipse (Fig. 2b,d).
As the field is rotated further, Domain II becomes the

dominant form, and indeed is the only domain seen for
Ω > 70◦. As the distortion increases, the top and bottom
reflections become more prominent. The side reflections
also move out of the window captured by the 2D detector.
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FIG. 3. The B-Ω phase diagram of the VL in 2H-NbS2

at T = 1.5 K. The shaded areas are represented by a gradi-
ent of green color, transitioning from dark green to pale green,
signifying the change in VL structure as the direction of the
magnetic field B is changed relative to the crystallographic
ab-plane. Hexagon symbols represent distinct vortex lattice
domains, with dark blue hexagons for domain I ( ), light

green for domain II ( ), and a teal dodecagon indicating
regions with mixed domains (I & II). The dashed black lines
define the transitions between these domains as a function of
B and Ω. The upper critical field (Bc2) line is the parame-
terisation from the ratio of Borb

c2 (θ)/Borb
c2∥ab using values from

Ref. [23]. Bc1∥c is estimated to be ∼ 30 mT [14].

The regions in which the different domains are seen as a
function of magnetic field and Ω are shown in Fig. 3. No
intermediate structures are seen at any point. These ob-
servations suggest that the transition between Domains
I and II is first order in character, as reported in CaAlSi
[22].

As Ω is increased, qy remains in the same orientation
in the basal plane of the crystal lattice, but qx starts
to mix basal plane and out-of-plane components. A
VL structure with Bragg peaks pinned to the qy direc-
tion should then be preferred, as observed in, for exam-
ple, YBa2Cu3O7−δ [19], Sr2RuO4 [20] and KFe2As2 [21].
However, as noted above, this was not observed in 2H-
NbS2’s sister compound, 2H-NbSe2, presumably due to
a stabilising effect associated with the CDW formation
[18].

Superconducting anisotropy

The vortex lattice becomes increasingly anisotropic as
the field is rotated toward the basal plane, because the
London penetration depth is different in the basal plane
and along the c axis. This leads to the distortion of
the diffraction pattern because the screening currents no
longer follow circular paths close to the vortex core. 2H-
NbS2 falls into the class of uniaxial anisotropic supercon-

ductors, which have a distortion of the hexagonal VL as
a function of Ω. The anisotropy of the vortex lattice, ΓVL

is defined as the ratio of the semi-major and semi-minor
axes of the ellipse circumscribing the diffraction spots, as
given by [24]

ΓVL =
Γac√

sin2 Ω+ (Γac cosΩ)2
, (1)

where Γac corresponds to the a − c anisotropy of the
penetration depth. To evaluate Γac, we therefore need
to measure ΓVL as a function of Ω. There are multiple
ways to extract this information, and different ways have
to be used at different angles, primarily because not all
of the spots are measured at higher angles (Fig. 2).
For Ω ≤ 70◦, the following methods were used:

• The area of the Brillouin zone associated with
the VL is fixed for a given value of field, and
can be calculated directly for the perfect hexagon.
Given this, the position in reciprocal space of the
spots, or, equivalently, the opening angles α and
β (marked in Fig. 2a-2c) can be used to calculate
ΓVL, although the two domains require slightly dif-
ferent treatment. For Domain I ( ), ΓVL =√
3 [tan(α/2)], or by taking the qy value for the

spots , ΓVL = 3/4[q△/qy]
2. For Domain II (

), we have ΓVL = [q△/qy]
2 where qy is measured for

the spots , or ΓVL = 1/(
√
3 [tan(β/2)]).

• Fitting an ellipse that meets the area constraint
(Aellipse = πq2△ = 8π3B/

√
3Φ0, shown in Fig. 2d)

to the six Bragg spot positions gives the semi-major
and semi-minor axes, and hence ΓVL directly. This
method cannot be used for Ω > 70◦ as only the top
and bottom spots are visible.

