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Learning Sparse High-Dimensional Matrix-Valued
Graphical Models From Dependent Data

Jitendra K. Tugnait

Abstract—We consider the problem of inferring the conditional
independence graph (CIG) of a sparse, high-dimensional, station-
ary matrix-variate Gaussian time series. All past work on high-
dimensional matrix graphical models assumes that independent
and identically distributed (i.i.d.) observations of the matrix-
variate are available. Here we allow dependent observations.
We consider a sparse-group lasso-based frequency-domain for-
mulation of the problem with a Kronecker-decomposable power
spectral density (PSD), and solve it via an alternating direction
method of multipliers (ADMM) approach. The problem is bi-
convex which is solved via flip-flop optimization. We provide
sufficient conditions for local convergence in the Frobenius norm
of the inverse PSD estimators to the true value. This result also
yields a rate of convergence. We illustrate our approach using
numerical examples utilizing both synthetic and real data.

Index Terms—Sparse graph learning; matrix graph estimation;
matrix time series; undirected graph; inverse spectral density
estimation.

I. INTRODUCTION

IN graphical models, graphs display the conditional in-
dependence structure of the variables, and learning the

graph structure is equivalent to learning a factorization of the
joint probability distribution of these random variables [1].
In a vector graphical model, the conditional statistical de-
pendency structure among p random variables x1, x2, · · · , xp,
is represented using an undirected graph G = (V, E) with
a set of p vertices (nodes) V = {1, 2, · · · , p} = [p], and
a corresponding set of (undirected) edges E ⊆ [p] × [p].
There is no edge between nodes i and j iff xi and xj are
conditionally independent given the remaining p-2 variables.
Suppose x ∼ Nr(m,Σ), with m ∈ Rp, Σ ∈ Rp×p, positive
definite Σ = Ω−1, where Nr(m,Σ) denotes a real-valued
Gaussian vector with mean m and covariance Σ. Then Ωij , the
(i, j)-th element of Ω, is zero iff xi and xj are conditionally
independent [1]. Of much interest is the high-dimensional case
where p is greater than or of the order of the data sample
size n [2]. In particular, in a high-dimensional setting, as
n ↑ ∞, p/n → c > 0, instead of p/n → 0 as in classical
low-dimensional statistical analysis framework [2, Chapter 1].
Such models for x have been extensively studied [2]–[5].
In this paper we address the problem of high-dimensional
matrix graph estimation. If p/n ≪ 1, we use the term low-
dimensional for such cases in this paper.

Consider a stationary p−dimensional multivariate Gaussian
time series x(t), t = 0,±1,±2, · · · , with ith component xi(t).
In the corresponding time series graph G = (V, E), there
is no edge between nodes i and j iff {xi(t)} and {xj(t)}
are conditionally independent given the remaining p-2 scalar
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series {xℓ(t), ℓ ∈ [p], ℓ ̸= i, ℓ ̸= j} [6]. Denote the
power spectral density (PSD) matrix of zero-mean {x(t)} by
Sx(f), where Sx(f) =

∑∞
τ=−∞ Rxx(τ)e

−ι2πfτ , Rxx(τ) =
E{x(t + τ)x⊤(t)} and ι =

√
−1. In [6] it was shown that

conditional independence of two time series components given
all other components of the zero-mean time series, is encoded
by zeros in the inverse PSD, that is, {i, j} ̸∈ E iff the (i, j)-
th element of S−1

x (f), [S−1
x (f)]ij = 0 for every f . In [6]

the low-dimensional case is addressed whereas nonparametric
frequency-domain approaches for graph estimation in high-
dimensional settings have been considered in [7]–[9]. Refs.
[7], [9] provide performance analysis and guarantees. Para-
metric modeling based approaches in low-dimensional settings
for conditional independence graph (CIG) estimation for time
series are discussed in [10]–[15]. These papers are focused on
algorithm development and they do not provide performance
guarantees (such as [9, Theorem 1]). Estimation of sparse
high-dimensional parametric time series models is discussed in
[16] where performance analysis in high-dimensions is carried
out, but the graphical modeling aspect is not addressed.

The need for matrix-valued graphical models arises in
several applications [17]–[27] (see also related work of [28]).
Here we observe matrix-valued time series {Z(t)} where
Z(t) ∈ Rp×q . If one vectorizes using vec(Z) where vec(Z) ∈
Rpq denotes column-wise vectorization of Z, then use of
vec(Z) will result in a pq-node graph with (pq) × (pq)
precision matrix, which could be ultra-high-dimensional, and it
ignores any structural information among rows and columns of
Z(t) [17]. With ⊗ denoting the matrix Kronecker product, the
basic idea in matrix-valued graphs is to model the covariance
of vec(Z) as Ψ⊗Σ with Ψ ∈ Rq×q and Σ ∈ Rp×p, reducing
the number of unknowns from O(p2q2) to O(p2 + q2), while
also preserving the structural information. Given data, one
estimates two precision matrices Ω = Σ−1 and Υ = Ψ−1.
In the matrix graph, conditional independence between Zij

and Zkℓ is determined by zeros in Ω and Υ [17]. This is the
Kronecker graph model [29], [30]: If G1 and G2 are graphs
with adjacency matrices A(G1) and A(G2), respectively, then
the Kronecker product graph (KPG) G1⊗G2 is defined as the
graph with adjacency matrix A(G1)⊗A(G2) [30, Def. 1]. In
our context the nonzero entries of Υ and Ω determine the
nonzero entries of the adjacency matrices of graphs G1 and
G2, respectively, with KPG G = G1 ⊗ G2.

Our objective in this paper is to learn a conditional
independence KPG associated with time-dependent matrix-
valued zero-mean p× q Gaussian sequence Z(t), under high-
dimensional settings, given observations of {Z(t)}n−1

t=0 .
A. Related Work

Prior work on KPG estimation under high-dimensional
settings [17]–[27] all assume that i.i.d. observations of Z
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are available for graphical modeling. Refs. [17], [18], [25]
all solve the same bi-convex optimization problem, using an
identical alternating minimization approach, but they differ in
theoretical analysis. Ref. [21] uses a Kronecker sum model
whereas we use a Kronecker-product separable covariance
structure (see (4) later) for {Z(t)}.

There is no prior reported work on high-dimensional matrix
graph estimation with dependent data using a nonparametric
approach. Parametric models using state-space models are
estimated in [31], [32] for KPG estimation in low-dimensional
settings using Bayesian approaches. Granger causality graphs
(not the same as CIGs) for matrix time series are estimated in
[33] using first-order AR models and in [34] using an infinite
dimensional model class (which includes ARMAX models of
any order), both in low-dimensional settings (i.e., pq/n ≪ 1
and/or limn→∞ pq/n = 0, with pq representing number of
nodes in KPG). In contrast, this paper considers conditional
independence KPG’s under high-dimensional settings. Ref.
[35] investigates sum of Kronecker product AR models for
matrix times series with no consideration of CIGs. Estimation
of a KPG model corresponding to an AR Gaussian process
is investigated in [36] in low-dimensional settings with no
performance analysis or guarantees. A distinguishing aspect of
[36] is that it imposes a Kronecker product decomposition on
the support of the inverse PSD, not the inverse PSD of the time
series. With regard to [34], [36], we note that in the synthetic
data example using an ARMA model in [34, Sec. 6.1, Fig. 2],
number of nodes is 16 (= pq) and sample size is n = 3900,
leading to pq/n = 0.004, a low-dimensional setting. The real
data example of [34, Sec. 6.2] does have pq =96 and n = 500,
implying pq/n = 0.19. The distinction is that the ground truth
is known in synthetic data examples permitting evaluation of
the efficacy of the considered approach, whereas such is not
the case in real data examples. Thus [34] does not address the
high-dimensional scenario as relatively high pq/n = 0.19 in
their real data example is not supported by any commensurate
synthetic data example. In contrast, we provide such support,
as seen in Table I, Sec. VI-A of this paper, where pq =225
and varying n ∈ {64, 128, 256, 512, 1024, 2148}, implying
pq/n = {3.5, 1.76, 0.88, 0.44, 0.22, 0.11}. In our real data
example (Sec. VI-B), we have pq = 88 and n = 364 with
pq/n = 0.24. In [36, Sec. 6.1], the synthetic data example
has pq = 36 and n =1000 or 2000 (pq/n=0.036 or 0.018),
again a low-dimensional scenario. The real data example of
[36, Sec. 6.2] has pq = 36 and n = 389 (pq/n = 0.09). The
comments made pertaining to [34] regarding differences in
pq/n ratios for real and synthetic data examples, apply to [36]
as well. Finally, [37] considers a first-order matrix AR model
for matrix time series where when vectorized, the vectorized
time-series AR coefficient is expressed as a Kronecker product.
Low-dimensional asymptotics are provided in [37] and the
issue of the underlying CIG is not addressed.

A frequency-domain formulation is used in this paper,
following the approach of [9] for dependent vector time series.
The resulting optimization problem is bi-convex, as in [17],
[18], [25], but with complex variables, and is solved via an
alternating minimization approach using Wirtinger calculus
[38] for optimization of real functions of complex variables.

A preliminary version of parts of this paper appear in a
workshop paper [39]. Theorems 1-3 and their proofs, and the
real data example do not appear in [39].
B. Our Contributions, Outline and Notation

The underlying system model including a generative model
(5) for time-dependent matrix Gaussian sequence, is presented
in Sec. II. A frequency-domain based penalized log-likelihood
objective function is derived in Sec. III for estimation of the
matrix graph, resulting in a Kronecker-decomposable power
spectral density representation (15). A flip-flop algorithm
based on two ADMM algorithms is presented in Sec. IV to
optimize the bi-convex objective function. In Sec. V the per-
formance of the proposed optimization algorithm is analyzed
under a high-dimensional large sample setting in Theorems
1-3, patterned after [22] and exploiting some results from [9],
[40], [41]. Numerical results are presented in Sec. VI and
proofs of Theorems 1, 2 and 3 are given in three appendices.

Notation. The superscripts ∗, ⊤ and H denote the com-
plex conjugate, transpose and conjugate transpose operations,
respectively, R and C denote the sets of real and complex
numbers, respectively, and Re(x) is the real part of x ∈ Cp.
We use ι :=

√
−1. A p × p identity matrix is denoted

by Ip. Given A ∈ Cp×p, ϕmin(A), ϕmax(A), |A|, tr(A)
and etr(A) denote the minimum eigenvalue, maximum eigen-
value, determinant, trace, and exponential of trace of A,
respectively. We use A ⪰ 0 and A ≻ 0 to denote that
Hermitian A is positive semi-definite and positive definite,
respectively. For B ∈ Cp×q , we define the operator norm,
the Frobenius norm and the vectorized ℓ1 norm, respectively,
as ∥B∥ =

√
ϕmax(BHB), ∥B∥F =

√
tr(BHB) and

∥B∥1 =
∑

i,j |Bij |, where Bij is the (i, j)-th element of
B, also denoted by [B]ij . For vector θ ∈ Cp, we define
∥θ∥1 =

∑p
i=1 |θi| and ∥θ∥2 =

√∑p
i=1 |θi|2, and we also use

∥θ∥ for ∥θ∥2. Given A ∈ Cp×p, A+ = diag(A) is a diagonal
matrix with the same diagonal as A, and A− = A − A+

is A with all its diagonal elements set to zero. We use
A−∗ for (A∗)−1, the inverse of complex conjugate of A,
and A−⊤ for (A⊤)−1. Given A ∈ Cn×p, column vector
vec(A) ∈ Cnp denotes the vectorization of A which stacks
the columns of the matrix A. The notation yn = OP (xn) for
random yn,xn ∈ Cp means that for any ε > 0, there exists
0 < T <∞ such that P (∥yn∥ ≤ T∥xn∥) ≥ 1−ε ∀n ≥ 1. The
notation x ∼ Nc(m,Σ) denotes a complex random vector x
that is circularly symmetric (proper), complex Gaussian with
mean m and covariance Σ, and x ∼ Nr(m,Σ) denotes real-
valued Gaussian x with mean m and covariance Σ.

II. SYSTEM MODEL

A random matrix Z ∈ Rp×q is said to have a matrix normal
(Gaussian) distribution if its pdf f(Z|M ,Σ,Ψ), characterized
by M ∈ Rp×q , Σ ∈ Rp×p, Ψ ∈ Rq×q , is [42, Chap. 2]

f(Z|M ,Σ,Ψ) =
etr
(
− 1

2 (Z −M)Ψ−1(Z −M)⊤Σ−1
)

(2π)pq/2 |Σ|q/2 |Ψ|p/2
.

(1)
We will use the notation Z ∼ MVN (M ,Σ,Ψ) for the
matrix normal distribution specified by (1). Equivalently,

vec(Z) ∼ Nr

(
vec(M),Ψ⊗Σ

)
. (2)
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Here Ψ is the row covariance matrix and Σ is the col-
umn covariance matrix [42] since the kth column Z·k ∼
Nr(0, [Ψ]kkΣ) and the ith row Z⊤

i· ∼ Nr(0, [Σ]iiΨ).
With Z ∈ Rp×q modeled as a zero-mean matrix normal

vector and z = vec(Z), [17] assumes

E{zz⊤} =Ψ⊗Σ , (3)

implying a separable covariance structure [28]. Let Ω = Σ−1

and Υ = Ψ−1 denote the respective precision matrices. Then
Zij and Zkℓ are conditionally independent given remaining
entries in Z iff (i) at least one of Ωik and Υjℓ is zero when
i ̸= k, j ̸= ℓ, (ii) Ωik = 0 when i ̸= k, j = ℓ, and (iii)
Υjℓ = 0 when i = k, j ̸= ℓ [17].

