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Abstract: We study the coscattering mechanism in a simple Higgs portal which add two
real singlet scalars to the Standard Model. In this scenario, the lighter scalar is stabilized
by a single Z2 symmetry and acts as the dark matter relic, whose freeze-out is driven by
conversion processes. The heavier scalar becomes an unstable state which participate ac-
tively in the coscattering. We find viable parameter regions fulfilling the measured relic
abundance, while evading direct detection and big-bang nucleosynthesis bounds. In addi-
tion, we discuss collider prospects for the heavier scalar as a long-lived particle at present
and future detectors.
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1 Introduction

Coscattering [1] or Conversion-driven freeze-out [2] is a thermal dark matter (DM) frame-
work in which the dark matter relic abundance is determined by the freeze-out of inelastic
conversions in the dark sector. In the typical coannihilation regime such processes are as-
sumed to be rapid enough to keep the dark sector in chemical equilibrium (CE) even long
after the freeze-out of the DM from the thermal plasma. In contrast, in the coscattering
scenario the dark sector falls out of CE roughly once the conversion rates drop below the
Hubble expansion rate. For previous studies of this mechanism in several different models
see Refs. [3–13].

A typical feature of the coscattering regime is the presence of long-lived particles (LLP),
because the small coupling strength between the relic and unstable dark partner required
for a fast freeze-out of the conversions in turn implies a narrow decay with of the dark
partner. Furthermore, the masses of the DM species must be highly degenerate, ∆m ≪
mDM , as otherwise the Boltzmann suppression of the conversion rate leaves the coscattering
mechanism inactive. Since the LLPs can couple much more strongly to the SM they are
excellent candidates for direct detection of DM at present or future colliders [13–15].
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In this paper, we study the coscattering mechanism in one of its perhaps simplest pos-
sible realizations, a two real singlet-scalar model coupling to the SM through the Higgs
portal [16, 17]. Here, the lighter scalar is stabilized by a discrete Z2 symmetry, while the
second scalar acts as the unstable dark partner. We find that the coscattering regime allows
for DM masses at the EW scale, while the dark partner constitutes a LLP with cτ ≲ 105 km.

The paper is structured in the following way. In Sec. 2 we present the model. In
Sec. 3 we discuss the calculation of the relic abundance in its different regimes, paying
special attention to the coscattering regime. In Sec. 4 we present the relevant experimental
constraints and obtain results for the expected lifetimes of the LLP. Finally, we give some
concluding remarks in Sec. 5.

2 Model

We consider the SM extended by two real singlet-scalars S1 and S2. S1 is taken to be the
lighter scalar, which is stabilized by a Z2 symmetry under which Si → −Si, while the SM
fields transform trivially [16, 17]. As a result, the scalars couple to the SM only via the
Higgs field. The corresponding Lagrangian in the scalar mass basis (for more details see
App. A) is given by

L = LSM +
∑
i=1,2

(
1

2
(∂µSi)

2 − m2
i

2
S2
i − λi4S

4
i

)
− λ22S

2
1S

2
2 − λ13S1S

3
2 − λ31S

3
1S2

−
(
λH1S

2
1 + λH2S

2
2 + λ12S1S2

)(
|H|2−

v2h
2

)
,

(2.1)

where H denotes the SM Higgs doublet and vh ≈ 246 GeV the Higgs vacuum expectation
value (vev). None of the new scalars acquire a vacuum expectation value.

In the following, we consider (m1,m2, λH1, λ12, λH2, λ22) the set of independent model
parameters and denote the mass difference between the scalars by ∆m ≡ m2 − m1 > 0.
In the coscattering regime, the couplings λ13 and λ31 play a similar role to λ22 and are
omitted for simplicity.

3 Coscattering or Conversion-driven freeze-out

In the coscattering regime we explicitly do not assume CE within the dark sector during
the evolution of the DM number densities ni up to the point of freeze-out. As a result, the
full coupled Boltzmann equations (cBE), assuming all possible interaction terms, have to
be solved in order to obtain the correct DM relic abundance. In the following we introduce
x = m1/T together with the typical definition of the DM yield Yi := ni/s, where s denotes
the entropy density.
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3.1 Boltzmann equations

The cBE for Y1 and Y2 reads

dY1
dx

=
1

3H

ds

dx

[
⟨σ1100v⟩

(
Y 2
1 − Y 2

1e

)
+ ⟨σ1200v⟩ (Y1Y2 − Y1eY2e)

