
In-Context Symbolic Regression: Leveraging Language Models for
Function Discovery

Matteo Merler and Nicola Dainese and Katsiaryna Haitsiukevich
Department of Computer Science

Aalto University
matteo.merler@aalto.fi

Abstract
Symbolic Regression (SR) is a task which
aims to extract the mathematical expression
underlying a set of empirical observations.
Transformer-based methods trained on SR
datasets detain the current state-of-the-art in
this task, while the application of Large Lan-
guage Models (LLMs) to SR remains unex-
plored. This work investigates the integra-
tion of pre-trained LLMs into the SR pipeline,
utilizing an approach that iteratively refines
a functional form based on the prediction er-
ror it achieves on the observation set, until it
reaches convergence. Our method leverages
LLMs to propose an initial set of possible func-
tions based on the observations, exploiting their
strong pre-training prior. These functions are
then iteratively refined by the model itself and
by an external optimizer for their coefficients.
The process is repeated until the results are sat-
isfactory. We then analyze Vision-Language
Models in this context, exploring the inclusion
of plots as visual inputs to aid the optimization
process. Our findings reveal that LLMs are able
to successfully recover good symbolic equa-
tions that fit the given data, outperforming SR
baselines based on Genetic Programming, with
the addition of images in the input showing
promising results for the most complex bench-
marks.

1 Introduction

Classical Machine Learning regression methods
can be divided into two broad categories: statistical
methods, which simply learn an implicit statisti-
cal model of the relationship between the observa-
tions typically represented with a black-box model,
and rule-based methods, which instead attempt to
extract an explainable set of rules that explicitly
model the transformation between the inputs and
outputs (Lample and Charton, 2019). Symbolic
Regression (SR) is a particular subset of the latter
category which searches the set of all possible ex-
plicit mathematical expressions to find an equation

that best fits the given set of observations, instead
of simply predicting the value for unobserved data-
points. This has the clear advantage of explainabil-
ity, as well as a potential for better generalization
if the trend holds outside of the observed data.

The most common approach for SR algorithms
is Genetic Programming (Willis et al., 1997) (GP),
combining fundamental blocks for mathematical
expressions (e.g. basic operators, trigonometric
functions, etc.) into more complex formulas using
strategies borrowed by evolutionary biology, such
as mutations and fitness. Out of the 14 methods
tested in a popular Symbolic Regression Bench-
mark (Cava et al., 2021), 10 of them were based on
GP.

The recent success of Transformer based Deep
Learning models, first introduced by Vaswani et al.
(2017), has revolutionized many fields, most no-
tably Natural Language Processing (OpenAI, 2023;
Brown et al., 2020; Touvron et al., 2023; Anil et al.,
2023) and Computer Vision (Dosovitskiy et al.,
2021) amongst many. Large Language Models
(LLMs) in particular have been proven to possess
unprecedented reasoning and generalization abili-
ties, as well as the newly emergent capacity for
In-Context Learning (ICL) (Dong et al., 2023),
which refers to a prompting technique that includes
demonstrations of a specific task in natural lan-
guage into the input given to the LLM, which en-
ables it to address new, potentially unseen, tasks.
The emergence of ICL and few-shot prompting
was first observed by Brown et al. (2020) and has
since become a staple prompting technique. With
the help of ICL, these models can be leveraged
for a wide range of different tasks, suggesting a
potential use case for Symbolic Regression. Many
Transformer-based methods have been proposed,
but to the best of our knowledge, the direct use
of pre-trained LLMs for this task has not been ex-
plored yet.

In this paper, we examine the integration of

1

ar
X

iv
:2

40
4.

19
09

4v
1 

 [
cs

.C
L

] 
 2

9 
A

pr
 2

02
4



Figure 1: High level overview of the approach. Given
an initial set of observations, we prompt the LLM or
VLM to generate multiple initial guesses (seeds) of the
true function that generated the observations. We then
iteratively refine our guesses with the Optimization by
Prompting (OPRO) method from Yang et al. (2023). The
model only produces the functional form of a function,
while the coefficients are fitted using non-linear least
squares optimization.

LLMs into a Symbolic Regression pipeline, with
the aim to use them as the main generator for
new functions. Inspired by the Optimization by
Prompting (OPRO) approach presented by Yang
et al. (2023), we implement a similar system for
Symbolic Regression, presented in Section 4. The
LLM receives a number of previously tested func-
tions and their scores on the dataset, and is then
tasked to generate a new function that could be a
better fit for the given observations. This approach
is repeated until the error is low enough and we
consider the algorithm to have converged to a so-
lution. This approach has been proven to work
on classical optimization problems, such as Lin-
ear Regression and on the challenging Travelling
Salesman Problem.

We then investigate extending this approach
to take advantage of Vision-Language Models
(VLMs). This provides a richer context for this op-
timization task: plots are a natural way for humans
to communicate about mathematical concepts (for
example, a scatter plot is more informative com-
pared to a string of values), arguably more so than
text, as they can convey additional information in
an intuitive way, such as the shape or general trend

of the data. We discuss the impact of this extension
in Section 5, as well as discuss its limitations and
potential in Section 6.

2 Related Work

Symbolic Regression. GP has traditionally
formed the backbone for SR methods. A typical
implementation can be seen in gplearn1, which
follows the classical definition of a GP approach
by Koza and Poli (2005). From an initial popula-
tion, an iterative tournament is played where func-
tions with the lowest fitness are eliminated, before
the best performing alternative can "reproduce"
with some random mutation. More sophisticated
approaches can make use of Pareto optimization
(Smits and Kotanchek, 2005; Schmidt and Lipson,
2011), which take advantage of the Pareto front
for more efficient convergence. A more recent GP
method is GP-GOMEA by Virgolin et al. (2021),
which takes advantage of a statistical model up-
dated over time.

