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Abstract—Ambient Internet of Things networks use low-cost,
low-power backscatter tags in various industry applications. By
exploiting those tags, we introduce the integrated sensing and
backscatter communication (ISABC) system, featuring multiple
backscatter tags, a user (reader), and a full-duplex base station
(BS) that integrates sensing and (backscatter) communications.
The BS undertakes dual roles of detecting backscatter tags and
communicating with the user, leveraging the same temporal
and frequency resources. The tag-reflected BS signals offer
data to the user and enable the BS to sense the environment
simultaneously. We derive both user and tag communication
rates and the sensing rate of the BS. We jointly optimize the
transmit/received beamformers and tag reflection coefficients to
minimize the total BS power. To solve this problem, we employ
the alternating optimization technique. We offer a closed-form so-
lution for the received beamformers while utilizing semi-definite
relaxation and slack-optimization for transmit beamformers and
power reflection coefficients, respectively. For example, with ten
transmit/reception antennas at the BS, ISABC delivers a 75%

sum communication and sensing rates gain over a traditional
backscatter while requiring a 3.4% increase in transmit power.
Furthermore, ISABC with active tags only requires a 0.24%

increase in transmit power over conventional integrated sensing
and communication.

Index Terms—Backscatter communication (BackCom), Inte-
grated sensing and communication (ISAC), Passive tags.

I. INTRODUCTION

Future Internet-of-Things (IoT) networks demand low-

power, high-quality wireless connectivity, and precise, robust

sensing capabilities [1], [2]. Ambient power-enabled (battery-

free) IoT, a vibrant research area, has garnered attention,

with 3GPP launching a dedicated study item [1], [2]. These

networks link devices capable of autonomously sensing, col-

lecting, and sharing environmental data, fostering real-world

applications in smart homes, cities, autonomous vehicles,

industrial IoT, healthcare, etc. [3]–[5]. Such applications ne-

cessitate not only low-power communication but also advanced

sensing functionalities. For instance, a smart-home temper-

ature sensor can move and sense temperature in different

locations, enabling the network to extract vital environmental

information, such as range, velocity, or angle, for environment

learning and mapping [4], [6].

While ambient-IoT devices exhibit low power consumption

and limited processing capabilities, they can help address the

central challenge of enabling simultaneous communication and

sensing. In this context, a groundbreaking concept introduced

in [6] is known as Integrated Sensing and Backscatter Commu-

nications (ISABC). This paradigm shift merges the principles
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of integrated sensing and communication (ISAC) with the ca-

pabilities of backscatter communication (BackCom), offering a

solution that facilitates the concurrent execution of sensing and

communication tasks in ambient power-enabled IoT networks.

Before proceeding to ISABC, we first briefly describe ISAC

and BackCom.

A. Integrated Sensing and Communication

ISAC, or Integrated Sensing and Communication, represents

a revolutionary shift from traditional network models, allowing

concurrent sensing and communication tasks. Unlike conven-

tional systems with segregated networks, ISAC seamlessly

integrates these functions, which carry substantial implications

for the transition beyond 5G into the domain of 6G [7], [8].

This paradigm empowers devices to extract environmental

insights from RF signals and reflections and facilitates innova-

tive services like precise localization, activity tracking, object

detection, urban traffic monitoring, and weather observations

[7], [8].

Moreover, the environmental data acquired through ISAC

enhances communication performance, enabling precise beam-

forming and rapid beam failure recovery. This sensing capa-

bility propels future IoT networks into the realm of perceptive

networks, laying the groundwork for intelligence within the

ISAC network and unlocking possibilities across various do-

mains, including smart homes, cities, warehousing, healthcare,

and beyond [7], [8].

The two categories of ISAC are (i) Device-free ISAC and

(ii) Device-based ISAC [9].

1) Device-free ISAC: This approach detects the sensing

information of unregistered external targets (vehicles, ani-

mals, people, etc.). Unlike registered targets, these entities

cannot transmit and/or receive sensing signals, making

the sensing procedure independent of their transmission

and/or reception capabilities.

2) Device-based ISAC: Network-registered devices, includ-

ing mobile phones, sensors, UAVs, etc., enable sensing

functionality. The targets involved in sensing can transmit

and/or receive signals, and the procedure relies on their

transmission and/or reception. An illustrative case is

wireless-based localization for locating mobile devices.

Additionally, sensing in these ISAC categories can be sub-

divided based on the transmitter and sensing receiver configu-

rations, i.e., mono-static, bi-static, and multi-static, as well as

the type of sensing signal, i.e., active if the sensing receiver

uses the reflected/diffracted signals of its own transmission or

passive if it uses the received sensing signals from another

transmitter [7], [8]. In active sensing, the sensing receiver

operates simultaneously while transmitting, i.e., in full-duplex
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(FD) mode [10]. In particular, self-interference (SI), a critical

issue in FD operation, has a significant impact on sensing

performance. For instance, in an FD ISAC system, the SI

cancellation must be performed only for the direct signal

coupling between the transceiver antennas, while preserving

the target reflections [10]. Many developing SI cancellation

approaches, including antenna isolation, analog cancellation,

digital cancellation, and machine learning-based SI mitigation,

can successfully suppress the SI [10], [11].

B. Backscatter Communication

This technology, especially for ambient-powered IoT net-

works, has drawn significant interest from both academic

and industrial research communities [3]–[5], [12], [13]. It

relies on passive tags devoid of active RF components, which

communicate by reflecting external RF signals. This approach

overcomes the limitations of battery-powered IoT devices,

which often require frequent replacement or recharging, result-

ing in substantial maintenance costs, environmental concerns,

and, in specific cases, safety hazards (e.g., wireless sensors

in industries like power and petroleum). As a solution, the

adoption of batteryless backscatter devices, such as passive

tags, or devices with limited energy storage (semi-passive

tags), holds promise for meeting the connectivity demands of

future IoT networks and applications [3]–[5].

Due to using RF signals can be generated by dedicated or

ambient sources, tags can be cost-effective, ultra-low-power

devices (e.g., few nW to µW) [3]. Moreover, BackCom

optimizes spectrum usage without the need for additional

frequency spectrum allocation. However, the performance of

ambient BackCom (AmBC) can be hindered by interference

from legacy signals. Nonetheless, employing a cooperative

receiver/user capable of decoding both primary and backscatter

data mitigates primary interference in BackCom [14].

C. Integrated Sensing and Backscatter Communications

While ISABC falls under the umbrella of device-based

ISAC, it distinguishes itself from standard ISAC systems by

substituting the sensing/radar target with backscatter tags to fa-

cilitate opportunistic sensing [6]. Table I provides a breakdown

of the distinctions between these two. While ISAC may involve

targets that neither transmit nor receive sensing signals, such

as vehicles or birds, or devices that do, like mobile phones for

wireless-based localization, ISABC stands out by exclusively

utilizing backscatter tags. These tags provide environmental

insights to the base station (BS) and furnish supplementary

data to the user. To underscore the nuances, we note these key

distinctions:

• ISABC uses the backscatter tag as a sensing instrument

and a data provider. It can act as a sensor (e.g., monitoring

temperature or humidity), conveying ambient information

to the user. Simultaneously, the BS leverages the same tag

signal to glean critical environmental metrics like range

or velocity.

• ISABC’s hallmark lies in its capability to merge sensing

and backscatter data. This convergence augments com-

munication and sensing prowess and heightens compu-

TABLE I: A comparison between ISAC and ISABC.

