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In this paper, we explore using the Harrow-Hassidim-Lloyd (HHL) algorithm to address scientific and engineering problems through

quantum computing utilizing the NWQSim simulation package on high-performance computing. Focusing on domains such as

power-grid management and heat transfer problems, we demonstrate the correlations of the precision of quantum phase estimation,

along with various properties of coefficient matrices, on the final solution and quantum resource cost in iterative and non-iterative

numerical methods such as Newton-Raphson method and finite difference method, as well as their impacts on quantum error correction

costs using Microsoft Azure Quantum resource estimator. We conclude the exponential resource cost from quantum phase estimation

before and after quantum error correction and illustrate a potential way to reduce the demands on physical qubits. This work lays

down a preliminary step for future investigations, urging a closer examination of quantum algorithms’ scalability and efficiency in

domain applications.
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1 INTRODUCTION

Starting with the Deutsch–Jozsa algorithm and Shor’s discrete logarithm algorithm [20, 62], the potential of quantum

computing algorithms has extended beyond merely simulating quantum systems. The potential speedup of quantum

algorithms over their classical counterparts has gathered tremendous attention, including a fundamental demand in
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2 Zheng et al.

science and engineering: solving linear systems. Harrow, Hassidim, and Lloyd (HHL) first developed a quantum linear

solver with an exponential speedup in problem dimensions in [31]. Built upon the exponential speedup of quantum

linear system algorithms (QLSAs), many works have explored theoretical quantum advantages in various applications.

These fields include portfolio optimization [57], machine learning [21, 44], differential equation solving [45], linear

optimization [10, 49, 50], and semidefinite optimization [5, 48].

However, the HHL algorithm proposed in [31] has a quadratic dependency on matrix condition number and matrix

sparsity, worse than classical linear solvers such as factorization methods and conjugate gradient, where condition

number is the product of the norm of the coefficient matrix and the norm of the inverse matrix. Several following works

have been proposed to reduce the dependency on the condition number of coefficient matrices and the precision of

the solution state [2, 4, 11, 14, 17, 18, 33, 63, 67]. Specifically, based on adiabatic theorems, the state of the art has a

linear or quasi-linear dependency on the condition number and a logarithmic dependency on the inverse of the solution

precision [4, 18, 33, 63].

The HHL algorithm has been demonstrated in experiments to solve linear algebra problems. The largest linear

systems demonstrated on real gate-based quantum machines are up to 4 × 4 systems with variants of the HHL

algorithm [52, 59, 70] and an 8 × 8 system with the linear solver based on adiabatic quantum computing [69]. However,

testing QLSAs on real quantum devices to demonstrate a quantum advantage still suffers multiple obstacles, such as the

large number of required quantum gates and the high noise level of current quantum devices [55].

With the current development of quantum hardware and exploration of quantum error correction (QEC) codes, a large-

scale fault-tolerant quantum computer is expected to be demonstrated in the foreseeable future [7, 19, 27, 30, 37, 47, 68].

With the help of Quantum Error Correction, it is anticipated that QLSAs can be implemented in practical applications

for speedup. Although the gap between algorithm requirements and hardware specifications is shrinking, the gap

still exists, which necessitates the analysis of the resource costs involved [54]. Resource estimation for chemistry [22],

for Grover’s algorithm on the Advanced Encryption Standard [29], for Shor’s discrete logarithm algorithm for the

RSA cryptosystem [24], and the computation of elliptic curve discrete logarithms [58] have been performed. However,

despite being essential for understanding the disparity between hardware capabilities and practical applications, there

is limited work on non-asymptotic resource estimation for QLSAs [61].

In this paper, we focus on resource estimation and experiment with the HHL algorithm on several applications

selected from domain science, such as power grid and thermal diffusion applications. Different from the previous

works about asymptotic and non-asymptotic resource analysis [2, 4, 11, 14, 17, 18, 31, 33, 61, 63, 67], we investigate the

factors affecting the final accuracy, resource cost, and fault-tolerant hardware requirements. Our experiments show

the effectiveness of the HHL algorithm in scientific applications with a low precision in quantum phase estimation.

Working with Microsoft Azure Quantum resource estimator, we summarize the exponential dependency of quantum

resources on the number of clock qubits in HHL circuits and demonstrate a possible method to reduce the demands on

physical qubits in fault-tolerant quantum computing.

The paper is organized as follows. Section 2 introduces the idea of quantum linear system solvers, with implementation-

related details. Section 3 presents the simulator, NWQSim [38], and the resource estimation tool. Next, we explore the

factors of interest in evaluating numerical experiments in Section 4 and perform those experiments in Section 5. Finally,

we discuss the limitations in Section 6 and conclude the implications of our work on domain science applications in

Section 7.
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2 QUANTUM LINEAR SYSTEMS AND THE IMPLEMENTATION OF THE SOLVER

2.1 Overview of the Harrow-Hassidim-Lloyd (HHL) Algorithm

Quantum information is encoded into the state of quantum systems. Here, we assume all relevant quantum states can

be represented as statevectors. An 𝑛𝑑 -qubit statevector |𝑥⟩ =
∑
2
𝑛𝑑 −1
𝑗=0 𝛼 𝑗 | ®𝑗⟩ is a normalized complex vector, i.e., 𝛼 𝑗 ∈ C

for all 𝑗 and
∑
2
𝑛𝑑 −1
𝑗=0 |𝛼 𝑗 |2 = 1 while ®𝑗 ∈ {0, 1}𝑛𝑑 is the number 𝑗 as a binary string. The set {| ®𝑗⟩} forms the basis set of

C2
𝑛𝑑

, referred as the computational basis. Specifically, | ®𝑗⟩ is the unit vector whose ( 𝑗 + 1)𝑡ℎ entry is 1 and other entries

are 0. The notation ⟨®𝑗 | is the conjugate transpose of | ®𝑗⟩.

Definition 2.1 (Aqantum linear-system problem). A quantum linear-system problem is to solve a system of linear

equations with a normalized solution vector |𝑥⟩ = 𝐴−1 |𝑏⟩ /∥𝐴−1 |𝑏⟩ ∥2 where coefficient matrix 𝐴 ∈ C𝑁×𝑁 is Hermitian

and |𝑥⟩ and |𝑏⟩ are both normalized vectors.

Start with a classical complex linear system 𝐴®𝑥 = ®𝑏, 𝑀 ∈ C𝑁×𝑁
, right-hand-side (RHS) vector

®𝑏 is normalized to

obtain |𝑏⟩ := ®𝑏/∥®𝑏∥2, then a quantum linear-system problem can be formed with 𝐴 and |𝑏⟩ if 𝐴 is Hermitian. Otherwise,

a larger linear system can be constructed as the following [31],[
0 𝐴

𝐴† 0

] [
®0
|𝑥⟩

]
=

[
|𝑏⟩
®0

]
, (1)

where ·† is the conjugate transpose. Therefore, we assume coefficient matrices are Hermitian in the rest of this paper.

