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ABSTRACT
Knowledge graphs (KGs), which store an extensive number of rela-

tional facts (ℎ𝑒𝑎𝑑, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑎𝑖𝑙), serve various applications. While

many downstream tasks highly rely on the expressive modeling and

predictive embedding of KGs, most of the current KG representation

learning methods, where each entity is embedded as a vector in the

Euclidean space and each relation is embedded as a transformation,

follow an entity ranking protocol. On one hand, such an embedding

design cannot capture many-to-many relations. On the other hand,

in many retrieval cases, the users wish to get an exact set of answers

without any ranking, especially when the results are expected to be

precise, e.g., which genes cause an illness. Such scenarios are com-

monly referred to as “set retrieval". This work presents a pioneering

study on the KG set retrieval problem.We show that the set retrieval

highly depends on expressive modeling of many-to-many relations,

and propose a new KG embedding model SpherE to address this

problem. SpherE is based on rotational embedding methods, but

each entity is embedded as a sphere instead of a vector. While in-

heriting the high interpretability of rotational-based models, our

SpherE can more expressively model one-to-many, many-to-one,

and many-to-many relations. Through extensive experiments, we

show that our SpherE can well address the set retrieval problem

while still having a good predictive ability to infer missing facts.

The code is available at https://github.com/Violet24K/SpherE.
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1 INTRODUCTION
Knowledge Graphs (KGs), e.g., the widely used YAGO [23], Free-

base [3], DBpedia [2], WordNet [19], have been serving multiple

downstream applications such as information retrieval [30], rec-

ommender systems [36, 38], natural language processing [32, 34],

multimedia network analysis [31, 35], question answering [14, 16],

fact checking [15, 17]. To utilize the extensive amount of knowledge

in the KG, many works have studied Knowledge Graph Embedding

(KGE), which learns low-dimensional representations of entities

and relations of them [10, 21, 26, 27, 29]. Starting from TransE [4],

a group of translation-based methods TransH [28], TransR [13],

TransD [9], TorusE [6] model the relation as translations between

entities in the embedding space. However, the translation-based

methods suffer from the inexpressiveness when modeling symmet-
ric relations1 because translation itself is an anti-symmetry trans-

formation. In recent years, some seminal works have proposed to

model the relations by rotation, such as RotatE [24], QuatE [37],

Rotate3D [7]. The rotation-based methods can inherently handle

symmetry and anti-symmetry relations
2
. However, all the methods

that model each entity as a vector (i.e., a point) and each relation

as a single function mapping or injective mapping, are inexpres-

sive when modeling one-to-many, many-to-one, and many-to-many
relations

3
. Later on, BoxE [1] and HousE [12] are proposed by

more complex modeling of the entities and relations. Though these

two methods are proven to have high expressiveness, the complex

modeling makes the model less interpretable, and the real-world

meanings of the parameters haven’t been fully discussed. Bilinear

models, such as RESCAL [20], DistMult [33], ComplEx [25] and

SimplE [11], aim to capture relations as bilinear products between

the vector embeddings of entities and relations. Some methods also

try to use neural network architectures for KGE, such as SME [8],

NTN [22], MLP [5] and NAM [18].

Furthermore, current KGE research mostly follows an entity

ranking protocol. When we ask the model to predict the tail en-

tity of the triple (ℎ𝑒𝑎𝑑, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, ?), or the head entity of the triple

(?, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑎𝑖𝑙), the model assigns every possible triple a score to

measure the plausibility of its existence, and returns a ranked list

of all the entities [39] based on the score of each completed triple.

However, given the head entity and the relation, there might be

more than one correct tail entities. In some real scenarios where

the user requires an exact set of correct answers, determining the

appropriate threshold to cut off the ranked list poses a challenge.

1
A relation 𝑟 is symmetric if ∀𝑥, 𝑦, 𝑟 (𝑥, 𝑦) ⇒ 𝑟 (𝑦, 𝑥 ) .
2𝑘𝜋 -rotation is symmetric since a circle is 2𝑘𝜋 .
3
This is because, if 𝑓 is a function mapping or injective mapping, then either 𝑓 (𝑥 ) or
𝑓 −1 (𝑥 ) is unique , hence the many side cannot be expressively modeled.
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Table 1: SpherE can expressivelymodel the inference patterns
that state-of-the-art methods are able to model.