In this paper we will model our time-dependent zero-
mean matrix-valued, stationary, p×q Gaussian sequence Z(t),
z(t) = vec(Z(t)), as having the separable covariance structure
given by

E{z(t+ τ)z⊤(t)} =Ψ(τ)⊗Σ (4)

where Ψ(τ), τ = 0,±1, · · · models time-dependence while
Σ ≻ 0 is fixed. Under (4), the row covariance sequence is
E{Z⊤

i· (t+τ)Zi·(t)} = [Σ]ii Ψ(τ) and the column covariance
sequence is E{Z·k(t + τ)Z⊤

·k(t)} = Σ [Ψ(τ)]kk. Thus we
allow possible temporal dependence in matrix observations
via Ψ(τ). With {e(t)} i.i.d., e(t) ∼ Nr(0, Ipq), a generative
model for z(t) is given by

z(t) =

L∑
i=0

(Bi ⊗ F )e(t− i) , Bi ∈ Rq×q , F ∈ Rp×p (5)

⇒ E{z(t+ τ)z⊤(t)} =
( L∑
i=0

BiB
⊤
i−τ︸ ︷︷ ︸

=Ψ(τ)

)
⊗ (FF⊤)︸ ︷︷ ︸

=Σ

. (6)

In (5), we can have L ↑ ∞ so long as assumption (A2) stated
in Sec. III holds. In sequel, we exploit (4) in our approach
without considering (6), the latter is used only for synthetic
data generation.

The PSD of {z(t)} is Sz(f) = S̄(f) ⊗Σ where S̄(f) =∑
τ Ψ(τ)e−ι2πfτ . Then S−1

z (f) = S̄−1(f) ⊗ Σ−1, and by
[6], in the pq−node graph G = (V, E), |V | = pq, associated
with {z(t)}, edge {i, j} ̸∈ E iff [S−1

z (f)]ij = 0 for every
f . This does not account for the separable structure of our
model. Noting that S̄−1(f), f ∈ [0, 0.5], plays the role of Υ =
Ψ−1, using [6], [17] (also [30, Observation 1]), we deduce that
{Zij(t)} and {Zkℓ(t)} are conditionally independent given
remaining entries in {Z(t)} iff (i) at least one of Ωik and
[S̄−1(f)]jℓ, for every f ∈ [0, 0.5], is zero when i ̸= k, j ̸= ℓ,
(ii) Ωik = 0 when i ̸= k, j = ℓ, and (iii) [S̄−1(f)]jℓ = 0 , for
every f ∈ [0, 0.5] when i = k, j ̸= ℓ. That is, we have a KPG
G = G1⊗G2 where the adjacency matrix of G1 is specified by
the nonzero entries of S̄−1(f) ∀f ∈ [0, 0.5], and that of G2
follows from the nonzero entries of Ω.

Our objective is to learn the graph associated with {Z(t)}
under some sparsity constraints on Ω and S̄−1(f), f ∈
[0, 0.5]. Since αS̄−1(f) ⊗ (α−1Ω) = S̄−1(f) ⊗ Ω, to re-
solve scaling ambiguity, we could normalize ∥Ω∥F = 1 or
∥S̄−1(f1) · · · S̄−1(fM )]∥F = 1 for suitably placed M
frequencies in (0, 0.5); we will follow the latter as stated later
in step 2 of Sec. IV-A.

III. PENALIZED NEGATIVE LOG-LIKELIHOOD

Given z(t) for t = 0, 1, 2, · · · , n − 1. Define the (nor-
malized) DFT’s dz(fm) and Dz(fm) of z(t) and Z(t),
respectively, as (recall ι =

√
−1),

dz(fm) =
1√
n

n−1∑
t=0

z(t) exp (−ι2πfmt) , (7)

Dz(fm) =
1√
n

n−1∑
t=0

Z(t) exp (−ι2πfmt) , (8)

fm =m/n, m = 0, 1, · · · , n− 1. (9)

Then dz(fm) = vec(Dz(fm)). It is established in [43]
(see also [9]) that, for even n, the set of random vectors
{dz(fm)}n/2m=0 is a sufficient statistic for any inference prob-
lem based on dataset {z(t)}n−1

t=0 . Suppose Sz(fk) is locally
smooth, so that Sz(fk) is (approximately) constant over
K = 2mt +1 consecutive frequency points fm’s where mt is
the half-window size; in our case, this assumption applies to
S̄(fk). Pick M =

⌊
(n2 −mt − 1)/K

⌋
and

f̃k =
(
(k − 1)K +mt + 1

)
/n, k ∈ [M ], (10)

yielding M equally spaced frequencies f̃k in the interval
(0, 0.5). We state the local smoothness assumption as assump-
tion (A1).

(A1) Assume that for ℓ = −mt,−mt + 1, · · · ,mt,

Sz(f̃k,ℓ) = Sz(f̃k) , (11)

where f̃k,ℓ =
(
(k − 1)K +mt + 1 + ℓ

)
/n . (12)

We will invoke [44, Theorem 4.4.1] for distribution of
dz(fm). To this end we need assumption (A2).

(A2) The matrix time series {Z(t)}∞t=−∞ is zero-mean sta-
tionary, Gaussian, satisfying

∑∞
τ=−∞ |[Ψ(τ)]kℓ| <∞ for

every k, ℓ ∈ [q].

By [44, Theorem 4.4.1], under assumption (A1), asymptoti-
cally (as n→∞), dz(fm), m = 1, 2, · · · , (n/2)−1, (n even),
are independent proper, complex Gaussian Nc(0,Sz(fm))
random vectors, respectively. Denote the joint probability
density function of dz(fm), m = 1, 2, · · · , (n/2) − 1, as
fD(D) where D = {Dz(fm)}(n/2)−1

m=1 . Then we have [9],
[43]

fD(D) =

M∏
k=1

[
mt∏

ℓ=−mt

exp (−gkl − g∗kl)

πpq |Bk|1/2|B∗
k|1/2

]
, (13)

gkl =
1

2
dH
z (f̃k,ℓ)

(
S̄−1(f̃k)⊗Σ−1

)
dz(f̃k,ℓ) , (14)

Bk =S̄(f̃k)⊗Σ . (15)

Using tr
(
A⊤BCG⊤) = (vec(A))⊤(G ⊗ B)vec(C) and

parametrizing in terms of Φk := S̄−1(f̃k) and Ω = Σ−1,
we have

gkl =
1

2
DH

z (f̃k,ℓ)Σ
−1Dz(f̃k,ℓ)(S̄

−1(f̃k))
⊤

=
1

2
DH

z (f̃k,ℓ)ΩDz(f̃k,ℓ)Φ
∗
k . (16)
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Define q × (qM) matrix Γ as

Γ =[Φ1 Φ2 · · · ΦM ] . (17)

Using |Bk| = |S̄(f̃k) ⊗ Σ| = |S̄(f̃k)|p |Σ|q , up to some
constants the negative log-likelihood follows from (13) as

− 1

KMpq
ln fD(D) ∝ G(Ω,Γ,Γ∗)

:=− 1

p
ln(|Ω|)− 1

2Mq

M∑
k=1

(
ln(|Φk|) + ln(|Φ∗

k|)
)

+
1

2Mq

M∑
k=1

tr(Ak +A∗
k) , (18)

Ak =
1

Kp

mt∑
ℓ=−mt

DH
z (f̃k,ℓ)ΩDz(f̃k,ℓ)Φ

∗
k . (19)

In the high-dimension case, to enforce sparsity and to
make the problem well-conditioned, we propose to minimize
a penalized version L(Ω,Γ) w.r.t. Ω and Γ,

L(Ω,Γ) =G(Ω,Γ,Γ∗) + Pp(Ω) + Pq({Φ}), (20)

Pp(Ω) =λp

p∑
i ̸=j

|Ωij | = λp∥Ω−∥1 , (21)

Pq({Φ}) =αλq

M∑
k=1

q∑
i ̸=j

∣∣[Φk]ij
∣∣

+ (1− α)
√
Mλq

q∑
i ̸=j

∥Φ(ij)∥ , (22)

Φ(ij) :=[[Φ1]ij [Φ2]ij · · · [ΦM ]ij ]
⊤ ∈ CM , (23)

where {Φ} := {Φk}Mk=1, α ∈ [0, 1], λp, λq > 0 are tuning
parameters, Pp(Ω) is the lasso constraint, Pq({Φ}) is a sparse-
group lasso sparsity constraint (cf. [45]–[47]) and

√
M in

Pq({Φ}) reflects number of group variables [47].

IV. OPTIMIZATION

The objective function L(Ω,Γ) in (20) is biconvex:
(strictly) convex in Γ, Φk ≻ 0, for fixed Ω, and (strictly)
convex in Ω, Ω ≻ 0, for fixed Γ. As is a general approach for
biconvex function optimization [48], we will use an iterative
and alternating minimization approach where we optimize
w.r.t. Ω with Γ fixed, and then optimize w.r.t. Γ with Ω fixed
at the last optimized value, and repeat the two optimizations
(flip-flop). The algorithm is only guaranteed to converge to a
local stationary point of L(Ω,Γ) [48, Sec. 4.2.1].

With Γ̂ = [Φ̂1 Φ̂2 · · · Φ̂M ] denoting the estimate of Γ, fix
Γ = Γ̂ and let L1(Ω) denote L(Ω, Γ̂) up to some irrelevant
constants. We minimize L1(Ω) w.r.t. Ω to estimate Ω̂, where

L1(Ω) = −1

p
ln(|Ω|) + 1

p
tr
(
ΩΘ̌

)
+ Pp(Ω) , (24)

Θ̌ =
1

MKq

M∑
k=1

mt∑
ℓ=−mt

Re
{
Dz(f̃k,ℓ)Φ̂

∗
kD

H
z (f̃k,ℓ)

}
. (25)

Fix Ω = Ω̂ and and let L2(Γ) denote L(Ω̂,Γ) up to some
irrelevant constants. We minimize L2(Γ) w.r.t. Γ to obtain
estimate Γ̂, where

L2(Γ) = −
1

2Mq

M∑
k=1

(ln(|Φk|) + ln(|Φ∗
k|))

+
1

2Mq

M∑
k=1

tr
(
Θ̃kΦk + Θ̃∗

kΦ
∗
k

)
+ Pq({Φ}) , (26)

Θ̃k =
1

Kp

mt∑
ℓ=−mt

D⊤
z (f̃k,ℓ)Ω̂D∗

z(f̃k,ℓ) . (27)

Our optimization algorithm is as in Sec. IV-A.
A. Flip-Flop Optimization

1. Initialize m = 1, Ω(0) = Ip, Φ(0)
k = Iq , k ∈ [M ].

2. Set Ω̂ = Ω(m−1) in (27). Use the iterative ADMM
algorithm [49], as outlined in [9, Sec. 4] and based on
Wirtinger calculus [38], to minimize L2(Γ) (given by
(26)) w.r.t. Γ to obtain estimates Φ

(m)
k , k ∈ [M ], the

M component matrices of the estimate Γ(m). Details
are in Sec. IV-B and step II of Sec. IV-D. Normalize
Γ(m) ← Γ(m)/∥Γ(m)∥F to resolve the scaling ambiguity.
Let m← m+ 1.

3. Set Γ̂ = Γ(m) in (25). Use the ADMM algorithm of [40,
Sec. III] (with α = 1 therein, no group-lasso penalty)
to minimize L1(Ω) w.r.t. Ω, to obtain estimate Ω(m).
Details are in Sec. IV-C and step IV of Sec. IV-D.

4. Repeat steps 2 and 3 until convergence.

B. ADMM for Estimation of Γ
After variable splitting, the scaled augmented Lagrangian

for minimization of L2(Γ) is [9]

LaL
2 ({Φ}, {W }, {U}) = 1

2Mq

M∑
k=1

tr
(
Θ̃kΦk + Θ̃∗

kΦ
∗
k

)
− 1

2Mq

M∑
k=1

(ln(|Φk|) + ln(|Φ∗
k|)) + Pq({W })

+
ρ

2

M∑
k=1

∥Φk −Wk +Uk∥2F

where {U} = {Uk}Mk=1 are dual variables, similarly
{Wk}Mk=1 are the “split” variables, ρ > 0 is the
penalty parameter, Uk,Wk ∈ Cq×q . Given the results
{Φ̃(i)}, {W (i)}, {U (i)} of the ith iteration, in the (i + 1)st
iteration, the ADMM algorithm executes the following
three updates, given in Steps (a)-(c), until convergence. To
distinguish between the estimates Γ(m) and Φ

(m)
k of the mth

iteration of the flip-flip optimization and the estimate of the
ith iteration of the ADMM algorithm, we use Φ̃

(i)
k for the

latter.
Step (a). {Φ̃(i+1)} ← argmin{Φ} LaL

2 ({Φ}, {W (i)}, {U (i)}).
Up to some terms not dependent upon Φk’s [9]

LaL
2 ({Φ}, {W (i)}, {U (i))

=
1

2Mq

M∑
k=1

LaL
2k (Φk,W

(i)
k ,U

(i)
k ) ,
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LaL
2k (Φk,W

(i)
k ,U

(i)
k ) = − ln(|Φk|)− ln(|Φ∗

k|)
+ tr

(
Θ̃kΦk + Θ̃∗

kΦ
∗
k

)
+Mqρ∥Φk −W

(i)
k +U

(i)
k ∥

2
F ,

that is, the objective function is separable in k. For each k,
the solution is as follows [9]. Let P∆PH denote the eigen-
decomposition of the Hermitian Θ̃k −Mqρ

(
W

(i)
k −U

(i)
k

)
with diagonal matrix ∆ consisting of the eigenvalues and
PPH = PHP = Iq . Then Φ̃

(i+1)
k = P ∆̃PH where ∆̃

is the diagonal matrix with ℓth diagonal element

[∆̃]ℓℓ =
−[∆]ℓℓ +

√
([∆]ℓℓ)2 + 4Mqρ

2Mqρ
.