More recently, Deep Learning methods have
also been proposed for symbolic regression. Pe-
tersen et al. (2021) use a Recurrent Neural Net-
work with a risk-seeking policy to perform a hier-
archical search over the space of possible smaller
symbolic formulas and Cranmer et al. (2020) use
Graph Neural Networks to extract physical equa-
tions. Many models based on the Transformer ar-
chitecture have also been presented ever since their
introduction and rise in popularity: Lample and
Charton (2019) train a seq2seq model to directly
solve integrals and differential equations and then
followed up with Kamienny et al. (2022) to train a
Transformer model specifically for Symbolic Re-
gression. In parallel, Valipour et al. (2021) and
Biggio et al. (2021) also trained different genera-
tive Transformer models for this task and later Li
et al. (2023d) trained a model using joint supervised
learning with a novel objective function, while
Shojaee et al. (2023) present a method integrat-
ing Transformers with Monte Carlo Tree Search
to guide the generation of the symbolic formulas.
An example of image-based Symbolic Regression
(extended to two-dimensional functions) was pre-
sented by Li et al. (2022a), in which the task is
formulated as a reconstruction problem, with an
autoregressive Vision Transformer model encoding
and decoding functions, shown as heatmaps.

1https://gplearn.readthedocs.io

2

https://gplearn.readthedocs.io


Reasoning with Large Language Models. As
LLMs form the backbone of the method presented
in this work, we rely entirely on their reasoning
capabilities, such as ICL (Brown et al., 2020), to
explore the solution space. More specifically, we
are interested in the mathematical understanding
of LLMs, for which Liu et al. (2023d) provide a re-
cent survey. Amongst many, Li et al. (2022c) intro-
duces LEMMA, a fine-tuned model based on Code-
Llama (Rozière et al., 2023) for theorem proving,
and Luo et al. (2023) instead fine-tune Llama2 us-
ing a set of mathematical reasoning instructions
generated with a novel Reinforcement Learning
via Evol-Instruct Feedback approach. Mirchandani
et al. (2023) show that LLMs are able to recognize
patterns from in-context examples and can extrap-
olate them to complete related tasks in the input.
Similarly, Gruver et al. (2023) find that LLMs can
extrapolate zero-shot the pattern from a timeseries
(although they do not extract any functional repre-
sentation). Furthermore, Fu et al. (2023) present
a study in which they find that Transformer mod-
els can learn higher-order optimization methods
(similar to Newton’s method).

Vision-Language Models. VLMs have gained
traction after Radford et al. (2021) introduced CLIP,
aligning text and image representations using a
contrastive objective. Various foundation models
have been proposed, such as FLAVA (Singh et al.,
2022), LLaVa (Liu et al., 2023b,a, 2024), Flamingo
(Alayrac et al., 2022), OTTER (Li et al., 2023b,a),
Fuyu (Bavishi et al., 2023) and more recently Ope-
nAI’s GPT4’s vision extension. A thorough survey
of VLM techniques and tasks was performed re-
cently by Zhang et al. (2023). Typically, a VLM
can be built on top of a pre-trained LLM, which is
then paired with an image embedding network that
can transfer the image into the same token space
used by the model, attempting to keep semantical
similarity. This approach is employed for exam-
ple by BLIP (Li et al., 2022b) and its successor
BLIP2 (Li et al., 2023c). Moreover, these mod-
els typically can only consume images as input,
but are unable to generate them as an answer, but
the general framework can be enhanced with meth-
ods for text-to-image generation, such as DALL-E
(Ramesh et al., 2021, 2022) and GILL (Koh et al.,
2023).

3 Background

Optimization by Prompting. The OPRO frame-
work was first introduced by Yang et al. (2023),
with the initial goal of prompt optimization. The
paper builds on previous work by Mirchandani
et al. (2023), which shows the potential use of
LLMs to complete and understand general pat-
terns. Crucially, the authors also present experi-
ments showing the method working on classical op-
timization problems (Linear Regression and TSP),
which leads them to claim that OPRO can be used
for classical optimization tasks. The key idea of
OPRO is the use of a so-called meta-prompt, a
higher level prompt which describes the task to be
performed, as well as previous examples together
with scores (evaluated externally). The LLM, with
its pattern understanding capabilities, should then
be able to extrapolate the trend in the examples us-
ing in-context learning, and propose a better alter-
native. The model’s output is then evaluated, and
added to the meta-prompt if the score was good
enough. This approach can then be iterated until
convergence (i.e. when the score is good enough).

4 Method

To leverage the OPRO approach to perform Sym-
bolic Regression, we need to design a meta-prompt
suitable for the task and fill it with an initial set
of functions ft=0 (either hand-written or model-
generated), together with a measure of their fitness
on the observations X (the observations X them-
selves are also included). The goal is then to itera-
tively refine the set of functions ft=i, i ∈ [1, . . . , n],
until a sufficiently low error score is obtained or
a maximum number of iterations is reached. Note
that since the context window has a finite fixed size,
we can only keep the k best performing previous
attempts in the prompt at the same time, where k
is a design choice (for this study, we use k = 5).
The full meta-prompt used in the experiment can
be found in Appendix A.

Seed Functions. At the first timestep, ft=0 is
empty as there are no previous guesses from the
model, thus an initial population of seed functions
is required. Instead of relying on a fixed set of seed
functions, which could be restrictive in general, we
ask the model to generate the initial conditions (the
prompt that can be found in Appendix A). This
typically generates a complex and diverse set of
functions, from which the model can explore and

3



refine its future predictions with OPRO. In our im-
plementation we repeat this initial process up to 10
times, as some or all of the generated functions can
be invalid for a given dataset if some of the points
are undefined.

Error Score. The immediate choice for the score
is using a simple Mean Squared Error (MSE) for
every point x ∈ X . This frames the process as
an optimization problem where the lower score is
better, similar to the ones presented in Yang et al.
(2023). Another option to obtain more bounded
scores is using the coefficient of determination R2

described in Section 5.1.1. Crucially, the LLM
does not need to have an understanding of how
the score is computed, but simply needs to know a
lower score is better (or higher in the case of R2).
Ideally, the model will extrapolate the pattern in the
previous trajectory, finding which changes in the
functions improved the score without knowledge
of how it was computed. For our implementation,
we choose the MSE metric.

