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Reinforcement Learning Driven Cooperative Ball Balance in Rigidly
Coupled Drones*

Shraddha Barawkar! and Nikhil Chopra®

Abstract— Multi-drone cooperative transport (CT) problem
has been widely studied in the literature. However, limited
work exists on control of such systems in the presence of time-
varying uncertainties, such as the time-varying center of gravity
(CG). This paper presents a leader-follower approach for the
control of a multi-drone CT system with time-varying CG.
The leader uses a traditional Proportional-Integral-Derivative
(PID) controller, and in contrast, the follower uses a deep
reinforcement learning (RL) controller using only local infor-
mation and minimal leader information. Extensive simulation
results are presented, showing the effectiveness of the proposed
method over a previously developed adaptive controller and
for variations in the mass of the objects being transported and
CG speeds. Preliminary experimental work also demonstrates
ball balance (depicting moving CG) on a stick/rod lifted by two
Crazyflie drones cooperatively.

I. INTRODUCTION

Motivated by challenging control problems such as ball
balance on a plate [1], in this paper, we study the ball
balance capabilities using drone platforms. Decentralized ball
balance or handling of continuously moving CG in multi-
drone CT systems using drones and RL is presented in this
paper. Examples of real-world applications that motivate this
work include a multi-drone flying car and heavy package
delivery applications. The motion of people inside the flying
vehicle and the movement of package contents (for package
delivery) may continuously change the CG of the system.
The next motivating factor for this research is the increasing
use of machine learning-based closed-loop controllers in
robotic systems. Reinforcement learning-based controllers
may not require knowledge of system dynamics but are data-
intensive and may not be endowed with closed-loop stability
and performance guarantees. On the other hand, traditional
control approaches can provide stability guarantees but rely
on accurate system dynamics or at least a knowledge of the
underlying physics. In this paper, we study the interaction of
a machine learning-driven drone with a PID-controlled drone
in the problem of decentralized ball balancing, which, to the
best of our knowledge, has not been accomplished earlier in
the literature.

The problem of time-varying CG in multi-drone CT sys-
tems can be addressed using adaptive control theory [2]
based methods. However, such algorithms critically rely on
the structure of the unknown dynamics and typically work
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well for constant unknown parameters. The performance
limitations of this method can be seen [3] from the oscillatory
system waypoint navigation due to the delay in estimating
time-varying CG in a multi-drone CT system. We next
discuss the state-of-the-art of multi-robot/drone CT and deep
RL.

Vision, admittance, and geometric control are a few of the
diverse controllers used in the literature demonstrating multi-
drone CT [4], [5], [6]. In handling system uncertainties
in multi-drone/robot CT, [7], [8] demonstrate decentral-
ized adaptive control schemes for multi-industrial robot CT.
Adaptive controller for cabled CT with multiple catenary
robots is shown in [9]. References [10], [11] present cabled
multi-drone CT with offset and unknown fixed CG. The work
of [12] shows multi-drone CT of an unknown object with
unknown CG using omnidirectional drones. However, the
controller has not been tested for continuous time-varying
CG in all these works. These works also do not consider rigid
connections between the drones and the transported objects,
wherein the rigid connections couple the orientation of
drones and the object, thereby complicating the closed-loop
control due to the coupled nonlinear dynamics. Additionally,
addressing the impact of a time-varying CG is a complex
challenge.

In [13], a centralized PID control was demonstrated on a
multi-drone CT system in the presence of an unknown CG of
the object. It should be noted that even if such a decentral-
ized controller was developed, a decentralized multi-drone
PID system may not be robust to GPS localization errors,
especially in an outdoor environment. The reader is referred
to [5] for additional details.