Step (b). Here we have

{W(i+1)} ← arg min
{W }
LaL
2 ({Φ̃(i+1)}, {W }, {U (i)}).

We update {W (i+1)
k }Mk=1 as the minimizer w.r.t. {W }Mk=1 of

ρ

2

M∑
k=1

∥Wk − (Φ̃
(i+1)
k +U

(i)
k )∥2F + Pq({W }).

The solution follows from [9, Lemma 1]. Let Gk = Φ̃
(i+1)
k +

U
(i)
k ∈ Cq×q and let G(jℓ) ∈ CM be defined as in (23), but

based on Gk’s. Then the update of {W } is given by

[W
(i+1)
k ]jℓ =[Gk]jj , if j = ℓ

[W
(i+1)
k ]jℓ =

(
1− (1− α)λq

√
M

ρ∥SF (G(jℓ), αλq/ρ)∥

)
+

× SF

(
[G(jℓ)]k,

αλq

ρ

)
, if j ̸= ℓ ,

where (b)+ := max(0, b), SF (b, β) := (1 − β/|b|)+b (for
complex scalar b ̸= 0) is the soft-thresholding scalar operator,
and [SF (a, β)]j = S(aj , β) with aj = [a]j , is the soft-
thresholding vector operator.
Step (c). {U (i+1)} ← {U (i)}+

(
{Φ̃(i+1)} − {W (i+1)}

)
.

C. ADMM for Estimation of Ω
Using variable splitting, consider

min
Ω≻0,W̄

{1
p

(
tr(Θ̌Ω)− ln(|Ω|)

)
+ λp∥W̄−∥1

}
subject to Ω = W̄ . The scaled augmented Lagrangian for this
problem is [49]

LaL
1 (Ω, W̄ , Ū) = (1/p)

(
tr(Θ̌Ω)− ln(|Ω|)

)
+ λp∥W̄−∥1 +

ρ

2
∥Ω− W̄ + Ū∥2F

where Ū is the dual variable, and ρ > 0 is the penalty pa-
rameter. Given the results Ω̃(i), W̄ (i), Ū (i) of the ith iteration,
in the (i + 1)st iteration, an ADMM algorithm executes the
following three updates until convergence:
Step (a). Ω̃(i+1) ← argminΩ LaL

1 (Ω, W̄ (i), Ū (i)). We
choose Ω to minimize

tr(Θ̌Ω)− ln(|Ω|) + pρ

2
∥Ω− W̄ (i) + Ū (i)∥2F .

The solution is as follows [40]. Let QJQ⊤ denote the eigen-
decomposition of Θ̌−pρ

(
W̄ (i) − Ū (i)

)
with diagonal matrix

J consisting of the eigenvalues and QQ⊤ = Q⊤Q = Iq .
Then Ω̃(i+1) = QJ̃Q⊤ where J̃ is the diagonal matrix with
ℓth diagonal element

[J̃ ]ℓℓ =
−[J ]ℓℓ +

√
([J ]ℓℓ)2 + 4pρ

2pρ
.

Step (b). W̄ (i+1) ← argminW̄ LaL
1 (Ω̃(i+1), W̄ , Ū (i)). We

update W̄ (i+1) as the minimizer w.r.t. W̄ of

λp ∥W̄−∥1 +
ρ

2
∥Ω̃(i+1) − W̄ + Ū (i)∥2F .

The solution is soft thresholding given by [40]

[W̄ ]
(i+1)
jk =

{
[Ω̃(i+1) − Ū (i)]jj if j = k

SF ([Ω̃
(i+1) − Ū (i)]jk,

λp

ρ ) if j ̸= k

where SF () denotes soft-thresholding as in Sec. IV-C.
Step (c). Ū (i+1) ← Ū (i) +

(
Ω̃(i+1) − W̄ (i+1)

)
.

D. Practical Implementation
Here we present our implementation of the algorithms of

Secs. IV-A-IV-C that was used in our numerical results.
I. Parameters µ̄ = 10, τrel = τabs = 10−4, τff = 10−5,

mmax = 20, imax = 100 and ρ(0) = 2. Initialize m = 1,
Ω(0) = Ip, Φ(0)

k = Iq , k ∈ [M ].
II. For m = 1, 2, · · · ,mmax, do steps III-IV.

III. Set Ω̂ = Ω(m−1) in (27). Pick ρ = ρ(0), Φ̃(0)
k = Iq for

k ∈ [M ]. For i = 0, 1, · · · , imax, do steps 1-6 below.
1. For k ∈ [M ], update Φk as Φ̃

(i+1)
k as in step (a), Sec.

IV-B, then update Wk as W
(i+1)
k as in step (b), Sec.

IV-B, and then update Uk as U
(i+1)
k as in step (c),

Sec. IV-B, all with ρ = ρ(i).
2. Check for convergence following [9, Sec. 4.1.5]. De-

fine the primal residual matrix E
(i+1)
pri ∈ Cq×(qM) at

the (i+ 1)st iteration as

E
(i+1)
pri =

[
Φ̃

(i+1)
1 −W

(i+1)
1 , Φ̃

(i+1)
2 −W

(i+1)
2 , · · · ,

Φ̃
(i+1)
M −W

(i+1)
M

]
and the dual residual matrix E

(i+1)
dual ∈ Cq×(qM) at the

(i+ 1)st iteration as

E
(i+1)
dual =ρ(i)

[
W

(i+1)
1 −W

(i)
1 , W

(i+1)
2 −W

(i)
2 , · · · ,

W
(i+1)
M −W

(i)
M

]
.

Let e1 = ∥[Φ̃(i+1)
1 Φ̃

(i+1)
2 · · · Φ̃

(i+1)
M ]∥F ,

e2 = ∥[W (i+1)
1 W

(i+1)
2 · · · W

(i+1)
M ]∥F , e3 =

∥[U (i+1)
1 U

(i+1)
2 · · · U (i+1)

M ]∥F , τpri = q
√
M τabs +

τrel max(e1, e2) and τdual = q
√
M τabs+τrel e3/ρ

(i).
If ∥E(i+1)

pri ∥F ≤ τpri and ∥E(i+1)
dual ∥F ≤ τdual, the

convergence criterion is met. If the convergence cri-
terion is met or if i + 1 > imax, exit to step IV after
setting Φ

(m)
k = Φ̃

(i+1)
k , k ∈ [M ], and then normalizing

Γ(m) ← Γ(m)/∥Γ(m)∥F , else continue,
3. Update variable penalty parameter ρ as

ρ(i+1) =


2ρ(i) if ∥E(i+1)

pri ∥F > µ̄∥E(i+1)
dual ∥F

ρ(i)/2 if ∥E(i+1)
dual ∥F > µ̄∥E(i+1)

pri ∥F
ρ(i) otherwise.
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For k ∈ [M ], set U
(i+1)
k = U

(i)
k /2 if ∥E(i+1)

pri ∥F >

µ̄∥E(i+1)
dual ∥F and U

(i+1)
k = 2U

(i)
k if ∥E(i+1)

dual ∥F >

µ̄∥E(i+1)
pri ∥F .

4. Set i← i+ 1 and return to step 2.
IV. Set Γ̂ = Γ(m) in (25). Pick ρ = ρ(0), Ω̃(0) = Ip. For

i = 0, 1, · · · , imax, do steps i-v below.
i. Update Ω as Ω̃(i+1) as in step (a), Sec. IV-C, then

update W̄ as W̄ (i+1) as in step (b), Sec. IV-C, and
then update Ū as Ū (i+1) as in step (c), Sec. IV-C, all
with ρ = ρ(i).

ii. Check for convergence following [40, Sec. II-A]. De-
fine the primal residual matrix H

(i+1)
pri = Ω̃(i+1) −

W̄ (i+1) and the dual residual matrix H
(i+1)
dual =

ρ(i)
[
W̄ (i+1) − W̄ (i)

]
where H

(i+1)
pri ,H

(i+1)
dual ∈ Cp×p.

Let

τpri =p τabs + τrel max(∥Ω̃(i+1)∥F , ∥W̃ (i+1)∥F )
τdual =p τabs + τrel ∥Ũ (i+1)∥F /ρ(i) .

If ∥H(i+1)
pri ∥F ≤ τpri and ∥H(i+1)

dual ∥F ≤ τdual, the
convergence criterion is met. If the convergence crite-
rion is met or if i + 1 > imax, exit to step V after
setting Ω(m) = Ω̃(i+1), else continue.

iii. Update variable penalty parameter ρ as

ρ(i+1) =


2ρ(i) if ∥H(i+1)

pri ∥F > µ̄∥H(i+1)
dual ∥F

ρ(i)/2 if ∥H(i+1)
dual ∥F > µ̄∥H(i+1)

pri ∥F
ρ(i) otherwise

Set Ū (i+1) = Ū (i)/2 if ∥H(i+1)
pri ∥F > µ̄∥H(i+1)

dual ∥F
and Ū (i+1) = 2Ū (i) if ∥H(i+1)

dual ∥F > µ̄∥H(i+1)
pri ∥F .

iv. Set i← i+ 1 and return to step ii.
V. Check for convergence of the flip-flop algorithm. If
∥Γ(m) − Γ(m−1)∥F /∥Γ(m−1)∥F ≤ τff and ∥Ω(m) −
Ω(m−1)∥F /∥Ω(m−1)∥F ≤ τff , or m > mmax, go to
step VI, else set m← m+ 1 and return to step III.

VI. The final estimates are given by Ω̂ = Ω(m) and Γ̂ =
Γ(m), and EΩ̂ = {(i, j) : |[Ω̂]ij | > 0} and EΓ̂ = {(i, j) :

∥Φ̂(ij)∥ > 0} are the estimated edgesets for Ω and Γ
respectively.

Remark 1. We terminate the flip-flop optimization (step V)
when relative improvements in new updates of both Ω(m) and
Γ(m) are below the threshold τff , or the maximum number
of iterations in m is reached. The ADMM algorithms are
terminated when both primary and dual residuals are below the
respective tolerances, or the maximum number of iterations in
i is reached; here we follow [49, Sec. 3.3.1] (see also [40] and
[9]). The variable penalty ρ(i) follows the recommendations in
[49, Sec. 3.4.1]. The most expensive computation in Sec. IV-B
is in step (a) requiring the eigen-decomposition of M q × q
matrices, with computational complexity O(Mq3). Similarly,
the most expensive computation in Sec. IV-C is in step (a)
requiring the eigen-decomposition of a p×p matrix, with com-
putational complexity O(p3). Thus the overall computational
complexity of our proposed approach is O(Mq3 + p3). □

E. BIC for selection of λp, λq (and α)

Given n, K and M , the Bayesian information criterion
(BIC) is given by (see also [9])

BIC(λp, λq, α) = −2KMq ln(|Ω̂|)

+ 2Kp

M∑
k=1

(
− ln(|Φ̂k|) + p−1 Re

(
tr(Âk)

))
+ ln(2KM)

(
|Ω̂|0/2 +

M∑
k=1

|Φ̂k|0
)

(28)

where Âk is given by (19) with Ω and Φk therein re-
placed with Ω̂ and Φ̂k, respectively, |H|0 denotes num-
ber of nonzero elements in H , 2KM is total number
of real-valued measurements in frequency-domain and 2K
is the number of real-valued measurements per frequency
point, with total M frequencies in (0, 0.5). A general ex-
pression for BIC is −2 log-likelihood+(number of model
parameters)×log(number of data points). The expression in
(28) follows by using {dz(fm)}(n/2)−1)

m=1 as complex-valued
data in frequency-domain whose log-likelihood is given by
(18). We count each complex value as two real values, both
for data points and for parameters (entries of Φ̂k), and also
use the fact that Ω̂ is symmetric and Φ̂k is Hermitian.

Pick α, λq and λp to minimize BIC. In our simulations
we fixed α = 0.05 and then picked λq and λp over a grid
of values, as follows. We search over λq ∈ [λqℓ, λqu] and
λp ∈ [λpℓ, λpu] selected via a heuristic as in [40]. Find the
smallest λq and λp, labeled λqsm and λpsm, for which we get a
no-edge model; then we set λqu = λqsm/2 and λqℓ = λqu/10;
similarly for λpu and λpℓ.

V. THEORETICAL ANALYSIS

Now we provide sufficient conditions for local convergence
in the Frobenius norm of the Kronecker-decomposable inverse
PSD estimators to the true value or a scaled version of it.
First some notation. The true values of Ω, Σ and S̄(f) will
be denoted as Ω⋄, Σ⋄ and S̄⋄(f), respectively. Therefore,
Ω⋄ = (Σ⋄)−1. Since we use Φk := S̄−1(f̃k), we have Φ⋄

k :=
S̄−⋄(f̃k) (where A−⋄ = (A⋄)−1). Therefore, in this notation,
dz(fm) ∼ Nc(0,S

⋄
z (fm)) and S⋄

z (fm) = S̄⋄(fm)⊗Σ⋄. Also
in this section, we replace Φ̂k’s in (25) with Φk’s and still use
the notation Θ̌ for the sum (25) and the notation L1(Ω) for
(24), and similarly, we replace Ω̂ in (27) with Ω and still use
the notation Θ̃ for the sum (27) and L2(Γ) for (26).