+ ⟨σ1122v⟩
(
Y 2
1 − Y 2

2

Y 2
2e

Y 2
1e

)
+

Γ1→2

s

(
Y1 − Y2

Y1e
Y2e

)
+

Γ2

s

(
Y2 − Y1

Y2e
Y1e

)]
,

(3.1a)

dY2
dx

=
1

3H

ds

dx

[
⟨σ2200v⟩

(
Y 2
2 − Y 2

2e

)
+ ⟨σ1200v⟩ (Y1Y2 − Y1eY2e)

− ⟨σ1122v⟩
(
Y 2
1 − Y 2

2

Y 2
2e

Y 2
1e

)
− Γ1→2

s

(
Y1 − Y2

Y1e
Y2e

)
− Γ2

s

(
Y2 − Y1

Y2e
Y1e

)]
,

(3.1b)

where H denotes the Hubble rate, 0 stand for any SM particles, and 1, 2 for S1 and S2

respectively. The equilibrium yields are given by

Y1e(x) =
45

4π4

x2

g∗S(x)
K2(x), (3.2a)

Y2e(x) =
45

4π4

x2

g∗S(x)

m2
2

m2
1

K2

(
m2
m1

x
)
, (3.2b)

where K2(x) is the modified Bessel function of the second kind, g∗S(x) the number of
effective degrees of freedom associated to the entropy density s = 2π2

45 g∗S(T )T
3. In contrast

to the cBE for coannihilation, eqs. (3.1) explicitly contains the DM conversion rate

Γ1→2 =
∑
k,l

⟨σ1k→2lv⟩nk,e, (3.3)

where k and l denote light SM states. The calculation of the relevant conversion cross
sections together with their thermal average is presented in App. B. The second important
conversion process is given by decays of the unstable partner S2 with the thermally averaged
decay rate [2]

Γ2 ≡
K1(m2/T )

K2(m2/T )

∑
X

Γ(2 → X). (3.4)

We solve the above cBE using micrOMEGAs 5.3.41 [18, 19], considering three separate sectors:
i) the SM, ii) the DM candidate S1, and iii) a dark sector for S2. micrOMEGAs solves all
the relevant average cross sections, including the two and three-body decay widths of S2

considering Lorentz time effects. To quantify the impact of coscattering and compare the
results obtained from the full cBE to the results assuming CE we use [19]

∆Ω
1s ≡ 1− Ωh2(1 sector)

Ωh2(2 sectors)
, (3.5)

where Ωh2(1 sector) is obtained using the darkOmega function of micrOMEGAs and Ωh2(2 sec-
tors) is obtained from darkOmegaN1. The scaling of each process with the model parameters
are listed in Table 1.

1In the present paper we did not make explicit use of the function ∆Ω
2s defined in [19], although part of

the analysis in this section contemplates the information that could be obtained with that function.
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Initial Final Scaling

1 1 0 0 λ2
H1, λ

2
12

2 2 0 0 λ2
H2, λ

2
12

1 1 2 2 λ2
H1, λ

2
12, λ

2
H2, λ

2
22

1 2 0 0 λ2
H1, λ

2
12, λ

2
H2

1 0 2 0 λ2
H1, λ

2
12, λ

2
H2

2 1 0 λ2
12

Table 1: Scattering and decay processes with their corresponding scaling, ignoring the
quartic couplings λ13 and λ31.

3.2 Relic abundance

The basic characteristic of the conversion-driven freeze-out in the two scalar Higgs portal
are:

1. S1 remains in CE with S2 only through either (inverse) decays or coscattering pro-
cesses 10 ↔ 20.

2. Annihilation processes S1Si → XX involving S1 can be neglected.

The first condition requires that λ12 is non-vanishing but small enough for the conver-
sion processes not to surpass the Hubble expansion rate at T ≲ m1. On the other hand, to
prevent an early freeze-out and overabundance of DM it is required that S2 couples strongly
with the Higgs λH2 ∼ 1. The second condition is fulfilled only when in addition to λ12, also
λH1 ≪ 1. In case of on-shell (inverse) decays of S2, the dark sector can stay in CE for much
smaller couplings compared to the case of off-shell decays, however, we have checked that
in both cases conversion-driven freeze-out is possible (in contrast to [1] who assumed that
2-body decays are forbidden). In the last part of this section we analyse this point in more
detail. Lastly, we note that the contact interaction terms in eq. (2.1) can not be arbitrarily
large, as otherwise they will recover CE between S1 and S2. The impact of λ22, λ13 and λ31

is discussed in more detail at the end of this section. In Table 1 we show the parameter
dependence for each process that enters in eqs. 3.1.