Deep RL has been shown to perform better than humans
in competitive games such as Chess, Atari, and Go. These
advances using deep RL have recently been reported in
champion-level drone racing [14]. Deep RL has also been
implemented for robotic manipulation[15], quadrupedal lo-
comotion [16], and quadrotor control [17]. There is limited
research work in CT with multiple ground robots using deep
RL. The research of [18] presents a multi-robot CT approach
using deep Q networks (DQN). Similarly, Manko et al.
[19] presented multi-robot CT with DQN, relying on a path
planning algorithm. Eoh et al. [20] presents a curriculum-
based deep RL approach for multi-robot CT. Further, limited
work exists on multi-drone CT with deep RL such as those
of [21], [22]. However, in these works, all the agents deploy
RL, use cabled or flexible connections, are suitable for
indoor environments with reliance on precise motion capture
systems, and, most importantly, the uncertainties, such as



time-varying CG, are not considered. This paper, on the other
hand, addresses these gaps.

This paper uses a leader-follower approach to address the
problem of time-varying CG in multi-drone CT systems.
It should be noted that, we take motivation from [13], to
use a PID based leader as it can inherently handle CG
uncertainties. The follower drone implements a Soft Actor-
Critic (SAC) based RL algorithm using local measurements
(follower’s position and velocity) and minimal leader infor-
mation (leader’s error from goal position) to control the effect
of time-varying CG. It should be noted that an RL follower
drone is required to ascertain the position, velocity, and
goal location of the object/leader to provide stable system
performance in the presence of system uncertainties, such as
moving CG. This is evident from prior literature [8], [7], [3].
It should be noted that inter-drone (except with the leader or
the object) communication can still be avoided as only a
single GPS sensor can be used to relay the object’s/leader’s
information to all the drones. TNPG, TRPO, DDPG, and
SAC form a few of the relevant RL algorithms used in
literature for deep RL [23], [24]. This paper uses Soft Actor-
Critic (SAC) [24] to implement deep RL on the follower
drone. SAC performed better over other algorithms [25], [15]
and had better exploration capabilities. Consequently, it was
chosen as a starting point for this research, and other methods
will be explored in future work.

This paper’s main contribution is developing the decen-
tralized controller for the follower drone based on deep RL
using SAC, which can handle the object’s time-varying CG.
This is the first work to implement deep RL for the proposed
problem. Additionally, gravity, attitude coupling due to rigid
connections, and coupled nonlinear drone dynamics add to
the challenges in stabilization. We also compare the proposed
RL-based control scheme with an adaptive controller [3]
previously designed for the problem of time-varying CG. The
presented results validate the effectiveness of the proposed
controller over an adaptive controller in terms of better
waypoint navigation. The proposed RL-based SAC controller
has also been demonstrated to perform favorably for faster
moving CG speeds and changes in the payload or mass of
the object. Simulation results validate the effectiveness of
the proposed method. Finally, a preliminary experimental
demonstration of a two-drone CT system with ball balance
mounted on a test stand is also conducted to illustrate the de-
veloped results. In summary, a novel RL-based decentralized
controller that does not utilize force sensors and primarily
relies on local measurements and minimal leader information
for the follower drones has been developed and validated
using simulations and experiments.

II. SYSTEM DYNAMICS

The dynamics of the leader-follower two-drone CT system
have been discussed in [26]. For the sake of clarity, they are
briefly presented here. Refer to Fig. [T] showing the two-drone
CT system for package delivery. Xy, Yw and Zy are the axes
in the world frame W. X3, Yp and Zp are the body frame axes
with suffices /, f, and o for indicating the leader drone, the
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Fig. 1: Free body diagram of the entire system used for
package delivery (showing moving CG).

follower drone, and the object being transported. It should be
noted that the body frames of the leader drone, the follower
drone, and the object are aligned since they share the same
orientation due to the use of rigid connections in the system.
We now write the equations of motion of the leader drone
as follows,

Fi=r[0 0 F|" =[0 0 mg| —mp (1)