Since the data is encoded into qubits, if the dimensions of 𝐴 and
®𝑏 are not in the power of 2, 𝐴 and 𝑏 must be expanded.

Suppose there exists a quantum linear system solver that obtains |𝑥⟩ = 𝐴−1 |𝑏⟩ /∥𝐴−1 |𝑏⟩ ∥2 from the circuit, then the

original solution of the system can be recovered by ®𝑥 = ∥𝑏∥2∥𝐴−1 |𝑏⟩ ∥2 |𝑥⟩. While ∥𝑏∥2 is known from the previous

computation, the solver needs to provide the value of ∥𝐴−1 |𝑏⟩ ∥2.

2.1.1 Mathematical Foundation of HHL. In [31], Harrow, Hassidim, and Lloyd developed the HHL algorithm to solve

the quantum linear-system problem. The fundamental idea behind the HHL algorithm is that the eigenstates of the

Hermitian matrix 𝐴 (noted as {|𝑣 𝑗 ⟩}) form a complete orthonormal basis of C𝑁 (i.e., ⟨𝑣 𝑗 |𝑣𝑘 ⟩ = 𝛿 𝑗𝑘 ), and hence the state

|𝑏⟩ can always be decomposed by this basis as |𝑏⟩ = ∑𝑁−1
𝑗=0 𝑏 𝑗 |𝑣 𝑗 ⟩. Similarly,

|𝑥⟩ = 𝐴−1 |𝑏⟩
∥𝐴−1 |𝑏⟩ ∥2

(2)

=
1

∥𝐴−1 |𝑏⟩ ∥2

𝑁−1∑︁
𝑗=0

1

𝜆 𝑗
|𝑣 𝑗 ⟩ ⟨𝑣 𝑗 |

𝑁−1∑︁
𝑗=0

𝑏 𝑗 |𝑣 𝑗 ⟩ (3)

=
1√︂∑𝑁−1

𝑗=0

|𝑏 𝑗 |2
𝜆2
𝑗

𝑁−1∑︁
𝑗=0

𝑏 𝑗

𝜆 𝑗
|𝑣 𝑗 ⟩ . (4)

In other words, the HHL algorithm needs a quantum computer to perform eigen-decomposition of 𝐴 and eigenvalue

inversion. Figure 1 shows a general description of the circuit that exactly serves the purpose, with an additional 𝑛𝑑 -qubit

data-loading block to load |𝑏⟩ into the quantum computer and 𝑛𝑑 = ⌈log(𝑁 )⌉.

2.1.2 Quantum Phase Estimation. The eigen-decomposition requires a subroutine called quantum phase estimation

(QPE), as illustrated in the sky blue part of Figure 1. Given a unitary matrix𝑈 has an eigenstate |𝑣 𝑗 ⟩ with eigenvalue

𝑒2𝜋𝑖𝜃 𝑗
, QPE is a quantum algorithm to solve the phase of the eigenvalue (𝜃 𝑗 ) [53]. After executing the QPE algorithm,
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4 Zheng et al.

the phase angle 𝜃 is stored as the qubit states in a binary representation. The qubits carrying the phase information are

named “clock qubits”. In the HHL algorithm, if |𝑣 𝑗 ⟩ is an eigenstate of a Hermitian matrix 𝐴 with eigenvalue 𝜆 𝑗 , by

constructing a unitary matrix𝑈 = 𝑒𝑖𝑡𝐴 with a scale factor 𝑡 , the state |𝑣 𝑗 ⟩ becomes an eigenstate of𝑈 with eigenvalue

𝑒𝑖𝑡𝜆 𝑗
. Therefore, the eigenvalue 𝜆 𝑗 can be estimated using the QPE algorithm.

Suppose we have access to the gate𝑈 , it is clear that

𝑈 𝑙 |𝑣 𝑗 ⟩ = 𝑒2𝜋𝑖𝜃 𝑗 𝑙 |𝑣 𝑗 ⟩ (5)

for some positive integer 𝑙 . QPE requires a submodule called quantum Fourier transform (QFT). QFT maps

𝑄𝐹𝑇 | ®𝑗⟩ = 1

√
2
𝑛𝑐

2
𝑛𝑐 −1∑︁
𝑘=0

𝜔 𝑗𝑘 | ®𝑘⟩ = 1

√
2
𝑛𝑐

[(
|0⟩ + 𝑒2𝜋𝑖0. 𝑗𝑛𝑐

) (
|0⟩ + 𝑒2𝜋𝑖0. 𝑗𝑛𝑐 −1 𝑗𝑛𝑐

)
· · ·

(
|0⟩ + 𝑒2𝜋𝑖0. 𝑗1 𝑗2 ... 𝑗𝑛𝑐

)]
where ®𝑗 has 𝑛𝑐 qubits and 𝜔 = 𝑒2𝜋𝑖/(2

𝑛𝑐 )
. Intuitively, ®𝑗 can be considered as binary number ®𝑗 = 𝑗1 𝑗2 . . . 𝑗𝑛𝑐 such that

𝑗𝑙 ∈ {0, 1} and QFT transforms this binary number from a state to the phases of bases in different precision. So, on the

contrary, if we apply the inverse of the QFT operator, denoted by 𝑄𝐹𝑇 †
, the phase value becomes a state, and we can

measure the state to obtain the phase value in the binary representation.

To summarize the process of a standalone QPE routine, we have

|0⟩⊗𝑛𝑐 |𝑣 𝑗 ⟩
𝐻 ⊗𝑛𝑐
−−−−−→ 1

√
2
𝑛𝑐

2
𝑛𝑐 −1∑︁
𝑘=0

| ®𝑘⟩ |𝑣 𝑗 ⟩

𝐶𝑈 sequence

−−−−−−−−−−−→ 1

√
2
𝑛𝑐

2
𝑛𝑐 −1∑︁
𝑘=0

𝑒2𝜋𝑖𝜃 𝑗𝑘 | ®𝑘⟩ |𝑣 𝑗 ⟩

𝑄𝐹𝑇 †
−−−−−→ | ˜𝜃 𝑗 ⟩ |𝑣 𝑗 ⟩

where 𝐶𝑈 sequence is the controlled-𝑈 sequence in the sky blue part of Figure 1 and
˜𝜃 𝑗 = 𝜃 𝑗 if 𝜃 𝑗 can be perfectly

represented in 𝑛𝑐 bits; otherwise, ˜𝜃 𝑗 ≈ is an estimation of 𝜃 𝑗 in a finite precision. In other words, the number of clock

qubits, 𝑛𝑐 , governs the precision of the estimated eigenvalue in QPE. To understand more details about QFT and QPE,

we direct the interested reader to [53] and [71].