Features ISAC ISABC

Target X ×

Tag × X

Additional data at the user × X

Power allocation at the BS X X

User decoding Conventional SIC

Sensing signal Active/Passive Active

tational demands due to the necessity for advanced de-

coding algorithms, especially those relying on successive

interference cancellation (SIC).

In applications like smart homes, while tags can delineate

the environment, the key idea is to exploit tag-reflected signals

at the BS for enhanced sensing. This is achieved without in-

curring additional RF resources, escalating hardware expenses,

or modifying tags.

D. Motivation and Our Contribution

While many works study ISAC and BackCom systems sepa-

rately [3]–[5], [15]–[18], study [6] is the first one to introduce

a holistic exploration of their integrated functionalities and

ensuing performance metrics of a limited ISABC system. This

work thus breaks new ground by exploiting their synergistic

potential.

In [6], the integration of sensing at an FD BS with a

backscatter tag and user is detailed. The tag reflects the BS

signal to transmit data to the user, while the BS extracts

environmental data from the tag’s signal. The study provides

closed-form expressions for user and tag communication rates

and BS sensing rates. However, [6] has not addressed multiple

tags, BS transmit/received beamformers, and tag’s reflection

coefficients beyond the single-tag scenario. This study ex-

tends the research, exploring multi-tag energy harvesting (EH)

scenarios and optimizing BS beamforming, received beam-

formers, and tag reflection coefficients. Our contributions are

summarized as follows:

1) The objective of this paper is to intertwine sensing func-

tions with communication capabilities and to elucidate the

advantages of ISABC. To this end, we analyze a network

of multi-tags, a user, and an FD BS. The BS manages

communication for both the user and the tags. Specif-

ically, the tags reflect the BS’s signal to communicate

with the user, while the BS exploits the same reflected

signal to derive environmental insights.

2) We optimize the system for minimal BS power con-

sumption while meeting each node’s quality-of-service

(QoS) requirements. The optimization variables are the

BS transmit/received beamformers and tag power re-

flection coefficients. The nonlinear EH model at the

tags further complicates this non-convex optimization

problem. To tackle this, we use an AO (alternative

optimization) approach [19]. We start by optimizing

the BS received beamformer for the tags’ signal using

minimum mean-squared error (MMSE) filtering and the

generalized Rayleigh quotient form of the signal-to-noise-

to-interference ratio (SINR) [20], [21]. Then, we compute
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Fig. 1: An ISABC system setup.

the BS transmit beamformers using the semidefinite re-

laxation (SDR) method [22], [23]. Finally, we introduce a

slack-optimization problem to optimize the tag reflection

coefficients [24], [25].

3) We provide convergence and complexity analysis and

simulations to assess the efficiency of ISABC, com-

paring it to conventional ISAC, communication-only,

and sensing-only schemes (with/without EH). With a

configuration of ten antennas each for transmission and

reception at the BS, ISABC offers a 75% combined

communication and sensing rate enhancement compared

to the conventional BackCom, while only necessitating a

modest 3.4% rise in transmit power.

Notation: Vectors and matrices are expressed by boldface

lower case letters a and capital letters A, respectively. For a

square matrix A, AH and AT are Hermitian conjugate trans-

pose and transpose of a matrix, respectively. IM denotes the

M -by-M identity matrix. The Euclidean norm of a complex

vector and the absolute value of a complex scalar are denoted

by ‖ · ‖ and | · |, respectively. The distribution of a circularly

symmetric complex Gaussian (CSCG) random vector with

mean µ and covariance matrix C is denoted by ∼ CN (µ, C).
The expectation operator is denoted by E[·]. Besides, CM×N

and RM×1 represent M × N dimensional complex matrices

and M × 1 dimensional real vectors, respectively. Further, O
expresses the big-O notation. Finally, K , {1, . . . ,K} and

Kk , K \ {k}.

II. SYSTEM, CHANNEL, AND SIGNAL MODELS

Here, we describe the system, channel, and transmission

models in detail.

A. System Model

As shown in Fig. 1, we consider an ISABC network having

an FD BS consisting of M ≥ 1 transmit and N ≥ 1
receiver uniform linear array (ULA) antennas, K single-

antenna backscatter tags/sensors, denoted by Tk, ∀k ∈ K ,

{1, . . . ,K}, and a single-antenna user (or mobile reader). The

BS antennas are spaced at half-wavelengths [10]. Tags perform

EH and backscatter data to the reader (Section II-C).

The FD BS uses transmit beamforming for communication

and environment sensing. Tags utilize harvest energy from the

BS signal and also reflect it for data transfer. A cooperative

user decodes its data and then uses SIC for tag data. The BS

also captures the tag-reflected signals to extract environmental

insights [6], [15], [16]. It has separate antennas for transmis-

sion and reception to limit SI, assuming perfect cancellation

and synchronized timing [15], [16].

B. Channel Model

We consider block flat-fading channel models for the sys-

tem. During each fading block, the channels between the BS

and the user, the BS and Tk, and Tk and the user are denoted

by f ∈ CM×1, gf,k ∈ CM×1, and vk ∈ C, respectively.

Moreover, gb,k ∈ CN×1 represents the channel between

Tk and the BS receiver antennas. Among these channels,

pure communication channels, i.e., f and vk, are modeled as

Rayleigh fading and given by

a = ζ1/2a ã, (1)

where a ∈ {f , vk}. In (1), ζa captures the large-scale path-loss

and shadowing, which stays constant for several coherence

intervals. Moreover, ã ∼ CN (0, IA) accounts for the small-

scale Rayleigh fading1, where A ∈ {M, 1}.
On the other hand, following the echo signal multiple-input

and multiple-output (MIMO) radar, the channels between the

BS and tags are modeled as line-of-sight (LoS) paths [10].

We denote the transmit/receiver array steering vectors to the

direction θk by

b(θk) =

√

ζb
B

[

1, ejπ sin(θk), . . . , ejπ(B−1) sin(θk)
]T

, (2)

where b ∈ {gf,k,gb,k}, B ∈ {M,N}, θk is the direction of

Tk with respect to the BS and user/reader direction, and ζb is

the path-loss. Finally, the SI channel between the transmitter

and the receiver ULAs of the BS is denoted as HSI ∈ CM×N .

In typical BackCom applications, tags are often deployed

in stable environments such as rooms or warehouse shelves,

maintaining a clear LoS to the BS. This setup supports

applications like inventory tracking and smart shelving. Con-

versely, communication links, including BS-user and tags-

user connections, encounter various propagation challenges

due to mobility, obstacles, and varying distances. Hence,

the Rayleigh fading model is commonly employed due to

its stochastic nature, effectively capturing the diverse signal

paths encountered in urban landscapes [6], [10], [26]–[28].

However, it is worth noting that the proposed optimization

framework and its solution are adaptable to any fading model.

Additionally, performance trends remain relatively consistent

across different fading models (Fig. 10).

Remark 1. We assume that channel estimation and data trans-

mission tasks occur in two separate time slots. In the initial

slot, channel state information (CSI) can be estimated using

emerging techniques [26], [27], [29]. These methods encom-

pass pilot-based, blind, and semi-blind approaches, employing

algorithms like least squares (LS), MMSE estimator, expecta-

tion maximization (EM), and eigenvalue decomposition (EVD)

to achieve high-precision channel estimation [26], [27], [29].

However, as the focus of our study lies in the integration of

sensing into BackCom, we assume the presence of perfect CSI,

1Note that vk = ζ
1/2
vk ṽk and ṽk ∼ CN (0, 1).
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implying knowledge of f and hkk∈K. This assumption aligns

with standard practice in most studies [30].