Ly * (Fy — Fay)
Ly (F3 = Frp)
My — My + M3y — My

T = —wX Lw-Lw (2)

where F; is the contact interaction force acting on the object
at the point of contact between the leader drone and the
object. F] is the sum of all the rotor forces of the leader
drone. m; and p; and R are the mass of the leader drone, the
position of the leader drone in frame W, and the Z—X-Y ro-
tation matrix from the body frame B, (or B,/By) to the world
frame W, respectively. Refer to [26] for the rotation matrix.
Here, 7; is the contact torque at the point of contact of the
leader drone with the object, L; denotes the distance between
the drone’s geometric center and the leader’s rotor center,
F;; and M;; are the rotor forces and moments generated by
the i rotor of the leader drone, /; is the mass moment of
inertia of the leader drone, and w denotes the angular velocity
of the system. Here, w = [¢,6,y]”, due to the small angle
approximation [26], where ¢, 8 and y are the roll, pitch and
yaw angles denoting the orientation of the system. Similar
equations of motion can be written for the follower drone
where Fy, F } my, pr, Tr, denote the contact force acting on
the object due to the follower drone, the total thrust, mass,
position and contact torque of the follower drone, F;r and
M;; are the forces and moments produced by the i’ rotor of
the follower drone, and I, is the moment of inertia of the



follower drone. We now write the equations of motion of the
object (linear and rotational) as follows,

mopo = Fi+ Fr=[0 0 myg|' (3)
Igd)=T[+Tf—(a)X]oa))+(I‘1XF1)+(I'fXFf) (4)

where, 1 = p; - p, and ¥y = py — p,. m, and I, are the
object’s mass and moment of inertia, and p, is the position
of the object’s geometric center. The rigid body equation is
then written as p; = p, + (W X 1)) + (w X (w X 17)). A similar
equation can be written to compute the linear acceleration of
the follower drone. This detailed dynamic model was used
to develop a realistic simulation framework for the custom
environment used in this paper to train the deep RL follower
- PID leader drone CT.

III. APPROACH

To implement a multi-drone CT task, a leader-follower
approach is used. This section describes the control strategies
used for the leader and follower drones, respectively.

A. Leader control

Similar to [13], the leader drone implements a PID controller
to navigate the object (or the leader) from the origin to the
desired goal position p? (see Fig. El) of the object as,

P = kpeo + ke, + Ky f e,dt 5)

where, k,, k; and k; are the proportional, derivative and inte-
gral gains and e, = p? — p,. p¢ constitutes the desired linear
acceleration of the leader drone for goal point navigation.
From the above equation, the desired roll and pitch angles
for the leader drone are computed by linearization of the
dynamic equations as follows,

¢ (p'fl sin zﬁj’ - ﬁ;’l CcoS w;’) ol ([)’il cos zpj’ + 1'7';’] sin tpf)

! g ! g

where ﬁil, p‘;{l and p'jl denote the components of the desired
acceleration of the leader drone along Xy, Y and Zy axes.
The control action u; = (¢¢,6¢, p%) is then commanded to
the attitude controller of the leader drone, which computes
the desired rotor speeds of the leader drone based on the
above-generated control action u;. Refer to [26] for details.

B. Follower control using deep RL

This sub-section describes the deep RL architecture used
to control the follower drone. We first describe the notations
used in the context of RL, followed by a brief explanation
of SAC (for completeness of the paper) and the reward
formulation and control of the follower as follows:

1) Notations used in the context of RL:

Consider policy learning in continuous action spaces with
a Markov Decision Process (MDP) of tuple (S,A,p,r).
Where S and A are the continuous state and action spaces,
p is the probability distribution of next state s,.; given the
current state s; and the action a, and r; is the bounded
reward of each step or transition. A policy is defined by
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Fig. 2: Performance of SAC implemented on the follower.

n(ay|s;). Further, p,(s;) and p,(s;,a;) represent the state and
state-action marginals of the trajectory distribution created
by the policy & [24].