We follow [22] in first considering the solution to the
unpenalized population objective function (i.e., expectation of
G(Ω, {Φ}, {Φ∗}) given by 18). We have

Ḡ(Ω, {Φ}, {Φ∗}) = E{G(Ω, {Φ}, {Φ∗})}

= −1

p
ln(|Ω|)− 1

2Mq

M∑
k=1

[
ln(|Φk|) + ln(|Φ∗

k|)

− 1

p

(
tr(S̄⋄

kΦk) + tr(S̄⋄
kΦk)

∗)tr(Σ⋄Ω)
]
, (29)
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where we have used the facts S̄⋄
k = S̄⋄(f̃k),

E{tr(Ak)} =
1

Kp

mt∑
ℓ=−mt

tr(E{dz(f̃k,ℓ)d
H
z (f̃k,ℓ)}(Φk ⊗Ω))

=
1

p
tr((S̄⋄

k ⊗Σ⋄)(Φk ⊗Ω)) =
1

p
tr((S̄⋄

kΦk)⊗ (Σ⋄Ω))

= p−1tr(S̄⋄
kΦk)tr(Σ⋄Ω) . (30)

Define

Ω̄(Γ) = argmin
Ω

Ḡ(Ω, {Φ}, {Φ∗}) , (31)

Γ̄(Ω) = argmin
Γ

Ḡ(Ω, {Φ}, {Φ∗}) (32)

where Γ̄(Ω) = [Φ̄1(Ω) Φ̄2(Ω) · · · Φ̄M (Ω)].
Theorem 1. If

∑M
k=1

(
tr(S̄⋄

kΦk) + tr(S̄⋄
kΦk)

∗) ̸= 0, then

Ω̄(Γ) =
2Mq∑M

k=1

(
tr(S̄⋄

kΦk) + tr(S̄⋄
kΦk)∗

) Ω⋄ , (33)

and if tr(Σ⋄Ω) ̸= 0, then for k ∈ [M ],

Φ̄k(Ω) =
p

tr(Σ⋄Ω)
(S̄⋄

k)
−1 =

p

tr(Σ⋄Ω)
Φ⋄

k • (34)

Theorem 1 shows that the unpenalized population objective
function yields true values up to a constant scalar. Notice that
Ω̄(Γ) = Ω⋄ if Γ = Γ⋄, and similarly, Φ̄k(Ω) = Φ⋄

k, k =
1, 2, · · · ,M , if Ω = Ω⋄.

We now turn to penalized data-based objective function
L(Ω,Γ) which is minimized alternatingly as L2(Γ) w.r.t. Φk’s
and as L1(Ω) w.r.t. Ω. Here in addition to assumptions (A1)
and (A2), we assume

(A3) Define the true edgesets Sq = {{i, j} : [(S̄⋄)−1(f)]ij ̸≡
0, i ̸= j, 0 ≤ f ≤ 0.5, i, j ∈ [q]} and Sp =
{{i, j} : [Ω⋄]ij ̸= 0, i ̸= j, i, j ∈ [p]}, where S̄⋄(f)
denotes DTFT of Ψ(τ) and Ω⋄ = (Σ⋄)−1 denotes the
true value of Ω. Assume that number of nonzero elements
in the true edgesets Sq and Sp are upperbounded as
|Sq| ≤ sq and |Sp| ≤ sp.

(A4) The minimum and maximum eigenval-
ues of q × q PSD S̄⋄(f) ≻ 0 satisfy
0 < βq,min ≤ minf∈[0,0.5] ϕmin(S̄

⋄(f)) and
maxf∈[0,0.5] ϕmax(S̄

⋄(f)) ≤ βq,max < ∞. Similarly,
0 < βp,min ≤ ϕmin(Σ

⋄) ≤ ϕmax(Σ
⋄) ≤ βp,max < ∞.

Here β·,min and β·,max are not functions of n, p , q.

Theorem 2 establishes bounds on estimation errors of local
minimizers Ω̂(Γ) and Γ̂(Ω) of L1(Ω) and L2(Γ), respec-
tively. We now explicitly allow p, q, M , K, sp, sq , λp and λq

to be functions of sample size n, denoted as pn, qn, Mn, Kn,
spn, sqn, λpn and λqn, respectively. (In the appendices we do
not do so to keep the notation simple.) First we define some
variables. For τ > 2, define

γp = 0.1/βp,max , (35)

C1q =
2√

ln(M
1/τ
n qn)

+

√
2τ +

2 ln(16)

ln(M
1/τ
n qn)

, (36)

C0q = 16C1q(1 + γpβp,max)βq,max , (37)
γq = 0.1/βq,max , (38)

C1p =

√
2

ln(pn)
+

√
τ +

ln(4)

ln(pn)
, (39)

C0p = 8C1p (2 + γqβq,max)βp,max , (40)

rqn =

√
Mn(qn + sqn) ln(M

1/τ
n qn)/(Knpn) = o(1) , (41)

rpn =
√

(pn + spn) ln(pn)/(MnKnqn) = o(1) . (42)

Theorem 2. Let τ > 2.
(i) Let B(Γ⋄) = {Γ : ∥Γ−Γ⋄∥F ≤ γq, Φk = ΦH

k ≻ 0} and
Ω̂(Γ) = argmin{Ω:Γ∈B(Γ⋄)} L1(Ω). Suppose λpn satisfies

C0p

pn

√
ln(pn)

MnKnqn
≤ λpn ≤

C0p

pn

√(
1 +

pn
spn

)
ln(pn)

MnKnqn
.

(43)

Let Np := argminn
{
n : rpn ≤ βp,min/(34C0p)

}
. Then

under assumptions (A1)-(A4), for n > Np, Ω̂(Γ) satisfies

∥Ω̂(Γ)− Ω̄(Γ)∥F ≤
17C0p

β2
p,min

rpn (44)

with probability greater than 1− 1
pτ−2 − 4p2e−KqM .

(ii) Let B(Ω⋄) = {Ω : ∥Ω−Ω⋄∥F ≤ γp, Ω = Ω⊤ ≻ 0} and
Γ̂(Ω) = argmin{Γ:Ω∈B(Ω⋄)} L2(Γ). Suppose λqn satisfies

C0q

Mnqn

√
dn ≤ λqn ≤

C0q

Mnqn

√(
1 +

qn
sqn

)
dn , (45)

where dn = ln(M
1/τ
n qn)/(Knpn). Let Nq := argminn

{
n :

rqn ≤ βq,min/(34C0q)
}

. Then under assumptions (A1)-(A4),
for n > Nq and α ∈ [0, 1], Γ̂(Ω) satisfies

∥Γ̂(Ω)− Γ̄(Ω)∥F ≤
17C0q

β2
q,min

rqn (46)

with probability greater than 1− 1
qτ−2 − 16Mq2e−Kp/2 •

Remark 2. Theorem 2 helps determine how to choose
Mn and Kn so that for given n, spn, sqn, qn and pn,
limn→∞ rpn = 0 and limn→∞ rqn = 0, and moreover, how
fast can spn and sqn grow with n and still have rqn and
rpn ↓ 0. Since KnMn ≈ n/2, if one picks Kn = O(nµ),
then Mn = O(n1−µ) for some 0 < µ < 1. We assume
pn and qn are of the same order. (i) First consider the case
O(pn) = O(pn + spn) = O(qn) = O(qn + sqn), which, for
example, is true for chain graphs. Also, take O(pn) ∝ nν for
some ν > 0. Then rpn = O(

√
ln(n)/n)→ 0 as n→∞, and

rqn = O(
√
ln(n)/n2µ−1) → 0 as n → ∞ if µ > 0.5. This

holds for any ν > 0. If µ = 3
4 , then rqn = O(

√
ln(n)/n1/4) >

rpn. If µ = 2
3 , then rqn = O(

√
ln(n)/n1/6) > rpn. (ii)

Now suppose O(pn) = O(qn) ∝ nν for some ν > 0, but
O(spn) = O(sqn) ∝ n2ν = O(p2n), which is true for Erdös-
Rènyi graphs, e.g. Then rpn = O(

√
ln(n)/n1−ν) → 0 as

n → ∞ if ν < 1, and rqn = O(
√

ln(n)/n2µ−1−ν) → 0 as
n→∞ if 2µ− ν > 1. Clearly ν = 1 does not work. Suppose
ν = 0.25 and µ = 0.75. Then rpn = O(

√
ln(n)/n0.375) and

rqn = O(
√

ln(n)/n1/8). □
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Remark 3. The values of γp and γq specified in (35) and
(38), respectively, are used in the proofs of Theorem 2(ii)
(see after (116)) and Theorem 2(i) (see (101)), respectively.
One can enlarge γp and γq to γp = 0.1

√
pn/βp,min and

γq = 0.1
√
Mnqn/βq,min, respectively, and the proofs and

the other results remain unchanged and valid. Enlarging these
values implies that the balls B(Γ⋄) and B(Ω⋄) specified in
Theorem 2 are larger, signifying larger convergence regions
for initialization of Γ and Ω. However, this would slow
the convergence rates from ∥Ω̂(Γ) − Ω̄(Γ)∥F = OP (rpn)
and ∥Γ̂(Ω) − Γ̄(Ω)∥F = OP (rqn) to ∥Ω̂(Γ) − Ω̄(Γ)∥F =
OP (
√
pn rpn) and∥Γ̂(Ω) − Γ̄(Ω)∥F = OP (

√
Mnqn rqn),

respectively. □
Theorem 3. Assume ∥Ω⋄∥F = 1.

(i) Define Ω̂ = Ω̂(Γ)/∥Ω̂(Γ)∥F . Let N2p := argminn
{
n :

rpn ≤ β2
p,min ∥Ω̄(Γ)∥F /(34C0p)

}
and γr = (βq,max +

βq,min)/βq,min. Under the assumptions of Theorem 2(i), for
n > max{Np, N2p}, Ω̂ satisfies

∥Ω̂−Ω⋄∥F ≤ 4γr∥Ω̂(Γ)− Ω̄(Γ)∥F ≤
68γrC0p

β2
p,min

rpn (47)

with probability greater than 1− 1
pτ−2 − 4p2e−KqM .

(ii) Let C2p = 68γr
√
pβp,maxC0p/β

2
p,min, U1p = p/(2C2p),

U2p = 0.1β2
p,min/(68γrC0pβp,max), N3p := argminn

{
n :

rpn ≤ max{U1p, U2p}
}

and C2q = 2C2p∥Γ⋄∥F /p. Let
Γ̂(Ω̂) = argmin{Γ:Ω=Ω̂∈B(Ω⋄)} L2(Γ) where Ω̂ is as in
Theorem 3(i). Under the assumptions of Theorem 2, for
n > max{Np, N2p, Nq, N3p} and α ∈ [0, 1], Γ̂(Ω̂) satisfies

∥Γ̂(Ω̂)− Γ⋄∥F ≤
17C0q

β2
q,min

rqn + C2qrpn (48)

with probability greater than 1− 1
pτ−2 − 4p2e−KqM − 1

qτ−2 −
16Mq2e−Kp/2 •

VI. NUMERICAL RESULTS

We now present numerical results for both synthetic and
real data to illustrate the proposed approach. In synthetic
data examples the ground truth is known and this allows
for assessment of the efficacy of various approaches. In
real data examples where the ground truth is unknown, our
goal is visualization and exploration of the linear conditional
dependency structures underlying the data.

A. Synthetic Data

We use model (5)-(6) to generate synthetic data where
Ψ(τ) is controlled via a vector autoregressive (VAR) model
impulse response and Σ is determined via an Erdös-Rènyi
graph. We take p = q = 15. Consider the impulse response
H

(r)
i ∈ R5×5 generated as H

(r)
i =

∑3
k=1 A

(r)
k H

(r)
i−k + I5δi,

where H
(r)
i = 0 for i < 0, δi is the Kronecker delta,

r = 1, 2, 3, and only 5% of entries of A
(r)
i ’s are nonzero

and the nonzero elements are independently and uniformly
distributed over [−0.8, 0.8]. We then check if the VAR(3)
model is stable with all eigenvalues of the companion matrix
≤ 0.95 in magnitude; if not, we re-draw randomly till this
condition is fulfilled. The impulse response Bi ∈ R15×15

in (5) is given by Bi = block-diag{H(1)
i ,H

(2)
i ,H

(3)
i }, for

0 ≤ i ≤ L = 40, otherwise it is set to zero. Thus Bi’s
in (5) have a block-diagonal structure with 3 blocks, each
block is 5× 5. In the Erdös-Rènyi graph with p = 15 nodes,
the nodes are connected with probability per = 0.05. In the
upper triangular Ω̄, Ω̄ij = 0 if {i, j} ̸∈ Sp, Ω̄ij is uniformly
distributed over [−0.4,−0.1] ∪ [0.1, 0.4] if {i, j} ∈ Sp, and
Ω̄ii = 0.5. With Ω̄ = Ω̄⊤, add κIp to Ω̄ with κ picked to
make minimum eigenvalue of Ω = Ω̄+ κIp equal to 0.5. Let
Ω = F̃ F̃ (matrix square-root), then F = F̃−1 in (5).
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Fig. 1: ROC curves: plots labeled “IID” are from the approach of
[17], [18], [25], and the plots labeled “dep.” are from our proposed
approach. TPR=true positive rate, TNR=true negative rate

We applied our proposed approach with n = 256, M = 2,
K = 63 and compared with the approach of [17] (which is
also the approach of [18], [25], all of whom assume i.i.d.
observations and have two lasso penalties one each on Ω and
Υ, counterpart to our Φk). In our approach, we fix α = 0.05
for all simulations and real data results. For fixed values of
λq and λp, using our proposed approach of Sec. IV-D, we
calculated the true positive rate (TPR) and false positive rate
1-TNR (where TNR is the true negative rate) over 100 runs,
separately for Ω and {Φk}/Υ, based on the estimated edges.
As we vary λq and λp over a wide range of values, we can
compute the corresponding pairs of estimated (1-TNR, TPR).
The receiver operating characteristic (ROC) is shown in Fig.
1 based on 100 runs, using the estimated (1-TNR, TPR). We
repeat this method for the i.i.d. modeling approach of [17],
[18], [25]. Fig. 1 shows that the i.i.d. modeling of [17], [18],
[25] is unable to capture the “dependent” edges (cf. (4)) via
Υ whereas it has no issues with Ω. Our approach works well
for both components of the Kronecker product graph.