In order to simplify the discussion and exploration of the parameter space of the model
in the coscattering framework, we define the simplest benchmark scenario (SBS) considering
λH1 = λ22 = 0, and the relevant parameters as

(m1,m2, λH2, λ12). (3.6)

Deviations from the SBS will be explicitly shown in some parts of the paper. As a warm up
example of the features of coscattering in the SBS, in Fig. 1 we show a typical evolution of
the DM yield in the coscattering regime fulfilling the correct relic abundance Ωh2 = 0.12,
for (m1,m2) = (500, 505) GeV, and (λ12, λH2) = (2.6 × 10−5, 1). Notice that Y1 deviates
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Figure 1: (left) Relic abundance in the coscattering regime for the benchmark point
(m1,m2) = (500, 505) GeV, (λ12, λH2) = (2.6 × 10−5, 1). (right) Scattering and decay
rates compared to the Hubble rate as a function of the inverse temperature at the bench-
mark point. The dashed horizontal line represents when the rate interactions equal the
Hubble rate.

from its equilibrium already near x ≈ 12, whereas Y2 stays in equilibrium for longer.
This behavior is characteristic of the coscattering regime. In the right plot, we compare
the reaction rates with the Hubble expansion, where Γij ≡ γij→kl

n1e
and γij→kl denotes the

reaction density. In particular it can be seen that the DM conversion rate 1020 (yellow
line) drops below the Hubble expansion at the same time as S1 starts to freeze out from
the thermal bath. Note that in the SBS scenario, decays and coannihilations are well below
the Hubble rate and are completely negligible during the freeze-out process.

With this simple picture in mind, we now vary m2 and λ12 and study their impact on the
relic abundance. We have performed a grid scan over λ12 ∈ [10−5, 10] and m2 ∈ [500, 630]

GeV, keeping m1 = 500 GeV and λH2 = 1 fixed. The results are shown in Fig. 2, where
the red curves correspond to the solutions of the full cBE obtained with darkOmegaN, the
blue curves where obtained using darkOmega and the orange curves where obtained ignoring
the conversion processes 1020. While the relic abundance shows a similar behavior when
varying λ12 for different values of ∆m, the predicted relic abundance differs very strongly.
This is due to the fact that the effective annihilation rate determining the point of freeze-out
e−2x∆m/m1 ⟨σ2200v⟩ is exponentially suppressed for large ∆m. This suppression leads to a
smaller effective cross section which implies a faster freeze-out and larger relic abundance,
as can be seen in Fig. 2.

As an example to better understand the dependence of Ωh on λ12, we consider the case
∆m = 30 GeV (dot-dashed line). In Fig. 2 we have highlighted three distinct regions for
the behaviour of the relic abundance. The coscattering mechanism is only active in region I
where λ12 is small enough so that the 1020 conversion processes freeze-out quickly. As the
coupling increases, CE is recovered and the relic abundance becomes insensitive to λ12 in
region II. In this case the relic abundance is mainly determined by S2 annihilation, which is
also called mediator freeze-out regime [7]. Finally, in region III for λ12 ≳ 0.1 coannihilations
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Figure 2: Relic abundance obtained in the SBS considering m1 = 500 GeV. The red curves
are obtained with darkOmegaN, the blue ones with darkOmega, and the orange ones without
considering the process 1020 in eqs. 3.1 (in micrOMEGAs this quantity can be obtained using
the command "Excluding2010"). Note that the solid red curve is covered by the solid
orange curve. The regions shown here as I, II and III correspond to the case of ∆ = 30

GeV.

between S1 and S2 become relevant and the relic abundance again depends on λ12.
For each ∆m in Fig. 2 we have also included the corresponding relic abundance obtained

from darkOmegaN when neglecting the processes 1020, but keeping decays2. The resulting
abundances are plotted as the orange lines, highlighting the fact that for small values of λ12

decays are not able to support CE in the absence of processes of the type 1020. In the case
of on-shell decays (solid orange), where the decay rates are much larger, CE is maintained
also at small λ12. In this case the orange and red lines overlap in the whole range of
small couplings. We have also included the results for the relic abundance calculated using
the function darkOmega of micrOMEGAs (blue lines). This function assumes that that CE
between S1 and S2 is maintained during the entire evolution of the DM yield. In case
of ∆m = 1 and 30 GeV, the relic abundance obtained with the functions darkOmega and
darkOmegaN agree very well in regions II and III, indicating that CE is present. In case
of ∆m = 120 GeV, the results assuming CE are larger by roughly a factor of two, which
further increases for larger mass differences. We have checked that in these cases the rate
of (inverse) decays remains above the Hubble expansion, ensuring CE. The correct relic
abundance is therefore obtained from darkOmega, while darkOmegaN assumes separate CE
of the different sectors, which is unrealistic, particularly when on-shell decays are present.