Parameter Fitting. We use the LLM only to gen-
erate generic functional forms (and thus task it with
exploration), while using SciPy’s (Virtanen et al.,
2020) implementation of Non-linear Least Squares
(Kelley, 1999). This results in the model exploring
a large space of functions in a short amount of time,
allowing it to solve complex benchmarks. In our
implementation, we repeat this process five times
with different random initial values for the coeffi-
cients, to refine the results and avoid local minima,
similar to Li et al. (2023d).

For other details about the OPRO implementa-
tion, we follow the original work. Specifically, we
also sample multiple functions for every iteration
in an attempt to improve stability and we experi-
ment with a decreasing temperature parameter to
balance exploration/exploitation (with a higher ini-
tial temperature encouraging the exploration of the
underlying functional space, and a lower tempera-
ture at the later stages forcing smaller tweaks to the
trajectory). To avoid crowding the input prompt
with too much information, we limit the amount of
training points that are included in written form to
a certain threshold, arbitrarily set to 40. We discuss
this issue in more detail in Section 6.1.

4.1 Vision-Language Extension

The input data used in the meta-prompt consists of
the observations X , represented via a set of coordi-

nates (e.g. a pair x, y for a univariate function), as
well as a trajectory composed of a set of the best
the previously generated functions with their scores.
Previous work by Gruver et al. (2023) shows that
LLMs can understand a series of numerical points
and process it autoregressively, but our extension
also requires the model to reason on X together
with the functions in the context; identifying why a
function is not fitting the observations properly and
where it could be improved is far more challeng-
ing when compared to simply predicting the next
point in a timeseries. A natural way to enhance
this information would be to provide a plot for the
observations, as well as plots for the previously
generated functions. This provides an intuitive way
to analyze the performance of previous generations
and identify areas where improvement is needed.

We thus extend the approach to use Vision-
Language Models, by including either a plot of
the observations (Figure 2a) when generating the
seed functions or a plot of the best guess from the
previous trajectory (Figure 2b) during the OPRO
loop. We hypothesize an increase in accuracy and
sample efficiency of the method, which we explore
in Section 5.3. Crucially, the use of both vision
and language as input comes with the restriction
of dimensionality, as it is impossible to visualize
inputs with more than two covariates. We discuss
this limitation further in Section 6.1.

5 Experiments

For our experimental setup, we employ two popular
open source alternatives: Llama3 (Meta, 2024) as
the text-only model and LLaVa-NeXT (Liu et al.,
2024) as the vision-language model, which is based
on Yi-34B (01.AI et al., 2024).

5.1 Benchmarks

Given the method’s inherent limitation in dimen-
sionality due to the vision extension, we rely on
classical SR benchmarks, containing functions in
one and two dimensions, to evaluate our approach.
We follow Li et al. (2023d) and choose four of the
benchmarks tested in their work: Nguyen (Nguyen
et al., 2011), Constant (a modified version of some
of the Nguyen equations with different numerical
values for the coefficients), Keijzer (Keijzer, 2003)
and R (Krawiec and Pawlak, 2013). The formulas
and ranges for both the training and testing points
are taken from the original papers where available.
The full list can be found in Appendix C.

4



(a) Scatter plot for the observations.

(b) Plot of the performance for a previous function.

Figure 2: Sample of plots used with the VLM.

5.1.1 Metrics

While we use MSE during the OPRO loop, we re-
port the coefficient of determination R2 (Glantz
et al., 2017) to evaluate the quality of our method.
This is a staple metric in SR and results in a more
interpretable value: a function will get a positive
score if it’s better compared to predicting the av-
erage value and will get a score of 1 for a perfect
prediction. The coefficient is computed as follows:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

Benchmark
OPRO (Ours)

gplearn
Llama3
R2 (↑) R2 (↑)

Nguyen 0.9996 0.7524
Constant 0.9994 0.7441
Keijzer 0.9615 0.0917

R 0.9901 0.9697

Overall avg. 0.9877 0.6395

Table 1: Comparison between our proposed method and
gplearn on several benchmarks.

where yi is the ground truth value, ŷi is the pre-
dicted value and ȳ is the average of all yi. We
follow Li et al. (2023d) and Biggio et al. (2021)
in removing the 5% worst predictions to ensure
robustness against outliers.

5.2 Performance against GP methods

For a first exploratory study, we compare the perfor-
mance of our method against the standard gplearn
implementation, which can be seen as the simplest
possible GP approach. As such, many hyperpa-
rameters can be tuned (population size, number of
generations, etc.) which can drastically alter the
accuracy and run-time of the method. Following
the work by Li et al. (2023d), we keep the default
values suggested by the library. The exact set of
hyperparameters we use for both our method and
gplearn can be found in Appendix B. We report
the R2 metric computed on a set of unseen testing
points, which usually cover the same interval with
a denser distribution, so that the resulting function
can be evaluated on the whole point interval and
we avoid reporting a metric that overfits on the
training data. We repeat all experiments across
five different random seeds, but we only random-
ize the set of input points (where they are random)
only once, to ensure consistency across the differ-
ent runs and methods. For this experiment we use
a fixed number of OPRO iterations set to 50 and
always perform a full run. The results can be seen
in Table 1.

The OPRO approach using Llama3 is very ro-
bust, achieving very good scores across all bench-
marks, while the simpler gplearn approach already
fails to fit some of the more complex patterns found
in the more difficult functions, like Keijzer. It’s
worth noting that the version of gplearn we used is
restricted to a limited vocabulary of functions that

5



are defined in the real domain and is thus lacking
for example the square root and logarithm. LLMs
on the other hand are free to use these functions,
as they have some prior bias of where they are al-
lowed. An LLM will still try to use a square root
for negative values, but is often smart enough to
ensure that the function it produces will be defined
across the full domain that it has seen.