C. Tag Characteristics

Each tag employs load modulation, dependent on the com-

plex reflection coefficient of Tk, ∀k ∈ K [4], [5]:

Θi,k =
Zi − Z⋆

a,k

Zi + Za,k
. (3)

In (3), Za,k symbolizes the antenna impedance of Tk, and Zi

represents the i-th load impedance where i ∈ {1, 2, . . . , Q}.
We can express Θi,k = |Θk|ejϕi , where ϕi ∈ [0, 2π]. Since

all the tags utilize a uniform set of phases {ϕ1, ϕ2, . . . , ϕQ}
to transmit their data, Q-ary phase-shift keying (PSK) constel-

lation is realized. This means the phase ∠Θi,k is contingent

not on a specific tag but rather on ϕi.

Furthermore, the index i is omitted in the power reflection

coefficient |Θi,k|2 as it is feasible to design a collection of

load impedance values that maintain a consistent |Θi,k|2, only

modulating the phase of Θi,k [30]. Thus, we denote αk =
|Θi,k|2, which is the power reflection coefficient of Tk. The

tag design will satisfy 0 < αk < 1 [5].

D. Transmission Model

The BS transmitted signal x ∈ CM×1, which includes both

data and sensing waveforms, is given by x = wxd + s, where

xd ∈ C is the intended data symbol for the mobile user/reader

with unit power, i.e., E{|xd|2} = 1, w ∈ CM×1 is the BS

beamforming vector, and s ∈ CM×1 is the sensing signal with

the covariance matrix S , E{ssH} for extending the degrees-

of-freedom of x to achieve enhanced sensing performance

[10], [31]. Also, it is assumed that xd and s are independent of

each other, and the beamforming at the BS is achieved through

designing w and S [10], [31]. The designed S can be used to

generate the dedicated sensing signal, s [32].

The user receives the BS signal as well as the tags’

backscattered signals. The propagation delay differences for

all signals are assumed to be negligible [33]. The user-received

signal is thus given by

y = fHx+
∑

k∈K

√
αkh

H
k xck + zu, (4)

where the first and the second terms in (4) represent the direct-

link, i.e., BS-to-user, and backscatter-link, i.e., BS-to-tags-to-

user, signals, respectively. Moreover, zu ∼ CN (0, σ2) is the

white Gaussian noise (AWGN) at the user with 0 mean and σ2

variance, hk is the effective backscatter channel through Tk,

i.e., hk = gf,k(θk)vk , and ck is Tk’s data with E{|ck|2} = 1.

As the mobile user/reader and BS are integral to the primary

networks, a pre-existing connection facilitates the exchange

of information, including sensing waveform, via a control

link [34]. It is thus assumed that the user knows the sensing

waveform in advance and removes it before decoding data.

Following the removal of the sensing signal, the received

signal can be expressed as

y = fHwxd +
∑

k∈K

√
αkh

H
k (wxd + s) ck + zu. (5)

Next, the user performs SIC to recover the backscattered data

from the tags. In particular, the user decodes its own signal,

treating tag signals as interference, and then subtracts the

decoded xd from the received signal (5) for decoding the tags’

data. The post-processed signal for decoding tags’ data is thus

given as

yt =
∑

k∈K

√
αkh

H
k (wxd + s) ck + zu. (6)

Backscattered signals from tags, on the other hand, reach not

only the user but also the BS. The BS thus aims to extract

environmental information from these unintentionally received

backscattered signals [6]. The received signal at the BS, i.e.,

yb ∈ C
N×1, is given as

yb =
∑

k∈K

√
αkGk(θk)xck +HH

SIx+ zb, (7)

where Gk(θk) , gb,k(θk)g
H
f,k(θk) and

√
αkGk(θk)xck is the

k-th backscatter tag (Tk) reflection. The second term in (7)

denotes the SI at the receiver of the BS due to simultaneous

transmission and reception, and zb ∼ CN (0, σ2IN ) the

AWGN at the BS. We assume that the FD BS cancels the SI

at its receiver using perfect SI cancellation techniques [15],

[16]. The post-processed SI cancelled signal is thus given as

y′
b =

∑

k∈K

√
αkGk(θk)xck + zb. (8)

The BS then applies the receiver beamformer, uk ∈ CN×1

for k ∈ K, to the received signal (8) to capture the desired

reflected signal of Tk. The post-processed signal for obtaining

Tk’s sensing information is given as

yb,k = uH
k y

′
b (9)

=
√
αku

H
k Gk(θk)xck+

∑

i∈Kk

√
αiu

H
k Gi(θi)xci+uH

k zb,

where Kk , K \ {k}.
Remark 2. Before proceeding, we wish to clarify the following

assumptions used in the considered system: (i) When the

transmit and receive arrays are colocated, the angles of a

backscatter tag/target seen at the BS transceiver are the same

in (7), which is a reasonable and common assumption [35], (ii)

Because the BS and the user are linked via a controlled link,

the user is aware of the sensing waveform in advance [34],

and (iii) We assume that a dedicated channel estimating phase

is used prior to FD transmission, ensuring CSI is available

for beamforming design and SI at the BS, as well as SIC at

the user/reader [36].

Existing channel estimating methods accurately estimate the

cascaded channel hk, but do not separate or estimate the

individual channels, i.e., gf,k and vk. Although hk contains θk,

accurately estimating θk from hk is not feasible as it contains

an unknown channel vk. Consequently, as we proposed in

this study, estimating the tags’ sensing parameters necessitates

a separate sensing framework. Conversely, the properties of

Tk’s reflected signal
√
αkGk(θk)xck, such as round trip

delay time and angle of arrival, can be used to acquire
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tag environmental information, such as range, velocity, and

angle. Maximizing the echo signal strength for a particular tag

while limiting tag interference at the BS, i.e., sensing SINR,

improves tag detection probability and precise estimate of

these targeted parameters. However, as we primarily focus on

integrating sensing into BackCom systems and its performance

optimization (transmit power), we leave the sensing parameter

estimation for future research.

III. COMMUNICATION AND SENSING PERFORMANCE

The SINRs for sensing and communication tasks substan-

tially impact the performance of both systems. Herein, we

derive those SINRs of the tags and the user to evaluate and

optimize the ISABC system.

A. Communication Performance

The main communication SINRs are the user SINR and

tags’ SINRs.

1) User SINR: The user first decodes its data, considering

the tags’ signal as interference. From (5), the received SINR

is obtained as

Γu =
|fHw|2

∑

k∈K
αk(|hH

k w|2 + hH
k Shk) + σ2

. (10)

Here, we consider that while the user can cancel interference

from the direct-link sensing signal, i.e., fHs, it cannot cancel

interference from tag-sensing reflections because they consist

of unknown tag data, i.e., ck for k ∈ K.

2) Tk’s SINR: The user employs the SIC for decoding the

backscatter data. Using (6), the SINR of Tk at the user is given

as

Γt,k =
αk

(

|hH
k w|2 + hH

k Shk

)

∑

i∈Kk
αi

(

|hH
i w|2 + hH

i Shi

)

+ σ2
. (11)

B. Sensing Performance

The BS uses the unintentionally received backscattered

signal for sensing, i.e., to learn and obtain environmental

information. The BS applies a receiver beamformer, uk for

k ∈ K, to the received signal (8) to capture the desired

reflected signal of Tk. To this end, the sensing SINR of Tk is

obtained using (9) which is given by

Υk =
αkE

{

|uH
k Gk(θk)x|2

}

∑

i∈Kk

αiE
{

|uH
k Gi(θi)x|2

}

+ E
{

|uH
k zb|2

}

=
αku

H
k Gk(θk)RxG

H
k (θk)uk

uH
k

(

∑

i∈Kk

αiGi(θi)RxG
H
i + σ2IN

)

uk

, (12)

where Rx , E{xxH} = wwH + S is the covariance matrix

of the BS transmitted signal [10].

