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Abstract

With the rapid proliferation of artificial intelli-
gence, there is growing concern over its poten-
tial to exacerbate existing biases and societal
disparities and introduce novel ones. This is-
sue has prompted widespread attention from
academia, policymakers, industry, and civil so-
ciety. While evidence suggests that integrating
human perspectives can mitigate bias-related
issues in AI systems, it also introduces chal-
lenges associated with cognitive biases inherent
in human decision-making. Our research fo-
cuses on reviewing existing methodologies and
ongoing investigations aimed at understanding
annotation attributes that contribute to bias.

1 Introduction

With the recent rapid expansion of generative AI
models, we have witnessed their numerous bene-
fits and the emergence of substantial ethical con-
cerns (Thoppilan et al., 2022; Rudolph et al., 2023).
There has been an influx of remarkable and note-
worthy work that describes the issues of fairness,
toxicity and bias in the text generation process
(Bender et al., 2021; Abid et al., 2021; Seaborn
and Kim, 2023). Several models are deployed as
real-world solutions with a lack of informed con-
sideration of their social implications, especially
in sensitive fields such as healthcare, journalism,
law, and finance (Khowaja et al., 2023). Recent re-
search has revealed that these language models can
mimic human biases present in language, perpetuat-
ing prejudiced behaviour that dehumanizes certain
socio-demographic groups by deeming them more
negative or toxic (Havens et al., 2022; Blodgett
et al., 2020).

One of the proposed solutions to this issue has
been to introduce human annotators to label the
training corpora or validate pre-labelled datasets
and manually remove toxic (or biased) data entries
(Havens et al., 2022; Cabrera et al., 2014). It is com-
mon practice for machine learning systems to rely

on crowd-sourced label data for training and evalu-
ation (Wu et al., 2022). It is also well-known that
biases present in the label data can induce biases in
the trained models (Hettiachchi et al., 2021). There-
fore, while humans-in-the-loop for model training
may seem like an intuitive solution, it often intro-
duces additional biases due to inherent cognitive
biases in humans (Parmar et al., 2022). Crowdwork
annotation studies conducted on MTurk (and other
crowdwork platforms) where the participants come
from a specific demographic population can poten-
tially perpetuate populist viewpoints (Reinecke and
Gajos, 2015).

Prior work has established the pitfalls in human
rationality, as influenced by the lived experiences
and environment, which Herbert Simon termed
bounded rationality (Simon, 1957). Human bi-
ases have been identified to be the resulting gap
between rational behaviour and heuristically deter-
mined behaviour (Tversky and Kahneman, 1974;
Bojke et al., 2021). Over 180 cognitive biases
have been identified, spawning everything from
social interaction to judgment and decision-making
with research spanning over 70 years (Talboy and
Schneider, 2022). These tendencies or patterns can
lead to faulty reasoning, irrationality, and poten-
tially detrimental outcomes.

Bias sometimes emerges due to distractions, lack
of interest, or laziness among annotators regarding
the annotation task, leading them to select inaccu-
rate labels. However, more concerning is the label
bias stemming from informed and well-intentioned
annotators who consistently exhibit disagreement
(Hovy and Prabhumoye, 2021). Plank et al. (2014)
demonstrated that this form of bias emerges when
multiple correct labels are possible. For instance,
the term ’social media’ can be legitimately inter-
preted either as a noun phrase consisting of an
adjective and a noun or as a noun compound com-
prising two nouns. For example, Sap et al. (2019)
demonstrated that these biases mirror social and de-
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mographic variances. For instance, annotators tend
to evaluate utterances from various ethnic groups
disparately and may misinterpret harmless banter
as hate speech due to their unfamiliarity with the
communication norms of the original speakers.

Merely relying on a few gold-standard corpora
as training datasets or debiasing datasets is not
a sustainable long-term strategy since languages
undergo constant evolution. Thus, even a com-
prehensive sample can only encapsulate a momen-
tary snapshot, offering at best a transient solution
(Fromreide et al., 2014). We believe the design and
set-up of the crowd work task plays a pivotal role
in determining the goodness of data. In this work,
we look at bias-diminishing strategies and identify
the pressing questions in this area. Our central
goal is to show that there is a need for standard-
ized design principles when it comes to designing
crowdwork studies. Specifically, we concentrate on
the need for an HCI perspective in natural language
processing research.