In general, most SR methods tend to be lim-
ited to a predefined vocabulary of operators and
tokens, while LLMs can virtually explore any pos-
sible function and combination. An example of this
is with the xx2

1 function: in Li et al. (2023d), the
authors mention that they had not seen this token
in the training data and were thus limited to finding
appropriate approximations, while our approach
can recover the exact expression.

Another observation is that the best function (or
one close to it) is often found very early into the 50
iterations, and the rest of the time is spent trying
minor changes, sometimes failing to improve the
function all-together. Ideally a threshold can be
set using R2 on the training points: if this exceeds
a certain predefined value (e.g. 0.9999) we can
end the iteration process early. We didn’t use this
in the experiments to explore how many iterations
are necessary to converge on a good result, as well
as ensuring all runs have the same amount of iter-
ations, but we would suggest integrating this for
practical applications.

5.3 Comparison of Text-Only and
Vision-Language Models

To evaluate the effectiveness of the additional im-
age input, we compare our method with a vari-
ant using the LLaVa-NeXT vision-language model.
While the LLM underlying LLaVa-NeXT, Yi, is
larger than Llama3 (34B parameters versus 8B),
the latter actually outperforms Yi on several rele-
vant benchmarks, such as GSM8K for mathemati-
cal reasoning, and thus the comparison should be
fair.

We repeat the experiments across five different
random seeds. Both models are performing a full
set of 50 OPRO iterations.

The vision approach matches or slightly under-
performs the text-only approach on the simpler
Nguyen and Constant benchmarks, and shows more
significant improvements on the more complex
Keijzer benchmark, suggesting that plots can help
where the underlying expression is harder to pro-
duce and there is a risk of underfitting. The re-

Benchmark
LLaVa-NeXT Llama3

R2 (↑) R2 (↑)

Nguyen 0.9985 0.9996
Constant 0.9984 0.9994
Keijzer 0.9924 0.9615

R 0.9568 0.9901

Overall avg. 0.9865 0.9877

Table 2: Comparison between LLaVa-NeXT and
Llama3 using OPRO.

Benchmark
50 iterations Seed functions only

R2 (↑) R2 (↑)

Nguyen 0.9985 0.9875
Constant 0.9984 0.9979
Keijzer 0.9924 0.8270

R 0.9568 0.9954

Overall avg. 0.9865 0.9520

Table 3: Comparison between the full OPRO approach
and the seed function generation step.

sults validate the usefulness of the additional visual
input, allowing a less capable model to closely
match the most powerful open source text-only
LLM currently available, while also confirming the
assumption that advancements in the underlying
LLM backbone will further improve the approach.

The lower score obtained by LLaVa-NeXT in the
R benchmark is mostly due to the random sampling
of the training points for the R3 function, which
can be seen in Figures 11 and 12. The wide area
with no training points makes it hard to extrapolate
the exact pattern followed by the underlying func-
tion. This is an inherent weakness of most Sym-
bolic Regression methods, and can be be solved by
sampling more training points.

5.4 Ablation Study

In this section we investigate the importance of
the iterative refinement of the functions with the
OPRO loop. As mentioned in Section 4, at the
beginning of a run we ask the model to generate
a set of diverse seed functions that can serve as
a starting point for optimization (the prompt can
be found in Appendix A). This could be sufficient
to generate good enough guesses, bypassing the
OPRO loop entirely. We investigate the goodness
of the seed functions generated for all experiments,
and report the results below in Table 3.

6



The results suggest that the initial seed functions
generation step plays a key role in our approach, im-
mediately producing guesses that are only slightly
below the results found by the full approach for
the simpler benchmarks, like Nguyen and Constant.
It’s also interesting to observe a better fit in R:
as discussed previously, R3 has a large area not
covered by training points, and this could perhaps
indicate that the OPRO loop is actually overfitting
to the observations if continued for too long.

However, on the more complex Keijzer bench-
mark, the seed functions underfit the observations,
as demonstrated in Figure 13 in Appendix D. This
suggests that for more complex benchmarks and
functions the initial generation step is essential to
provide an educated guess, but the iterative refining
process is still necessary to achieve a good quality
solution. The types of complexity that cause the
initial guess to underfit can be either a complex
shape (for example in keijzer3 and keijzer4, the
first two functions in the top row of Figure 13) or a
lack of datapoints, especially for two-dimensional
functions (like the full bottom row of Figure 13).

6 Discussion

The empirical results show that LLMs are at least
capable or even adept at Symbolic Regression, out-
performing a simple GP approach. This exposes
yet another task that large foundation models can
be leveraged for thanks to the use of specialized
prompting techniques such as OPRO and shows
promise for future work into the integration of
LLMs and mathematical reasoning. The impact of
visual information should also not be understated,
as the additional plots provided as input help the
model to turn an underfitted guess into a good ex-
pression for more complex benchmarks.

The method’s performance relies on the initial
generation step for the seed functions, just as any
optimization algorithm depends on its initial condi-
tions. Self-generating the initial set can potentially
lead to an ill-conditioned problem if the generated
functions have a poor fitness score and the OPRO
loop can get stuck refining a local minimum, unable
to explore further. However, we find that in general
self-generated initial conditions work reasonably
well. Prior knowledge can also be incorporated by
using a manually crafted set of functions if some
information about the observations is known; we
leave to future work further exploration on how to
incorporate such knowledge in our method.

As the approach is model-agnostic, advances in
both LLMs and VLMs will also improve the quality
and speed of this method, with larger and more ca-
pable models such as GPT4 and its vision extension
being prime candidates for future research into scal-
ing. As this is an initial exploratory study into the
capabilities of these models, we consider this to be
a success, and leave these potential improvements
and more in-depth experiments for future work.
As it stands, this approach likely is not practical
enough to be used over some more advanced and es-
tablished Transformer-based methods, but we have
hope that the potential showed in this study, com-
bined with scaling and innovations in the field will
lead to the method proposed in this paper matching
or surpassing state-of-the-art performance on more
complex benchmarks.