From the case with m2 = 630 GeV shown in Fig. 2, we have seen that on-shell decays
maintain CE for much smaller λ12 values. To further illustrate this fact, in Fig. 3 (left)
we show the early departure from CE of the yield Y1 in the off-shell case, m2 = 620 GeV,

2In micrOMEGAs this is achieved using the option Excluding2010.
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Figure 3: (left) DM yield evolution for the case of off-shell (dashed) and on-shell (solid)
decays with m1 = 500 GeV, λ12 = 10−5, λH2 = 1, and λH1 = λ22 = 0. (right) DM yield
evolution for on-shell decays for (m1,m2) = (500, 630) GeV, with λ12 = 2× 10−6 (dashed)
and λ12 = 10−5 (solid).

compared to the on-shell case, m2 = 630 GeV, for a fixed value of λ12. In Fig. 3 (right)
we show that, once on-shell decays are present, small enough values of λ12 also break the
CE3. In other words, as ∆m increases, the relevance of decays in maintaining CE becomes
stronger, requiring smaller λ12 for coscattering.

On the other hand, the contact terms proportional to the couplings λ22, λ13 and λ31

can have a strong impact on the relic density. In particular, when they take sizable values,
i.e. either λ22, λ13 or λ31 ≳ 0.1, they bring S1 and S2 back into CE. To quantify this, in
Fig. 4 (left) we show the effect of each separate coupling on the relic abundance for two set of
masses. In each case, the value of λ12 was fixed in order to obtain the correct relic abundance
by darkOmegaN in the limit of vanishing contact terms. As the contact couplings get sizable
values, they start to affect the relic abundance calculation with darkOmegaN as they tend
to establish partial CE between S1 and S2. Once the contact couplings are big enough,
the CE is established, such that the calculation using darkOmega and darkOmegaN agree
with each other4. As we focus on the coscattering, we do not include deviations induced
by the contact terms of this Higgs portal scenario, therefore in the rest of the paper we
assume they are sufficiently small to not deviate from the relic abundance calculation with
darkOmegaN.

To end this section, we comment about the low mass regime m1 < mh/2, which turns
out to be disfavored by LHC data. From the above discussion we found that coscattering

3We have checked this in the case of on-shell decays, coscattering appears in the ballpark of O(λ12) ∝
10−6, but as a strong overabundance is obtained in this parameter space region, we do not focus on this
case in this paper.

4It is interesting to remark that for the case in which λ22 takes sizable values, and λ12 remains sufficiently
small to not maintain CE between S1 and S2, one recover the yield dynamic of two stable DM, known as
assisted freeze-out [20] (also see [21, 22]). As in the present framework S2 is unstable, after the breaking of
its CE with S1, Y2 will continuously decrease as x increases.
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Figure 4: Relic abundance behavior as a function of the contact term couplings λ22, λ13

and λ31. The solid, dashed and dotted lines are obtained with darkOmegaN , whereas the
dashed-dot lines are obtained with darkOmega. The blue lines correspond to (m1,m2) =

(500, 505) GeV and (λH1, λ12, λH2) = (0, 2.6×10−5, 1), whereas the purple lines correspond
to (m1,m2) = (500, 510) GeV and (λH1, λ12, λH2) = (0, 3.2 × 10−5, 1). In each case, λ12

was fixed to obtain the correct relic abundance (red band) with darkOmegaN for vanishing
contact couplings.

requires nearly degenerate masses of the new scalars, i.e. m1 ≲ m2 < mh/2. On the other
hand, we have checked numerically that in order to obtain the correct relic abundance
λ12 would be large enough to also recover CE within the dark sector, making coscattering
ineffective unless λH2 ≳ 1. However, searches of Higgs to invisible at the LHC have set
limits on Γ(h → S2S2) [23], that translate into λH2 ≲ 10−2. We have also checked that the
inclusion of the contact terms does not change this result.