Remark 3. Communication and sensing performance are

essentially determined by the associated SINRs. In particular,

communication symbol detection probability increases mono-

tonically with SINR [37], [38]. Maximizing SINR eventually

minimizes the symbol error probability. Therefore, we use

the communication SINR performance as a standard metric.

Similarly, in sensing, the detection probability of a target (tag)

is proportional to its sensing SINR [10], [39]. The sensing

SINR enables target detection using both transmit and receiver

beamforming (see Fig. 3 and Fig. 4). It also aids in reducing

interference between targets. However, the standard mean

squared error of the transmit beampattern does not account

for the receiver beampattern or target interference. Given the

benefits of sensing SINR, we employ it as a viable metric for

sensing performance.

C. Tag’s EH Model

As mentioned before, the tags are passive and do not

generate RF signals. Thus, they do not require batteries and

rely entirely on EH to power their essential functions. They

transmit their data by simply reflecting (i.e., backscattering)

an external RF signal, which requires negligible power con-

sumption. The tags concurrently perform both EH and data

communication operations via power-splitting of the incident

RF signal [30], [40].

The power-splitting operation can be described as follows:

let the incident RF power at tag Tk be pink = |gH
f,kw|2 +

gH
f,kSgf,k. The tag reflects a fraction of pink and harvests the

remainder [40]. These amounts can be quantified as follows.

1) The reflected power is αkp
in
k , which is used for data

transmission,

2) The harvested power, phk, can be modeled as a linear

or nonlinear function of pink . The linear model estimates

the harvested power at each tag as phk = η(1 − αk)p
in
k ,

where η ∈ (0, 1] is the power conversion efficiency.

Although the linear model is the most widely used in the

literature due to its simplicity, it ignores the nonlinear

characteristics of actual EH circuits such as saturation

and sensitivity [41].

Consequently, a parametric nonlinear sigmoid EH has been

widely used [42]. It models the total harvested power at Tk as

phk = Φ((1 − αk)p
in
k ), where

Φ(pink ) = ψNL
k −

MNLΩNL

1− ΩNL
, ΩNL =

1

1 + exp(aNLbNL)
,

(13)

ψNL
k =

MNL

1 + exp(−aNL(pink − bNL))
, ∀k, (14)

where ψNL
k is a standard logistic function with constant ΩNL

ensuring a zero input/output response. Parameters aNL and bNL

represent circuit characteristics like capacitance and resistance.

MNL is the maximum harvested power when the EH circuit

is saturated. Parameters aNL, bNL, and MNL can be derived

using a curve fitting tool [42]. Other non-linear models may

be found in [41]. However, we must add that our problem

formulation can handle linear and non-linear models within

one unified framework.

Regardless of the choice of a linear or non-linear model, an-

other critical parameter is the activation threshold, i.e., pb. It is

the minimal power required to wake up the EH circuit, which

is typically −20 dBm for commercial passive tags [4]. Thus,

to activate the tag, the harvested power should exceed the
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threshold, i.e., phk ≥ pb. In particular, (1−αk)p
in
k ≥ p′b, where

p′b , Φ−1(pb) and Φ−1(pb) = bNL − 1
aNL

ln
(

MNL−pb

pb

)

, ∀k.

Without loss of generality, the nonlinear EH model is adopted

for formulating the optimization problem and resource alloca-

tion algorithm design in the following.

IV. PROBLEM FORMULATION

Our objective is to optimize the BS received beam-

formers, {uk}k∈K, alongside the transmit beamforming w

and S, and the tag reflection coefficients, {αk}k∈K. We

denote the set of these optimization variables as A =
{{uk}k∈K, {αk}k∈K,w,S ≻ 0}. We focus on minimizing the

total BS transmit power. This objective promotes large-scale

connectivity, utilizing the saved power to enhance network

capacity for additional tags and users. Such an approach

is particularly beneficial for green IoT networks, aiming to

reduce energy consumption, thus extending network lifespans,

reducing costs, and enhancing resource efficiency [43].

This goal is achieved by ensuring that the communication

SINR requirements for both tags and the user are met at the

user, as well as the EH requirements of the tags and the sensing

SINR requirements at the BS. The problem is thus formulated

as follows:

(P1) : min
A

‖w‖2 + Tr(S), (15a)

s.t Υk ≥ Υth
k , ∀k, (15b)

Γu ≥ Γth
u , (15c)

Γt,k ≥ Γth
k , ∀k, (15d)

pink ≥
Φ−1(pb)

1− αk
, ∀k, (15e)

‖uk‖2 = 1, ∀k, (15f)

0 < αk < 1, ∀k, (15g)

where (15b) guarantees the sensing SINR requirement of each

tag in which Υth
k denotes the targeted sensing SINR of Tk at

the BS.

On the other hand, (15c) and (15d) set the targeted SINR

values, i.e., Γth
u and Γth

k , for the user to decode its own data

and tag data, respectively. These ensure the minimum quality

of the rate for the user and tags. Constraint (15e) indicates the

minimum incident power required at each tag for activation.

Constraint (15g) specifies the natural bounds on the reflection

coefficient of each tag.

Remark 4. The justification for objective (15a) is as fol-

lows. Minimizing BS transmit power is crucial for energy

conservation, cost reduction, and prolonged network lifespan.

While other metrics like latency, throughput, and reliability

are relevant, integrating them may introduce conflicting goals.

Our tailored problem formulation prioritizes SINR require-

ments while minimizing BS transmit power, aligning with the

efficiency and robustness essential for green IoT deployments.

Note that the transmit power optimization approaches of

ISABC and ISAC differ and present unique challenges. Unlike

ISAC with conventional targets, ISABC utilizes backscat-

ter tags for sensing and as a data transmission medium.

Hence, it adds complexity and additional constraints to its

optimization problem, i.e., (P1). In particular, ISABC has

additional constraints (15d) and (15e) for tag data transmission

and EH in comparison to conventional ISAC. In contrast,

by omitting these constraints, ISAC offers a significantly

simplified optimization framework. In addition, ISAC has a

lower spectral efficiency than ISABC due to the absence of

tag data transmission.

Since the denominators of SINRs in (10) and (11) are

similar (except for the k-th term), constraints (15c) and (15d)

can be combined into a single constraint without changing the

original problem (P1). Combining these constraints utilizing

their similar structures thus yields the following equivalent

optimization problem:

(P2) : min
A

‖w‖2 + Tr(S), (16a)

s.t
|fHw|2

Γth
u (1 + Γth

k )
−
∑

i∈Kk

αi

(

|hH
i w|2 + hH

i Shi

)

≥ σ2, ∀k,

(16b)

(15b), (15e) − (15g), (16c)

where constraint (15c) and (15d) are combine into constraint

(16b). Our next step is to develop a new optimization algorithm

to solve (16a).

V. PROPOSED SOLUTION

Problem (16a) is non-convex due to its constraints set, which

involves products of the optimization variables. To tackle this,

we turn to AO [19]. It divides an optimization problem into

sub-problems that are easier to solve individually, which are

then solved alternatively, one at a time, while keeping the

other variables fixed. The process continues iteratively until

convergence or a stopping criterion is met. This approach

works when a direct or simultaneous optimization of all

variables is challenging or computationally expensive [19].