Inference pattern
4

SpherE-2D SpherE-3D SpherE-𝑘D (𝑘 ≥ 4)

Symmetry

√ √ √

Anti-symmetry

√ √ √

Inversion

√ √ √

Composition

√ √ √

NC composition
5 × √ √

Multiplicity
6 × √ √

RMPs
7

√ √ √

For instance, in querying a bioinformatic knowledge graph to iden-

tify genes associated with an illness, the abundance of potential

genes complicates the threshold determination process significantly.

To this end, we introduce and formulate a new problem, named

Knowledge Graph Set Retrieval, which aims to exactly find all the

entities of the triple queries (ℎ𝑒𝑎𝑑, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, ?) or (?, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑎𝑖𝑙),
given an incomplete knowledge graph. We propose SpherE that

embeds each entity as a sphere instead of a vector in the Euclidean

space, and each relation as a rotation. Based on the dimension of

rotation, SpherE consists of a group of methods SpherE-𝑘D (𝑘 ≥ 2).

The intuition of embedding entities as spheres lies in the modeling

of “universality" of each entity, which enhances the interpretability

of SpherE. We validate such intuition through experiments. We

also show that SpherE is expressive in modeling many relations

patterns (Table 1) and demonstrate that our SpherE outperforms

the baseline methods on the knowledge graph set retrieval task.

2 PRELIMINARY
Knowledge Graph. A knowledge graph G = (E,R,T) is defined
by an entity set E, a relation set R and a triple set T . A triple

(ℎ, 𝑟, 𝑡) ∈ T is defined by the head entity ℎ, tail entity 𝑡 and their

relation 𝑟 . We use 𝑟 (ℎ, 𝑡) ∈ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} to denote whether the fact
(ℎ, 𝑟, 𝑡) holds in the real world, i.e., whether (ℎ, 𝑟, 𝑡) is a fact in a

complete and correct oracle knowledge graph or not.

Tail/Head Query. A tail query (ℎ, 𝑟, ?) aims to find all 𝑡 ∈ G
such that 𝑟 (ℎ, 𝑡) is 𝑡𝑟𝑢𝑒 , and similarly a head query (?, 𝑟 , 𝑡) aims

to find all ℎ ∈ G such that 𝑟 (ℎ, 𝑡) is 𝑡𝑟𝑢𝑒 . In the real world and

real KGs, it is possible that a head or tail query has more than one

answers. For example, the query (𝑀𝑎𝑥_𝐵𝑜𝑟𝑛, 𝑎𝑑𝑣𝑖𝑠𝑒𝑠, ?) can have

correct tails in the KG to be 𝑅𝑜𝑏𝑒𝑟𝑡_𝑂𝑝𝑝𝑒𝑛ℎ𝑒𝑖𝑚𝑒𝑟, 𝑃𝑎𝑠𝑐𝑢𝑎𝑙_𝐽𝑜𝑟𝑑𝑎𝑛,

or 𝐶𝑎𝑟𝑙_𝐻𝑒𝑟𝑚𝑎𝑛𝑛.

Knowledge Graph Embedding (KGE). For an arbitrary triple

(ℎ, 𝑟, 𝑡), assume the embedding of ℎ and 𝑡 are respectively 𝒉, 𝒕 , and
the transformation mapping of relation 𝑟 is 𝑓𝑟 (·). We expect that

𝑟 (ℎ, 𝑡) ⇐⇒ 𝒕 = 𝑓𝑟 (𝒉).
When testing the performance KGE methods, a widely accepted

and used benchmark protocol is, for each triple in the test dataset,

we mask the tail and pass a tail query (ℎ, 𝑟, ?) to the model. Then,

the model computes the score of (ℎ, 𝑟, 𝑒) for all the entities 𝑒 ∈ E
and returns a ranked list. Then, we check where the masked tail is

ranked in the list, and do a similar test by masking heads. In this

paper, we introduce and formulate another related but different

problem: the knowledge graph set retrieval problem.

4
Symmetry: 𝑟 (𝑥, 𝑦) ⇒ 𝑟 (𝑦, 𝑥 ) ; Anti-symmetry: 𝑟 (𝑥, 𝑦) ⇒ ¬𝑟 (𝑦, 𝑥 ) ; Inversion:
𝑟1 (𝑥, 𝑦) ⇔ 𝑟2 (𝑦, 𝑥 ) ; Composition: 𝑟1 (𝑥, 𝑦) ∧ 𝑟2 (𝑦, 𝑧 ) ⇔ 𝑟3 (𝑥, 𝑧 ) .
5
Non-commutative composition [7]. Let 𝑟3 = 𝑟1 ◦ 𝑟2 . 𝑟1 (𝑥, 𝑦) ∧ 𝑟2 (𝑦, 𝑧 ) ⇔ 𝑟3 (𝑥, 𝑧 ) ,
but (𝑟1 ◦ 𝑟2 ) (𝑥, 𝑦) ⇏ (𝑟2 ◦ 𝑟1 ) (𝑥, 𝑦) .
6
there exists multiple relations satisfying 𝑟 (𝑥, 𝑦) = 𝑡𝑟𝑢𝑒 .