For Ω > 70◦, only the top and bottom Bragg spots of
Domain II are visible, so the first of these methods is em-
ployed; in this case the position of the spots is qVL = qy.
However, in anisotropic superconductors when the vor-
tices are tilted away from a principal axis, the field dis-
tribution associated with the vortices develop transverse
field components that vary with Ω [25]. (We later give
expressions for these in Eqs. 6, 7, 8) Even if the near-
horizontal spots at large angles did fall on the detector,
they would have almost no intensity. This because the
transverse components (labelled bx & by in Fig. 1c) are
close to zero at small qy and the longitudinal compo-
nent bz also falls off at large Ω. For the vertical spots,
the transverse field component bx dominates and flips
the spin of the scattering neutrons. Neutrons after spin
flipping parallel or anti-parallel to the applied magnetic
field will have slightly different Zeeman energies, leading
to a change in the kinetic energy and hence velocity of
the scattered neutron. This results in the Bragg spots
splitting into two separate peaks in the ϕ rocking scans
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FIG. 4. Spin-splitting of the VL Bragg reflections due to spin-flip scattering. Vortex lattice diffraction patterns
as a function of rotation angle (Ω) Vortex lattice rocking curves at 0.45 T and 1.5 K. Each rocking curve is fitted by two
Lorentzian. The VL anisotropy increases as Ω comes close to the basal plane, as indicated by the dashed white lines in the
upper panels (a)-(c). Lower panels (d)-(f) represent the rocking curves corresponding to the diffraction patterns in the upper
panels. The rocking curves show the scattered intensity distribution plotted as a function of the tilt angle deviation (ϕ+∆ϕ)
relative to the rocking curve center which has slight zero offset at ϕ = 0.09◦. Two distinct peaks, indicative of Zeeman splitting
from transverse field modulation (spin flip), the top Bragg reflection is represented in red, while the bottom Bragg reflection
is depicted in purple. Both sets of peaks are fitted with two Lorentzians, as shown by the dashed lines, delineating the peak
intensities and width for the top and bottom spots as a function of rotation angle (Ω). The scattering geometry triangles
are depicted in (e) (with angles exaggerated for clarity) for the two different SF processes: Spin-up to spin-down (L.H.S) and
spin-down to spin-up (R.H.S), The scattering angle ( 2θ = 2ϕ0) is the same in both cases, but different tilt angles are required
to satisfy the Bragg condition ϕ2/3 (kinetic energy loss) and ϕ1/4 (kinetic energy gain) for the top and bottom Bragg spots,
respectively.

with maxima at ϕ = ϕB ± ∆ϕ, where ϕB is the Bragg
angle expected for elastic scattering from the distorted
vortex lattice [19–21], and ∆ϕ is the magnitude of the
spin splitting of ϕ. Examples of the data are given in
Fig. 4, together with schematic illustrations in Fig. 4e of
the effect of the energy change on the scattering process.

This spin-splitting of the peaks, 2∆ϕ becomes more
pronounced as Ω increases, because it is a function of
ΓVL. This arises because 2∆ϕ = (2k0/qVL) (∆ε/ε0)
where qVL is the magnitude of the scattering vector along
the minor axis i.e. qVL = qy as depicted in Fig. 4b, ∆ε =
γµNB and ε0 = ℏ2k20/2mn, the neutron gyromagnetic
ratio γ = 1.913, the nuclear magneton µN = eℏ/2mn

and mn is the neutron mass. This gives ∆ϕ = C ΓVLϕB

where C = γ
√
3/4π = 0.2635. We therefore have four

peaks, two associated with the spot seen in the upper
half of the detector in Fig. 4, with centers ϕ1/2 and two
associated with the lower spot, ϕ3/4. Their centres are

at angles:

ϕ1/2 = ϕB ± C ΓVL ϕB (2)

ϕ3/4 = −ϕB ∓ C ΓVL ϕB (3)

ΓVL can then be extracted from the rocking curves by a
simultaneous fit of the four peaks. The individual peaks
are treated as Lorentzians with a common integrated in-
tensity and width under each field and Ω condition. The
relations between the peak centres are fixed by the equa-
tions above, giving two outputs: ΓVL and the zero error
in the ϕ motor positioning (found to be 0.09◦).
All of these methods have been used to evaluate ΓVL

where possible, and they all agree within experimental er-
ror. The values obtained at each Ω are field independent.
The weighted average of all methods at each condition is
shown in Fig. 5. By fitting to Eqn. 1, the superconduct-
ing anisotropy is found to be Γac = 7.07± 0.2.
For anisotropic superconductors, like 2H-NbS2, the
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FIG. 5. Field-independent vortex lattice anisotropy.
The VL anisotropy measured at 1.5 K as a function of the
applied field and the angle between the field and the c axis
(Ω). The dashed line shows the VL anisotropy calculated
using Eqn. 1, with Γac = 7.07; the solid line is for Γac = ∞.

variations in the penetration depth ultimately arise due
to differences in the Fermi velocities and effective masses
of the carriers in the different directions. Γac can there-
fore also be observed in the ratios of the superconduct-
ing coherence length, ξab/ξc, and the upper critical fields,
Bab

c2/B
c
c2. The upper critical fields have been measured

by transport at 2 K, giving anisotropies ranging from 6.5
to 8.1 [26, 27], and a temperature dependent study of the
heat capacity by Kačmarč́ık et al. [12] finds a value of
7 for temperatures 0.3 Tc < T < Tc. While this value is
in agreement with ours, Leroux et al. estimated a value
of 11 from extrapolations of the penetration depth to 0
K [28], while Cho et al. [23] used torque magnetometry
to trace out the upper critical fields, combined with ex-
tremely precise in-plane angular alignment. From this
latter work, the in-plane upper critical field has an un-
usual temperature dependence. Using the critical fields
measured at 1.5 K gives Bab

c2/B
c
c2 = 7.33. However, this

upper critical field appears to be significantly lower than
the orbital upper critical field estimated from measure-
ments close to Tc, which would give Γac ∼ 15. Bi et
al. [29] have pointed out that surface superconductivity
(up to Bc3 = 1.695Bc2) may be playing a role here.