Thus, to solve minx f(x), where x ∈ Rs can be divided into

l > 1 blocks, i.e., x = (x1, x2, . . . , xl)
T with xl ∈ Rsk and

∑l
k=1 sk = s, the strategy is to cyclically minimize for one

block at a time, holding the others constant, until convergence

is achieved. The AO technique offers a solution that is locally

optimal [19] (See Remark 5).

Thus, we divide (16a) into three sub-problems. For each

one, we optimize (16a) for the associated variable(s) while

keeping the other optimization variables fixed. The result

then feeds into the next sub-problem. This block optimization

iterates until the objective function converges. In the first sub-

problem, with constant transmit beamformers and reflection

coefficients, we optimize received beamformers using (15b).

Next, we fix the received beamformers and reflection coeffi-

cients to optimize transmit beamformers w and S, navigating

the non-convex constraints in (16a) using the semidefinite

relaxation (SDR) method [22], [23]. We handle the last sub-

problem focused on optimizing reflection coefficients with a

novel slack-optimization approach.

Although the original AO approach suggests that the same

objective function be optimized over alternative blocks of

variables [19], that is not the case here. In our case, the
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first and third sub-problems are independent of the original

objective. These two hence are feasibility problems, where the

primary goal is to find a feasible solution that satisfies a set

of constraints. Feasibility problems focus solely on finding a

point that meets the specified constraints, without necessarily

optimizing any objective. Nonetheless, we transform these into

optimization problems with explicit objectives to achieve more

efficient solutions without compromising the original problem.

Consequently, our approach may yield a considerably efficient

solution [23].

A. Sub-Problem 1: Optimization Over uk

For given {w,S, {αk}k∈K}, problem (P2) becomes a feasi-

bility problem for receiver beamforming, uk. This is because

the goal of (16a), i.e., the BS transmit power minimization, is

independent of uk. Any feasible value of uk that satisfies the

constraints (15b) and (15f) can thus be a solution.

Although uk might not directly impact for reducing BS

transmit power, the sensing SINR at the BS for each tag

depends on the appropriate choice of uk. Therefore, we take

an approach that seeks to maximize each tag’s sensing SINR.

This tactic serves a dual purpose: it guarantees that the sensing

performance criteria are fulfilled and indirectly supports the

overarching objective of transmit power reduction. This is

because ensuring high SINR for tag signals can potentially

alleviate the need for higher transmit power to overcome poor

reception, thus aligning with our power minimization strategy.

By optimizing uk to maximize the sensing SINR, we improve

power minimization in the subsequent AO steps [20], [21].

Utilizing the unique structure of the sensing SINR for each

tag (12), we transform this sub-problem into a generalized

Rayleigh quotient optimization problem, which has a direct

closed-form solution [20], [21]. Consequently, we obtain the

following optimization problem:

(P3) : max
uk

αku
H
k GkRxG

H
k uk

uH
k

(
∑

i∈Kk
αiGiRxG

H
i + σ2

kIN
)

uk

, (17a)

s.t ‖uk‖2 = 1, ∀k. (17b)

The objective function in (17a) can be restated as the following

optimization problem:

(P4) : max
uk

uH
k G̃kG̃

H
k uk

uH
k Quk

, s.t ‖uk‖2 = 1, ∀k, (18a)

where G̃k =
√
αkGk(w+s) and Q =

∑

i∈Kk
αiGiRxG

H
i +

σ2
kIN . Problem (P4) in (18a) is a generalized Rayleigh ratio

quotient problem [20], [21]. When the transmit beamformers

and reflection coefficients are fixed, the optimal received

beamformer is thus given by

u∗
k =

Q−1G̃k

‖Q−1G̃k‖
, ∀k, (19)

which is an MMSE filter [20], [21].

B. Sub-Problem 2: Optimization Over w and S

For given {{uk}k∈K, {αk}k∈K}, problem (P2) can be re-

formulated as the following equivalent problem:

(P5) : min
w,S

‖w‖2 + Tr(S), (20a)

s.t (16b), (15b), (15e). (20b)

Utilizing the SDR method, we can adeptly address prob-

lem (20a) [22], [23]. We introduce the matrix definition

W = wwH. By exploiting that W is semidefinite and has

Rank(W) = 1, problem (20a) can be recast as (21) where the

rank one constraint is dropped to relax the problem.

Note that the relaxation of the rank in (21) represents a

conventional semi-definite programming (SDP) problem [44],

which can be tackled using the CVX tool [44], [45]. Let

the solution to this relaxed SDR problem be W∗ with the

eigenvalue decomposition: W∗ = UΣUH where U is a

unitary matrix and Σ = diag(λ1, . . . , λM ) is a diagonal

matrix, both sized M ×M . If W∗ is rank one, the optimal

transmit beamformer, w∗, is the eigenvector for the maximum

eigenvalue. Otherwise, to account for the relaxed rank-one

constraint, we utilize the Gaussian randomization [23]. Specif-

ically, we compute a solution for (20a) as W̄ = UΣ1/2r,

with r ∈ CN (0, IM ). We do this for 105 times and select the

best. These numerous random realizations of r with the SDR

technique ensure a π
4 -approximation to the optimal value of

(20a) [22], [23].

C. Sub-Problem 3: Optimization Over αk

This one focuses on optimizing each tag’s reflection coeffi-

cient (αk). By isolating the variables and constraints relevant

to this sub-problem, we transform the original optimization

problem (15a) into a feasibility problem as follows:

(P7) : find αk (22a)

s.t (15b)− (15e), (15g), (22b)

where any αk that satisfies (P7) is considered a feasible

solution. However, the feasible solution yielded from (P7) does

not guarantee that the constraints are satisfied with equality

[23]. Hence, to achieve a better solution, we further transform

this into an optimization problem with an explicit objective to

obtain generally more efficient reflection coefficients to reduce

the transmit power [23]. The rationale is that for the transmit

beamforming optimization problem, i.e., (P6) (21), all SINR

and EH constraints are active at the optimal solution; thus,

optimizing the reflection coefficient to force the tag SINR

and EH to be greater than the targeted values in (P8) directly

leads to a reduction in transmit power in (P6) [23]. Following

the slack variable optimization technique in [23]–[25], we can

introduce two new slack variables, t1 and t2, which represent

the “SINR residual” and “EH residual” to further optimize the

SINR and EH margins while satisfying constraint (22b). We

then propose solving the following sub-problem:

(P8) : min
αk,t1,t2

λ1t1 + λ2t2 (23a)

s.t αku
H
k GkRxG

H
k uk ≥ (23b)
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(P6) : minimize
W,S

Tr(W) + Tr(S)

s.t Υth
ku

H
k

(

∑

i∈Kk

αi

(

Tr(GH
i GiW) + Tr(GH

i GiS)
)

+ σ2
kIN

)

uk − αku
H
k

(

Tr(GH
i GiW) + Tr(GH

i GiS)
)

uk ≤ 0, ∀k,

Tr(ffHW)

Γth
u (1 + Γth

k )
−
∑

i∈Kk

αi

(

Tr(hih
H
i W) + Tr(hih

H
i S)

)

≥ σ2, ∀k,

Pth − (1− αk)(Tr(gf,kg
H
f,kW) + Tr(gH

f,kgf,kS)) ≤ 0, ∀k. (21)

Algorithm 1 AO Algorithm

1: Input: Set the iteration counter t = 0, the convergence

tolerance ǫ > 0, initial feasible solution {αk}k∈K,w,S.