2) Soft Actor-Critic (SAC) - Brief Overview:

SAC is an off-policy deep RL algorithm to address con-
tinuous and discrete control problems with better explo-
ration capabilities [27]. SAC provides a trade-off between
exploitation and exploration with entropy regularization. The
increase in entropy results in higher exploration. More-
over, SAC can avoid bad local optimum as well [25].
The maximum entropy RL favors stochastic policies by
amplifying the objective with the expected entropy of policy
over p,(s,). Thus, the objective function of SAC consisting
of reward and an additional entropy term (H) is J(r) =
Zrlo E(s, ap~px [7(51,a1) + aH(n(-|s;))]. @ denotes the hyperpa-
rameter of the temperature coefficient controlling the optimal
policy stochasticity or focus of entropy. Now, we define the
three networks that are utilized in the SAC algorithm. They
are the state value function V, a soft Q function, and a policy
function 7 with parameter suffices as ¥, ®, and ®. The value
and the Q networks are trained by minimizing the squared
residual error and the soft Bellman residual as,

Jo¥) = Boyy-| 5(Vo5) = By o100
.
—logﬂq>(a,|s,)]) ]

Jo(©) = By ay-| 5(Qots.a) ~ (risi )

+ﬂMMmmmj

D is the distribution of the replay buffer, and the actions
are sampled with respect to the current policy. Further, min-
imization of the expected Kullback-Leibler (KL) divergence
is performed to estimate the policy parameters as follows,

)

A neural transformation is then utilized to reparameterize the
policy; see [25] for more details.

)
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3) Reward formulation and control of the follower drone:
The multi-drone CT task is started at + = O time step
and terminated after 1000 steps or if the distance of the



object/payload from the goal position becomes greater than
a certain threshold value d*"”. Each such event is called an
episode. We run multiple episodes (1000 in our simulation
setup) to train the SAC agent. We now define the states and
actions and formulate the reward function for the RL follower
drone.

Let sz, denote the state of the RL follower drone. The
state or observation or input of the RL follower drone is
Sgi = [ps,n, Pr.1, €0, €,] consisting of local measurements of
follower drone’s position, velocity (both linear and angular)
and minimal object information. The continuous output or
the action produced by the RL-based follower drone consists
of its desired control action viz. as, = uy = (¢?, Hﬂ,ﬁzf)
(desired roll, pitch and vertical acceleration of the follower
drone) at the time step 7. After the RL follower takes this
action, the system transitions to the next time step with
the next state s, receiving a reward ry(ss;, az,) for the
particular action it took. The reward is then formulated as,

-10]of - 7] - r0]jet -]

rf(Sf,t,af,t) =-10 |‘ng - pff

Note that this reward function ensures that the RL follower
drone agent mimics the leader drone’s control action without
inter-drone communication. This ensures effective waypoint
navigation and balance of moving CG. This entire work
assumes that the leader is perfect in terms of stable waypoint
navigation, which will, in turn, result in a stable overall
performance of the follower drone, thus ensuring effective
PID leader - RL follower cooperation. At each time step,
the desired control action of the follower drone (as; = uy =
(M,H;ﬂ, p"zlf)) is then commanded to the follower’s attitude
controller. Additionally, without the loss of the ability of the
follower to cooperate with the leader, the desired yaw angle
for the follower drone is assumed to be lﬁ;{ =0.

IV. RESULTS
A. Simulations

We implemented a unique custom RL environment to
simulate the multi-drone CT system with moving CG using
Python, our SAC Agent, and the OpenAl Gym framework.
The RL environment utilized the combined payload and
drone dynamics to simulate the system using rigid con-
nections between the drones and the payload/object. The
following parameters were used, learning rate for SAC RL
agent (actor, value and critic networks) - 0.0003, the discount
factor of y = 0.99, the entropy coefficient - @ = 0.3, replay
size - 1000000, two layer neural networks were used for
actor, critic and value networks with 256 neurons in each
layer, batch size - 256, d"™ = 2.5m, k, = [0.5,0.5,0.5]",
L = 0.12m, length of the object len = 0.34m, m, = 0.2kg,
m; =mys = 1kg, kg = [1,1,1]" and k; = [0,0,0]".

The SAC RL follower was trained for over a million time
steps, and the plot of average reward is shown in Fig. [2]
indicating the effectiveness of the trained controller. Figure
[3] shows the position of the object’s geometric center. The
CG was made to move along the X, axis with an oscillatory
angular velocity of 0.31rad/sec and was trained for this
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Fig. 3: Position of the geometric center of payload or
object being transported by two drones for adaptive and RL
controllers implemented on follower drone.