2 Bias in AI Models

Generative AI’s propensity to amplify existing bi-
ases and create new ones has attracted considerable
attention across a range of communities, including
academics, policy-makers, industry, and civil soci-
ety. Much of the initial work focused on developing
quantitative definitions of fairness (Dwork et al.,
2012; Hardt et al., 2016; Joseph et al., 2016; Liu
et al., 2017; Verma and Rubin, 2018), and various
technical methods for ‘debiasing’ AI models (Agar-
wal et al., 2018; Bolukbasi et al., 2016; Friedler
et al., 2014; Zafar et al., 2017). When referring
to de-biasing, we use the definition ’removing un-
desired skews in the data and the model outcome,
such as by equalising a metric of interest between
groups’. “Unintended bias” is used to describe
the different sources of bias that are introduced
throughout an AI development life cycle (Lee and
Floridi, 2021; Suresh and Guttag, 2021), focusing
on not just the bias introduced, but also the harm it
causes (Crawford, 2016).

Recent studies have shifted focus from merely
identifying sources of bias in AI, such as flawed
data collection methods, to exploring the various
harms caused by these biases. This shift is sup-
ported by interdisciplinary research that highlights
the contextual nature of fairness. Factors such as
regional and cultural differences in lived experi-
ences significantly influence perceptions of fair-

ness, revealing that certain algorithmic behaviours
may only be deemed harmful in specific social or
cultural contexts (Green and Hu, 2018; Lee and
Singh, 2021; Sambasivan et al., 2021; Selbst et al.,
2019). Given these complexities, it is broadly ac-
knowledged that eliminating bias or ensuring abso-
lute fairness in AI systems is unfeasible (Klein-
berg et al., 2016; Mehrabi et al., 2021; Pleiss
et al., 2017). Instead, the objective is to minimize
fairness-related harms and other adverse impacts to
the greatest extent possible (Mehrabi et al., 2021;
Selbst et al., 2019; Sun et al., 2019). This perspec-
tive is further enhanced by recent interdisciplinary
studies (Lewicki et al., 2023), which underscore
the nuanced and multifaceted nature of fairness in
AI.

Identifying and acknowledging systemic biases
in data collection is a crucial step in mitigating their
impact on the systems that are trained using this
data, and is a critical prerequisite for achieving fair-
ness in algorithmic decision-making (Hajian et al.,
2016). While humans are integral to the system,
participating in data collection and various phases
thereof, it is imperative to emphasize that human
computation (Quinn and Bederson, 2011), the prac-
tice of harnessing human intelligence and cognitive
abilities as computational elements, holds potential
for addressing and mitigating these challenges.

3 Cognitive Bias among Annotators

As emphasized by Van Dis et al. (2023), ensur-
ing human accountability is essential in scientific
practice. The history of Large Language Models
(LLMs) has shown that they can produce inaccu-
rate information, or "hallucinations." To guarantee
the accuracy of information, it is necessary to im-
plement a rigorous verification and fact-checking
process led by experts. Consequently, the dis-
course highlights the critical need for accountabil-
ity in human-in-the-loop systems, particularly in
response to the new challenges posed by these sys-
tems.

The importance of understanding and mitigat-
ing biases in crowd data is highly relevant to re-
searchers, and others who rely on crowd data for
creating automated systems. Prior work has ex-
plored various approaches to promoting fairness
in machine learning, including the direct utiliza-
tion of crowdsourced data (Balayn et al., 2018),
leveraging crowds to assess perceived fairness of
features (Van Berkel et al., 2019, 2021), applying



pre-processing techniques such as removing sensi-
tive attributes, resampling data to remove discrim-
ination, and iteratively adjusting training weights
for sensitive groups (Calmon et al., 2017; Kamiran
and Calders, 2012; Krasanakis et al., 2018), as well
as employing active learning methods (Anahideh
et al., 2022).