A further benefit of the proposed method is
the lack of necessity for an expensive training
phase specific to Symbolic Regression: leveraging
pre-trained LLMs produces a method that can be
quickly adapted to incorporate more powerful foun-
dation models while being able to take advantage of
the full vocabulary and reasoning skills offered by
natural language, as opposed to models pre-trained
directly for Symbolic Regression, which are lim-
ited to the range of tokens they were trained on.
An interesting direction for future work could be
relying even more on the unique reasoning abili-
ties offered by LLMs by employing explicit Chain
of Thought-like techniques, allowing the model to
output even more well-informed guesses at every
step.

6.1 Limitations

Although promising, the approach presented in this
work still suffers from some key limitations that
hold back its potential as a full Symbolic Regres-
sion method.

Dimensionality. If the chosen model relies on
images, this fundamentally limits it on working on
inputs that have at most two variables. A poten-
tial solution could be to include projections into
each dimension as the input, but this approach can
quickly grow out of control as the number of vari-
ables increases, and even then the additional in-
formation is still of questionable utility. Using a
text-only LLM for higher dimensional inputs is pos-
sible, but this comes with its own challenges. As
the number of variables grows, so does the length
of the input points in the prompt, which will natu-

7



rally confuse the model and obfuscate the structure
in the datapoints even further. We already observe a
similar trend if too many input points are included
in the prompt. Specifically fine-tuning an LLM
on this kind of examples might show some im-
provement, but scaling this approach for higher
dimensional problems remains a challenge.

Context window. The maximum number of to-
kens that an LLM can process as input is referred
to as its context window. This is a limiting factor
for our approach: the prompt is already quite long
and many factors can add to it significantly. For
example, as discussed in the previous paragraph,
higher dimensional inputs will increase the length
of the observations string, as well as leading to
longer functions on average.

The version of LLaVa used for the experiments
in this paper is built on top of a backbone trained
on sequence lengths of 4k tokens, which can be
extended at 16k tokens during inference, while
Llama3 has a context window of 8k tokens. Nev-
ertheless, we observe that if too many points are
included in the prompt in written form, the model
often starts just repeating new invented points as
the output, due to the sheer number of inputs pro-
vided for some functions. This happens more often
with three-dimensional inputs, as there are more
numbers (and thus more tokens) for each training
example. To avoid this, we find that limiting the
amount of training points shown in the prompt to
an arbitrary number (which we set at 40) is a good
solution. The full range of training points can still
be shown in the input images, to give an idea of
the overall shape, and can be used in its entirety
to optimize the coefficients. This is an advantage
that the text-only Llama3 loses, as it is now only
relying on the information in the prompt. However,
we argue that this is likely to be solved as research
in the field advances and context-window size in-
creases. There are already commercially available
LLMs able to process more than 100k tokens, such
as GPT-4 turbo (OpenAI, 2023) and Claude 3 (An-
thropic, 2024), which may solve this limitation
entirely, although some previous research suggests
that LLMs are not able to take advantage of the full
context (Liu et al., 2023c).

7 Conclusion

We show that LLMs paired with the OPRO ap-
proach are able to successfully perform Symbolic
Regression tasks on benchmarks with up to two

independent variables. Additionally, we show that
VLMs can outperform LLMs at more complex vari-
ants of this task thanks to the additional information
provided by plots, which give intuitive meaning
and structure to the input. The proposed method
outperforms a simple GP approach and produces
more streamlined functions, proving the validity of
this method.

7.1 Future Work
As this is merely a first exploration into this topic,
much work remains to be done. The next steps for
this project are experimenting with model scale, to
test the impact of more powerful LLMs and VLMs,
with the assumption being that the approach should
greatly benefit from it. We also leave testing the
method against current state-of-the-art methods for
future work. For this, an exploration into extend-
ing the text-only method with Llama3 for higher-
dimensional inputs would be necessary to solve a
reasonable subset of tasks from the more contem-
porary benchmark SRBench (Cava et al., 2021).

As also discussed in Section 6.1, fine-tuning can
also be an option to improve the model’s perfor-
mance. We see two general options for this: either
fine-tune a VLM to improve its visual mathemati-
cal reasoning skills on plots, or fine-tune a text-only
LLM to improve the overall performance without
relying on images. Both avenues show potential
and could drastically improve on the results we
show in this work.

References
01.AI, Alex Young, Bei Chen, Chao Li, Chengen Huang,

Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng
Liu, Qiang Liu, Shawn Yue, Senbin Yang, Shim-
ing Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiao-
hui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng Nie,
Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai,
Zhenyu Gu, Zhiyuan Liu, and Zonghong Dai. 2024.
Yi: Open foundation models by 01.AI. Preprint,
arXiv:2403.04652.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei,
et al. 2022. Flamingo: a visual language model for
few-shot learning. In Advances in Neural Informa-
tion Processing Systems.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin
Johnson, Dmitry Lepikhin, Alexandre Passos, Sia-
mak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng

8

https://arxiv.org/abs/2403.04652


Chen, et al. 2023. Palm 2 technical report. Preprint,
arXiv:2305.10403.

Anthropic. 2024. Introducing the next generation of
Claude.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne,
Maxwell Nye, Augustus Odena, Arushi Somani, and
Sağnak Taşırlar. 2023. Introducing our multimodal
models.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz,
Aurelien Lucchi, and Giambattista Parascandolo.
2021. Neural symbolic regression that scales.
Preprint, arXiv:2106.06427.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc.

William La Cava, Patryk Orzechowski, Bogdan Burlacu,
Fabrício Olivetti de França, Marco Virgolin, Ying
Jin, Michael Kommenda, and Jason H. Moore. 2021.
Contemporary symbolic regression methods and their
relative performance. Preprint, arXiv:2107.14351.