In multi-band superconductors, the different bands
may have different anisotropies, leading to field- and
temperature-dependent superconducting anisotropies; a
classic example is MgB2 [30]. 2H-NbS2 is widely ac-
cepted to be a two-band superconductor, but we do
not observe any field dependence in our superconducting
anisotropy, as was the case in the heat capacity studies of
Kačmarč́ık et al. [12]. To engage with this question fur-
ther, we first need to extract more information about the
characteristic superconducting lengths from our data.

Integrated intensity and the field-dependent form
factor

For a structurally two-dimensional, well-ordered VL,
the spatial variation of the magnetic field in the mixed
state can be written as a Fourier series with components
at different momentum transfers. The Fourier compo-
nent associated with the first order Bragg reflections from
the diffracted lattice is referred to as the ‘form factor’,
and can be related to the integrated intensity I(qi) of
a Bragg reflection from VL domain i via the Christen
formula [31]:

I(qi) = 2πViS
(γ
4

)2 λ2
n

Φ2
0qi cos(ζ)

|F (qi)|2. (4)

Here, Vi is the volume of the sample occupied by the VL
domain i (with VI + VII = V , the total sample volume).
S is the incident neutron flux density (extracted through
a measurement of the direct beam with known aperture
size), λn is the neutron wavelength, γ is the gyromag-
netic ratio of the neutron, Φ0 is the flux quantum, qi is
the magnitude of the scattering vector for the relevant
Bragg spot in the diffraction pattern, and cos(ζ) is the
Lorentz factor, where ζ is the angle between the recip-
rocal lattice vector qi and the direction that is at right
angles to the rocking axis [32]. For each domain, the rele-
vant integrated intensities of individual Bragg peaks (see
Methods) are averaged to give I(qi) for that domain; this
is related to the form factor via Eqn. 4.

In an isotropic superconductor, the flux lines lie paral-
lel to the applied field, with the screening supercurrents
perfectly perpendicular to the direction of the average
field, so that the local fields are all parallel to the applied
field. The form factor of the vortex lattice therefore con-
tains only components parallel to the field (bz in Fig. 1c).
In 2H-NbS2, this case applies if the field is perfectly par-
allel to the c axis. As soon as the field rotates away
from this, transverse field components (bx,y) will develop,
leading to the spin-split scattering discussed above. This
happens because the supercurrents tend to flow within
the ‘easy’ basal plane. Whereas the flux lines still follow
the average field direction, the form factor arises from
spatially varying contributions from both the longitudi-
nal and transverse field components. This has been fully
described using anisotropic London theory by Kogan [33]
for uniaxial crystal systems like 2H-NbS2, and expanded
to account for the effective mass anisotropy of the carriers
by Thiemann et al. [25]. Kealey et al. applied this prac-
tically to the biaxial superconductor YBa2Cu3O7−δ [19],
correcting some misprints in Ref. [25], but were only able
to find qualitative agreement, as was the case in studies
on Sr2RuO4 [20, 34] and KFe2As2 [21]. This may be due
to difficulties in handling field-dependent superconduct-
ing anisotropies. In 2H-NbS2, we have a fixed value of
Γac, and we are able to validate the model of Thiemann
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FIG. 6. Field dependence of the vortex lattice form factor for different field-sample angle Ω. Each panel shows
the vortex lattice form factor as a function of the applied magnetic field B, measured at 1.5 K for a particular value of Ω,
ranging from 30◦ to 87.5◦. For the upper panels, scattering from two distinct hexagonal vortex lattice domains was present,
denoted as Domain I ( ) and Domain II ( ), while for the lower panels, the scattering arises only from Domain II. The

data points represent experimental measurements of |F (qi)|2 with their respective error bars (see Supplementary Note 1). The
dashed black lines are the results from fits to Eqn. 14, using theoretical values for the scattering vectors q of the Bragg peaks
assuming Γac = 7. Hexagons are depicted for each Ω to visualize the vortex lattice, constructed based on the actual anisotropy
ratio ΓVL(Ω).

et al. over almost the entire angular range at multiple
fields.