Inversion

|0⟩ · · · Ry |1⟩

H · · · •
QFT †

•
QFT

• · · · H
...

...
... |0⟩⊗nc

H • · · · · · · • H

|0⟩⊗nd /nd
Data
Loader U20 · · · U2nc−1

(U2nc−1

)† · · · (U20)† |x⟩
QPE QPE†



|0⟩⊗nc





Fig. 1. HHL circuit. The unitary gates in quantum phase estimation (QPE) are𝑈 = 𝑒𝑖𝑡𝐴 and𝑈 2
𝑗
= 𝑒𝑖2

𝑗 𝑡𝐴 where 𝑖2 = −1 and 𝑡 is a
scaling factor. The top qubit is referred to as the ancillary qubit, and it is the most significant qubit.
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2.1.3 State Evolution in HHL. In general, the evolution of states in the HHL circuit is

|0⟩ |0⟩⊗𝑛𝑐 |0𝑛𝑑 ⟩
Data loading

−−−−−−−−−−→ |0⟩ |0⟩⊗𝑛𝑐 |𝑏⟩

QPE

−−−→
2
𝑛𝑑 −1∑︁
𝑗=0

𝑏 𝑗 |0⟩ | ˜𝜆 𝑗 ⟩ |𝑣 𝑗 ⟩

Eigenvalue

Inversion

−−−−−−−−−−→
2
𝑛𝑑 −1∑︁
𝑗=0

𝑏 𝑗
©«
√√
1 − 𝐶2

˜𝜆2
𝑗

|0⟩ + 𝐶

˜𝜆 𝑗
|1⟩ª®¬ | ˜𝜆 𝑗 ⟩ |𝑣 𝑗 ⟩

Measure the ancillary

only keep |1⟩
−−−−−−−−−−−−−−−−−−→ 𝐷

2
𝑛𝑑 −1∑︁
𝑗=0

𝑏 𝑗

˜𝜆 𝑗
|1⟩ | ˜𝜆 𝑗 ⟩ |𝑣 𝑗 ⟩

QPE
†

−−−−→ 𝐷 |1⟩ |0𝑛𝑐 ⟩
2
𝑛𝑑 −1∑︁
𝑗=0

𝑏 𝑗

˜𝜆 𝑗
|𝑣 𝑗 ⟩ ≈ 𝐷 |1⟩ |0𝑛𝑐 ⟩ |𝑥⟩

where
˜𝜆 𝑗 ≈ 𝜆 𝑗 is the eigenvalue of 𝐴 with a finite precision estimated in QPE, and 𝐶 and 𝐷 are both constant

normalization factors

𝐷 =
𝐶√︂∑

2
𝑛𝑑 −1
𝑗=0 𝐶2

|𝑏 𝑗 |2
˜𝜆2
𝑗

≈ 1

∥𝐴−1 |𝑏⟩ ∥2
.

Thus, the norm ∥𝐴−1 |𝑏⟩ ∥2 can be estimated by the probability of measuring the ancillary qubit in state |1⟩, i.e.,
∥𝐴−1 |𝑏⟩ ∥2 ≈

√︁
Pr(Measure 1 in ancillary). This value can be obtained without extra cost as we need to run the circuit

multiple times to get |𝑥⟩ or ⟨𝑥 |𝑀 |𝑥⟩ for some observable 𝑀 . The overall runtime complexity of HHL algorithm is

�̃� (log(𝑁 )𝑠2𝜅2/𝜖) where 𝑠 is the sparsity of 𝐴, 𝜅 = ∥𝐴∥∥𝐴−1∥ is the condition number of 𝐴, and 𝜖 is the final additive

error of the solution defined by the ideal state |𝑥⟩ and the result from HHL |𝑥𝐻𝐻𝐿⟩ through ∥ |𝑥⟩ − |𝑥𝐻𝐻𝐿⟩ ∥ ≤ 𝜖 [31].

2.1.4 Quantum-classical Data Exchange in HHL. There are two major input models for encoding both matrix𝐴 (or 𝑒𝑖𝑡𝐴)

and vector |𝑏⟩ into a quantum computer. One is the sparse-access model, used in the HHL algorithm [31]. Sparse-access

model is a quantum version of classical sparse matrix computation, and we assume access to unitaries that calculate the

index of the 𝑙𝑡ℎ non-zero element of the 𝑘𝑡ℎ row of a matrix 𝐴 when given (𝑘, 𝑙) as input. A different input model, now

known as the quantum operator input model, is from Low and Chuang [46]. This method is based on the block-encoding

of 𝐴 to allow efficient access to entry values. Its circuit implementation can be found in [8, 9]. Meanwhile, this encoding

scheme can also be achieved using quantum random access memory (QRAM) [25, 35, 36, 43]. It requires the complexity

𝑂 (polylog (𝑁 /𝜖𝐵𝐸 )) for realizing an 𝜖𝐵𝐸 -approximate block-encoding of 𝐴 ∈ C𝑁×𝑁
with QRAM [35].

Definition 2.2 (The block-encoding of a matrix). The block-encoding of a matrix 𝐴 ∈ C𝑁×𝑁 is a unitary operator

𝑈 such that

𝑈 =

[
𝐴/𝑎 ·
· ·

]
where 𝑎 ≥ ∥𝐴∥ is a normalizing constant. In other words,𝑈 and 𝐴 satisfies, for some constant 𝑎 and 𝑛,

𝑎
(
⟨0|⊗𝑛 ⊗ 𝐼𝑁

)
𝑈

(
𝐼𝑁 ⊗ |0⟩⊗𝑛

)
= 𝐴
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6 Zheng et al.

Table 1. HHL circuit properties for four random examples

No. of Qubits

CX gates Depth

Total No. of Gates

𝑛𝑑 𝑛𝑐 Before Fusion After Fusion

4 6 116,535 248,084 325,189 70,804

5 7 1,111,178 2,373,842 3,106,244 665,921

6 8 9,335,345 19,969,964 26,117,061 5,557,777

7 9 78,420,632 167,816,254 219,386,270 46,631,320

where 𝐼𝑁 ∈ R𝑁×𝑁 is the identity matrix.

On the other hand, efficiency on reading |𝑥⟩ could be a potential threat to quantum speedup. The current state-of-

the-art quantum state tomography algorithm is from Apeldoorn et al. [64]. For a state |𝜓 ⟩ = ∑𝑁−1
𝑗=0 𝛽 𝑗 | ®𝑗⟩ ∈ C𝑁 , with

probability 1 − 𝛿 , the pure-state tomography in [64] requires 𝑂

(√
𝑁 /𝜎 · log (𝑁 /𝛿)

)
queries to the unitary oracle that

prepares |𝜓 ⟩ from |00 . . . 0⟩ to output a vector
®𝛽𝑒𝑠𝑡 ∈ R𝑁 such that ∥ℜ( ®𝛽) − ®𝛽𝑒𝑠𝑡 ∥∞ ≤ 𝜎 . The same routine can be

applied on 𝑖 |𝜓 ⟩ to estimate the imaginary part.