The use of crowdsourcing for tasks such as data
annotation can inadvertently introduce cognitive
biases, stemming from the inherent design of the
task itself. We have identified three primary rea-
sons why annotated data can be problematic: (1)
Unethical spammers submit imprecise or even ar-
bitrary labels in order to maximize their financial
advantage (Eickhoff et al., 2012) or due to external
distractions. (2) Unqualified workers are, despite
their best efforts, unable to produce an acceptable
annotation quality (Eickhoff, 2014). (3) Malicious
workers purposefully aim to undermine or influ-
ence the labelling effort (Wang et al., 2013). How-
ever, we propose that there might be some factors
that have not been uncovered in prior literature.
Crowd-workers have their tasks cut out for them,
in cases where the nature of task design causes the
propagation of bias. Research on crowd work has
often focused on task accuracy whereas other fac-
tors such as biases in data have received limited
attention (Hettiachchi et al., 2021).

Cognitive biases originate from individuals’ own
"subjective social reality" which is often a product
of lived experiences. This makes cognitive bias a
deviation from the rationality of judgement, there-
fore it may consist of perceptions of other people
that are often illogical (Martie et al., 2005). An
individual’s construction of social reality, instead
of the objective input, may dictate their behaviour
and lead to perceptual distortion, inaccurate judg-
ment, illogical interpretation, or irrationality (Bless
and Fiedler, 2014). Past work has demonstrated
that cognitive bias can affect crowdsourced labour
and lead to significantly reduced result quality.
This performance detriment is subsequently propa-
gated into system ranking robustness and machine-
learned ranker efficacy (Eickhoff, 2018).

The annotation instructions provided to crowd-
workers can inadvertently prime them to exhibit
biases towards or against specific domain infor-
mation, which can be exacerbated by poorly de-
signed instructions. Furthermore, annotators are
often not fully informed about the true purpose
of the research, leading to an ambiguity effect that
can make the decision-making process appear more

challenging and less appealing due to the limited in-
formation available (Ellsberg, 1961). Additionally,
the phased revelation of information to annotators
can result in an anchoring effect, where certain
pieces of information are given disproportionate
attention based on the timing of their disclosure.
This underscores the importance of designing anno-
tation studies that mitigate cognitive biases among
workers, ensuring that the annotation process is fair,
transparent, and unbiased.

4 Crowd Control

Humans in the loop bring a lot of value to gener-
ative AI and AI systems. Therefore, the solution
to the issue of cognitive bias cannot be to remove
the annotators from the system. Human annotators
often bring expert judgements, that are valuable
in creating ground truth labels. For example, an-
notation of medical imagery cannot be performed
without the help of annotators who are medical pro-
fessionals. Expert guidance, lived experiences and
proximity to the problem domain make human an-
notators irreplaceable in the AI-training life-cycle.
The common strategies of accounting for biases of
annotators by employing qualification tests, demo-
graphic filters, incentives, and sophisticated worker
models may not be enough to overcome this source
of noise. There is therefore a need to control the
annotation task design settings, to minimize the
introduction of biases due to the cognitive biases of
annotators. While cognitive biases and their effects
on decision-making are well-known and widely
studied, we note that AI-assisted decision-making
presents a new decision-making paradigm. It is
important to study their role in this new paradigm,
both analytically and empirically.

Crowdwork platforms are often designed to po-
sition crowdworkers as interchangeable (Irani and
Silberman, 2013). While some forms of digital
work can be decomposed and distributed, the pre-
sumption that all crowdsourced dataset annotators
exercise near-identical capacities of perception and
judgement ignores the fact that social position,
identity, and experience shape how annotators’ ac-
tions.

Previous research has highlighted the signifi-
cance of the annotator population and the power dy-
namics inherent in platform-mediated crowdwork,
both of which can perpetuate cognitive biases (Díaz
et al., 2022). Building upon this foundation, we pro-
pose a novel framework to enhance transparency



and robustness in the process of designing a crowd-
work task. This approach holds promise for miti-
gating the impact of cognitive biases in crowdwork,
thereby contributing to more reliable and trustwor-
thy outcomes.