7
RMPs means relation mapping properties, containing one-to-one, one-to-many, many-

to-one and many-to-many. Some works may use "n" for "many".

Figure 1: Illustration of Rotational-based embedding meth-
ods (left) and SpherE (right) in 2D Euclidean space. The
user asks the tail query (𝑀𝑎𝑥_𝐵𝑜𝑟𝑛, 𝑎𝑑𝑣𝑖𝑠𝑒𝑑, ?). In the KG,
𝑅𝑜𝑏𝑒𝑟𝑡_𝑂𝑝𝑝𝑒𝑛ℎ𝑒𝑖𝑚𝑒𝑟, 𝑃𝑎𝑠𝑐𝑢𝑎𝑙_𝐽𝑜𝑟𝑑𝑎𝑛, or 𝐶𝑎𝑟𝑙_𝐻𝑒𝑟𝑚𝑎𝑛𝑛 are
correct answers to this query, but 𝐺𝑒𝑜 𝑓 𝑓 𝑟𝑒𝑦_𝐻𝑖𝑛𝑡𝑜𝑛 is not.
While the left returns a ranked list of all entities in the KG
and disproportionately ranks incorrect answers highly, our
SpherE method returns a set that exclusively comprises all
correct tail entities. The radius of each sphere is learned.

Problem. Knowledge Graph Set Retrieval.

Input: (i) a knowledge graph G = (E,R,T)
(ii) A relation 𝑟 . For tail-set retrieval, a head ℎ; for head-set
retrieval, a tail 𝑡 . Equivalently, a head/tail query.

Output: For tail-set retrieval, all the ℎ ∈ E such that 𝑟 (ℎ, 𝑡) is 𝑡𝑟𝑢𝑒 .
For head-set retrieval, all the 𝑡 ∈ E such that 𝑟 (ℎ, 𝑡) is 𝑡𝑟𝑢𝑒

To address the knowledge graph set retrieval problem, we pro-

pose our SpherE with an illustration in Figure 1. SpherE embeds the

entities as spheres instead of vectors and models the triple (ℎ, 𝑟, 𝑡)
using non-disjoint8 ℎ and 𝑡 spheres. In particular, 𝑟 (ℎ, 𝑡) is 𝑡𝑟𝑢𝑒 if
the ball bounded by the transformed ℎ sphere overlaps with the

ball bounded by the 𝑡 sphere. SpherE can naturally express the one-

to-many, many-to-one, and many-to-many relations, and enable

knowledge graph set retrieval. The interpretation of entity radius

lies in the universality of an entity, i.e., how often the entity appears

in the KG triples. For example, “apple" (both fruit and brand) is very

common in daily life, and there might be many facts with it as head

or tail. In this case, the radius of “apple" should be large to make

the apple sphere be non-disjoint with other related spheres.

3 PROPOSED METHOD
3.1 Sphere-based Modeling
SpherE is based on the rotational embedding methods RotatE [24],

Rotate3D [7], and HousE
9
[12]. They respectively embed the rela-

tions into 2D, 3D, and 𝑘D Euclidean spaces (𝑘 ∈ N+). In SpherE,

each relation is also embedded as a rotation, but each entity is em-

bedded as a sphere. The rotations in any dimension, represented by

rotation matrix multiplication, are invertible because of the prov-

ably invertible rotation matrices. Therefore, both the tail query and

head query can be handled equivalently. For an entity 𝑒 , we denote

the center and the radius of 𝑒’s sphere embedding to be 𝒄𝑒 and

𝑟𝑒 . When a tail query (ℎ, 𝑟, ?) is passed to SpherE, for all 𝑡 ∈ E, it
checks whether the relational transformed ℎ sphere and 𝑡 sphere

8
Tangent, intersecting, concentric or contained all considered non-disjoint.

9
More precisely, HousE-r, where rotations are modeled by Householder matrices .
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intersect. If so, 𝑡 is included in the set to return. In other words, we

expect

𝑟 (ℎ, 𝑡) ⇐⇒ ∥ 𝑓𝑟 (𝒄ℎ) − 𝒄𝒕 ∥2 ≤ 𝑟ℎ + 𝑟𝑡 (1)