In Table I we show the results based on 100 runs under dif-
ferent parameter settings and samples sizes. Here we show the
F1score, TPR, 1-TNR and timing values for the overall graph
(not the two Kronecker product components separately) along
with the ±σ errors. All algorithms were run on a Window 10
Pro operating system with processor Intel(R) Core(TM) i7-
10700 CPU @2.90 GHz with 32 GB RAM, using MATLAB
R2023a. We take n = 64, 128, 256, 512, 1024, 2048, and for
our proposed approach, the corresponding mt values leading to
different M values are mt = 7, 15, 31, 63, 127, 255 (M = 2),
mt = 4, 9, 20, 41, 84, 169 (M = 3), mt = 3, 7, 14, 31, 63, 127
(M = 4), mt = 2, 5, 12, 24, 50, 101 (M = 5), mt =
∗∗, 4, 10, 20, 42, 84 (M = 6), mt = ∗∗, ∗∗, ∗∗, 15, 31, 63
(M = 8), and mt = ∗∗, ∗∗, ∗∗, 12, 25, 50 (M = 10).
Here ∗∗ denotes that no simulation were performed for the
corresponding sample size n (since K = 2mt + 1 is too
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TABLE I: F1 scores, TPR, 1-TNR and timing per run for fixed tuning parameters, for the synthetic data example, averaged over 100 runs.
The entries ∗∗ denote no simulations done for these parameters.

n 64 128 256 512 1024 2048
Proposed Approach: F1 scores ±σ when λ’s are selected to minimize BIC

M=2 0.5163 ± 0.1530 0.5660 ± 0.1580 0.6440 ± 0.1709 0.7061 ± 0.1147 0.7018 ± 0.1176 0.7190 ± 0.1217
M=3 0.5111 ± 0.1705 0.5876 ± 0.1560 0.6969 ± 0.1421 0.7266 ± 0.1159 0.7322 ± 0.1031 0.7474 ± 0.1000
M=4 0.5454 ± 0.1852 0.6470 ± 0.1489 0.7106 ± 0.1465 0.7376 ± 0.1011 0.7446 ± 0.1069 0.7524 ± 0.1047
M=5 0.5977 ± 0.1717 0.6609 ± 0.1465 0.7049 ± 0.1367 0.7253 ± 0.1104 0.7401 ± 0.1028 0.7467 ± 0.1002
M=6 ∗∗ 0.6277 ± 0.1353 0.6773 ± 0.1379 0.7115 ± 0.1172 0.7343 ± 0.1025 0.7369 ± 0.0971
M=8 ∗∗ ∗∗ ∗∗ 0.7016 ± 0.1071 0.7366 ± 0.1013 0.7365 ± 0.0974
M=10 ∗∗ ∗∗ ∗∗ 0.7123 ± 0.1117 0.7319 ± 0.1044 0.7367 ± 0.1022

Proposed Approach: F1 scores ±σ when λ’s are selected to maximize F1 score
M=2 0.6826 ± 0.1440 0.6954 ± 0.1588 0.7485 ± 0.1632 0.8026 ± 0.1139 0.8032 ± 0.1588 0.8440 ± 0.1184
M=3 0.6984 ± 0.1383 0.7322 ± 0.1730 0.8055 ± 0.1383 0.8293 ± 0.1190 0.8372 ± 0.1442 0.8670 ± 0.1295
M=4 0.7041 ± 0.1355 0.7364 ± 0.1646 0.8074 ± 0.1434 0.8282 ± 0.1169 0.8401 ± 0.1197 0.8633 ± 0.1397
M=5 0.6652 ± 0.1664 0.7309 ± 0.1431 0.8072 ± 0.1466 0.8411 ± 0.1158 0.8451 ± 0.1251 0.8637 ± 0.1314
M=6 ∗∗ 0.7218 ± 0.1490 0.8089 ± 0.1324 0.8252 ± 0.1206 0.8433 ± 0.1282 0.8583 ± 0.1396
M=8 ∗∗ ∗∗ ∗∗ 0.8329 ± 0.1130 0.8382 ± 0.1221 0.8601 ± 0.1404
M=10 ∗∗ ∗∗ ∗∗ 0.8187 ± 0.1216 0.8286 ± 0.1525 0.8496 ± 0.1406

IID modeling [17], [18], [25]: λ’s are selected to maximize F1 score
F1 scores ±σ 0.4329 ± 0.1244 0.4230 ± 0.1208 0.4368 ± 0.1228 0.4746 ± 0.1367 0.4483 ± 0.1180 0.4709 ± 0.1104

timing (s) per run ±σ 0.0051 ± 0.0011 0.0073 ± 0.0014 0.0111 ± 0.0020 0.0195 ± 0.0031 0.0342 ± 0.0035 0.0640 ± 0.0050
Proposed approach under model mismatch – non-Gaussian e in (5) : F1 scores ±σ when λ’s are selected to minimize BIC

Exponential e, M=4 0.5518 ± 0.1853 0.6565 ± 0.1728 0.7098 ± 0.1349 0.7355 ± 0.0976 0.7514 ± 0.1141 0.7555 ± 0.0888
Uniform e, M=4 0.5434 ± 0.1772 0.6510 ± 0.1693 0.7137 ± 0.1364 0.7400 ± 0.1043 0.7494 ± 0.1146 0.7537 ± 0.0982

Proposed Approach: TPR ±σ when λ’s are selected to maximize F1 score
M=2 0.6312 ± 0.1675 0.6420 ± 0.1541 0.6937 ± 0.1852 0.7533 ± 0.1332 0.8146 ± 0.1187 0.8249 ± 0.1199
M=4 0.6793 ± 0.1493 0.7120 ± 0.1477 0.7595 ± 0.1529 0.7919 ± 0.1307 0.8142 ± 0.1229 0.8836 ± 0.1021
M=6 ∗∗ 0.6711 ± 0.1529 0.7459 ± 0.1608 0.8024 ± 0.1287 0.8162 ± 0.1215 0.8275 ± 0.1290
M=10 ∗∗ ∗∗ ∗∗ 0.7867 ± 0.1269 0.8278 ± 0.1199 0.8504 ± 0.1177

Proposed Approach: 1-TNR ±σ when λ’s are selected to maximize F1 score
M=2 0.0032 ± 0.0092 0.0033 ± 0.0090 0.0022 ± 0.0074 0.0018 ± 0.0061 0.0049 ± 0.0157 0.0025 ± 0.0096
M=4 0.0041 ± 0.0118 0.0044 ± 0.0127 0.0020 ± 0.0074 0.0021 ± 0.0097 0.0023 ± 0.0086 0.0043 ± 0.0174
M=6 ∗∗ 0.0035 ± 0.0116 0.0013 ± 0.0050 0.0026 ± 0.0113 0.0027 ± 0.0120 0.0030 ± 0.0161
M=10 ∗∗ ∗∗ ∗∗ 0.0025 ± 0.0113 0.0046 ± 0.0173 0.0040 ± 0.0173

Proposed Approach: timing (s) per run ±σ when λ’s are selected to minimize BIC
M=2 0.1687 ± 0.0400 0.1688 ± 0.0418 0.1791 ± 0.1005 0.1777 ± 0.0289 0.2166 ± 0.0322 0.3131 ± 0.1051
M=4 0.2294 ± 0.1650 0.2470 ± 0.1026 0.2284 ± 0.0846 0.2278 ± 0.0392 0.2890 ± 0.1338 0.3627 ± 0.0494
M=6 ∗∗ 0.2738 ± 0.0903 0.2426 ± 0.0633 0.2507 ± 0.0537 0.2944 ± 0.0902 0.3842 ± 0.0471
M=10 ∗∗ ∗∗ ∗∗ 0.3040 ± 0.1400 0.3230 ± 0.0733 0.4285 ± 0.0890

small). We show the resulting F1 scores under two different
scenarios: when we use the proposed BIC parameter selection
method (Sec. IV-E) and when F1 score was selected based
on λ values that maximize the F1 score. While the latter
approach is not practical, it is presented to illustrate what
is possible using the proposed approach and what may be
”lost” when there are errors in the BIC parameter selection
method. The number of unknown parameters being estimated
are O(p2+Mq2), with O(p2) for Ω and O(Mq2) for M Φk’s.
We see that for a fixed n, at first the performance improves
with increasing M , then it slowly declines as more parameters
need to be estimated with increasing M . Increasing M also
reduces K = 2mt + 1 since KM ≈ n

2 , which reduces the
number of frequency-domain samples (K) for averaging for
the kth model for Φk, k ∈ [M ] (see assumption (A1) in
Sec. III). Note also that by (46) of Theorem 2(ii), the error
in estimating Φk’s ∝ rqn ∝

√
(Mq)/(Kp). For a fixed M ,

the performance improves, in general, with increasing n but
more slowly for higher n’s. Higher n values implies higher
resolution in the frequency-domain and for fixed M , higher n
implies higher K (and mt), in which case assumption (A1)
in Sec. III may not hold. The TPR, 1-TNR and timing values
are shown for selected M ’s for the proposed approach where
timing per run is for the λ values picked by the BIC criterion.
It is seen that increasing M and/or n leads to only a small

increase in timing.
In Table I we also show the performance of i.i.d. modeling

approach of [17], [18], [25], in terms of the F1 score and
timing. The i.i.d. modeling approach is significantly faster but
the accuracy in edge detection in terms of the F1 score is
much poorer. Finally, to assess sensitivity to modeling errors
such as violation of the Gaussianity assumption, we used
either exponential or uniform e(t) in (5), both with zero-mean
unit variance, instead of the assumed Gaussian e(t) in our
model. The results are shown for M = 4 and we see that the
performance is robust w.r.t. violation of this assumption.

B. Real Data: Beijing air-quality dataset [50]

Here we consider Beijing air-quality dataset [50],
[51], downloaded from https://archive.ics.uci.edu/dataset/501/
beijing+multi+site+air+quality+data. This data set includes
hourly air pollutants data from 12 nationally-controlled air-
quality monitoring sites in the Beijing area. The time period
is from March 1st, 2013 to February 28th, 2017. The six air
pollutants are PM2.5, PM10, SO2, NO2, CO, and O3, and the
meteorological data is comprised of five features: temperature,
atmospheric pressure, dew point, wind speed, and rain; we did
not use wind direction. Thus we have eleven (= q) features
(pollutants and weather variables). We used data from 8 (= p)
sites: 4 rural/suburban sites Changping, Dingling, Huairou,

https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data
https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data
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(f) Monitoring site graph:
i.i.d. modeling approach [17], [18], [25]

Fig. 2: Pollution and site graphs for the Beijing air-quality dataset [50] for year 2013-14: 8 monitoring sites and 11 features (p = 8, q = 11,
n = 364). Number of distinct edges = 18, 28, 20, 6, 30, 28 in graphs (a), (b), (c), (d), (e) and (f), respectively. Monitoring sites labeled
Stn. 1-4 are the rural/suburban sites and those labeled Stn. 5-8 are the urban sites (see the text). For the pollution graph, estimated Φ̂(ij)

is the edge weight (normalized to have maxi ̸=j Φ̂
(ij) = 1) and for the site graph, estimated |Ω̂ij | is the edge weight (normalized to have

maxi̸=j |Ω̂ij | = 1). The edge weights are color coded (all pollution graphs share the same color legend, and similarly for the site graphs),
in addition to the edges with higher weights being drawn thicker.

Shunyi, and 4 urban sites Aotizhongxin, Dongsi, Guanyuan,
Gucheng (labeled Stn 1 through 8 in Fig. 2). The data are
averaged over 24 hour period to yield daily averages. We
used one year 2013-14 of daily data resulting in n = 365
days. Arranging stations as rows and features as columns, we
have Z(t) ∈ R8×11, t = 1, 2, · · · , 365. We pre-processed the
data as follows. Given jth feature data Zij(t) at ith station,
we transform it to Z̄ij(t) = ln(Zij(t)/Zij(t− 1)) for each i
and j, and then detrend it (i.e., remove the best straight-line
fit). Finally, we scale the detrended scalar sequence to have
a mean-square value of one. All temperatures were converted
from Celsius to Kelvin to avoid negative numbers. If a value of
a feature is zero (e.g., wind speed), we added a small positive
number to it so that the log transformation is well-defined.