Miles Cranmer, Alvaro Sanchez Gonzalez, Peter
Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. 2020. Discovering symbolic models
from deep learning with inductive biases. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 17429–17442. Curran Associates,
Inc.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.
Preprint, arXiv:2301.00234.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. Preprint, arXiv:2010.11929.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan.
2023. Transformers learn higher-order optimization
methods for in-context learning: A study with linear
models. Preprint, arXiv:2310.17086.

Stanton A. Glantz, Bryan K. Slinker, and Torsten B. Nei-
lands. 2017. Dedication. McGraw-Hill Education,
New York, NY.

Nate Gruver, Marc Anton Finzi, Shikai Qiu, and An-
drew Gordon Wilson. 2023. Large language mod-
els are zero-shot time series forecasters. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guil-
laume Lample, and Francois Charton. 2022. End-
to-end symbolic regression with transformers. In
Advances in Neural Information Processing Systems.

Maarten Keijzer. 2003. Improving Symbolic Regres-
sion with Interval Arithmetic and Linear Scaling. In
Genetic Programming, Lecture Notes in Computer
Science, pages 70–82, Berlin, Heidelberg. Springer.

C. T. Kelley. 1999. Iterative Methods for Optimization,
pages 22–25. Society for Industrial and Applied
Mathematics.

Jing Yu Koh, Daniel Fried, and Ruslan Salakhutdinov.
2023. Generating images with multimodal language
models. In Thirty-seventh Conference on Neural
Information Processing Systems.

John R. Koza and Riccardo Poli. 2005. Genetic pro-
gramming. In Edmund K. Burke and Graham
Kendall, editors, Search Methodologies: Introduc-
tory Tutorials in Optimization and Decision Support
Techniques, pages 127–164. Springer US, Boston,
MA.

Krzysztof Krawiec and Tomasz Pawlak. 2013. Approx-
imating geometric crossover by semantic backprop-
agation. In Proceedings of the 15th Annual Con-
ference on Genetic and Evolutionary Computation,
GECCO ’13, page 941–948, New York, NY, USA.
Association for Computing Machinery.

Guillaume Lample and François Charton. 2019. Deep
learning for symbolic mathematics. Preprint,
arXiv:1912.01412.

Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang,
Fanyi Pu, and Ziwei Liu. 2023a. Otterhd: A
high-resolution multi-modality model. Preprint,
arXiv:2311.04219.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Jingkang Yang, and Ziwei Liu. 2023b. Otter: A
multi-modal model with in-context instruction tuning.
Preprint, arXiv:2305.03726.

Jiachen Li, Ye Yuan, and Hong-Bin Shen. 2022a.
Symbolic expression transformer: A computer vi-
sion approach for symbolic regression. Preprint,
arXiv:2205.11798.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023c. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. Preprint, arXiv:2301.12597.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
2022b. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. Preprint, arXiv:2201.12086.

Wenqiang Li, Weijun Li, Linjun Sun, Min Wu, Lina
Yu, Jingyi Liu, Yanjie Li, and Songsong Tian. 2023d.
Transformer-based model for symbolic regression via
joint supervised learning. In The Eleventh Interna-
tional Conference on Learning Representations.

9

https://arxiv.org/abs/2305.10403
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2106.06427
https://arxiv.org/abs/2107.14351
https://arxiv.org/abs/2107.14351
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2310.17086
https://arxiv.org/abs/2310.17086
https://arxiv.org/abs/2310.17086
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1137/1.9781611970920
https://doi.org/10.1007/0-387-28356-0_5
https://doi.org/10.1007/0-387-28356-0_5
https://doi.org/10.1145/2463372.2463483
https://doi.org/10.1145/2463372.2463483
https://doi.org/10.1145/2463372.2463483
https://arxiv.org/abs/1912.01412
https://arxiv.org/abs/1912.01412
https://arxiv.org/abs/2311.04219
https://arxiv.org/abs/2311.04219
https://arxiv.org/abs/2305.03726
https://arxiv.org/abs/2305.03726
https://arxiv.org/abs/2205.11798
https://arxiv.org/abs/2205.11798
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086


Zhening Li, Gabriel Poesia, Omar Costilla-Reyes,
Noah Goodman, and Armando Solar-Lezama. 2022c.
Lemma: Bootstrapping high-level mathematical rea-
soning with learned symbolic abstractions. Preprint,
arXiv:2211.08671.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning. In NeurIPS 2023 Workshop on Instruc-
tion Tuning and Instruction Following.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin
Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. 2023c. Lost in the middle: How
language models use long contexts. Preprint,
arXiv:2307.03172.

Wentao Liu, Hanglei Hu, Jie Zhou, Yuyang Ding,
Junsong Li, Jiayi Zeng, Mengliang He, Qin Chen,
Bo Jiang, Aimin Zhou, and Liang He. 2023d. Math-
ematical language models: A survey. Preprint,
arXiv:2312.07622.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
Preprint, arXiv:2308.09583.

Meta. 2024. Meta Llama 3.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter,
Danny Driess, Montserrat Gonzalez Arenas, Kan-
ishka Rao, Dorsa Sadigh, and Andy Zeng. 2023.
Large language models as general pattern machines.
Preprint, arXiv:2307.04721.

Quang Uy Nguyen, Nguyen Hoai, Michael O’Neill,
Robert McKay, and Edgar Galván-López. 2011.
Semantically-based crossover in genetic program-
ming: Application to real-valued symbolic regres-
sion. Genetic Programming and Evolvable Machines,
12:91–119.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N.
Mundhenk, Claudio Prata Santiago, Soo Kyung Kim,
and Joanne Taery Kim. 2021. Deep symbolic regres-
sion: Recovering mathematical expressions from data
via risk-seeking policy gradients. In International
Conference on Learning Representations.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages
8748–8763. PMLR.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol,
Casey Chu, and Mark Chen. 2022. Hierarchical
text-conditional image generation with clip latents.
Preprint, arXiv:2204.06125.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gener-
ation. Preprint, arXiv:2102.12092.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code. Preprint,
arXiv:2308.12950.