In the mixed state, the magnetic field distributionB(r)
can be decomposed into a Fourier series over the set of
reciprocal space wave vectors q:

B(r) =
∑
q

b(q) exp(iq · r) (5)

The average field is in the z-direction, parallel to the
applied field, and the transverse fields bx(r) and by(r)
are in the xy plane. For a given Bragg reflection at q =
(qx, qy), the field components are [25]:

bx =
(λ2mxzq

2
y)B

d
(6)

by =
(−λ2mxzqxqy)B

d
(7)

bz =
(1 + λ2mzzq

2)B

d
(8)

where

d =
(
1 + λ2myyq

2
x + λ2mxxq

2
y

) (
1 + λ2mzzq

2
)
− λ4m2

xzq
2q2y.

(9)

Here B is the average field and λ =
(
λ2
abλc

)1/3
is the

geometric mean of the penetration depths in the ab plane
and along the c axis, and mij are the tensor components
of the effective mass of the charge carriers, referred to
the x, y and z axes defined in Fig. 1c. The normalized
effective masses along the unit cell axes are ma, mb, and
mc. For 2H-NbS2, ma = mb < mc, so ma

2mc = 1. The
superconducting anisotropy can be quantified as the ratio
of the normalized effective masses, Γac = (mc/ma)

1/2,
so we can rewrite the effective mass components in the
vortex frame into functions of Γac and Ω:

mxx = Γ−2/3
ac cos2 Ω+ Γ4/3

ac sin2 Ω, (10)

myy = Γ−2/3
ac , (11)

mzz = Γ−2/3
ac sin2 Ω+ Γ4/3

ac cos2 Ω, (12)

mxz =
(
Γ−2/3
ac − Γ4/3

ac

)
sinΩ cosΩ. (13)

With these expressions we can then calculate the theo-
retical form factor, F (q), for a given Bragg reflection,
including a Gaussian cutoff term to account for the finite
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size of the vortex core [35]:

F (q) = (b2x + b2y + b2z)
1/2 exp[−c(q2xξ

2
⊥) + q2yξ

2
ab)]. (14)

ξ⊥ = [ξ2ab cos
2 Ω + ξ2c sin

2 Ω] represents the core width
along the qx direction. Here, ξ⊥ is ξc when Ω = 90◦

i.e. B ∥ crystal planes. ξab represents the in-plane coher-
ence length while ξc is the coherence length for the c-axis
direction. The constant c is a core cutoff parameter; a
quantitative comparison of this model and the numerical
solution of the Eilenberger equations indicates that the
most suitable value is c = 0.44 [36].

The theoretical form factors depend on sample prop-
erties λ, ξab and ξc. We fitted the field-dependent data
separately for different values of Ω. The fits are very
insensitive to the value of ξc, as it only influences the
Domain I spots, and even then its contribution varies as
ξ2c sin

2 Ω << ξ2ab cos
2 Ω, and so has little effect. Accord-

ingly, we fixed this parameter as ξc = ξab/Γac, and let λ
and ξab vary as a fittable parameters. Where two VL do-
mains were present, their data were fitted simultaneously,
with one additional (field-dependent) fitting parameter
representing the fractions of the sample volume occupied
by the two domains: VI/V and VII/V . In Fig. 6, we show
the VL form factor variation as a function of field at T
= 1.5 K for six values of Ω. At each field, we distinguish
between the form factor values obtained from different
types of Bragg spots, as these different spots will have
different amounts of longitudinal and transverse field, so
that the Domain I spots typically have lower form factors
than Domain II (illustrated more completely in Appendix
A). Each value represents the average taken over equiva-
lent spots for a given domain. The (Vi/V )|F (qi)|2 were
calculated from the experimental data using Eqn. 4 and
then fitted to Eqn. 14 using two different methods.

In the first approach, the intensities were fitted using
the theoretical values for the scattering vector q associ-
ated with the peak given that Γac = 7. For Domain I
( ), qx = (q△/2)(ΓVL)

1/2 and qy = (q△/2)(3/ΓVL)
1/2,

while for Domain II ( ) qx = 0 and qy = (q△)/(ΓVL)
1/2.

In the second approach, we used the experimentally mea-
sured values for qx and qy. These two approaches yielded
statistically indistinguishable results, given the experi-
mental errors (an example is shown in Appendix B). This
consistency increases confidence in the robustness of our
findings. In Fig. 6 only the first approach is presented,
as smooth fit lines can be calculated from Eqn. 14 using
the theoretical Bragg spot positions.