We applied our proposed approach with M = 4, K = 45
and n = 364 (p = 8, q = 11) and compared it with the i.i.d.
modeling approach of [17], [18], [25]. The objective here is
to compare the two approaches in estimation of the pollution
(feature) graph and the site graph. The spatio-temporal data
has a matrix structure and one is interested in learning two
aspects of conditional dependencies: the relationship among
the features via the pollution graph and the relationship among
the sites via the site graph. We have not yet tested if our model
assumptions apply to this dataset (this needs further theoretical
analysis to devise suitable statistical tests, particularly in a
high-dimensional setting), but it still seems to be useful to
compare the results of our proposed approach and that of

[17], [18], [25]. Fig. 2(a) shows the resulting graph for the
air quality and environmental variables where {i, j} ∈ Sq iff
Φ̂(ij) = (

∑M
k=1 |[Φ̂k]ij |2)1/2 > 0 for i ̸= j, and Fig. 2(b)

shows the resulting graph for the sites around the Beijing area
where {i, j} ∈ Sp iff |Ω̂ij | > 0 for i ̸= j. Since all the
sites are physically close to one another, it is not surprising
that the site graph in Fig. 2(b) is fully connected. But we do
see that the rural/suburban sites stn. 1 through stn. 4 have
higher weight edges among the group and the urban sites stn.
5 through stn. 8 have higher weight edges among the urban
group, with inter-group edge weights being slightly weaker
(but fully connected). Automobile exhaust is the main cause
of NO2 which is likely to undergo a chemical reaction with
Ozone O3, thereby, lowering its concentration [51]. This fact
is captured by the edge between NO2 and Ozone O3 in Fig.
2(a). Cold, dry air from the north of Beijing reduces both dew
point and PM2.5 particle concentration in suburban areas while
southerly wind brings warmer and more humid air from the
more polluted south that elevates both dew point and PM2.5

concentration [50]. This fact is captured by the edge between
dew point and PM2.5 in Fig. 2(a). The counterparts to Figs.
2(a) and 2(b) when using the i.i.d. modeling approach of [17],
[18], [25], are shown in Figs. 2(e) and 2(f), respectively. While
the site graph in Fig. 2(f) is fully connected and quite similar to
the proposed approach’s site graph in Fig. 2(b), the pollution
graph in Fig. 2(e) far denser than the proposed approach’s
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pollution graph in Fig. 2(a).
We do not have any systematic approach for selection of

M for a given sample size n. Since KM ≈ n
2 , fixing M fixes

K = 2mt + 1, and vice-versa. Using BIC to pick M does
not work as BIC always picks the smallest M . The synthetic
data results presented in Table I show that the performance
is not unduly sensitive to the choice of M . To illustrate the
sensitivity of the proposed approach in Beijing data case, we
show the pollution graphs in Figs. 2(c) and 2(d) for the choice
M = 3 (K=59) and M = 5 (K = 35), respectively. There is
not much difference between pollution graphs for M = 4 and
M = 3, but that for M = 5 is much sparser. This is consistent
with the results of Sec. VI-A on synthetic data.

VII. CONCLUSIONS

Sparse-group lasso penalized log-likelihood approach in
frequency-domain with a Kronecker-decomposable PSD was
investigated for matrix CIG learning for dependent time series.
An ADMM-based flip-flop approach for iterative optimization
of the bi-convex problem was presented. We provided suffi-
cient conditions for consistency of a local estimator of inverse
PSD. We illustrated our approach using numerical examples
utilizing both synthetic and real data. Lasso and related ap-
proaches are known to yield biased estimates [52]. To remedy
this, various non-convex penalties have been suggested [52]
and typically, lasso-based approaches provide the initial guess
for iterative optimization. In the context of this paper, adaptive
lasso has been used in [40] (the basis of the ADMM method
of Sec. IV-C), and a log-sum penalty has been used in [53]
(which modifies [9], the basis for Sec. IV-B). Investigation of
such non-convex penalties is left for future research.

APPENDIX A
PROOF OF THEOREM 1

With fixed Γ, let Ḡ1(Ω) denote Ḡ(Ω, {Φ}, {Φ∗}) up to
some irrelevant constants. Then

Ḡ1(Ω) =− 1

p
ln(|Ω|) +B tr(Σ⋄Ω) , (49)

where B = tr(S̄⋄
kΦk)

∗/(2Mqp). We have

0 =
∂Ḡ1(Ω)

∂Ω
= −1

p
Ω−1 +BΣ⋄ , (50)

establishing (33) if B ̸= 0. The solution is unique since the
Hessian of Ḡ1(Ω), given by 1

pΩ
−1⊗Ω−1, is positive definite

at Ω = Ω̄(Γ). Similarly, with fixed Ω, let Ḡ2(Γ) denote
Ḡ(Ω, {Φ}, {Φ∗}) up to some irrelevant constants. Then

Ḡ2(Γ) =

M∑
k=1

Ḡ2k(Φk) , (51)

Ḡ2k(Φk) = − ln(|Φk|)− ln(|Φ∗
k|)

+
1

p

(
tr(S̄⋄

kΦk) + tr(S̄⋄
kΦk)

∗)tr(Σ⋄Ω) . (52)

The cost Ḡ2(Γ) is separable in k, Φk. We have

0 =
∂Ḡ2k(Φk)

∂Φ∗
k

= −Φ−1
k +

1

p
S̄⋄
k tr(Σ⋄Ω) , (53)

establishing (34) if tr(Σ⋄Ω) ̸= 0. Similar to [9, Lemma 4],
the Hessian of Ḡ2k(Φk) is positive definite at Φk = Φ̄k(Ω).
Therefore, the solution is unique. □

APPENDIX B
TECHNICAL LEMMAS AND PROOF OF THEOREM 2

Lemma 1 is a restatement of [22, Lemma S.1, Supplemen-
tary].
Lemma 1. Assume that i.i.d. data Xi ∈ Rp×q , i =
1, 2, · · · , n, follows the matrix-valued normal distribution
MVN (0,Σ⋄,Ψ⋄), with Σ⋄ ∈ Rp×p, Ψ⋄ ∈ Rq×q , Σ⋄ ≻ 0
and Ψ⋄ ≻ 0, i.e., vec(Xi) ∼ Nr

(
0,Ψ⋄ ⊗Σ⋄). Assume that

ϕmax(Σ
⋄) ≤ C1h <∞ and ϕmax(Ψ

⋄) ≤ C2h <∞ for some
positive constants C1h and C2h. For any symmetric positive-
definite Ω ∈ Rp×p such that ∥Ω−Ω⋄∥F ≤ γ, Ω⋄ = (Σ⋄)−1,
we have

P
(
max
i,j

∣∣∣[ 1

np

n∑
i=1

X⊤
i ΩXi −

1

p
E{X⊤

i ΩXi}
]
ij

∣∣∣ ≥ δ
)

≤ 4q2
[
exp

{
− np

2

[ δ

8(1 + γC1h)C2h
− 2
√
np

]2}
+ exp

{
− np

2

}]
(54)

for any δ > 16(1 + γC1h)C2h/
√
np •

The lower bound on δ follows from [22, Lemma S.12, Sup-
plementary] and (54) is [22, Eqn. (S.26), Supplementary] in
our notation.

Lemma 2 collects some useful results from [42, Theorem
2.3.5].
Lemma 2. Suppose X ∼MVN (0,Σ,Ψ) where X ∈ Rp×q ,
Σ ∈ Rp×p, Ψ ∈ Rq×q , i.e., vec(X) ∼ Nr

(
0,Ψ⊗Σ

)
. Then

(i) X⊤ ∼ MVN (0,Ψ,Σ), i.e., vec(X⊤) ∼ Nr

(
0,Σ ⊗

Ψ
)
.

(ii) For any A ∈ Rq×q , E{XAX⊤} = tr(A⊤Ψ)Σ.
(iii) For any B ∈ Rp×p, E{X⊤BX} = tr(B⊤Σ)Ψ.
(iv) For any C ∈ Rq×p, E{XCX} = ΣC⊤Ψ •

Lemma 3. Suppose X ∈ Cp×q , vec(X) ∼ Nc

(
0,S ⊗Σ

)
where Σ ∈ Rp×p, S ∈ Cq×q , Σ = Σ⊤ ≻ 0, S = SH ≻ 0
and S = Sr + jSi with Sr,Si ∈ Rq×q .

(i) Let X = Xr + jXi, Xr,Xi ∈ Rp×q . Then

X̃ = [Xr Xi] ∼MVN (0,Σ, S̃) (55)

i.e., vec(X̃) ∼ Nr

(
0, S̃ ⊗Σ

)
, where

S̃ =
1

2

[
Sr −Si

Si Sr

]
∈ R2q×2q . (56)

(ii) For any Ω ∈ Rp×p, E{X̃⊤ΩX̃} = tr(Ω⊤Σ) S̃.
(iii) For any Φ ∈ Cq×q , Φ = Φr + jΦi = ΦH , Φr,Φi ∈

Rq×q ,

E{Re
(
XΦ∗XH

)
} = E{X̃Φ̃X̃⊤)} = tr(Φ̃⊤S̃)Σ

(57)
where

Φ̃ =

[
Φr −Φi

Φi Φr

]
∈ R2q×2q • (58)

Proof.
(i) If x = vec(X) ∼ Nc

(
0,S⊗Σ

)
, then by [38, Sec. 2.3],

x̃ =vec(X̃) ∼ Nr

(
0,R

)
(59)
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where, with x = xr + jxi, xr,xi ∈ Rpq ,

R = =

[
E{xrx

⊤
r } E{xix

⊤
r }

E{xrx
⊤
i } E{xix

⊤
i }

]
=

[
Rrr Rir

Rri Rii

]
(60)

Rrr =Rii , Rri = −R⊤
ri = R⊤

ir . (61)

Now Rrr = 1
2Sr ⊗ Σ = Rii and Rri = − 1

2S
⊤
i ⊗ Σ.

Therefore, R = S̃ ⊗Σ, yielding the desired result.
(ii) It follows from Lemma 2(iii) and Lemma 3(i).

(iii) Since Φ = ΦH , it follows that Φr = Φ⊤
r and Φi =

−Φ⊤
i . We have Re

(
XΦ∗XH

)
= X̃Φ̃X̃⊤. Then the

given expression for E{X̃Φ̃X̃⊤)} follows from Lemma
2(ii). □

We now consider a tail bound on Θ̃k defined in (27). First
we need Lemma 4.
Lemma 4. Given S ∈ Cq×q and S̃ ∈ R2q×2q as in Lemma 3.
Then S̃ ≻ 0 and ϕmax(S̃) =

1
2ϕmax(S).

Proof. If λ is a an eigenvalue of S, then for some v = vr +
jvi ∈ Cq , vr,vi ∈ Rq , we have Sv = λv, where λ is real
positive since S is Hermitian, positive-definite. It then follows
that

S̃

[
vr

vi

]
=

1

2
λ

[
vr

vi

]
, S̃

[
−vi

vr

]
=

1

2
λ

[
−vi

vr

]
. (62)

That is, each eigenvalue of S is also an eigenvalue of 2S̃ with
multiplicity two. This proves the desired result. □
Lemma 5. Under assumptions (A1) and (A2), for any symmet-
ric positive-definite Ω̂ ∈ Rp×p such that ∥Ω̂ − Ω⋄∥F ≤ γp,
Ω⋄ = (Σ⋄)−1, and τ > 2, we have

P
(
max
k,i,j

∣∣[Θ̃∗
k − E{Θ̃∗

k}
]
ij

∣∣ ≥ C0q

√
ln(M1/τq)

Kp

)
≤ 1

qτ−2
+ 16Mq2e−Kp/2 (63)

for any q ≥ 1, where C0q is given by (37) and

E{Θ̃∗
k} =

1

p
tr
(
Ω̂Σ⋄) (S̄⋄

k)
∗ . (64)

Proof. Let Dz(f̃k,ℓ) = Dr,kl + jDi,kl, Dr,kl,Di,kl ∈ Rp×q .
Define

Xkl =
[
Dr,kl Di,kl

]
∈ Rp×(2q) , (65)

Bkl =X⊤
klΩ̂Xkl , Fk =

1

Kp

mt∑
ℓ=−mt

Bkl . (66)

Since

DH
z (f̃k,ℓ)Ω̂Dz(f̃k,ℓ) = D⊤

r,klΩ̂Dr,kl +D⊤
i,klΩ̂Di,kl

+ j
[
D⊤

r,klΩ̂Di,kl −D⊤
i,klΩ̂Dr,kl

]
, (67)

it follows that

max
k,i,j

∣∣[Θ̃∗
k − E{Θ̃∗

k}
]
ij

∣∣ ≤ 4 max
k,i,j

∣∣[Fk − E{Fk}
]
ij

∣∣ . (68)

Therefore,{
max
k,i,j

∣∣[Fk − E{Fk}
]
ij

∣∣ < δ

4

}
⊆
{
max
k,i,j

∣∣[Θ̃∗
k − E{Θ̃∗

k}
]
ij

∣∣ < δ
}
, (69)

implying

P
(
max
k,i,j

∣∣[Θ̃∗
k − E{Θ̃∗

k}
]
ij

∣∣ ≥ δ
)

≤ P
(
max
k,i,j

∣∣[Fk − E{Fk}
]
ij

∣∣ ≥ δ

4

)
. (70)

Since dz(f̃k,ℓ) = vec(Dz(f̃k,ℓ)) ∼ Nc(0, S̄
⋄(f̃k) ⊗ Σ⋄), it

follows from Lemma 3(i) that

Xkl ∼MVN (0,Σ⋄, S̃⋄
k) , (71)

S̃⋄
k =

1

2

[
S̄⋄
rk −S̄⋄

ik

S̄⋄
ik S̄⋄

rk

]
, S̄⋄(f̃k) = S̄⋄

rk + jS̄⋄
ik . (72)

By assumption (A4), ϕmax(Σ
⋄) ≤ βp,max and additionally,

by Lemma 4, ϕmax(S̃
⋄
k) ≤ βq,max/2 for every k. With a =

4(1 + γpβp,max)βq,max, invoking Lemma 1 for the sum Fk,
we have

P
(
max
i,j

∣∣[Fk − E{Fk}
]
ij

∣∣ ≥ δ

4

)
≤ 4(2q)2

[
exp

{
− Kp

2

[δ/4
a
− 2√

Kp

]2}
+ e−Kp/2

]
= Pqtb .