Michael Schmidt and Hod Lipson. 2011. Age-fitness
pareto optimization. In Rick Riolo, Trent Mc-
Conaghy, and Ekaterina Vladislavleva, editors, Ge-
netic Programming Theory and Practice VIII, pages
129–146. Springer New York, New York, NY.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani,
and Chandan K. Reddy. 2023. Transformer-based
planning for symbolic regression. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. 2022. Flava: A foun-
dational language and vision alignment model. In
CVPR, pages 15617–15629.

Guido F. Smits and Mark Kotanchek. 2005. Pareto-
front exploitation in symbolic regression. In Una-
May O’Reilly, Tina Yu, Rick Riolo, and Bill Worzel,
editors, Genetic Programming Theory and Practice
II, pages 283–299. Springer US, Boston, MA.

Hugo Touvron, Louis Martin, Kevin Stone, et al. 2023.
Llama 2: Open foundation and fine-tuned chat mod-
els. Preprint, arXiv:2307.09288.

Mojtaba Valipour, Bowen You, Maysum Panju, and
Ali Ghodsi. 2021. Symbolicgpt: A generative trans-
former model for symbolic regression. Preprint,
arXiv:2106.14131.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz

10

https://arxiv.org/abs/2211.08671
https://arxiv.org/abs/2211.08671
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2312.07622
https://arxiv.org/abs/2312.07622
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://llama.meta.com/llama3
https://arxiv.org/abs/2307.04721
https://doi.org/10.1007/s10710-010-9121-2
https://doi.org/10.1007/s10710-010-9121-2
https://doi.org/10.1007/s10710-010-9121-2
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/0-387-23254-0_17
https://doi.org/10.1007/0-387-23254-0_17
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2106.14131
https://arxiv.org/abs/2106.14131


Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. N.
Bosman. 2021. Improving model-based genetic pro-
gramming for symbolic regression of small expres-
sions. Evolutionary Computation, 29(2):211–237.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, SciPy 1.0 Contributors,
et al. 2020. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods,
17:261–272.

Mark Willis, Hugo Hiden, P. Marenbach, Ben McKay,
and Gary Montague. 1997. Genetic programming:
An introduction and survey of applications. pages
314 – 319.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers. Preprint,
arXiv:2309.03409.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu.
2023. Vision-language models for vision tasks: A
survey. Preprint, arXiv:2304.00685.

11

https://doi.org/10.1162/evco_a_00278
https://doi.org/10.1162/evco_a_00278
https://doi.org/10.1162/evco_a_00278
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1049/cp:19971199
https://doi.org/10.1049/cp:19971199
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2304.00685
https://arxiv.org/abs/2304.00685


APPENDIX

A Prompts

The prompt used to generate the seed functions is
reported in Figure 3 while the prompt used during
the OPRO loop is reported in Figure 4. It’s worth
noting that when using a text-only model we re-
move all mentions of images.

B Hyperparameters

We report the hyperparameters used when sampling
from LLMs (Table 4) and for gplearn (Table 5).

Parameter Value
temperature 1.0

top_p 0.9
top_k 60

num_beams 1
max_new_tokens 512

Table 4: Sampling parameters for the LLMs.

Parameter Value
population_size 1000

generations 20
tournament_size 20

const_range (-5, 5)

Table 5: Hyperparameters for gplearn.

C Benchmark functions

The list of functions and point ranges for all the
benchmarks can be found in Table 6. The range
for training and testing points was taken from the
original source where available. Nguyen and Con-
stant don’t include a range for the testing points,
so we used the same range as the training points
but with more sample points. R[min, max, num]
indicates points sampled between the interval from
a uniform distirbution, while U[min, max, num]
indicates point sampled at equal distance from each
other, forming a meshgrid.

D Sample results

We present a sample of one solution for each func-
tion in the benchmarks found by our method, to
qualitatively investigate the generated expressions.
The true function is seen in red, while the model’s
guess is seen in green. The samples can be seen in
Figures 5, 6, 7, 8, 9, 10, 11 and 12.

Some of the failures of the models are apparent:
in areas where there is a low density of training
points the model sometimes makes guesses that
ignore the overall trend, as seen more dramatically
in R3 (Figures 11 and 12). However, generally
the method seems to hold up well, with the large
majority of the guesses being appropriate for the
benchmarked function.

We also report a sample of the results in the Kei-
jzer benchmark for the ablation study performed
in Section 5.4, using only the seed functions gener-
ation step, in Figure 13. The results for the other
three benchmarks are very similar to the ones re-
ported for the full method.

12



I want you to act as a mathematical function generator. Given a set of points below, you are to come up with 5 potential
functions that would fit the points. Don’t worry too much about accuracy: your task is to generate a set of functions that
are as diverse as possible, so that they can serve as starting points for further optimization.
To generate the functions, you will start from a set of basic operators and expressions, and combine them into something
more complex.
Your options are:
- An independent variable symbol: x.
- A coefficient symbol: c (there is no need to write a number - write this generic coefficient instead).
- Basic operators: +, -, *, /, ,̂ sqrt, exp, log, abs
- Trigonometric expressions: sin, cos, tan, sinh, cosh, tanh
Make sure there are no numbers in the functions, use the coefficient token ’c’ instead. Analyze the points carefully: if
there are any negative points in the input, sqrt and log can not be used unless the input is combined with abs.
The functions should all begin with the indicators "f1(x) = ", "f2(x) = "... Your task is to combine an arbitrary number of
these basic blocks to create a complex expression. Don’t be afraid to be creative and experiment! The functions should
be as complex as possible, combining many different operations. Variety is key!
Points: {points}
Functions:

Figure 3: Prompt used to generate the seed functions.