To summarize, we have presented the cBE for the system of S1 and S2, and we have solve
them making use of the micrOMEGAs code. The three regimes that we have distinguished,
coscattering, mediator FO, and (co)annihilations, depend strongly on the parameters ∆m

and λ12, with coscattering favoring ∆m ≪ (m1,m2) and λ12 ≪ 1. Besides, on-shell (in-
verse) decay rates of S2 are very efficient to maintain CE for much smaller values of λ12

than in the case of off-shell decays. Contact terms are not essential to have coscattering,
and we have seen that light DM is ruled-out by LHC bounds.

4 Phenomenology

In this section we discuss direct detection and big-bang nucleosynthesis (BBN) constraints,
and the prospects of having LLP in the coscattering scenario.
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4.1 Constraints

4.1.1 Direct detection

The stable DM particle S1 could be observed in direct detection experiments via the Higgs
portal. This implies a bound on the effective DM-Higgs coupling [24]

λH1 ≲

√
4πm4

hm
2
1σLZ

f2
Nm4

n

, (4.1)

where σLZ denotes the upper bounds at 90% C.L on the effective DM-nucleon scattering
cross section obtained from the LZ experiment [25], fN ≈ 0.3 the effective nucleon-Higgs
coupling, mn ≈ 0.9 GeV the nucleon mass, and mh = 125 GeV the SM Higgs mass.

As coscattering can be achieved for sufficiently small values of λH1, one could investigate
the maximum values taken by this parameter without jeopardizing the relic abundance
obtained by darkOmegaN at the same time being in the ballpark of those values that yield a
strong enough signal to be searched in future direct detection experiments. Certainly, λH1

can not take arbitrarily large values, otherwise CE is recovered by processes of the type
1h ↔ 2h. To quantify the interplay among all these effects, in Fig. 4 we show the effect
of λH1 on the relic abundance, for m1 = 90 and 500 GeV, ∆m = 1 GeV and λH2 = 1.
Besides, the color indicates the value of ∆Ω

1s (see eq. 3.5). As expected, sizable values of
λH1 decrease the relic abundance with respect to vanishing λH1, and for very large values
of this parameter CE is recovered. However, LZ bounds (solid vertical lines) do not allow
such sizable values of λH1, ruling out strong deviations from the co-scattering regime as
given by darkOmegaN . In particular, for m1 = 500 GeV, it is possible to have sizable values
of this parameter, i.e. λH1 ∼ 10−2, in the ball park of LZ bounds (but still evading them),
and without recovering CE. Actually, in that specific case, Darwin experiments [26] will be
sensitive to regions with even smaller values of λH1 (dashed vertical lines in Fig. 4 (right)).

We point out that if loop corrections are considered, the DM-Higgs coupling should
be renormalized on-shell in order to retain agreement with eq. (4.1) at higher orders. We
have outlined a suitable treatment of loop corrections in appendix C and found that in our
model the loop effects to the observables of interest are negligible.

4.1.2 BBN

Additional stable or decaying particles present at temperatures T ≤ 10 MeV may affect
the measured primordial abundances of light elements. To our knowledge, constraints on
lifetime of new singlet scalars have been only considered for masses ≤ mh/2 [27]. We
estimate the bounds coming from BBN using the results obtained in [28], considering the
relic abundance of S2 before its decay and the branching fraction of decays of S2 into
hadronic decays. In the present Higgs portal scenario, for ∆m ≳ 1 GeV the model is
practically safe of BBN constraints in the parameter space that we explore, since just after
the decoupling of S2 from the thermal plasma, ΩS2h

2 is at least one order of magnitude
below the measured DM relic abundance. The same conclusions were obtained in the
leptophilic DM scenario in the coscattering mechanism [7].
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Figure 5: Relic abundance as a function of λH1 considering ∆m = 1 GeV, λH2 = 1 and no
contact terms. The vertical lines represent the bound from LZ [25] and DARWIN projections
[26], with the black solid (black dashed) and red solid (red dashed) lines representing the
upper bounds for m1 = 90 and 500 GeV, respectively. λ12 has been chosen such that
observed relic density is satisfied in the co-scattering regime, λ12 = { 3.86×10−4, 2.3×10−5}
for m1 = {90, 500} GeV respectively.

4.2 Long-lived particles

In the coscattering regime, the coupling λ12 which determines the decay width of S2 is
very small, while simultaneously ∆m ≪ (m1,m2). Therefore, the dark partner S2 typically
constitutes a long-lived particle (LLP) with a wide range of possible lifetimes in different
regions of the parameter space. While single production of S2 (like production of the DM
relic S1) at colliders is suppressed by λ12, pair production of S2 through an intermediate
Higgs boson must be sizable, via the chain [29]

pp → h∗ +X → S2 + S2 +X, (4.2)

with X being other states not relevant for the discussion. The goal of this section is to
compare a few S2 lifetime estimations predicted by the extended Higgs-singlet scenario
that could be in the reach of present and future experiments, specially when the production
mechanism is motivated by coscattering. In our knowledge, as LLP in Higgs portals have
only been considered for mediator masses ≲ mh/2 [14, 30], the results presented here could
motivate the search of heavier scalars through the Higgs portal.