The fits show excellent agreement with the description
of the anisotropic superconductor given by Thiemann et
al. [25], indicating that the tendency for supercurrents
to flow in the ab-plane can be described in this way. The
values obtained for λ and ξ are given in Table II.
Considering ξ first, ideally, the in-plane coherence

length ξab should represent the core size of the vortices,
in which case it can be related to the upper critical

field if the superconductivity is destroyed by orbital over-

lap, using the Ginzburg-Landau expression B
∥c
c2(0 K) =

Φ0/2πξ
2
ab. By extrapolating to 0 K, its value can be esti-

mated from the zero-temperature upper critical field B
∥c
c2 .

This upper critical field is well documented for NbS2, and
for our sample, it is 1.8 T [14]. If this is the orbital limit,
then ξab (0 K) ∼ 13.5 nm. Our fit results vary between
19.5 and 34 nm in size for this parameter, and so we
consider that our measured value is an effective value,
rather than the intrinsic value. This could be because of
flux pinning affecting the regularity of the vortex lattice.
This can be represented by a ‘static Debye-Waller factor’
which arises from static disorder within the vortex lattice
which can include local wiggling of the vortices [37], or
zigzagging of the vortices between basal planes at higher
values of Ω. While we could not resolve ξc in our fits,
we note that using B⊥c

c2 (0 K) = Φ0/2πξabξc, if we take
the orbital value for the upper critical field of 24 T, as
calculated by Cho et al. [23] based on the Werthamer-
Helfand-Hohenberg model, this gives ξc ∼ 1 nm.

We now turn to the penetration depth, where the geo-
metric mean at all values of Ω is found to be angle inde-
pendent, as expected, with an average value of 272.3±1.3
nm. From this, λab = 141.9 ± 1.5 nm and λc = 1003 ± 20
nm. From the literature, there is sparse agreement: λab

values between 83 nm [28] and 590 nm [38] are reported.
On our samples, a value for λab of 131 nm was obtained
by Majumdar et al. [14].

Recently, Kogan et al. [39] established a relationship
between the zero-temperature penetration depth λ(0)
and the slope of the penetration depth λ−2(T ) near Tc,
using a calculation analogous to the Helfand-Werthamer
relationship between the zero-temperature upper critical
magnetic field and its slope at Tc. With further thermo-
dynamic information, they obtained:

λ2(0) ≈

∣∣∣∣∣
(
dHc2

dT

)
Tc

∣∣∣∣∣ 1

Tcγ
, (15)

where (dHc2/dT )Tc
is the slope of the upper critical mag-

netic field Hc2 with respect to temperature (T ) at Tc, Tc

is the critical temperature of the superconductor in ques-
tion and γ is the specific heat coefficient per unit volume.
Kogan et al.’s model has been developed for isotropic
s-wave superconductivity with non-magnetic scattering,
and was successfully cross-checked against experimental
values for λ in V3Si and Nb3Sn.

Using this model we have calculated λab(0) ≈ 142.9
nm for 2H-NbS2, taking as inputs Tc = 5.5 K,
(dHc

c2/dT )T=Tc ≈ −0.25 × 104 Oe/K [12, 23, 27], and

γ = 0.494 × 104 erg/cm
3
K2 [40]. This is in excellent

agreement with our λab (1.5 K) as extracted from the fit.

On the face of it, this is surprising, as 2H-NbS2 is an
anisotropic two-band superconductor, which also makes
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Ω (◦) λGM (nm) λab (nm) λc (nm) ξab,eff (nm)

30 277 ± 5 145 ± 3 1022 ± 28 19.5 ± 0.5

60 275 ± 3 144 ± 2 1014 ± 22 20.1 ± 0.2

70 270 ± 2 141 ± 1 995 ± 21 23.2 ± 0.4

80 273 ± 7 142 ± 4 1006 ± 32 34 ± 1

85 272 ± 10 142 ± 5 1001 ± 40 34 ± 1.5

87.5 273 ± 3 142 ± 1 1006 ± 21 24.6 ± 0.4

TABLE II. Fitted penetration depth and coherence length values at each angle Ω. These were obtained by fitting
the field dependence of the form factor data measured at 1.5 K with the anisotropic London model with core-size correction
factor described in Eqn. 14.

the field-independent superconducting anisotropy unex-
pected. However, as Kogan et al. noted, their results
should still be applicable if the order parameter is con-
stant over a Fermi surface of any given shape. Indeed,
Kogan et al. tested their approach successfully on the
two-band superconductor MgB2, calculating λ(0) ≈ 176
nm, as compared to reported values of 180 - 185 nm.

We therefore suggest that over the field range explored
here at 1.5 K, there are no major changes in the contri-
butions from the two gaps, with the dominant response
coming from the large-gap band in 2H-NbS2, which has
predominantly 2D character, as proposed by Kačmarč́ık
et al. [12]. Interestingly, Noat et al. [15] have suggested
that, in reality, only the large gap sheets (the cylinders
centred on the K points) are intrinsically superconduct-
ing, and that the other gap develops parasitically by cou-
pling through the pancake-like sheet coming from the
chalcogen p-bands.