2.2 Implementation of the Circuit Generation

In all experiments in this paper, the code for the HHL circuit generation comes from a Qiskit-based open-sourced

package [66], which only produces the essential parts of the HHL circuit as colored in Figure 1. We made slight

modifications to accommodate the changes in Qiskit 0.46. The state preparation for |𝑏⟩ uses the algorithm in [32] that

decomposes an arbitrary isometry into the optimized number of single-qubit and CNOT gates, where isometry refers

to the inner-product-preserving transformation that maps between two Hilbert spaces, i.e., the state preparation is a

special case of isometries. For constructing the unitary operator 𝑒𝑖𝑡𝐴 in the QPE stage, the code directly accesses the

entry data from the classical memory. In other words, the quantum memory structures that we discussed previously are

not included in the circuits.

3 SIMULATOR AND RESOURCES ESTIMATION TOOL

The statevector simulator carries the simulations in the experiments, SV-Sim [39], in Northwest Quantum Circuit

Simulation Environment (NWQSim) [38]. Compared to simulators in Aer from Qiskit [56] and qsim from Cirq [16],

NWQSim provides specialized computation for a wide range of supported basis gates and architectures of CPUs and

GPUs, such as gate fusion. In Table 1 and later in Section 5, we demonstrate that gate fusion strategy in NWQSim

can reduce about 80% of gates in the circuits without sacrificing error rates. On the other hand, NWQSim utilizes

a communication model called “PGAS-based SHMEM” that significantly reduces communication latency for intra-

node CPUs/GPUs and inter-node CPU/GPU clusters. In this case, SV-Sim has an exceptional performance over other

simulators in deep-circuit simulation [39]. Figure 2 shows the running time of the HHL circuit in the size of 11 qubits to

17 qubits on SV-Sim on four different GPUs.

The resources estimator in [6, 65] from Microsoft Azure Quantum establishes a systematical framework to access

and model the resources necessary for implementing quantum algorithms on a user-specified fault-tolerant scenario.

This tool enables detailed estimation of various computational resources, such as the number of physical qubits, the

runtime, and other QEC-related properties to achieve a quantum advantage for certain applications. Specifically, the
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Fig. 2. NWQSim performance on different GPUs. The testing HHL circuits use randomly generated sparse matrices and random RHS
vectors. The three numbers in the name of each testing circuit are the number of qubits in the circuit, the number of qubits for data
loading, and the total number of gates in the circuit, respectively.

tool accepts a wide range of qubit and quantum error correction (QEC) code specifications and an error budget that

allows different error rates to simulate a described fault-tolerant environment.

The tool is compatible with circuits generated from a high-level quantum computing language or package, including

Qiskit and Q#. After a circuit is given, the input is compiled into Quantum Intermediate Representation through a

unified processing program, and the estimator can examine the code and record qubit allocation, qubit release, gate

operation, and measurement operation. Then, logical-level resources are estimated and used to compute the required

physical-level resources further. The tool returns a thorough report on resources demanded to perform the given

algorithm on fault-tolerant quantum computers, including the explanation and related mathematical equations of those

estimates. A selected list of estimates is described in Section 4, and their values in conducted experiments are displayed

in Section 5.

4 FACTORS OF INTEREST

As we focus on the linear system in scientific applications instead of random systems for benchmarking, we have less

control over the specific values of matrix properties like condition numbers. Our interest is more on the number of clock

qubits 𝑛𝑐 in the HHL circuit, which controls the precision of estimated eigenvalues. The error in eigenvalue estimation

affects the solution of the linear system through Eq. (4). From [53], to obtain an eigenvalue with 2
−𝑏

precision with at

least 1 − 𝑝𝑄𝑃𝐸,𝑓 𝑎𝑖𝑙 success probability using QPE, we need

𝑛𝑐 = 𝑏 +
⌈
log

2

(
2 + 1

2𝑝𝑄𝑃𝐸,𝑓 𝑎𝑖𝑙

)⌉
.

In the Qiskit-based HHL implementation that we used [66], it is suggested that

𝑛𝑐 = max

(
𝑛𝑑 + 1,

⌈
log

2
(𝜅 + 1)

⌉)
+ 1𝑛𝑣 (6)

where 1𝑛𝑣 = 1 if the coefficient matrix has a negative eigenvalue, 0 otherwise. In this paper, we will adjust 𝑛𝑐 to

illustrate the influence of the QPE resources on the HHL circuit’s total cost and the algorithm’s precision in domain

applications.
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Table 2. Qubit parameter configurations

Qubit Parameter Set (𝑛𝑠, 10−4) (𝜇𝑠, 10−4)

Operation Time

Measurement 100 ns 100 𝜇s

Single-qubit gate 50 ns 100 𝜇s

Two-qubit gate 50 ns 100 𝜇s

𝑇 gate 50 ns 100 𝜇s

Error rate

Measurement 10
−4

10
−4

Single-qubit gate 10
−4

10
−4

Two-qubit gate 10
−4

10
−4

𝑇 gate 10
−4

10
−6

Note that, without circuit optimization, the increase of 𝑛𝑐 will exponentially increase the gate counts in HHL circuits.

Recall the HHL circuit in Figure 1, an extra clock qubit leads an extra controlled 𝑈 2
𝑛𝑐 −1

and an extra controlled inverse

𝑈 2
𝑛𝑐 −1

in HHL circuit, where 𝑈 = 𝑒𝑖𝑡𝐴 and 𝐴 is the coefficient matrix in a linear system. Generally, we should not

explicitly compute the matrix 𝑈 2
𝑛𝑐 −1

, but apply gate 𝑈 for 2
𝑛𝑐−1

times in the circuit. Then, the QPE part of the circuit

contains

∑𝑛𝑐−1
𝑗=0

2
𝑗 = 2

𝑛𝑐 − 1 number of𝑈 , and when there are 𝑛𝑐 + 1 number of clock qubits, an extra 2
𝑛𝑐

number of𝑈

is added into the QPE, which almost double the number of gates𝑈 in QPE. The same situation happens on the inverse

QPE part of the HHL circuit.