In Fig. 6, we show the results for the lifetime of S2 as a function of its mass for λH1 = 0

and fixed λH2 = 0.5 (left), 1 (middle) and π (right). The row of points from top to bottom
corresponds to ∆m = 1, 5, 10 and 20 GeV, while the color of each point indicates ∆Ω

1s. The
variation in cτ depends strongly on scalar mass difference, with small values of ∆m favoring
the coscattering regime (∆Ω

1s ≲ 1), and in turn giving rise to enormous lifetimes of S2, with
some of the points well beyond earth size experiments, thereby confronting bounds coming
from BBN. As ∆m increases, the values of cτ decrease to the point of reaching typical
decay lengths for future experiments such as MATHUSLA [14]. Notice that the reach of
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Figure 6: Proper lifetime of the mediator as a function of its mass in the SBS, for λH2 =

0.5, 1 and π, respectively, and λ12 fixed to obtain the correct relic abundance. In each
plot, from top to bottom ∆m = 1, 5, 10 and 20 GeV, respectively. The color of each point
represents the value of ∆Ω

1s.

the latter may not only test particles that were produced in the coscattering regime, but also
probe the other two regimes that we studied in Sec 3.2 (blue points). There are also model
predictions in the reach of displaced vertex (DV) for ATLAS or CMS [31] (grey band in
each plot). Finally, the blue points in each plot are not unique for the corresponding chosen
parameter space points shown in Fig. 6, since as some of them belong to the mediator freeze-
out regime (see region II in Fig. 2), there is a range of λ12 values fulfilling the measured
relic abundance, then varying in orders of magnitude their corresponding cτ value.

5 Conclusions

In this work, we have studied for the very first time the simplest Higgs portal scenario in
the context of coscattering. This SM extensions considers two real scalars charged under a
single Z2 discrete symmetry, in which after EWSB, the lightest eigenstate is cosmologically
stable, and the heavier one is unstable. We have explored in major detail the impact of each
parameter in the thermal mechanism: coscattering, mediator freeze-out, and DM freeze-out.
We put special attention to the first case, identifying parameter space for DM and mediator
masses of hundreds of GeV giving the correct relic abundance. Radiative corrections do not
generate significant deviations to the results that we obtain neither in direct detection nor
in the calculation of the relic abundance. Besides, we have shown that the coscattering
regime for the extended singlet-Higgs scenario gives rise to (very)long-lived mediators that
could be in the reach of present and future experiments. Finally, effects of early kinetic
decoupling [32] on the relic calculation could modify at some extent the results presented
in this work, but this analysis is beyond the scope of our work.
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A Lagrangian original basis

In this appendix we develop the details of the model in terms of the original field basis,
which after some algebra becomes the simplified Lagrangian that we used in eq. 2.1.

Let us consider two real singlet scalars S̃1 and S̃2, charged under the same Z2 symmetry
such that X → X and S̃i → −S̃i, with i = 1, 2 [16, 17]. The corresponding potential is
given by

V (H,S1, S2) ⊃ m̃2
1S̃

2
1 + m̃2

2S̃
2
2 + λ̃H1S̃

2
1H

†H + λ̃12S̃1S̃2H
†H + λ̃H2S̃

2
2H

†H

+ λ̃22S̃
2
1 S̃

2
2 + λ̃13S̃1S̃

3
2 + λ̃31S̃

3
1 S̃2. (A.1)

After EWSB, with ⟨H⟩ = (0, vh)
T /

√
2, the scalars S̃1 and S̃2 mix, but after rotation the

potential can be written identically as in A.1. We diagonalize using

OTM2O = diag(m2
1,m

2
2) (A.2)

The mass matrix is

M2 =

(
m̃2

1 + λ̃H1v
2
h λ̃12v

2
h/2

λ̃12v
2
h/2 m̃2

2 + λ̃H2v
2
h

)
(A.3)