5 Counter-measures for Biases

To minimize bias in NLP annotation tasks, sev-
eral steps can be implemented. Firstly, recruiting
a diverse group of annotators from various back-
grounds can help balance individual biases. Provid-
ing clear and detailed guidelines ensures uniform
understanding across annotators. Training sessions,
followed by calibration discussions, align annota-
tor interpretations and reveal guideline ambigui-
ties. An iterative feedback loop allows for regular
quality checks and guideline adjustments based on
annotator experiences. Measuring inter-annotator
agreement with metrics like Cohen’s Kappa high-
lights discrepancies and areas needing clarification.
Annotation tasks should be designed to minimize
bias, such as by rotating text assignments among
annotators to avoid topical biases. Finally, a post-
annotation analysis can detect any remaining bi-
ases, ensuring the reliability and fairness of the
annotated data.

However, biases can arise at any point in the AI
lifecycle. It is therefore imperative for researchers
to maintain a meticulous approach throughout
the entire research process, encompassing various
facets such as the selection of appropriate datasets,
adherence to annotation schemes or labelling pro-
cedures, thoughtful considerations regarding data
representation methodologies, judicious selection
of algorithms tailored to the task at hand, and rig-
orous evaluation protocols for automated systems.
Furthermore, researchers must consider the tan-
gible real-world applications of their research en-
deavors. Particularly noteworthy is the imperative
to consciously direct efforts towards leveraging
technological advancements to uplift and empower
marginalized communities, as underscored by Asad
et al. (2019). Several studies critique existing bias
mitigation algorithms for their lack of effectiveness
due to inconsistent study protocols, inappropriate
datasets, and over-tuning to specific test sets. To
overcome these limitations, research needs to in-
troduce robust evaluation protocol, and sensible
metrics designed to evaluate algorithm robustness
against various biases (Shrestha et al., 2022).

Our future work derives from the insights pre-

sented in the preceding discussion. It posits that
the roots of bias within AI systems often traced
back to the initial stages of the annotation process,
particularly during the instruction phase. Although
not all cognitive biases are inherently detrimental,
a pressing need exists to advance our comprehen-
sion of how to devise annotation studies that align
with the principles of human-computer interaction
(HCI).

Our objective in this research endeavour is to
contribute substantively to the ongoing efforts
aimed at mitigating bias in crowd work. We intend
to achieve this by focusing on the refinement of
study design and instructional strategies. By incor-
porating insights from the HCI discipline, we aim
to cultivate a nuanced understanding of how to cre-
ate balanced annotation studies that minimize the
emergence of bias. Through this work, we aspire
to not only shed light on the pivotal role played by
the annotation phase in propagating or mitigating
bias but also to provide practical recommendations
and guidelines for researchers and practitioners en-
gaged in AI development and crowd work.

6 Conclusion

Our research highlights the critical importance of
considering annotation attributes that contribute to
bias in AI systems. The cognitive biases of annota-
tors, inherent in human decision-making, can per-
petuate and even amplify existing social disparities
in AI models. To mitigate these issues, a multidisci-
plinary approach is necessary not only in deploying
AI models but also in designing better systems for
annotation tasks. By bringing together experts from
diverse fields, including human-centered design,
ethics, social sciences, law, healthcare, AI/ML, ed-
ucation, communication, and community represen-
tation, we can design annotation systems that are
more inclusive, transparent, and fair. This collabo-
rative framework is essential for developing anno-
tation tasks that are free from biases, ambiguous,
and unclear instructions, and that take into account
the complexities of real-world data. Furthermore, a
multidisciplinary approach is crucial for deploying
AI models that are developed using these annotated
data, ensuring that they are fair, transparent, and
accountable. By acknowledging the limitations of
human annotators and addressing them through a
multidisciplinary approach, we can work towards a
more equitable digital landscape where AI systems
benefit both individuals and society as a whole.
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