Initialize the objective function value F (0) = 0.

2: while F (t+1)
−F (t)

F (t+1) ≥ ǫ do

3: Solve (19) for the received beamformer, u
(t+1)
k .

4: Solve (20a) to obtain transmit beamformers,

{w(t+1), s(t+1)} by recovering a rank-one solution

via Gaussian randomization

5: Solve (23a) for the reflection coefficients, α
(t+1)
k .

6: Calculate the objective function value F (t+1).

7: Set t← t+ 1;

8: end while

9: Output: Optimal solutions A∗.

Υth
ku

H
k

(

∑

i∈Kk

αiGiRxG
H
i + σ2

kIN

)

uk + t1, ∀k,

|fHw|2
Γth
u (1 + Γth

k )
−
∑

i∈Kk

αi

(

|hH
i w|2 + hH

i Shi

)

≥ σ2, ∀k,

(23c)

(1 − αk)p
in
k ≥ Φ−1(pb) + t2, ∀k, (23d)

(15g), (23e)

where λ1 and λ2 are positive constants. Problem (23a) is

convex and thus can be efficiently solved by solvers such as

CVX [45]. Although (22a) and (23a) share the same feasible

set, the introduction of slack variables in (23a) converts strict

constraints into adjustable ones with a definable margin. This

facilitates the convergence process by setting a more tangible

minimization goal and aligns well with the convergence strate-

gies of iterative solvers like CVX due to the explicit objective

guiding the solution path [23], [24].

Our algorithm to solve (15a) is presented in Algorithm

1. It starts by initializing {{αk}k∈K,w,S} to random fea-

sible values and, in every iteration, refines the values of

received/transmit beamformers and reflection coefficients until

the normalized improvement of the total transmit power is

smaller than ǫ = 1× 10−3.

Remark 5. Each sub-problem within the AO algorithm is

designed to have a local solution. The convergence of the

AO algorithm to a local minimum or stationary point is

generally guaranteed for a wide range of problems, provided

that certain conditions are met [19]. These conditions may

include the objective function being lower-bounded and having

certain smoothness properties. Specifically, as long as the

individual sub-problems converge, the overall optimization

also converges [19]. By exploiting that insight, we use the SDR

and slack-optimization methods to solve {w, s} and {αk}k∈K,

respectively, whereas {uk}k∈K is obtained as a closed-form

solution applying the Rayleigh ratio quotient approach. SDR

and slack-optimization are well-developed approaches with

provable convergence [22], [23], [25], ensuring the conver-

gence of our proposed AO algorithm. This claim is also

validated by our simulations (Fig. 2).

Theorem 1. Algorithm 1 iterations yield a non-increasing

sequence of objective values with guaranteed convergence.

Proof. Please see Appendix A.

D. Computational Complexity of the Proposed Algorithm

This is analyzed for the three sub-problems.

1) Optimization over uk: During this phase, the optimal

received beamformers are obtained using the Rayleigh quo-

tient. Computing the inverse of the matrix Q requires O(N3).
Additionally, the MMSE filter for the K tags (as shown

in (19)) adds complexity of O(KN2). Therefore, the total

complexity for this section is O(KN2 +N3).
2) Optimization over w and S: Note that the interior-

point method can solve sub-problems based on the SDP.

According to [46, Th. 3.12], the order of complexity for

a SDP problem with m SDP constraints which includes

a n × n positive semi-definite (PSD) matrix is given by

O
(√
n log

(

1
ǫ

)

(mn3 +m2n2 +m3)
)

, where ǫ > 0 is the

solution accuracy. For problem (20a), with n = M and

m = 3K + 2, the approximate computational complexity for

solving (20a) can be written as O
(

KM3
√
M log

(

1
ǫ

)

)

.

3) Optimization over αk: Utilizing CVX, the optimization

leverages the DC and interior point methods. The iterations

required for convergence can be expressed as
(log(C)/t0δ)

log ǫ .

Here, C denotes the overall number of constraints. The term

t0 signifies the initial approximation for the interior point

method’s accuracy. The stopping criterion is 0 < δ ≪ 1 [44].

4) Algorithm 1: The computational complexity of

each iteration of Algorithm 1 is asymptotically equal to

O
(

I

(

KN2+N3+KM3
√
M log

(

1
ǫ

)

+
(log(C)/t0δ)

log ǫ

))

,

where I is the required number of iterations for the outer
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TABLE II: Simulation parameters.

Parameter Value Parameter Value

fc 3GHz Γth
u 1 bps/Hz

B 10MHz Γth
k 1 bps/Hz

Nf 10dB pb −20 dBm
M = N 8 MNL 20× 10−3 W

K 3 aNL 6400
Υth

k 1bps/Hz bNL 0.003

algorithm to converge. Despite its higher-order polynomial

time complexity, the proposed algorithm demonstrates

commendable real-world performance for datasets up to

a particular size, predominantly when N and M are

maintained below a defined threshold. For extensive datasets,

embracing optimization strategies, like parallel processing,

can significantly improve the performance [47].

VI. SIMULATION RESULTS

We next present simulation results for assessing the perfor-

mances of the proposed ISABC network and the AO algorithm.

A. Simulation Setup and Parameters

The 3GPP urban micro (UMi) model is adopted to model

the path-loss {ζa, ζb} with fc = 3GHz operating frequency

[48, Table B.1.2.1].

The considered AmBC leverages the existing RF signals

for data transmission. The carrier frequency choice is thus

compatible with existing communication infrastructure and

aligns with the future-forward vision of AmBC systems for

5G/6G spectrum utilization trends. We model the AWGN

variance, σ2, as σ2 = 10 log10(N0BNf ) dBm, where

N0 = −174 dBm/Hz, B is the bandwidth, and Nf is the

noise figure. Unless otherwise specified, Table II summarizes

the simulation parameters. All simulations are evaluated for

1× 103 iterations.

Considering a smart home use case, we place the BS and

the mobile reader at {0, 0} and {12, 0}, respectively, while

the tags are randomly distributed within a circle centered at

{6,−4} with a radius of 3m [49], [50].

B. Benchmark Schemes

We denote the proposed ISABC system with passive

backscatter tags as ‘ISABC-P’. For comparative evaluation

purposes, we consider the following benchmarks:

1) Convectional ISAC: The first benchmark ‘ISAC’ is

conventional ISAC with an FD BS [10], [18]. This model

does not include passive tags but conventional radar targets

that only reflect incident signals and do not send data to

the user. However, the sensing waveform does interfere with

the detection process at the user. This sensing waveform is

assumed to be perfectly cancelled at the user and the BS [18].

However, the reflected signals by the targets cause interference

for the user.

1 2 3 4 5 6 7 8 9 10
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ISABC-P, K = 3,M = 8

Fig. 2: Convergence rate.

2) Conventional BackCom: This benchmark (‘BackCom’)

comprises one user and multiple backscatter tags, and the BS

does not perform sensing, i.e., x = wxd. The tags perform EH

to power their internal functions while sending data to the user

by backscattering the BS RF signals. Thus, this benchmark

helps to evaluate the cost of incorporating sensing functions

on BackCom communication performance.

3) Communication-only scheme: This benchmark (legend

‘Com-only’) assesses the system’s core communication capac-

ity and resilience by focusing solely on a single-user scenario.

It establishes a baseline performance metric by isolating

communication from sensing and backscattering. Deviations

from this metric reveal the impact of added functionalities

like sensing or backscattering.