Similarly, when facing a head query, we expect

𝑟 (ℎ, 𝑡) ⇐⇒ ∥𝒄ℎ − 𝑓 −1𝑟 (𝒄𝒕 )∥2 ≤ 𝑟ℎ + 𝑟𝑡 (2)

At first glance, Equations 1 and 2 might look contradictory be-

cause by combining them together, the model must satisfy:

∥ 𝑓𝑟 (𝒄ℎ) − 𝒄𝒕 ∥2 ≤ 𝑟ℎ + 𝑟𝑡 ⇐⇒ ∥𝒄ℎ − 𝑓 −1𝑟 (𝒄𝒕 )∥2 ≤ 𝑟ℎ + 𝑟𝑡 (3)

In fact, Equation 3 holds for SpherE because the rotation transfor-

mation and its inverse are isometric, i.e., distance-preserving, and

we do have

∥𝒄ℎ − 𝑓 −1𝑟 (𝒄𝒕 )∥2 = ∥ 𝑓𝑟 (𝒄ℎ) − 𝑓𝑟 (𝑓 −1𝑟 (𝒄𝒕 ))∥2 = ∥ 𝑓𝑟 (𝒄ℎ) − 𝒄𝒕 ∥2 (4)

We theoretically show that our modeling is expressive to model

all the inference patterns in Table 1. Due to the space limit, we only

show the proof on the high level.

Theorem 3.1. SpherE can model symmetry, inversion, and com-
position relation patterns.

Proof. It has been proved that RotatE, RotatE3D, and HousE can

model these relation patterns. By taking the embedding parameters

of these models, for each 𝑟 (ℎ, 𝑡) that is successfully modeled by

RotatE, RotatE3D or HousE, 𝑓𝑟 (𝑐ℎ) = 𝑐𝑡 . Pick 𝑟𝑒 > 0 for all entities,

we have ∥ 𝑓𝑟 (𝒄ℎ) − 𝒄𝒕 ∥2 ≤ 𝑟ℎ + 𝑟𝑡 ⇐⇒ 𝑟 (ℎ, 𝑡). □

Theorem 3.2. SpherE-𝑘D (𝑘 ≥ 3) can model anti-symmetry, non-
commutative composition, andmultiplicity inference patterns. SpherE-
2D can model anti-symmetry

Proof. Similar to Theorem 3.1, but pick 𝑟𝑒 → 0+. □

Similar to RotatE, SpherE-2D cannotmodel the non-commutative

composition and multiplicity inference patterns.

Theorem 3.3. SpherE can model the relation mapping properties.

Proof. As shown in Figure 1, given a head entity and a relation,

multiple tail spheres can be non-disjoint with the rotated head en-

tity. Therefore SpherE can model one-to-many relations. Similarly,

SpherE can also model many-to-one relations. Combining these

together, SpherE can model the relation mapping properties. □

3.2 Optimization
We illustrate the optimization method of the model. The parameters

to be learned are the rotational relation embeddings 𝑓𝑟 for each

relation, the sphere center 𝑐𝑒 of each entity 𝑒 , and the sphere radius

𝑟𝑒 of each entity 𝑒 . Respectively, for SpherE-2D, SpherE-3D, and

Sphere-𝑘D, we use the same negative sampling strategy as in RotatE,

RotatE3D, and HousE. For a triple 𝑥 = (ℎ, 𝑟, 𝑡), let T𝑛 be the set

of its negative triples. Following the sigmoid loss for rotational

embedding, we design our loss function as

L = − log𝜎 (𝛾 − 𝑑 (𝑥)) −
∑︁

𝑥 ′∈T𝑛
𝑝 (𝑥 ′) log𝜎 (𝑑 (𝑥 ′) − 𝛾)

𝑑 (ℎ, 𝑟, 𝑡) = [| |𝑓𝑟 (𝒄𝒉) − 𝒄𝒕 | |𝑝 − 𝑟ℎ − 𝑟𝑡 − 𝛼𝑟ℎ − 𝛽𝑟𝑡 ]+
(5)

where 𝛼 ≥ 0, 𝛽 ≥ 0 are hyperparameters close to 0 to encourage

sphere intersections, and [𝑥]+ = 𝑅𝑒𝐿𝑈 (𝑥). 𝑝 = 2 defines the norm

to use. By such an objective function, during optimization, for

positive triples (ℎ, 𝑟, 𝑡), the trainer encourages | |𝑓𝑟 (𝒄𝒉) − 𝒄𝒕 | |𝑝 ≤
𝑟ℎ+𝑟𝑡 , but does not encourage | |𝑓𝑟 (𝒄𝒉)−𝒄𝒕 | |𝑝 to be to small after the