When discussing resource estimation under a fault-tolerant setting, our primary concerns are the estimated runtime,

the number of physical qubits, and extra resources required from the QEC code. We adopt a distance-7 surface code

that encodes 98 physical qubits into a single logical qubit. The theoretical logical qubit error rate is 3 × 10
−10

, and the

error correction threshold is 0.01. Azure Quantum resource estimator provides several qubit parameter sets to simulate

different qubit properties. The preset qubit settings we used in this paper are (𝑛𝑠, 10−4) and (𝜇𝑠, 10−4) from [6], where

the former one is close to the specifications of superconducting transmon qubits or spin qubits, and the later one is more

relevant for trapped-ion qubits [6]. A list of detailed configurations of qubit parameter set (𝑛𝑠, 10−4) and (𝜇𝑠, 10−4) is
in Table 2. We enforce 2-D nearest-neighbor connectivity of the qubits to simulate the connectivity constraint on real

quantum computers. So we also demonstrate the changes of some factors before this constraint is enforced (“pre-layout”)

and after this constraint is enforced (“after layout”).

Another important tunable parameter is the overall allowed errors for the algorithm, namely error budget. Its

parameter value is equally divided into three parts:

• logical error probability: the probability of at least one logical error

• T-distillation error probability: the probability of at least one faulty T-distillation

• rotation synthesis error probability: the probability of at least one failed rotation synthesis.

There are also specific breakdowns in the resource required by QEC that are of interest [6, 65]. We list them in Table 3.

5 SCIENTIFIC APPLICATIONS AND EVALUATION

This section examines the utilization of the HHL algorithm in the fields of power grids and heat transfer. We evaluate

the performance of HHL in terms of solution accuracy, resource cost, and influence on convergence speed for applicable

problems.

In addition to the hardware specifications in Section 3, all resource estimator jobs are run on the Azure Quantum

cloud server. Due to the limitation on the cloud service usage, we cannot examine some of the deepest circuits in this
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Table 3. Factors of Interest in QEC

Factors of Interest Description

Number of logical qubits pre- and after layout

Under the nearest-neighbor constraint, extra logical qubits could be required to satisfy the

connectivity needed in the algorithm (circuit); the relation is 𝑛after = 2𝑛alg +
⌈√︁

8𝑛alg

⌉
+ 1 where

𝑛alg is the number of logical qubits pre-layout and 𝑛after is the number of qubits after layout

Number of physical qubits for the algorithm

The product of the number of logical qubits after layout and the number of physical qubits needed

to encode one logical qubit

Number of physical qubits for𝑇 factories 𝑇 factories produce𝑇 states to implement non-Clifford operations in a circuit

Number of physical qubits

The sum of the number of physical qubits for the algorithm and the number of physical qubits

for𝑇 factories

Number of𝑇 states

The estimator requires one𝑇 state for each of the𝑇 gates in a circuit, four𝑇 states for each of

the𝐶𝐶𝑍 and𝐶𝐶𝑖𝑋 gates, and 18𝑇 states for each of the arbitrary single-qubit rotation gates

Number of𝑇 factories

Determined from algorithm runtime,𝑇 state per𝑇 factory, the number of𝑇 states, and𝑇 factor

duration through the equation

⌈
𝑇 state·𝑇 factor duration

𝑇 state per𝑇 factory·algorithm runtime

⌉
Number of logical cycles for the algorithm The logical depth of the algorithm

Min. logical qubit error rate required to run logical error probability

Number of logical qubits·Number of logical cyclesthe algorithm within the error budget

Min.𝑇 state error rate required for distilled 𝑇 distillation error probability

Total number of𝑇 states𝑇 states

section with the resources estimator, and all evaluated circuits are transpired with respect to a given basis gate set from

the estimator using the transpiler in Qiskit. The optimization level of the transpiler is set to level 2. The Qiskit version

is 0.46, and the Azure Quantum version is 0.30.0.

5.1 Power Grid

The use of quantum algorithms has drawn much attention in recent research on power system applications, especially

the areas where quantum linear system solver can deploy, including power flow, contingency analysis, state estimation,

and transient simulation [12, 13, 23, 26, 34, 73]. The specific problem type we illustrated in this section is an Alternating

Current (AC) power flow problem.

The power flow equations are essential to analyzing the steady-state behavior of power systems by describing the

relationship between bus voltages (magnitude and phase angles), currents, and power injections in a power system.

The basic power flow equations are:

𝑃𝑘 =

𝑛∑︁
𝑗=1

(
|𝑉𝑘 | |𝑉𝑗 |Re(𝑌 ∗

𝑘 𝑗
) cos(𝜃𝑘 𝑗 ) + |𝑉𝑘 | |𝑉𝑗 |Im(𝑌 ∗

𝑘 𝑗
) sin(𝜃𝑘 𝑗 )

)
(7)

𝑄𝑘 =

𝑛∑︁
𝑗=1

(
|𝑉𝑘 | |𝑉𝑗 |Re(𝑌 ∗

𝑘 𝑗
) sin(𝜃𝑘 𝑗 ) − |𝑉𝑘 | |𝑉𝑗 |Im(𝑌 ∗

𝑘 𝑗
) cos(𝜃𝑘 𝑗 )

)
(8)

Where:

• 𝑃𝑘 : Real power injection at bus 𝑘 .

• 𝑄𝑘 : Reactive power injection at bus 𝑘 .

• |𝑉𝑘 |: Voltage magnitude at bus 𝑘 .

• 𝜃𝑘 𝑗 : Phase angle difference between bus 𝑘 and bus 𝑗 .

• 𝑌𝑘 𝑗 : Admittance between bus 𝑘 and bus 𝑗 .

For a 𝐵 buses and 𝐺 generators power flow problem, there are 2(𝐵 − 1) − (𝐺 − 1) unknowns representing voltage
magnitudes, |𝑉𝑘 |, and phase angles, 𝜃𝑘 , for load buses and voltage phase angles for generator buses. With the knowledge
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of the admittance matrix of the system that represents the nodal admittance of the buses, we can use Newton-Raphson

(N-R) method to solve power flow equation iteratively: after an initial guess for the voltages at all buses, in each N-R

iteration, we solve 
𝜕Δ ®𝑃
𝜕 ®𝜃

𝜕Δ ®𝑃
𝜕 | ®𝑉 |

𝜕Δ ®𝑄
𝜕 ®𝜃

𝜕Δ ®𝑄
𝜕 | ®𝑉 |


[
Δ ®𝜃
Δ| ®𝑉 |

]
= −

[
Δ ®𝑃
Δ ®𝑄

]
(9)

where Δ𝑃𝑘 and Δ𝑄𝑘 are computed using the admittance matrix, nodal power balance equation, and mismatch equations

with the data from the last iteration or initial guess. Then,
®𝜃 and | ®𝑉 | are updated by Δ ®𝜃 and Δ| ®𝑉 |, respectively. The

algorithm is set to convergent when ∥Δ ®𝑃 ∥ and ∥Δ ®𝑄 ∥ are smaller than a convergence tolerance.