(73)

Maximizing over all k = 1, 2, · · · ,M , and using the union
bound, we obtain

P
(
max
k,i,j

∣∣[Fk − E{Fk}
]
ij

∣∣ ≥ δ

4

)
≤MPqtb . (74)

For τ > 2, pick δ = 4a(
√
2 ln(16Mqτ )/(Kp) +

2/
√
Kp ), leading to δ = C0q

√
ln(M1/τq)/(Kp) and

(Kp/2)[(δ/(4a))− 2/
√
Kp]2 = ln(16M qτ ). Thus

MPqtb =16Mq2
[
e− ln(16Mqτ ) + e−Kp/2

]
=

1

qτ−2
+ 16Mq2e−Kp/2 . (75)

Thus we have established (63). The lower bound on δ/4
specified in Lemma 1 is satisfied if (δ/(4a) > 2/

√
Kp, which

is true for any q ≥ 1. Turning to (64), by (66), (71) and Lemma
2(iii), we have

E{Bkl} =tr(Ω̂Σ⋄)
1

2

[
S̄⋄
rk −S̄⋄

ik

S̄⋄
ik S̄⋄

rk

]
. (76)

By assumption (A1), (66), (67) and (76),

E{DH
z (f̃k,ℓ)Ω̂Dz(f̃k,ℓ)} =

1

2
tr(Ω̂Σ⋄)

(
2S̄⋄

rk − j2S̄⋄
ik

)
= tr(Ω̂Σ⋄)(S̄⋄

k)
∗ . (77)

By (27) and (77), we obtain (64). □
Now we consider a tail bound on Θ̌ defined in (25).

Lemma 6. Under assumptions (A1) and (A2), for any Hermi-
tian positive-definite Φ̂k ∈ Cq×q , k = 1, 2, · · · ,M , such that
∥Γ̂−Γ⋄∥F ≤ γq , Γ⋄ = [Φ⋄

1, · · · ,Φ⋄
M ], Γ̂ = [Φ̂1, · · · , Φ̂M ],

and τ > 2, we have

P
(
max
i,j

∣∣[Θ̌− E{Θ̌}
]
ij

∣∣ ≥ C0p

√
ln(p)

KqM

)
≤ 1

pτ−2
+ 4p2e−KqM (78)
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for any p ≥ 1 where, where C0p is given by (40), and

E{Θ̌} =
[ 1

2Mq

M∑
k=1

tr
(
S̄⋄
kΦ̂k + (S̄⋄

kΦ̂k)
∗)]Σ⋄ . (79)

Proof. We have

Re
(
Dz(f̃k,ℓ)Φ̂kD

H
z (f̃k,ℓ)

)
= XklΦ̃kX

⊤
kl , (80)

where Xkl is as in (65) and

Φ̃k =

[
Φ̂rk −Φ̂ik

Φ̂ik Φ̂rk

]
∈ R2q×2q . (81)

Define

Φ̌ =


Φ̃1 0 · · · 0

0 Φ̃2 · · · 0
...

...
. . .

...
0 0 · · · Φ̃M

 ∈ R(2qM)×(2qM) , (82)

X̌ℓ =
[
X1l X2l · · · XMl

]⊤
. (83)

Then we can express Θ̌ as

Θ̌ =
1

MKq

mt∑
ℓ=−mt

X̌⊤
ℓ Φ̌X̌ℓ . (84)

Since Xkl ∼ MVN (0,Σ⋄, S̃⋄
k), and Xk1l and Xk2l are

independent for k1 ̸= k2, we have

X̌⊤
ℓ ∼MVN (0,Σ⋄, Š⋄) , X̌ℓ ∼MVN (0, Š⋄,Σ⋄) , (85)

where

Š⋄ =


S̃⋄
1 0 · · · 0

0 S̃⋄
2 · · · 0

...
...

. . .
...

0 0 · · · S̃⋄
M

 ∈ R(2qM)×(2qM) . (86)

By assumption (A4), ϕmax(Σ
⋄) ≤ βp,max and additionally,

by Lemma 4, ϕmax(Š
⋄) ≤ βq,max/2. With b = 8(1 +

γqβq,max/2)βp,max, apply Lemma 1 to the sum 1
2Θ̌ to obtain

P
(
max
i,j

∣∣1
2

[
Θ̌− E{Θ̌}

]
ij

∣∣ ≥ δ
)

≤ 4p2
[
exp

{
− 2qMK

2

[δ
b
− 2√

2qMK

]2}
+ e−2qMK/2

]
= Pptb . (87)

For τ > 2, pick δ = b(
√
ln(4pτ )/(KqM) +

√
2/(KqM) ),

leading to (2qMK/2)[(δ/b)−
√

2/(KqM)]2 = ln(4pτ ). Thus

Pptb =4p2
[
e− ln(4pτ ) + e−qMK

]
=

1

pτ−2
+ 4p2e−qMK .

(88)

The lower bound on δ specified in Lemma 1 is satisfied if
(δ/b) >

√
2/(KqM), which is true for any p ≥ 1. With

our choice of δ, we have 2δ = C0p

√
ln(p)
KqM , establishing (78).

Turning to (79), by (85) and Lemma 2(iii), we have

E{X̌⊤
ℓ Φ̌X̌ℓ} = tr

(
Φ̌⊤Š⋄)Σ⋄ = tr

( M∑
k=1

Φ̃⊤
k S̃

⋄
k

)
Σ⋄ . (89)

By (72) and (81),

tr
(
Φ̃⊤

k S̃
⋄
k

)
= tr

(
Φ̂rkS̄

⋄
rk + Φ̂ikS̄

⋄
ik

)
=

1

2
tr
(
S̄⋄
kΦ̂k + (S̄⋄

kΦ̂k)
∗) . (90)

Using (84), (89) and (90), we have (79). □
Proof of Theorem 2(i). Let Ω = Ω̄(Γ)+∆ with Ω, Ω̄(Γ) ≻

0, and denote Q(Ω) = L1(Ω) − L1(Ω̄(Γ)). For the rest of
the proof, we will denote Ω̄(Γ) by Ω̄. Then Ω̂(Γ) minimizes
Q(Ω), or equivalently, ∆̂ = Ω̂(Γ) − Ω̄ minimizes J(∆) =
Q(Ω̄+∆). Consider the set

Ψp(Rp) :=
{
∆ : ∆ = ∆⊤ , ∥∆∥F = Rprpn

}
(91)

where Rp = 17C0p/β
2
p,min and rpn is as in (42). Since

J(∆̂) ≤ J(0) = 0, if we can show that inf∆{J(∆) : ∆ ∈
Ψp(Rp)} > 0, then the minimizer ∆̂ must be inside the
sphere defined by Ψp(Rp), and hence, ∥∆̂∥F ≤ Rprpn. It is
shown in [41, (9)] that ln(|Ω̄+∆|)−ln(|Ω̄|) = tr(Ω̄−1∆)−B̃1

where, with H(Ω̄,∆, v) = (Ω̄+ v∆)−1 ⊗ (Ω̄+ v∆)−1 and
v denoting a real scalar,

B̃1 :=vec(∆)⊤
(∫ 1

0

(1− v)H(Ω̄,∆, v) dv

)
vec(∆) . (92)

We have

J(∆) =

3∑
i=1

Bi , B1 =
1

p
B̃1 , (93)

B2 :=
1

p
tr
(
(Θ̌− Ω̄−1)∆

)
, (94)

B3 :=λp

(
∥Ω̄− +∆−∥1 − ∥Ω̄−∥1

)
. (95)

By (33) and (79), Ω̄−1 = E{Θ̌} =
(

1
2Mq

∑M
k=1 tr

(
S̄⋄
kΦk +

(S̄⋄
kΦk)

∗))Σ⋄ (where we replaced Φ̂k with Φk). By Lemma

6, maxi,j
∣∣[Θ̌−E{Θ̌}

]
ij

∣∣ ≥ C0p

√
ln(p)
KqM w.h.p. (which refers

to 1 − 1
pτ−2 − 4p2e−KqM , cf. (78)). Following [41, p. 502],

we have
B̃1 ≥ ∥∆∥2F /

(
2(∥Ω̄∥+ ∥∆∥)2

)
. (96)

Turning to E{Θ̌}, we have

tr
(
S̄⋄
kΦk + (S̄⋄

kΦk)
∗) = 2Re tr

(
S̄⋄
k(Φk −Φ⋄

k +Φ⋄
k)
)

(97)

= 2Re tr
(
S̄⋄
k(Φk −Φ⋄

k)
)
+ 2tr(Iq) (98)

≥ 2q − 2 ∥S̄⋄
k∥F ∥Φk −Φ⋄

k∥F (99)

where we used |tr(BCH)| ≤ ∥B∥F ∥C∥F (Cauchy-Schwarz
inequality). Since ∥S̄⋄

k∥F ≤ √q ∥S̄⋄
k∥ ≤

√
q βq,max and∑M

k=1 ∥Φk −Φ⋄
k∥F ≤

√
M∥Γ− Γ⋄∥F ≤

√
M γq , we have

A = 2Re
M∑
k=1

tr
(
S̄⋄
kΦk

)
≥ 2Mq − 2

√
Mq βq,maxγq (100)

≥ 2Mq − 2Mq βq,maxγq = 1.8Mq , (101)

where we have used the facts that
√
Mq ≤ Mq and

βq,maxγq = 0.1, as defined in (38). Therefore, ∥Ω̄−1∥ =
∥E{Θ̌}∥ ≥ 0.9 ∥Σ⋄∥, implying ∥Ω̄∥ ≤ 10/(9 ∥Σ⋄∥) ≤
10/(9βp,min) ≤ 1.5/βp,min . Using (93), (96), and the facts
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∥Ω̄∥ ≤ 1.5/βp,min and ∥∆∥ ≤ ∥∆∥F = Rprpn, we obtain
w.h.p.

B1 ≥ ∥∆∥2F β2
p,min/(8p) , (102)

for n > Np, since rpn ≤ βp,min/(34C0p) for n > Np and
Rprpn ≤ 0.5/βp,min.

We now consider B2 given by (94). Define S̄p = Sp ∪
{{i, j} : i = j} so that |S̄p| = sp + p. We have

|B2| ≤ B12 +B22, pB12 =
∣∣∣ ∑
{i,j}∈S̄p

[Θ̌− Ω̄−1]ij∆ji

∣∣∣ ,
pB22 =

∣∣∣ ∑
{i,j}∈S̄c

p

[Θ̌− Ω̄−1]ij ∆ji

∣∣∣ ,
where S̄cp denotes the complement of set S̄p. For an index set
B and a matrix C ∈ Rp×p, we write CB to denote a matrix
in Rp×p such that [CB]ij = Cij if (i, j) ∈ B, and [CB]ij = 0
if (i, j) ̸∈ B. Using

∣∣∑
{i,j}∈S̄p

∆ij

∣∣ ≤ √sp + p ∥∆∥F (by
Cauchy-Schwarz inequality),

pB12 ≤ max
i,j

[Θ̌− Ω̄−1]ij
∣∣ ∑
{i,j}∈S̄p

∆ij

∣∣ ,
≤ C0p

√
ln(p)/(KqM)

√
sp + p ∥∆∥F = C0prpn∥∆∥F .