The Eigenmass are given by

m2
1 = (m̃2

1 + λ̃H1v
2
h) cos

2 θ + (m̃2
2 + λ̃H2v

2
h) sin

2 θ − sin θ cos θλ̃12v
2
h (A.4)

m2
2 = (m̃2

2 + λ̃H2v
2
h) cos

2 θ + (m̃2
1 + λ̃H1v

2
h) sin

2 θ + sin θ cos θλ̃12v
2
h (A.5)

Additionally, from the non-diagonal relationship of eq. A.2 we obtain that

tan(2θ) = −
λ̃12v

2
h

2(m̃2
1 − m̃2

2 + v2h(λ̃H1 − λ̃H2))
(A.6)

Replacing eq. A.6 into the original Lagrangian, and writing down eq. A.1 in terms of the
physical states, i.e. S̃1 = cos θS1 + sin θS2 and S̃2 = − sin θS1 + cos θS2, we obtain the
potential presented in eq. 2.1.

B Dark Matter Conversion Rate

In this section we present a calculation of the thermally averaged cross section for DM
conversion ⟨σ2X→1Xv⟩ where X can be any SM particle. The differential cross section of
the conversion process in the centre of mass frame is given by(

dσ2X→1Xv

dΩ

)
c.o.m.

=
|pf |

64π2E2EX
√
s
|M|22X→1X , (B.1)
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S2 S1

h h

p1 − p2h

S2 S1

f f

p1 − p2h

S2 S1

V V

p1 − p2h

Figure 7: Tree-level contributions to S2 → S1 conversions in the thermal bath.

where
√
s denotes the total c.o.m. energy, |pf |= λ(s,m2

1,m
2
X)1/2/(2

√
s) denotes the final

state momentum5 and E2 = (|pi|2+m2
2)

1/2 and EX = (|pi|2+m2
X)1/2 denote the energies

of the initial state DM and SM particle with momentum |pi|= λ(s,m2
2,m

2
X)1/2/(2

√
s). At

tree-level the conversion processes are possible for X = h, f,W,Z through the t-channel
diagrams shown in Fig. 7. The resulting squared matrix elements are given by

|M|22h→1h =
9λ2

12m
4
h

(t−m2
h)

2
, (B.2a)

|M|22f→1f =
2λ2

12m
2
f (4m

2
f − t)

(t−m2
h)

2
, (B.2b)

|M|22V→1V =
4λ2

12m
2
V (3m

2
V + t)

(t−m2
h)

2
, (B.2c)

where

t = (p1 − p2)
2 = 2m2

X − 2(|pi|2+m2
X)1/2(|pf |2+m2

X)1/2 + 2|pf ||pi|cos θ. (B.3)

After substitution, the solid angle differential becomes dΩ = dφdt/(2|pf ||pi|) and the inte-
grals can be solved to obtain the total cross section

σ2h→1hv =
9λ2

12m
4
h|pf |

16πE2EX
√
s

1

(m2
h − t−)(m2

h − t+)
, (B.4a)

σ2f→1fv =
λ2
12m

2
f

32πE2EX |pi|
√
s

[
ln

(
m2

h − t−

m2
h − t+

)
−

4|pi||pf |(m2
h − 4m2

f )

(m2
h − t−)(m2

h − t+)

]
, (B.4b)

σ2V→1V v =
λ2
12m

2
V

16πE2EX |pi|
√
s

[
4|pi||pf |(m2

h + 3m2
V )

(m2
h − t−)(m2

h − t+)
− ln

(
m2

h − t−

m2
h − t+

)]
, (B.4c)

where t± ≡ t(cos θ = ±1). Next, the thermal average has to be calculated from

⟨σv⟩ =
∫ ∞

(m2+mX)2

E2EXσv

4m2
2m

2
XT

K1(
√
s

T )

K2(
m2
T )K2(

mX
T )

√
s− 2(m2

2 +m2
X) +

(m2
2 −m2

X)2

s
. (B.5)

To good approximation, this integral is given by ⟨σv⟩ ≈ σv(s = ⟨s⟩) where

⟨s⟩ ≈ (m2 +mX)2 + 6(m2 +mX)T +O(T 2/m2
2), (B.6)

5λ(x, y, z) = (x− y − z)2 − 4yz is the Källén function.
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such that the thermally averaged cross sections, in the limit T,∆m ≪ m1,2, are given by

⟨σ2h→1hv⟩ ≈
9λ2

12

8π

√
∆m+ 3T

2m2mh(m2 +mh)3
(B.7a)

⟨σ2f→1fv⟩ ≈
λ2
12m

4
f

πm4
h

√
∆m+ 3T

2m2mf (m2 +mf )3
(B.7b)

⟨σ2V→1V v⟩ ≈
3λ2

12m
4
V

2πm4
h

√
∆m+ 3T

2m2mV (m2 +mV )3
(B.7c)

Finally, the DM conversion rate is Γ1→2 = (ne
2/n

e
1)
∑

X ⟨σ2X→1Xv⟩ne
X .