It is worth noting that, while HHL can solve Eq. (9) for the normalized solution state [Δ ®𝜃𝑇 Δ| ®𝑉 |𝑇 ]𝑇 in a limited

precision, the un-normalized vector could have a smaller norm than the precision of HHL. Thus, the final precision of

voltage magnitude and phase angles is much higher than the precision used in HHL. This situation is similar to iterative

refinement in semi-definite optimization in [48].

5.1.1 Settings of the Numerical Experiments. The test case is the four buses and two generators problem in [28, p. 377],

coded in a MATLAB package called MATPOWER [74]. Based on the framework built in [72], we incorporate HHL

circuits and quantum simulators into the solving process in MATPOWER. The linear systems of our interest are all

5× 5 systems but not Hermitian. So, the actual inputted system is first expanded to 8× 8 so the size of the RHS vector is

the power of 2, then enlarged to 16 × 16 following Eq. (1). So, we eventually use 4 qubits to encode the vector
®𝑏. This

process is illustrated in Figure 3(a).

The default value of 𝑛𝑐 set by [53] using Eq. (6) is 6. To demonstrate how the precision of eigenvalues affects an

iterative algorithm, we select 𝑛𝑐 from 4 to 7. With 4 clock qubits in QPE and an ancillary qubit required by the HHL

algorithm, the number of qubits in each HHL circuit ranges from 9 to 12. The N-R method converges when
[
Δ ®𝑃
Δ ®𝑄

]
∞

< 10
−8 .

However, because the linear system formed in an N-R iteration depends on the solution from the previous N-R iteration,

the linear systems at Iteration 𝑗 with different 𝑛𝑐 will differ. Our comparison focuses on the convergence speed and the

final solution at the convergence instead of errors at each iteration across different 𝑛𝑐 .

5.1.2 Performance Evaluations. The sparsity of all tested coefficient matrices is 84.375% after the expansion, with

condition numbers in the range of [5.950, 5.970]. The minimums of the magnitude of eigenvalues are in the range of

[12.263, 12.506], and the maximums are [73.209, 74.659]. Figure 3(b) and (c) provide illustrative evidence of the use

of a less precise linear solver in the iterative method like the N-R method. Although the N-R method with an HHL

subroutine converges slower than a classical linear solver in MATLAB, all methods converge under the same criteria

and obtain a similar solution. A trade-off between convergence speed and complexity of linear system solving exists in

our experiments.

On the other hand, if we compare the values of normalized error ∥ |𝑥⟩ − |𝑥⟩𝐻𝐻𝐿 ∥2, when 𝑛𝑐 = 4, 5, 6, 7, using more

clock qubits indeed leads to lower error from the HHL algorithm itself. However, increasing 𝑛𝑐 does not implies less

error on the solution vectors, ®𝑥𝐻𝐻𝐿 , nor faster converge by looking at the values of ∥ ®𝑥 − ®𝑥𝐻𝐻𝐿 ∥2 and [Δ ®𝑃𝑇 Δ ®𝑄𝑇 ]𝑇 in

Figure 3. The HHL algorithm with 𝑛𝑐 = 5 gives the fastest convergence, which is smaller than the default value, 6, from

Eq. 6.
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Fig. 3. Matrix expansion and error plot for the experiments of the power flow problem. (a) Expanding the coefficient matrices and the
RHS vector in Eq. (9) to fulfill the requirements of the HHL algorithm. (b) The errors of the solution state in log base 10 (labeled “ |𝑥 ⟩”),
∥ |𝑥 ⟩ − |𝑥 ⟩𝐻𝐻𝐿 ∥2, and the errors of the solutions in log base 10 (labeled “®𝑥”), ∥ ®𝑥 − ®𝑥𝐻𝐻𝐿 ∥2, in each N-R iteration with different
numbers of 𝑛𝑐 . The symbols 𝐴, ®𝑏, ®𝑥 , and |𝑥 ⟩ refer to the corresponding part in Eq. (9). (c) The infinity norms of [Δ ®𝑃𝑇 Δ ®𝑄𝑇 ]𝑇 in log
base 10, i.e., the value governs the convergence of the N-R method. Iteration 0 represents the norm from the initial guess, and the
gray-shaded area is where the convergence criteria are satisfied.

Table 4. Depths and gate counts of HHL circuits for power flow problems at Iteration 1

𝑛𝑑 𝑛𝑐 Depth # of gates # of 2-qubit gates # of gates after fusion Reduction from fusion

4 4 65,824 86,262 30,651 18,060 79.06%

4 5 135,986 178,180 63,315 37,283 79.08%

4 6 276,308 361,980 128,631 75,717 79.08%

4 7 556,950 729,534 259,247 152,570 79.09%

5.1.3 Gate Counts and Depths of HHL Circuits. Because the circuits from later iterations are in a similar resource

demand, we only look at the circuits in the first iteration. The depths and gate counts of HHL circuits are the same across

N-R iterations when 𝑛𝑐 is fixed. While HHL with 𝑛𝑐 = 5, 6, 7 gives similar convergence speed and accuracy, the required

resources to run the circuits exponentially increase as 𝑛𝑐 increases based on Table 4. On the other hand, although

gate fusion employed in NWQSim does not mitigate these exponential trends, it maintains a constant proportional

performance across various HHL circuits: a 79% reduction of gate counts on all tested circuits regardless of the value of

𝑛𝑐 .

5.1.4 Resources Estimation in a Fault-Tolerant Scenario . Encoded by the surface code described in Section 4 along

with a nearest-neighbor connectivity constraint, we estimate the runtime of HHL circuits by Azure Quantum resource
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Fig. 4. The runtime in seconds as a function of the number of clock qubits in QPE under the qubit parameter set (a) (𝑛𝑠, 10−4 ) and
(b) (𝑢𝑠, 10−4 ) . The estimated circuits are HHL circuits for power flow problems.

estimator and summarize the data in Figure 4. A strong and consistent linear correlation between the number of clock

qubits in QPE, 𝑛𝑐 , and the runtime in log base 10 is displayed across qubit parameter sets and error budgets. Every

extra clock qubit brings 10
0.322 ≈ 2.099 times longer runtime when the error budget is 0.1 and 10

0.375 ≈ 2.371 times

longer when the error budget is 0.01. This multiplier shows an increasing trend when the error budget decreases. The

similar correlations are also demonstrated in Figure 5(a) and (b) when we further investigate how 𝑛𝑐 affects the number

of logical cycles for the circuit and the number of 𝑇 states. Generally, the exponential dependencies of runtime, number

of logical cycles, and number of 𝑇 states on 𝑛𝑐 match the relation between the number of gates in HHL circuits and 𝑛𝑐 .

Note that the slopes of the fitted line in Figure 5(a) and (b) are not sensitive to error budgets, different from the behavior

in Figure 4. Error budgets affect the constant multiplier of the growth of logical cycles and the number of 𝑇 states more.