I want you to act as a mathematical function generator.
You are given an image of a graph with a set of point plotted as a scatter plot in blue. The coordinates of the points are:
points
Below are some previous functions and the error they make on the points above. The errors are arranged in order of their
fit values, with the highest values coming first, and lower is better. These functions are also shown in the image in the
form of a green line and the formula for the plotted function can be seen in the title.
Your task is to give me a list of five new potential functions that are different from all the ones reported below, and have a
lower error value than all of the functions below. Only output the new functions and nothing else.
Remember that the functions you generate should always have at most {num_variables} variables {variables_list}.
The functions should have parametric form, using ’c’ in place of any constant or coefficient. The coefficients will be
optimized to fit the data. Make absolutely sure that the functions you generate are completely different from the ones
already given to you.
The functions should all begin with the indicators "f1(x) = ", "f2(x) = "...
Remember that you can combine the simple building blocks (operations, constants, variables) in any way you want to
generate more complex functions. Don’t be afraid to experiment!
{previous_trajectory}

Figure 4: Prompt used during the OPRO loop.

13



Experiment Function Train Points Test Points

nguyen1 x3 + x2 + x R[−1, 1, 20] U [−1, 1, 200]
nguyen2 x4 + x3 + x2 + x R[−1, 1, 20] U [−1, 1, 200]
nguyen3 x5 + x4 + x3 + x2 + x R[−1, 1, 20] U [−1, 1, 200]
nguyen4 x6 + x5 + x4 + x3 + x2 + x R[−1, 1, 20] U [−1, 1, 200]
nguyen5 sin(x2) · cos(x)− 1 R[−1, 1, 20] U [−1, 1, 200]
nguyen6 sin(x) + sin(x+ x2) R[−1, 1, 20] U [−1, 1, 200]
nguyen7 log(x+ 1) + log(x2 + 1) R[0, 2, 20] U [0, 2, 200]
nguyen8

√
x R[0, 4, 20] U [0, 4, 200]

nguyen9 sin(x1) + sin(x22) R[[−1,−1], [1, 1], 100] U [[−1,−1], [1, 1], 500]
nguyen10 2 · sin(x1) · cos(x2) R[[−1,−1], [1, 1], 100] U [[−1,−1], [1, 1], 500]
nguyen11 xx2

1 R[[0, 0], [1, 1], 100] U [[0, 0], [1, 1], 500]
nguyen12 x41 − x31 +

1
2 · x22 − x2 R[[−1,−1], [1, 1], 100] U [[−1,−1], [1, 1], 500]

constant1 3.39x3 + 2.12x2 + 1.78x R[−1, 1, 20] U [−1, 1, 200]
constant2 sin(x2) · cos(x)− 0.75 R[−1, 1, 20] U [−1, 1, 200]
constant3 sin(1.5x1) · cos(0.5x2) R[[−1,−1], [1, 1], 100] U [[−1,−1], [1, 1], 500]
constant4 2.7xx2

1 R[[0, 0], [1, 1], 100] U [[0, 0], [1, 1], 500]
constant5

√
1.23x R[0, 4, 20] U [0, 4, 200]

constant6 x0.426 R[0, 4, 20] U [0, 4, 200]
constant7 2 sin(1.3x1) + cos(x2) R[[−1,−1], [1, 1], 100] U [[−1,−1], [1, 1], 500]
constant8 ln(x+ 1.4) + ln(x2 + 1.3) R[0, 2, 20] U [0, 2, 200]
keijzer3 0.3x · sin(2πx) U [−1, 1, 100] U [−1, 1, 10000]
keijzer4 x3 · exp(−x) · cos(x) sin(x) ·

(sin(x)2 · cos(x)− 1)
U [0, 10, 200] U [0.05, 10.05, 200]

keijzer6 (x · (x+ 1))/2 U [−1, 1, 50] U [−1, 1, 100]
keijzer7 ln(x) U [1, 100, 100] U [1, 100, 1000]
keijzer8

√
x U [0, 100, 100] U [0, 100, 1000]

keijzer9 ln(x+
√
x2 + 1) U [0, 100, 100] U [0, 100, 1000]

keijzer10 xx2
1 R[0, 1, 100] U [0, 1, 1000]

keijzer11 x1 · x2 + sin((x1 − 1) · (x2 − 1)) R[−3, 3, 20] U [−3, 3, 1000]

keijzer12 x41 − x31 +
(x2

2)
2 − x2 R[−3, 3, 20] U [−3, 3, 1000]

keijzer13 6 · sin(x1) · cos(x2) R[−3, 3, 20] U [−3, 3, 1000]
keijzer14 8/(2 + x21 + x22) R[−3, 3, 20] U [−3, 3, 1000]

keijzer15 x3
1
5 +

x3
2
2 − x2 − x1 R[−3, 3, 20] U [−3, 3, 1000]

R1 (x+ 1)3/(x2 − x+ 1) R[−1, 1, 20] U [−1, 1, 20]
R2 (x5 − 3 · x3 + 1)/(x2 + 1) R[−1, 1, 20] U [−1, 1, 20]
R3 (x6 + x5)/(x4 + x3 + x2 + x+ 1) R[−1, 1, 20] U [−1, 1, 20]

Table 6: Functions and point ranges for all benchmarks.

14



Figure 5: Results for the Nguyen benchmark with Llama3.

15



Figure 6: Results for the Nguyen benchmark with LLaVa-NeXT.

Figure 7: Results for the Constant benchmark with Llama3.

16



Figure 8: Results for the Constant benchmark with LLaVa-NeXT.

Figure 9: Results for the Keijzer benchmark with Llama3.

17



Figure 10: Results for the Keijzer benchmark with LLaVa-NeXT.

Figure 11: Results for the R benchmark with Llama3.

18



Figure 12: Results for the R benchmark with LLaVa-NeXT.

Figure 13: Results for the Keijzer benchmark using only the seed functions generation step.

19


	Introduction
	Related Work
	Background
	Method
	Vision-Language Extension

	Experiments
	Benchmarks
	Metrics

	Performance against GP methods
	Comparison of Text-Only and Vision-Language Models
	Ablation Study

	Discussion
	Limitations

	Conclusion
	Future Work

	Prompts
	Hyperparameters
	Benchmark functions
	Sample results