C Treatment of Radiative Corrections

DM DM
λ

SM SM

q2 = 0h

DM

DM

λ

SM

SM

q2 = ⟨s⟩

h

Figure 8: Schematic diagrams showing the contribution of the effective DM-Higgs vertex
λDM (q2) to direct detection (left) and coannihilation processes during freeze-out (right).

In this appendix we outline the on-shell renormalization of the model and estimate
the impact of one-loop corrections on the results obtained in this paper. We note that a
proper definition of the renormalization conditions is crucial in order to obtain meaningful
results at NLO. In particular, the physical interpretation of the parameters at tree-level is
only retained if they fulfill corresponding on-shell renormalization conditions at one-loop
order. In other schemes like MS or for ad-hock subtractions the model parameters no
longer correspond directly to the observables of interest. The parameters relevant for a
renormalization of the scalar sector are the scalar masses m2

i , quartic couplings λij and
Higgs vev vh. The renormalized Lagrangian is obtained from the following renormalization
transformation of the bare parameters

m2
i,0 → m2

i + δm2
i , λ0

ij → λR
ij + δλij , v0h → vh + δvh, (C.1)

and renormalization of the bare fields

S0
i →

√
ZiSi, H0 →

√
ZHH, where Zi = 1 + δZi. (C.2)

After on-shell renormalization, the scalar masses mi correspond to the physical pole masses
of the DM particles and the scalar couplings λR

ij correspond to physical effective coupling
strengths measured e.g. in direct detection or collision experiments. This implies a set
of conditions on the corresponding amplitudes from which the renormalization constants
can be determined. Here, we demonstrate this specifically for λH1 and λ12, which where

– 14 –



h

Si

Sj

h

Si

Sj

h
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h

Si
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Figure 9: Diagrams contributing to h → SiSj at one-loop order.

chosen to be very small in the above analysis. We define λH1 to be the effective S1-Higgs
coupling measured in the direct detection experiments sketched in Fig. 8 (left), while λ12

is defined through DM production and annihilation events at ⟨s⟩ = (m1 +m2)
2 such as in

Fig. 8 (right). Note that, in general, the effective (quantum corrected) DM-Higgs couplings
denoted by λij(q

2) will be dependent on the (off-shell) Higgs momentum q. At one-loop
these effective couplings are given by

λH1(q
2) = λR

H1 + ΓH1(q
2) + δλH1 + λR

H1

(
δZ1 +

1

2
δZH +

δvh
vh

)
(C.3a)

λ12(q
2) = λR

12 + Γ12(q
2) + δλ12 + λR

12

(1
2
δZ1 +

1

2
δZ2 +

1

2
δZH +

δvh
vh

)
(C.3b)

where Γij(q
2) denotes the contributions of the one-loop diagrams from Fig. 9. The defini-

tions of the coupling strenghts translate into the following renormalization conditions

λR
H1 ≡ λH1(0), λR

12 ≡ λ12(⟨s⟩) (C.4)

And can easily be fulfilled by choosing the renormalization constants δλH1 and δλ12 appro-
priately. In the limit λR

H1, λ
R
12 ≈ 0 the only contributing one-loop diagrams are of the type

Fig. 9 (left) and result in the following expressions for the renormalized vertex functions

λH1(q
2) = λR

H1 −
λR
22λ

R
H2

8π2

(
B0(q

2,m2
2,m

2
2)−B0(0,m

2
2,m

2
2)
)

(C.5)

λ12(q
2) = λR

12 −
3λR

13λ
R
H2

16π2

(
B0(q

2,m2
2,m

2
2)−B0(⟨s⟩ ,m2

2,m
2
2)
)

(C.6)

By definition of the on-shell scheme, quantum corrections to direct detection of S1 and to
annihilation and production processes of S1 + S2 during freeze-out are 0. Corrections only
appear for annihilation and production of S1, where the relevant momentum transfer is
q2 = 4m2

1. The resulting effective coupling that should be used when calculating the relic
abundance is (for m1 ≃ m2)

λH1(4m
2
1) ≈ λR

H1 −
λR
22λ

R
H2

4π2
(C.7)

The loop corrections, as expected, result in very small O(1%) effects and do not have any
important impact on the above analysis.
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