Table 5 summarizes the other factors of our interest. Those factors have the same values in (𝑛𝑠, 10−4) and (𝜇𝑠, 10−4)
settings. Note that there is a dramatic fall in the number of physical qubits when the error budget is 0.01 and 𝑛𝑐 raises

from 4 to 5. Combining with Figure 5(c) and (d), this reduction comes from a large drop in the number of physical

qubits spent on 𝑇 factories, a dominant demand on physical qubits instead of the quantum algorithm itself. The circuit

requires 15 𝑇 factories when the error budget is 0.01 and 𝑛𝑐 = 4, but this number is reduced to 12 when 𝑛𝑐 = 5. Recall

the definition of the number of 𝑇 factories in Table 3, based on the fitted coefficients in Figure 4 and 5, we can see

while the increase of 𝑛𝑐 from 4 to 5 leads to 10
0.322

times more 𝑇 states, the runtime becomes 10
0.375

times larger. Since

𝑇 factory duration and 𝑇 states per factory are kept constant, the faster-growing runtime reduces the number of 𝑇

factories required, thus decreasing the overall number of physical qubits required. This phenomenon does not occur

when the error budget is 0.1 because the growth of runtime and 𝑇 -state count are at the same speed.

5.2 Heat transfer

Linear solvers are deeply embedded in differential equation solving through numerical methods such as the finite

difference method. Such methods discretize the domain of the problems into grids, and the dimension of the formed
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Fig. 5. The number of (a) logical cycles for the algorithm, (b) 𝑇 states, (c) physical qubits for the algorithm after layout, and (d)
physical qubits for the𝑇 factories as functions of the number of clock qubits in QPE, respectively. The estimated circuits are HHL
circuits for power flow problems. Both qubit parameter sets (𝑛𝑠, 10−4 ) and (𝑢𝑠, 10−4 ) have the same values under the same error
budget for all four factors in the plots.

Table 5. Factors of interest for fault-tolerant HHL circuits in power flow problems

Error

𝑛𝑐
Physical qubits Logical qubits Min. logical qubit Min.𝑇 state

budget after layout pre- and after layout error rate error rate

0.01

4 32,144 9 to 28 3.977×10−10 9.831×10−9
5 28,380 10 to 30 1.797×10−10 4.762×10−9
6 28,866 11 to 33 7.700×10−11 2.236×10−9

0.1

4 32,144 9 to 28 4.406×10−9 1.098×10−7
5 32,340 10 to 30 1.990×10−9 5.319×10−8
6 32,634 11 to 33 8.487×10−10 2.483×10−8

linear system scales as the size of discretization. The number of grid points scales polynomially with system size,

while the demands for solving such differential equations (DEs) are ubiquitous in science and engineering. Due to the

exponential speedup in problem dimension, the combination of quantum linear solvers and these numerical methods

has become an attractive direction [15, 41, 51, 60].
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Table 6. Depths and gate counts of HHL circuits for heat transfer problems

Dim. 𝑛𝑑 𝑛𝑐 Depth # of gates #of 2-qubit gates # of gates after fusion Reduction from fusion

9 × 9 4 3 30742 40290 14315 8445 79.04%

9 × 9 4 4 65824 86262 30651 18061 79.06%

9 × 9 4 5 135986 178180 63315 37284 79.08%

9 × 9 4 6 276308 361980 128631 75718 79.08%

25 × 25 5 3 133966 175253 62546 37147 78.80%

25 × 25 5 4 287134 375643 134046 79547 78.82%

25 × 25 5 5 593948 777069 277230 164338 78.85%

5.2.1 Settings of the Numerical Experiments. In this section, we examine the two-dimensional (2-D) heat diffusion

equation in [42]

𝜕𝑇

𝜕𝑡
= 𝐷∇2𝑇 + 𝐹 (10)

where 𝑇 represents the temperature at a given 2-D point and time, 𝐷 is the heat transfer coefficient, and 𝐹 is the

forcing term consisting of arbitrary boundary and initial conditions. Eq. (10) is a linear partial differential equation. We

discretize Eq. (10) in space and time into a system of ordinary differential equations using the finite difference method,

𝐴𝑇 = 𝐹, (11)

where 𝐴 is the resulting coefficient matrix. Take the square lattices with a lateral size of 3 grid points and 5 grid points,

the resulting dimension of 𝐴 is 9 × 9 and 25 × 25, respectively. Such configurations require 4 qubits and 5 qubits to

represent the RHS vectors (𝐹 term in Eq. (11)) in both linear systems, respectively. Let 𝐴(ℎ𝑒𝑎𝑡,𝑙 )
be the coefficient matrix

generated from 𝑙 number of grid points, the entry values are

𝐴
(ℎ𝑒𝑎𝑡,𝑙 )
𝑝𝑞 =


1 + 4𝑟, 𝑝 = 𝑞

−𝑟 𝑝 = 𝑞 + 1 or 𝑝 = 𝑞 − 1 or or 𝑝 = 𝑞 − 𝑙 or 𝑝 = 𝑞 + 𝑙

0, otherwise

where 𝑝 and 𝑞 denotes the index of the entries of 𝐴 and 𝑟 is 0.00016 in 3-point case and 0.00064 in 5-point case.

5.2.2 Performance and Resources Evaluations. The coefficient matrices are Hermitian by design, so we only need to

expand the dimension to the nearest power of 2, i.e., 16 and 32. After dimension expansion, the coefficient matrices

have sparsity 82.813% and 88.281%, respectively. Both matrices have condition number 1, and all of their eigenvalues

are around 1.

When 𝑛𝑑 = 4, gate counts in Table 6 and 4 have almost the same numbers of circuit depths and gate counts. However,

if we compare across different 𝑛𝑑 in Table 6, significant increases appear in depths and all gate counts. This situation

reflects one of Aaronson’s concerns in [1] about the efficiency and the cost of data reading in quantum linear solvers.

Furthermore, similar to the scenario in Section 5.1, the incremental of 𝑛𝑐 , despite being very costly, has a limited

contribution towards reducing errors, as shown in Figure 6.