(103)

We will combine B22 with B3. By (95),

B3 =λp

(
∥Ω̄− +∆−

Sp
∥1 + ∥∆−

Sc
p
∥1 − ∥Ω̄−∥1

)
≥λp

(
∥∆−

Sc
p
∥1 − ∥∆−

Sp
∥1
)
, (104)

using the triangle inequality ∥Ω̄− + ∆−
Sp
∥1 ≥ ∥Ω̄−∥1 −

∥∆−
Sp
∥1 and the fact Ω̄−

Sc
p

= Ω̄S̄c
p

= 0. Hence, B2 +

B3 ≥ −B12 − B22 + λp

(
∥∆−

Sc
p
∥1 − ∥∆−

Sp
∥1
)
. But pB22 ≤

C0p

√
ln(p)/(KqM) ∥∆−

Sc
p
∥1 w.h.p., therefore,

B2 +B3 ≥
(
λp − C0p

√
ln(p)/(p2KqM)

)
∥∆−

Sc
p
∥1

− λp∥∆−
Sp
∥1 − C0prpn∥∆∥F /p . (105)

Using the fact that by (43), the first term on right side of
(105) is nonnegative, and ∥∆−

Sp
∥1 ≤

√
sp ∥∆∥F by the

Cauchy-Schwarz inequality, we obtain B2+B3 ≥ −
(
λp
√
sp+

rpn/p
)
∥∆∥F . Thus, by (43), (93) and (102)

J(∆) ≥
∥∆∥2F β2

p,min

8p
−
(
λp
√
sp + C0prpn/p

)
∥∆∥F

≥
∥∆∥2F β2

p,min

8p
− 2C0prpn∥∆∥F

p

=
∥∆∥2F β2

p,min

8p

(
1− 16

17

)
> 0 (106)

using ∥∆∥F = Rprpn and Rp = 17C0p/β
2
p,min. This proves

Theorem 2(i). □
Proof of Theorem 2(ii). With Γ as in (17), let Γ = Γ̄(Ω)+Λ

with Φk = ΦH
k ≻ 0, and denote Q(Γ) = L2(Γ)−L2(Γ̄(Ω)).

For the rest of the proof, we will denote Γ̄(Ω) by Γ̄. Then
Γ̂(Ω) minimizes Q(Γ), or equivalently, Λ̂ = Γ̂(Ω)− Γ̄ min-
imizes J(Λ) = Q(Γ̄+Λ). Note that Λ = [Λ1, · · · , ΛM ] ∈

Cq×(qM) and Λk = Φk − Φ̄k, k = 1, · · · ,M , where
Φ̄k = Φ̄k(Ω) = pΦ⋄

k/tr(Σ⋄Ω) by (34). Consider the set

Ψq(Rq) :=
{
Λ : Λk = ΛH

k , k = 1, · · ·M, ∥Λ∥F = Rqrqn
}

(107)
where Rq = 17C0q/β

2
q,min and rqn is as in (41). Similar

to the proof of Theorem 2(i), our objective is to show that
infΛ{J(Λ) : Λ ∈ Ψq(Rq)} > 0, which would ensure
∥Λ̂∥F ≤ Rqrqn w.h.p. It is shown in [9, Lemma 5] that
ln(|Φ̄k + Λk|) − ln(|Φk|) + ln(|Φ̄∗

k + Λ∗
k|) − ln(|Φ∗

k|) =
tr
(
Φ̄−1

k Λk + (Φ̄−1
k Λk)

∗)− B̃1k where

B̃1k =gH(Λk)

(∫ 1

0

(1− v)Hk(Φ̄k,Λk, v) dv

)
g(Λk) ,

(108)

g(Λk) =

[
vec(Λk)
vec(Λ∗

k)

]
, Hk(Φ̄k,Λk, v) =

[
H11k 0
0 H22k

]
,

(109)

H11k =(Φ̄k + vΛk)
−∗ ⊗ (Φ̄k + vΛk)

−1 , (110)

H22k =(Φ̄k + vΛk)
−1 ⊗ (Φ̄k + vΛk)

−∗ , (111)

and v is a real scalar. Therefore,

J(Λ) =

M∑
k=1

3∑
i=1

Bik +B4 , Bik =
1

2Mq
B̃1k , (112)

B2k =
1

2Mq
tr
(
B̃2k + B̃∗

2k

)
, B̃2k = (Θ̃− Φ̄−1

k )Λk ,

(113)

B3k =αλq

(
∥Φ̄−

k +Λ−
k ∥1 − ∥Φ̄

−
k ∥1

)
, (114)

B4 =(1− α)
√
Mλq

p∑
i ̸=j

(
∥Φ(ij) +Λ(ij)∥ − ∥Φ(ij)∥

)
.

(115)

By [9, Eqn. (B.43)], we have

B1k ≥
1

2Mq

∥Λk∥2F
(∥Φ̄k∥+ ∥Λk∥)2

. (116)

Now tr(Σ⋄Ω) = tr(Σ⋄(Ω − Ω⋄ + Ω⋄)) = tr(Σ⋄(Ω −
Ω⋄)) + p. Since |tr(Σ⋄(Ω −Ω⋄))| ≤ ∥Σ⋄∥F ∥Ω −Ω⋄∥F ≤√
p βp,maxγp, we have |tr(Σ⋄Ω)| ≥ p − √p βp,minγp ≥

p − p βp,minγp = 0.9p since γp = 0.1/βp,min. Therefore,
∥Φ̄k∥ ≤ p∥Φ⋄

k∥/(0.9p) ≤ 1.5/βq,min. Also, ∥Λk∥ ≤
∥Λk∥F ≤ ∥Λ∥F = Rqrqn. Therefore,

M∑
k=1

B1k ≥
1

2Mq

∑M
k=1 ∥Λk∥2F

(1.5/βq,min +Rqrqn)2

≥
∥Λ∥2F β2

q,min

8Mq
(117)

w.h.p. for n > Nq , since rqn ≤ βq,min/(34C0q) for n > Nq

and Rqrqn ≤ 0.5/βq,min.
We now bound B2k noting that |B2k| ≤ L1k + L2k where

L1k =
2

2Mq

∣∣∣ ∑
{i,j}∈S̄q

[Θ̃− Φ̄−1
k ]ij [Λk]ji

∣∣∣ ,
L2k =

2

2Mq

∣∣∣ ∑
{i,j}∈S̄c

q

[Θ̃− Φ̄−1
k ]ij [Λk]ji

∣∣∣
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where S̄q = Sq ∪ {{i, j} : i = j} so that |S̄q| = sq + q.
Using Lemma 5 and

∣∣∑
{i,j}∈S̄q

[Λk]ij
∣∣ ≤ √sq + q ∥Λk∥F

(by Cauchy-Schwarz inequality), we have

L1k ≤
1

Mq
C0q

√
ln(M1/τq)

Kp

∣∣∣ ∑
{i,j}∈S̄q

[Λk]ij

∣∣∣
≤ C0q

M3/2q
rqn ∥Λk∥F , (118)

L2k ≤
C0q

Mq

√
ln(M1/τq)

Kp
∥Λ−

kSc
q
∥1 . (119)

Alternatively, as in [9, Eqn. (B.56)], with B2 =
∑M

k=1 B2k,

|B2| ≤
2

2Mq

p∑
i,j=1

M∑
k=1

∣∣[Θ̃− Φ̄−1
k ]ij

∣∣ ∣∣[Λk]ji
∣∣

≤C0q

Mq

√
ln(M1/τq)

Kp

p∑
i,j=1

M∑
k=1

∣∣[Λk]ij
∣∣ . (120)

Define Λ̌ ∈ Rq×q with [Λ̌]ij = ∥Λ(ij)∥F and as in
(23), Λ(ij) := [[Λ1]ij · · · [ΛM ]ij ]

⊤ ∈ CM . Using∑M
k=1

∣∣[Λk]ij
∣∣ ≤ √M ∥Λ(ij)∥F , we have

|B2| ≤
C0q√
M q

√
ln(M1/τq)

Kp
∥Λ̌∥1 . (121)

Mimicking [9, Eqns. (B.56)-(B.58)], we have
B3k ≥ αλq(∥Λ−

kSc
q
∥1 − ∥Λ−

kSq
∥1) and B4 ≥

(1−α)
√
M λq(∥Λ̌−

kSc
q
∥1−∥Λ̌−

kSq
∥1). With B3 =

∑M
k=1 B3k

and using (118) and (119), similar to [9, Eqns. (B.60)], we
have

αB2 +B3 ≥ −α|B2|+B3

≥ −αλq

M∑
k=1

∥Λ−
kSq
∥1 − α

C0q

M3/2q
rqn

M∑
k=1

∥Λk∥F (122)

where we also used the first inequality in (45). Using
∥Λ−

kSq
∥1 ≤

√
sq ∥Λk∥F ,

∑M
k=1 ∥Λk∥F ≤

√
M ∥Λ∥F and the

second inequality in (45), we can simplify (122) as

αB2 +B3 ≥ −2α∥Λ∥F
C0q

Mq
rqn . (123)

In a similar manner (see also [9, Eqns. (B.61)]) using (121),
we have

(1− α)B2 +B4 ≥ −2(1− α)∥Λ∥F
C0q

Mq
rqn (124)

under the upperbound on λqn specified in (45). Thus, by (112),
(117), (123) and (124), we obtain

J(Λ) ≥
∥Λ∥2F β2

q,min

8Mq
− 2C0qrqn∥Λ∥F

Mq

=
∥Λ∥2F β2

q,min

8Mq

(
1− 16

17

)
> 0 (125)

using ∥Λ∥F = Rqrqn and Rq = 17C0q/β
2
q,min. This proves

Theorem 2(ii). □

APPENDIX C
PROOF OF THEOREM 3

Proof of Theorem 3(i). Since ∥Ω⋄∥F = 1, we have
Ω̄(Γ)/∥Ω̄(Γ)∥F = Ω⋄. We have

∥Ω̂−Ω⋄∥F =
∥∥∥Ω̂(Γ)/∥Ω̂(Γ)∥F − Ω̄(Γ)/∥Ω̄(Γ)∥F

∥∥∥
F

=
∥∥∥ Ω̂(Γ)

∥Ω̂(Γ)∥F
− Ω̄(Γ)

∥Ω̂(Γ)∥F
+

Ω̄(Γ)

∥Ω̂(Γ)∥F
− Ω̄(Γ)

∥Ω̄(Γ)∥F

∥∥∥
F

≤ ∥Ω̂(Γ)− Ω̄(Γ)∥F
∥Ω̂(Γ)∥F

+ ∥Ω̄(Γ)∥F
∣∣∣ 1

∥Ω̂(Γ)∥F
− 1

∥Ω̄(Γ)∥F

∣∣∣
≤ 2

∥Ω̂(Γ)∥F
∥Ω̂(Γ)− Ω̄(Γ)∥F (126)

using
∣∣∥Ω̄(Γ)∥F − ∥Ω̂(Γ)∥F

∣∣ ≤ ∥Ω̂(Γ) − Ω̄(Γ)∥F (by
triangle inequality). Now ∥Ω̂(Γ)∥F = ∥Ω̂(Γ) − Ω̄(Γ) +
Ω̄(Γ)∥F ≥ ∥Ω̄(Γ)∥F − ∥Ω̂(Γ) − Ω̄(Γ)∥F . For n > N2p,
we have ∥Ω̂(Γ) − Ω̄(Γ)∥F ≤ 0.5∥Ω̄(Γ)∥F , and therefore,
∥Ω̂(Γ)∥F ≥ 0.5∥Ω̄(Γ)∥F . Hence,

∥Ω̂−Ω⋄∥F ≤ 4 ∥Ω̂(Γ)− Ω̄(Γ)∥F /∥Ω̄(Γ)∥F . (127)

We now characterize ∥Ω̄(Γ)∥F . We have

A =
∣∣ M∑
k=1

(
tr(S̄⋄

kΦk) + tr(S̄⋄
kΦk)

∗)∣∣ ≤ 2

M∑
k=1

∣∣tr(S̄⋄
kΦk)

∣∣
≤ 2

M∑
k=1

∥S̄⋄
k∥F ∥Φk∥F ≤ 2

√
q βq,max

M∑
k=1

∥Φk∥F .

Since
∑M

k=1 ∥Φk∥F ≤
∑M

k=1 ∥Φk−Φ⋄
k∥F +

∑M
k=1 ∥Φ⋄

k∥F ≤√
M γq +

√
qM/βq,min, we have A ≤ 0.2

√
qM +

2qMβq,max/βq,min ≤ 2qM(1 + βq,max/βq,min). By (33) and
the fact ∥Ω⋄∥F = 1, we infer ∥Ω̄(Γ)∥F ≥ βq,min/(βq,max +
βq,min) = 1/γr, which combined with (127) and (44) yields
(47). □
Proof of Theorem 3(ii). For n > N3p, Ω̂ ∈ B(Ω⋄) (cf.
Theorem 3(i)), and C2prpn ≤ (p/2) w.h.p. We have

∥Γ̂(Ω̂)− Γ⋄∥F ≤ ∥Γ̂(Ω̂)− Γ̄(Ω̂)∥F + ∥Γ̄(Ω̂)− Γ⋄∥F

where Theorem 2(ii) applies to ∥Γ̂(Ω̂)− Γ̄(Ω̂)∥F . By (34),

Γ̄(Ω̂)− Γ⋄ =
( p

tr(Σ⋄Ω̂)
− 1
)
Γ⋄ . (128)

As in the proof of Theorem 2(ii) (following (116)), we have
tr(Σ⋄Ω̂) = tr(Σ⋄(Ω̂−Ω⋄+Ω⋄)) = tr(Σ⋄(Ω̂−Ω⋄))+ p and
|tr(Σ⋄(Ω̂ − Ω⋄))| ≤ ∥Σ⋄∥F ∥Ω̂ − Ω⋄∥F ≤ C2prpn (using
(47)). Therefore, p − C2prpn ≤ tr(Σ⋄Ω̂) ≤ p + C2prpn and
|p − tr(Σ⋄Ω̂)| ≤ C2prpn. Since 0 < C2prpn ≤ (p/2) w.h.p.,
|tr(Σ⋄Ω̂)|−1 ≤ 2/p. Thus we have ∥Γ̄(Ω̂)−Γ⋄∥F ≤ C2qrpn,
which yields (48). The given probability bound is the result
of the bounds in Theorem 2 (both (44) and (46) must hold)
and an application of the union bound. □
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