CONCLUSIONS

We have measured neutron diffraction by the vortex
lattice in 2H-NbS2 as a function of field angle and field
magnitude at 1.5 K, and find that in fields up to 1.25 T,
the intensity of the observed diffraction from the vortex
lattice can be described extremely well by the Thiemann
model using anisotropic London theory [25], with the ad-
dition of a core-correction factor to account for the finite
size of the vortex core. This forms the first full validation
of this model. This process is aided by our clear observa-
tion that the superconducting anisotropy is constant and
field-independent at Γac ∼ 7. From this, we extract val-
ues for the London penetration depth of λab = 141.9±1.5
nm and λc ∼ 1 µm. For λab, this experimental result fits
with the recent model developed by Kogan et al. [39].

The dominant Fermi sheets in these conditions are ex-
pected to be the cylinders around the K point in recipro-
cal space, which hold most of the density of states at the
Fermi surface, and are highly two-dimensional. Coupling

between these sheets and the more three-dimensional
cylinders around the Γ point therefore controls the overall
superconducting anisotropy. The interband coupling for
2H-NbS2 has been found by Noat et al. [15] to be half
that in 2H-NbSe2, from fitting tunnelling spectroscopy
data. It is therefore not surprising that 2H-NbS2 shows a
stronger 2D character with a superconducting anisotropy
of 7.07± 0.2, as compared to the value of 3.2± 0.2 mea-
sured by Gammel et al. [18] for 2H-NbSe2 using the same
method presented here.

METHODS

Thin platelets of 2H-NbS2 samples were grown using
the chemical vapour transport technique, yielding high-
quality single-crystals with optically flat surfaces on the
macroscopic scale. A detailed description of this process
for growing TMD crystals is given by Chareev et al. [41].
The sample quality was confirmed by specific heat mea-
surements at zero field, wherein a sharp jump centered
at the superconducting transition temperature Tc = 5.5
K is seen. This is considered to be the most reliable way
to check sample quality [42], and matches well with the
behaviour reported for other samples grown in the same
laboratory [1].

The 2H-NbS2 polytype is hexagonal, with space group
P63/mmc and lattice parameters a = b ∼ 3.31 Å and
c ∼ 11.86 Å [42]. The platelets grow with the c axis nor-
mal to the platelet surface. A mosaic of nine co-aligned
crystals was made by mounting the platelets onto two
aluminum sheets, so that all the crystal faces lay within
an area 10 × 10mm2. The mosaic had a total crystal
thickness of 80 µm with a total mass of 42.3mg. The
in-plane alignment (along the a∗ - and b - axes) was
carried out using an optical microscope, with the clearly
visible crystal hexagonal facets serving as points of ref-
erence. Overall, the misalignment of the a∗/b - axes was
measured to be less than 1◦.

To diffract off the vortex lattice, small angle neutron



10

scattering measurements were carried out at the D33 in-
strument [43] at the Institut Laue-Langevin, Grenoble,
France. The incident neutrons had wavelength λn =
10 Å, collimation of 10.3 m and a wavelength spread
∆λn/λn = 10% full-width half-maximum (FWHM). The
scattering patterns were collected on a (256×128 pixels)
two-dimensional position-sensitive multi-detector placed
10.0435 m after the sample, which was mounted in a 9
T horizontal-field cryomagnet. The crystals were aligned
with the a∗ axis vertical and the b axis horizontal. A
schematic of the arrangement of a typical SANS instru-
ment when used for VL studies is shown in Fig. 1(a).

To create the vortex lattice, a magnetic field was ap-
plied. As shown in Fig. 1(b), the magnetic field was ap-
plied essentially parallel to the incoming neutron beam.
The advantage of this parallel field geometry is that by
rocking the sample and magnet together through small
rocking angles about axes perpendicular to the neutron
beam, denoted ϕ and Ω, the diffraction conditions for all
of the VL Bragg reflections can be met to give diffraction
peaks on the 2D detector. In the work presented here,
the sample and magnet were rocked about the horizontal
axis perpendicular to the beam direction, i.e. the ϕ an-
gle. At Ω = 0◦, the sample and magnet were also rocked
along the Ω angle.

To study the vortex lattice through the entire bulk of
the sample, a relatively well-ordered vortex lattice needs
to be prepared. To do this, the sample was field cooled
from above Tc to T = 1.5 K while oscillating the mag-
nitude of the applied magnetic field by ± 1 % about the
desired value. This procedure improves the orientational
ordering of the VL, by keeping the vortices away from
local pinning potentials [44]. This was done for magnetic
fields over the range 0.15 T to 1.25 T.