4) Sensing-only scheme: This benchmark (legend ‘Sensing-

only’) focuses on a sensing-centric system considering EH,

excluding primary communication and BackCom. It helps

establish a baseline for assessing trade-offs in integrated

systems and highlights the system’s raw sensing performance,

particularly in cases prioritizing sensing over sporadic or

secondary communications.

5) ISABC with active tags: Benchmark ‘ISABC-A’ evalu-

ates the performance of the ISABC system with active tags

(battery-powered), eliminating the need for EH requirements

at the tags and thus reducing the BS transmit power. This

benchmark thus establishes a baseline to gauge the cost to

ISABC of ensuring EH at the tags.

Our Algorithm 1 accommodates all these benchmarks as

special cases. Additionally, we explore three more benchmarks

based on the tag’s reflection coefficient and BS beamformers.

6) Random reflection coefficients: Tags might reflect signals

without a set pattern, leading to random reflection coeffi-

cients. Such randomness can arise from environmental

changes, tag characteristics, or varied communication

protocols [51]. In contrast, optimizing reflection coef-

ficients helps select the proper impedances, enhancing

rates and ranges. Yet, this optimization requires more

computational resources from the reader. For certain

cost-sensitive applications, such an approach might not
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Fig. 3: Beampattern regarding radar functionality of Algorithm 1.

be economical. Thus, this baseline seeks to gauge the

tradeoff between optimizing the tag reflection coefficients

and not optimizing.

The next two benchmarks are motivated by the following

considerations. Algorithm 1 aims to boost the SINR, focusing

especially on sub-problems (P4). The outcome of this strategy

is the MMSE filter, as shown in (19). This algorithm iteratively

refines the MMSE filter, drawing insights from its other two

sub-problems. One might consider omitting a sub-problem

to streamline this process, possibly by opting for simpler

solutions for each uk, ∀k ∈ K. Many receivers have leaned

towards match filter (MF) and zero-forcing (ZF) combiners

due to their simplicity [30], [52]. However, MF struggles with

multi-tag interference, while ZF is best suited for high SNR

regions because of its sensitivity to noise. To better grasp these

concepts, we briefly explore MF and ZF beamformers.

7) MF beamformer: uMF = Hb, where this leverages the

CSI to amplify the received signal’s strength. Though

advantageous in several scenarios, the MF beamformer’s

inability to eliminate multi-tag interference is a limitation.

8) ZF beamformer: uZF = Hb

(

HH
b Hb

)−1
, which strives

to obliterate interference at non-intended receivers by

distinctively utilizing the CSI. It effectively manages

interference, but its susceptibility to noise, especially in

low-SNR environments, is challenging.

Elaborating further, Hb ∈ CN×K symbolizes the backward

channel matrix. Within this matrix, each k-th column’s vector

is articulated as gb,k, ∀k ∈ K. Interestingly, these combiners

rely solely on CSI, in stark contrast to the MMSE filter (19),

which is influenced by tag reflection coefficients and the pre-

coder. Utilizing the aforementioned combiners might lead to

inferior performance concerning transmit power. Nevertheless,

this paves the way for simplifying the three-stage AO approach

into a more concise two-stage algorithm, which inherently

means a faster algorithmic execution.
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Fig. 4: Beampattern regarding communication functionality of only communication.

C. Convergence Rate of Algorithm 1

This outputs the optimal BS received beamformer,

{uk}k∈K, BS transmit beamforming for communication and

sensing, w and S, respectively, and the tag reflection coeffi-

cients, {αk}k∈K, for a given ISABC system setup within sev-

eral iterations. The BS transmit power stabilizes at the end of

several iterations, which indicates convergence. To measure it,

Fig. 2 plots the BS transmit power as a function of the number

of iterations. It decreases with each iteration until it reaches a

fixed value after approximately three iterations, regardless of

M or K . This indicates a rapid convergence and verifies the

efficacy of the proposed algorithm. Overall, Algorithm 1 only

requires three iterations to achieve satisfactory performance

with any system configuration, resulting in minor performance

enhancements beyond three iterations.

D. Beampattern Gains

Modern radar functionality has evolved to harness the power

of beamforming, i.e., directly transmit and receive beams in

specific directions. Algorithm 1 serves this function, guiding

the formation and steering of these beams. Beamforming in

radar systems converges signals from an array of antennas,

crafting a directed “beam” or “lobe” [10], [53]. Intriguingly,

this beam can be electronically steered while the antennas

remain stationary. This electronic steering capability amplifies

signal quality, boosts backscatter tag detection, and signifi-

cantly minimizes potential interference [10], [53].

The transmit signal, representing the outward-projected en-

ergy, is critical in efficiently illuminating the radar’s targets.

Meanwhile, the received beamformer, normalized as ‖u∗
k‖ =

1, is optimized for clear reception, capturing the echoes or

reflections off the backscatter tags. Three pivotal beampatterns

arise from these components:

p1(θ) =
∣

∣bH(θk)x
∗
∣

∣

2
, (24a)

p2(θ) =
∣

∣(u∗
k)

Hb(θk)
∣

∣

2
, (24b)

p3(θ) =
∣

∣(u∗
k)

Hb(θk)b
H(θk)x

∗
∣

∣

2
. (24c)
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First, (24a) illustrates how the transmitted energy disperses

as a function of angle θ. Second, (24b) encapsulates the

sensitivity of the radar system across different angles during

the reception of reflected energy. Finally, (24c) offers a com-

bined representation, integrating the effects of transmission

and subsequent reflection processing.

Figures 3 and 4 make it easier to discern the nuances and

effectiveness of beamforming algorithms.

E. Running Time Versus Number of Tags

Fig. 5 shows the correlation between the execution time and

the number of tags, K . These data are from Matlab simulations

for an Intel® Xeon® CPU, clocking at 3.5GHz. Fig. 5 depicts a

directly proportional trend between K and the running time for

all schemes. This is due to an increase in computation demands

as K increases. This tendency emphasizes the complicated

challenges of dealing with a larger number of tags, underlining

the necessity of efficient algorithms.

Compared to the ISABC-P and sensing-only schemes, the

conventional ISAC has a much lower computational time due

to the absence of EH constraints, i.e., conventional radar

targets do not require EH. The key time-consuming operation

in our proposed ISABC-P method is thus satisfying the EH

requirements of passive tags. This is evident in the ISABC-

A system, which relaxes the EH with battery-powered tags.

For example, ISABC-A only takes 6.76% longer than ISAC

for algorithm execution with 6 tags. Thus, depending on the

application scenario, one can select active tags over passive

tags at the expense of cost and tag architecture.

F. Transmit Power Versus Number of Antenna at the BS

We next explore how the BS transmit power depends on

the number of BS transmitter (M ) and receiver (N ) antennas,

with M = N . As depicted in Fig. 6, a clear and consistent

trend emerges across all schemes: increasing M decreases

the transmit power. This phenomenon highlights the two

benefits of exploiting spatial diversity in ISABC: increased

communication rates and reduced power consumption.
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Fig. 6: Transmit power versus the number of antennas at the BS, M = N , for different

schemes.

Fig. 6a and Fig. 6b show the BS transmit power requirement

as a function of M . As per Fig. 6a, the random-α benchmark

is the most inefficient regarding energy use. The sensing-only

approach requires less transmit power than ISABC-P, as it

eliminates the communication performance. Furthermore, sub-

optimal MRT- and ZF-based beamformers closely align with

our proposed schemes but need CSI. Importantly, ISABC-P

allows for sensing with low-cost tags, an essential feature for

IoT networks, with only a slight increase in transmit power.