CG speed and constant mass of the object of m, = 0.2kg.
The leader control consists of a traditional PID controller to
reach the goal position, while the follower uses the proposed
deep RL-based controller. The overall system results of the
proposed RL-based controller are compared with an adaptive
controller [3] (designed to estimate both the CG and the
rate of change of CG). Thus, the deep RL follower-PID
leader system is compared with the adaptive follower-leader
system in the above-indicated figures. It can be observed
from the Figure [3] that the proposed deep RL-PID system
works better than an adaptive system with lesser oscillations,
peaks, and better settling time for the proposed method. This
is expected since the adaptive controller attempts to estimate
the CG and its rate and then feeds it to the controller, where
certain delays in estimation (of CG and its rate) can result
in oscillatory and spiky behavior, as seen in the results. See
reference [3] for more details.

We tested the RL controller for different CG speeds and
object mass variations. Note that the RL controller was
trained for slow CG and constant mass as indicated earlier.
As seen in Figures [4] and [3] that the proposed RL controller
and the overall system can stably tolerate CG speed (slow
to fast) and object mass variations (light and heavy).

B. Experiments

Refer to Fig. [ showing the experimental setup of two
Crazyflie 2.1 drones attached rigidly to a stick with a mov-
ing ball (symbolizing moving CG). Roll, pitch, and thrust
commands were sent to the Crazyflies for the leader and
the follower drones. It should be noted that Crazyflie nano
drones accept thrust commands from the range of 10000(0%)
to 60000(100%). Thus, the thrust or the vertical Zy axis



Position of payload P, for different CG speeds
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Fig. 4: Position of the geometric center of payload p, using
deep RL follower and PID leader tested for different speeds
of CG.

controller was designed as,
thrust; = thryg, + k; jﬁfl thrusty = thry,, + kp, ﬁ?f )

where thry,, and k,; are the hovering thrust and the vertical
control proportional constant.

The control actions of the leader and the follower drones
are then commanded to the attitude controller of the Crazyflie
platforms. Thus u; = (¢d,0;1, thrust;) is commanded by the
PID leader Crazyflie drone and uy = (¢;,H;{, thrusty) is
commanded by the RL follower Crazyflie. Note that p'jl and
¢7’ are computed by the leader’s PID controller while p’jf
and ¢)jf are derived from the SAC based RL controller of the
follower drone (trained in simulations). We do not command
desired pitch angles to the drones since the test stand is
restricted along the pitch axis and only allowed to roll and
change vertical heights. Hence, 6 = 6} = 0. The parameters
used for experiments are, k, = [I, 1,0.117, kg = [2,2,5],
ki = [0.2,0.1,0.1]7, k,, = 1000, thry, = 46000. It should
be noted that since p, is restricted to moving as can be seen
in Fig. |§| of the test stand, we use ¢; = pf — p; for the
leader’s PID controller instead of e, in equation |§|, where,
p! =10,0,0.08]" is the desired position of the leader drone
using PID controller. It should be noted that this does not
affect the system performance, given the leader’s task to
navigate towards a goal position. It can be observed from
Figures [7] and [§] that the two-drone CT system effectively
balances the moving CG (or ball) and tries to maintain zero
roll angle (to balance the ball).

V. CONCLUSION

This paper presented a leader-follower approach for con-
trolling a multi-drone CT system in the presence of time-
varying CG. The leader utilized a PID controller, while the
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Fig. 5: Position of the geometric center of payload p, using
deep RL follower and PID leader tested for the different mass
of the object being transported.

follower was controlled using a deep RL SAC controller. The
follower used its local position and velocity measurements
and minimal leader/object information to cooperatively trans-
port an object with the leader in the presence of moving
CG. The proposed method was shown to be effective when
compared with an adaptive controller based balancing frame-
work, wherein the proposed strategy also tolerated higher
CG speeds and different object mass variations. Prelimi-
nary experimental results of ball balance on a stick using
two drones also demonstrated the efficacy of the proposed
method. Future work consists of experimental validation of
actual flight (not test stand) of such systems with moving
CG.
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