To probe the superconducting anisotropy of 2H-NbS2,
we also rotated the magnetic field away from the c axis
towards the b direction by an angle Ω. These rota-
tions were all carried out above Tc. The experimental
geometry is shown schematically in Fig. 1(c). As Ω is
changed, the profile of the sample with respect to the
beam changes, and so different sample apertures can be
used at different angles; ideally only the sample volume
should be illuminated by the neutron beam. For Ω = 0◦,
30◦, 80◦ and 85◦, a 12 mm diameter circular aperture
was used. For Ω = 60◦ and 70◦, a 7H × 10V mm2 rect-
angular aperture was used. For Ω = 87.5◦, the aperture
size was 3H × 10V mm2.

Background data were collected in the normal state at
6.5 K, using the same rotation and tilt angles as those
of the ‘foreground’ measurements at 1.5 K. The back-
ground was then subtracted from the foreground, leav-
ing only the vortex lattice signal. The analysis was done
using the software program GRASP [45]. Experimen-
tally, the integrated intensity of a Bragg peak from the
VL is determined by counting the number of neutrons
detected in the region of the detector where the peak

appears as a function of the rocking angle. For moni-
toring the form factor, only ϕ rocking scans were used,
so the Bragg condition for spots close to the horizontal
axis is not fully met. This means that for Domain I, the
integrated intensities of the four diagonal Bragg spots,
represented by , are used, whereas for Domain II, only
the top and bottom Bragg spots, , are included. For
the form factor calculations, the correct region of the de-
tector to include for each peak was tested iteratively to
maximise the signal-to-noise ratio after the background
subtraction. The resulting rocking curves were fitted to
a Lorentzian function with the background set to zero
to give I(qi). For Ω ≤ 70◦, each Bragg spot gave one
maximum in the rocking curve. At higher angles, the
spin-splitting effect led to two maxima in each rocking
curve. The integrated intensity in these cases consists of
the sum of the intensities obtained from the two peaks,
since each represents half of the incident neutron flux,
corresponding to one direction of the neutron spin.
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APPENDIX A: LONGITUDINAL AND
TRANSVERSE MAGNETIC FIELD

COMPONENTS OF THE FLUX LINE LATTICE
IN THE ANISOTROPIC 2H-NBS2

As indicated in Fig. 6, the Bragg reflections associ-
ated with Domain I have noticeably lower form factors
than those for Domain II. This is due to the fact that
there are two effects of the angular rotation on the VL
form factor that bring this about. Firstly, the penetra-
tion depth is changing as Ω changes. Hence, the form
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factor of the observed Bragg spots on the left and right
in the SANS patterns for both Domain I and Domain II
(diagonal spots) decreases due to the longer penetration
depth for currents in the c-direction. However, this effect
is insignificant for the top and bottom spots, whose form
factor is primarily influenced by currents in the basal
plane and remains relatively stable with small field rota-
tions away from the c-axis. The second effect comes from
Bc2, as the field is rotated away from the c axis, the up-
per critical field Bc2 increases since it is larger when the
field is closer to the basal plane. Consequently, a given
magnetic field strength represents a smaller fraction of
Bc2, reducing the core overlap effects in the supercon-
ductor. This reduction in core overlap is uniform for all
diffraction spots in the SANS pattern. The combined
result of these changes is an increase in the form factor
for the top and bottom spots, making them more intense
than the left and right spots, which diminish in inten-
sity upon rotation away from the c-axis. This specific
outcome is notably observed at rotation angles of 80◦,
85◦, and 87.5◦ as shown in Fig. 2. In Fig. 7 we show
how the form factor in the form of transverse and longi-
tudinal field components bx, by, and bz is changing as a
function of both rotation angle (Ω) and applied magnetic
field (B). The calculations involve the diagonal spots of
Domain I ( ) and only the top and bottom spots of
Domain II ( ) using Γac = 7 and Eqns. 6-8.

APPENDIX B: FIELD DEPENDENT FORM
FACTOR FIT USING THE EXPERIMENTAL

VALUES OF qx AND qy (APPROACH II)

In Fig. 6, we illustrated the fit of the form factor data
using the theoretical definition for qx and qy (Approach
I). Here, we show our Approach II by fitting the data
with the experimentally measured values for qx and qy.
As shown in Fig 8, we show the fit for angles Ω = 80◦,
85◦ and 87.5◦ as an example. The red data points are the
results from the fitting process using Approach II for each
angle Ω. The black dashed lines are from the Approach I
fit shown in Fig. 6. This shows that both fit procedures
are robust and consistent, and the output fit from both
approaches yields the same λGM , ξab, and ξc within the
experimental error.
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Phys. Rev. B 55, 11107 (1997).