For instance, a 3.4% increase in transmit power with M =
N = 10 results in a 75% sum rate gain, i.e., user rate + tags’

rate + sensing rate.

Fig. 6b reveals that ISAC and purely communication-

focused methods require less BS transmit power than our

ISABC-P. The latter needs more BS power to deliver sufficient

power at the tags for EH. Of course, this is the cost of using

fully passive tags. Nevertheless, utilizing active tags, as in

ISABC-A, can obviate the need for this additional power at the

BS. For instance, with M = N = 10, ISABC-A only requires

a 0.24% increase in transmit power to provide a 75% sum rate

gain over conventional ISAC. On the other hand, active tags
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.

with complex tag designs are more expensive than passive

tags, and the type of tag used may vary depending on the

application.

G. Transmit Power Versus Number of Tags

Fig. 7 delves into the nuanced interplay between the num-

ber of tags (K) and the BS transmit power requirements.

Intuitively, Fig. 7 suggests a linear correlation between these

two variables across all schemes. In contrast to conventional

ISAC, ISABC-P and sensing-only approaches require the BS

to increase power to ensure sufficient EH for the tags (con-

straint (15e)). However, as previously stated, utilizing active

tags (ISABC-A) can minimize the increased power demand

compared to standard ISAC systems. This comes at a higher

tag cost.

H. Transmit Power Versus User SINR Requirement

In Fig. 8, we examine the relationship between the BS

transmit power and the targeted user SINR, Γth
u . This captures

the impact of variations in the targeted user rate on the BS

transmit power. Benchmarks for communication-only, sensing-

only, and ISABC-P/A schemes are also plotted to offer a

comprehensive comparison.

The BS requires minimal power in the communication-

only benchmark to meet the user’s rate demand. The BS

maintains consistent power for EH and sensing rates without

communication functionality in the sensing-only approach

with passive tags. In the proposed ISABC-P, the BS requires

higher transmit power, supporting primary communication

and sensing services vital for future ambient-powered IoT

networks. Alternatively, active tags (ISABC-A) can eliminate

the higher power requirement at the BS, although active tags

are costlier and more complex to maintain than passive tags

[4], [5].

I. Communication Impairments

The performance and reliability of wireless links can be

hampered by impairments, particularly CSI and SI cancellation

errors. CSI discrepancies affect processes like signal reception

and beamforming, arising from inaccuracies in channel state

estimation. On the other hand, SI cancellation errors occur

when SI is not eliminated, hindering incoming signal recep-

tion. Both errors critically impair communication dynamics

[54].

Due to the significance of these errors, we explore their

detailed ramifications on Algorithm 1. Fig. 9 examines the

consequences of imperfect CSI and SI cancellation on Al-

gorithm 1. The relation x̂ = x + e models the channel

estimation process. Here, the true channel is denoted by

x ∈ {fm, vk}, ∀m ∈ {1, . . . ,M}, ∀k ∈ K, and the term e
characterizes the Gaussian-distributed estimation error with

zero mean, mathematically expressed as e ∼ N (0, σ2
e). A

pivotal parameter in this context is the error variance, which

adheres to the inequality σ2
e , η|x|2. Here, the coefficient η

serves as a metric to gauge the magnitude of CSI error. Fig.

9 displays the correlation between the transmit power and η.

As one increases, so does the other, requiring more transmit

power across all communication schemes.

Shifting our attention to the nuances of imperfect SI

cancellation, it is essential to understand and counteract its

effects. We replace the residual SI term, given by λ|fHw|2,

into the SINR of Tk. The variable λ ∈ [0, 1] indicates the

degree of imperfection in the SI cancellation process. Further

experiments shed light on the transmission power in scenarios

with varied values of residual SI, especially under the influence

of distinct CSI errors. The transmit power is sacrificed as λ
increases.

In Fig. 10, the performance evaluation under varying chan-

nel models is depicted for our proposed scheme. In particular,

we evaluate the transmit power performance for Rayleigh and

Rician fading channels with different Rician factors (κ). The

Rician fading channel model is represented as

f =

√

κ

κ+ 1
fLoS +

√

1

κ+ 1
fNLoS, (25a)

vk =

√

κ

κ+ 1
vLoS
k +

√

1

κ+ 1
vNLoS
k , (25b)

where vLoS
k = 1 and fLoS which is based on (2) are the

deterministic LoS components that correspond to the direct

path between the transmitter and receiver. Also, fNLoS and
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vNLoS
k are the non-LoS (NLoS) components that follow the

Rayleigh fading model. As shown in Fig. 10, high κ factors

lead to lower transmission power than Rayleigh channels.

For example, channels with Rician factors κ = 2 and κ = 5
result in a 3.64% and 3.64% reduction in transmit power

with M = N = 20, respectively, when compared to Rayleigh

channels. This is due to the LoS component in the propagation

of the signal, which contributes to more efficient power

utilization.

VII. CONCLUSION

In this study, we introduced the concept of ISABC, an inno-

vative system that combines BackCom and sensing with an FD

BS. The FD BS plays a dual role, serving as a sensor through

backscatter tag detection and enabling user communication.

Using the AO technique, we derived precise communication

(both primary and backscatter) and sensing rates, focusing

on minimizing power consumption at the BS. This approach

empowers passive and active tags for sensing and commu-

nication, opening doors to new possibilities. Future research

can explore advanced modulation and machine learning to

enhance ISABC’s adaptability in urban environments, aligning

with IoT and 6G technologies for comprehensive networks.

Addressing multi-user scenarios, interference mitigation, and

practical hardware implementation are crucial for real-world

advancements.

APPENDIX A

PROOF OF THEOREM 1

Recall that we divide (P1) into three sub-problems

to optimize (α := {αk}k∈K), received beamformers

(U := {uk}k∈K), and transmit beamformers (P = {w,S}),
via solving problems (19), (20a), and (23a), while keeping the

other two blocks of variables fixed. Let us define F (U,α,P)
as a function of U, α, and P for the objective value of (16a).

First, in step 3 of Algorithm 1 with fixed variables α
(i) and

P(i), U(i+1) is the optimal solution that minimizes the value

of the objective function. Accordingly, we have

F (α(i),U(i+1),P(i)) ≤ F (α(i),U(i),P(i)). (26)

Next, in step 4 of Algorithm 1, P(i+1) is the optimal transmit

beamformers with given variables α
(i) and U(i+1) to mini-

mize F via solving (20a). Thus, it guarantees that

F (α(i),U(i+1),P(i+1)) ≤ F (α(i),U(i+1),P(i)). (27)

Finally, in step 5 of Algorithm 1 with the given P(i+1) and

U(i+1), problem (23a) is solved to obtain an optimal solution

for α(i), which yields:

F (α(i+1),U(i+1),P(i+1)) ≤ F (α(i),U(i+1),P(i+1)). (28)

According to (26)–(28), we can conclude that [24], [55]:

F (α(i+1),U(i+1),P(i+1)) ≤ F (α(i),U(i),P(i)). (29)

For problem (16a), the objective values of Algorithm 1 mono-

tonically decrease with each iteration, always remaining non-

negative. This consistency, combined with the design choice

where each iteration starts from the previous one’s end, ensures

the convergence of the algorithm. Essentially, the objective

function will either decrease or stay the same until it meets

the convergence criteria, resulting in a stable solution. Thus,

the proof is completed.
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