5.2.3 Resources Estimation in a Fault-Tolerant Scenario. Most of the observations from Fig 7 and 8 and Table 7 for both

problem sizes are isometric to the findings in Section 5.1.4, including the numerical values of the fitted-line coefficients

related to runtime, logical cycles and the number of 𝑇 states. The significant influence brought by deeper data loading

modules for the 5-point problem is parallel shifts on longer runtime, more logical cycles, more 𝑇 states, and more
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Fig. 6. The errors of the solution states in log base 10 (labeled as " |𝑥 ⟩"), ∥ |𝑥 ⟩ − |𝑥 ⟩𝐻𝐻𝐿 ∥2, and the errors of the solution vectors in
log base 10 (labeled as "®𝑥"), ∥ ®𝑥 − ®𝑥𝐻𝐻𝐿 ∥2, are presented as functions of 𝑛𝑐 for two different numbers of grid points. The symbols ®𝑥
and |𝑥 ⟩ respectively refer to the solution vector and the normalized solution vector in the linear systems constructed by applying the
finite difference method to Eq. (10).

strict requirements on logical qubit error rate and 𝑇 state error rate. More data-loading qubits do not affect the growth

speed of the logical cycle and the number of 𝑇 states. Due to the limitation of computational time in Azure Quantum

cloud service, we cannot collect more data points to understand this correlation better. However, from a theoretical

perspective, this is expected because the QPE costs of HHL circuits are the same with the same 𝑛𝑐 in the power flow

and heat transfer problems.

Table 7. Factors of interest for fault-tolerant HHL circuits in heat transfer problems

Error (𝑛𝑑 , 𝑛𝑐 )
Physical qubits Logical qubits Min. logical qubit Min.𝑇 state

budget after layout pre- and after layout error rate error rate

0.01

(4,3) 31850 8 to 25 1.01×10−9 2.22×10−8
(4,4) 32144 9 to 28 3.97×10−10 9.81×10−9
(4,5) 28380 10 to 30 1.80×10−10 4.77×10−9
(4,6) 28866 11 to 33 7.69×10−11 2.23×10−9
(5,3) 28056 9 to 28 2.05×10−10 5.11×10−9
(5,4) 28380 10 to 30 8.53×10−11 2.27×10−9

0.1

(4,3) 13450 8 to 25 1.12×10−8 2.50×10−7
(4,4) 32144 9 to 28 4.40×10−9 1.10×10−7
(4,5) 32340 10 to 30 2.00×10−9 5.33×10−8
(4,6) 32634 11 to 33 8.47×10−10 2.48×10−8
(5,3) 32144 9 to 28 2.27×10−9 5.70×10−8
(5,4) 32340 10 to 30 9.39×10−10 2.52×10−8

6 DISCUSSION

The paper evaluates and analyzes the performance and resources required for the HHL algorithm in various scientific

and engineering problems. There are still multiple points we need to address in future works. The foremost limitation
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Fig. 7. The runtime in seconds as a function of the number of clock qubits in QPE under the qubit parameter set (a) (𝑛𝑠, 10−4 ) and
(b) (𝑢𝑠, 10−4 ) . The estimated circuits are HHL circuits for the heat transfer problem.

in this work is the data loading module in the HHL circuit generation. While the data loading algorithm in [66] can

encode an arbitrary vector into a quantum circuit, the circuit depth of this module is exponential to the number of

qubits. Thus, this first part of the circuit severely damages the potential quantum speedup from HHL. We mitigate

this drawback by comparing the outcomes from problems of different sizes to isolate the influence of the data loading

module. An important future direction is incorporating an efficient data loading scheme into our analysis framework,

like block encoding in [10]. A different data loading method could have a different precision, so it is necessary to

investigate how data loading precision and condition number of coefficient matrices collectively affect the solution

accuracy. This future direction illustrates the second drawback of this study. That is, our tested coefficient matrices

are all well-conditioned. Because our experiments do not utilize randomly generated test cases, we have less control

over the matrix properties, including condition number and sparsity. A potential source of ill-conditioned test cases is

the methods that naturally have ill-conditioned matrices, such as the Newton systems produced by the interior-point

method in optimization problems [48]. Thus, to solve those systems, a variant of the HHL algorithm in [17] accompanied

by the sparse approximate inverse preconditioner is in our outlook. Limited by single-job running time in the Azure

Quantum cloud server, we cannot process large HHL circuits. So, the number of data points in each plot in Section 5 is

relatively tiny. This is why we only discuss the correlations whose coefficients of determination are almost 1. In future

studies, we will dismantle the whole HHL circuit into different modules and evaluate the resource cost separately.

Some additional research can be conducted to further enhance our understanding of the application of quantum

algorithms in scientific problems. An important direction is understanding the implication of various noise models on

the HHL algorithm. We plan to conduct those experiments with the high-precision noise simulator in [40]. We can also

include the quantum algorithms that address similar scientific applications into our resources analysis framework, such

as the ordinary differential equation solvers in [3].
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Fig. 8. The number of (a) logical cycles for the algorithm, (b) 𝑇 states, (c) physical qubits for the algorithm after layout, and (d)
physical qubits for the𝑇 factories as functions of the number of clock qubits in QPE, respectively. The estimated circuits are HHL
circuits for the heat transfer problem. Both qubit parameter sets (𝑛𝑠, 10−4 ) and (𝑢𝑠, 10−4 ) have the same values under the same
error budget for all four factors in the plots.

7 CONCLUSION

In this paper, we investigate the practical applications and scalability of the HHL algorithm in solving quantum linear

systems associated with scientific problems like power grids and heat transfer problems. Through the NWQSim package

on high-performance computing platforms, we highlight the benefits of the utilization of low-precision QPE in HHL for

both iterative and non-iterative methods in practice: low-precision QPE can exponentially reduce the gate counts and

circuit depth in an HHL circuit, while keeping the same solution accuracy in iterative methods like Newton-Raphson

method and maintain a similar level of accuracy in a non-iterative method like finite difference method.

Furthermore, with Azure Quantum resources estimator, we evaluate the resource requirements of HHL circuits in

our experiments under two settings that simulate superconducting and trapped-ion qubits. The correlations between

QEC-related criteria and the inputted HHL circuits have been thoroughly studied. The runtime, number of logical cycles,

and number of 𝑇 states have exponential decencies on the number of clock qubits in QPE. However, this relation is not

necessarily inherited by the number of physical qubits demanded. If the runtime growth is faster than the required
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𝑇 states, the circuit needs fewer 𝑇 factories and fewer physical qubits to prepare 𝑇 factories. Since the growth of

runtime is sensitive to error budget, which is the allowance on the error occurrence on logical qubits, 𝑇 distillation,

and rotation synthesis, it is possible to reduce the physical qubit requirement if a low error budget is achievable on

early fault-tolerant quantum devices. In other words, less but higher-fidelity logical qubits are as capable as more but

lower-fidelity logical qubits in HHL circuits.

Our study provides pivotal insights into the operational requirements of quantum linear system algorithms, paving the

way for further empirical studies. We propose future research on the applications of quantum linear system solvers and

iterative refinement on high-fidelity quantum computers for small-scale experiments. For large-scale experiments, we

suggest using noise-modelled simulators on high-performance platforms. In the context of QEC and early fault-tolerant

quantum computing, we believe it is crucial to focus on controlling the resource cost of 𝑇 factories by considering

runtime and error budget. These research directions hold promise for bridging the gap between theoretical potential

and practical usability in quantum computing.
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