[36] E. Campillo, M. Bartkowiak, R. Riyat, E. Jellyman, A. S.
Cameron, A. T. Holmes, O. Prokhnenko, W.-D. Stein,
A. Erb, E. M. Forgan, and E. Blackburn, Phys. Rev. B
105, 184508 (2022).

[37] M. Tinkham, Introduction to Superconductivity
(McGraw-Hill, New York, 1996).

[38] A. Tulapurkar, A. Grover, S. Ramakrishnan, A. Niazi,
and A. Rastogi, Physica B: Condensed Matter 312-313,
118 (2002), the International Conference on Strongly
Correlated Electron Systems.

[39] V. G. Kogan, M. A. Tanatar, and R. Prozorov, Phys.
Rev. B 101, 104510 (2020).

[40] Y. Hamaue and R. Aoki, Journal of the Physical Society
of Japan 55, 1327 (1986).

http://dx.doi.org/10.1103/PhysRevB.16.801
http://dx.doi.org/10.1103/PhysRevB.16.801
http://dx.doi.org/10.1080/00018737500101391
http://dx.doi.org/10.1080/00018737500101391
http://dx.doi.org/10.1038/srep31824
http://dx.doi.org/ 10.1103/PhysRevLett.101.166407
http://dx.doi.org/ 10.1103/PhysRevB.82.014518
http://dx.doi.org/ 10.1103/PhysRevB.82.014518
https://doi.org/10.1007/BF00654647
https://doi.org/10.1007/BF00654647
http://dx.doi.org/ 10.1103/PhysRevMaterials.4.084005
http://dx.doi.org/10.1103/PhysRevB.92.134510
http://dx.doi.org/10.1103/PhysRevB.95.064512
http://dx.doi.org/10.1103/PhysRevB.95.064512
http://dx.doi.org/10.1103/PhysRevB.50.16528
http://dx.doi.org/10.1103/PhysRevB.50.16528
http://dx.doi.org/10.1103/PhysRevLett.72.278
http://dx.doi.org/10.1103/PhysRevB.64.174501
http://dx.doi.org/10.1103/PhysRevB.64.174501
http://dx.doi.org/ 10.1103/PhysRevLett.111.087003
http://dx.doi.org/ 10.1103/PhysRevLett.111.087003
http://dx.doi.org/10.1103/PhysRevB.93.104527
http://dx.doi.org/ 10.1103/PhysRevLett.108.077001
http://dx.doi.org/ 10.1103/PhysRevLett.108.077001
http://dx.doi.org/ 10.1088/1367-2630/ac8114
http://dx.doi.org/10.1103/PhysRevB.38.2439
http://dx.doi.org/10.1103/PhysRevB.38.2439
http://dx.doi.org/ 10.1103/PhysRevB.39.11406
http://dx.doi.org/ 10.1103/PhysRevB.39.11406
http://dx.doi.org/ 10.1103/PhysRevB.105.245145
http://dx.doi.org/ 10.1103/PhysRevB.105.245145
http://dx.doi.org/ 10.1103/PhysRevResearch.4.013188
http://dx.doi.org/10.1103/PhysRevLett.91.047002
http://dx.doi.org/10.1103/PhysRevLett.91.047002
http://dx.doi.org/10.1103/PhysRevB.15.4506
http://dx.doi.org/10.1017/CBO9781139107808
http://dx.doi.org/10.1017/CBO9781139107808
http://dx.doi.org/10.1103/PhysRevB.24.1572
http://dx.doi.org/10.1103/PhysRevB.96.174507
http://dx.doi.org/10.1103/PhysRevB.55.11107
http://dx.doi.org/ 10.1103/PhysRevB.105.184508
http://dx.doi.org/ 10.1103/PhysRevB.105.184508
http://dx.doi.org/ https://doi.org/10.1016/S0921-4526(01)01163-2
http://dx.doi.org/ https://doi.org/10.1016/S0921-4526(01)01163-2
http://dx.doi.org/10.1103/PhysRevB.101.104510
http://dx.doi.org/10.1103/PhysRevB.101.104510


13

[41] D. A. Chareev, P. Evstigneeva, D. Phuyal, G. J. Man,
H. Rensmo, A. N. Vasiliev, and M. Abdel-Hafiez, Crystal
Growth & Design 20, 6930 (2020).

[42] C. Witteveen, K. Gornicka, J. Chang, M. Månsson,
T. Klimczuk, and F. O. von Rohr, Dalton Transactions
50, 3216 (2021).

[43] C. D. Dewhurst, I. Grillo, D. Honecker, M. Bonnaud,
M. Jacques, C. Amrouni, A. Perillo-Marcone, G. Manzin,
and R. Cubitt, Journal of Applied Crystallography 49, 1
(2016).
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