transformed head sphere and tail sphere become non-disjoint; for

a negative sample (ℎ′, 𝑟 , 𝑡 ′), the learner encourages | |𝑓𝑟 (𝒄𝒉) − 𝒄𝒕 | |𝑝
to be as large as possible, i.e., encouraging the transformed head to

be disjoint with the tail sphere. We demonstrate the effectiveness

of our optimization method and the expressive of SpherE modeling

by extensive experiments on knowledge graph set retrieval.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. We use two widely-used knowledge graph embed-

ding benchmark datasets, FB15K237 and WN18RR, in our experi-

ments. Table 2 shows their statistics.

Table 2: Statistics of Datasets
KG | E | | R | # train/valid/test

FB15K237 14,541 237 272,115/17,535/20,446

WN18RR 40,943 11 86,835/17,535/20,446

4.1.2 Baselines. To the best of our knowledge, this paper is the

first to study knowledge graph set retrieval, so we convert the state-

of-the-art knowledge graph embedding methods RotatE, RotatE3D,

and HousE, to handle knowledge graph set retrieval settings. For

each of the methods, given a tail/head query, it returns a ranked list

of the entities. We truncate the ranked list to get the top-𝑙 set, which

contains the 𝑙 elements ranked in the front of the list. We tried many

choices of 𝑙 and reported the performance of 𝑙 = 1, 3, 5, 10, 20, 100

for comparison. Experimentally, respectively for FB15K237 and

WN18RR, the baseline models have the best performance when

𝑙 = 10 and 𝑙 = 3.

4.1.3 Settings and Metrics. We first train each method to near

convergence. Then, for each triple (ℎ, 𝑟, 𝑡) in the test dataset, we

respectively mask the head and tail of it to produce two queries

(ℎ, 𝑟, ?) and (?, 𝑟 , 𝑡). Take (ℎ, 𝑟, ?) as an example: we then feed the

query into the model and get a set of retrieved tails E𝑚 . Then, we

compute the ground-truth tails E𝑔 from the training data, valid

data, and test data. We calculate the F1 score of E𝑚 and E𝑔 as a

measurement of knowledge graph set retrieval performance. We

also measure the inferring ability of the model by computing the

probability that 𝑡 , the actual tail of (ℎ, 𝑟, 𝑡), is in the set retrieved

from (ℎ, 𝑟, ?). We record this probability as “Retrieve Rate". We

repeat a similar procedure for the query (?, 𝑟 , 𝑡).

4.2 Experiment Results
We use 𝑝 = 2, 𝛼 = 0.1, 𝛽 = 0 for head queries, 𝑝 = 2, 𝛼 = 0, 𝛽 = 0.1

for tail queries. The main experiment results are shown in Table 3

and 4. Due to the space limitation, we show full experiment data

only for the FB15K237 dataset. For each RotatE, RotatE3D and

HousE-𝑘D, each top-𝑙 row stands for a top-𝑙 set, and the Sphere row

stands for our SpherE-2D, SpherE-3D and SpherE-𝑘D, respectively.

The Head/Tail F1 stands for the average F1 score of head/tail queries,

and the Head/Tail RR stands for the average retrieve rate of the

correct head/tail of the test triple. The n-to-n F1 stands for the

average F1 score of querying many-to-many relations. We mark
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Table 3: Comparison(↑) of Embedding Methods.

Models

FB15K237

Head F1 Tail F1 Head RR Tail RR n-to-n F1

top-1 0.132 0.281 0.044 0.174 0.158

top-3 0.212 0.346 0.092 0.280 0.283

top-5 0.245 0.361 0.133 0.344 0.333

RotatE top-10 0.270 0.359 0.202 0.442 0.367

top-20 0.276 0.332 0.297 0.554 0.364

top-100 0.246 0.216 0.513 0.766 0.275

Sphere 0.451 0.444 0.761 0.760 0.447

top-1 0.132 0.287 0.046 0.188 0.157

top-3 0.210 0.345 0.097 0.289 0.281

top-5 0.242 0.359 0.140 0.354 0.331

RotatE3D top-10 0.269 0.356 0.214 0.454 0.365

top-20 0.274 0.329 0.308 0.564 0.363

top-100 0.246 0.216 0.527 0.778 0.275

Sphere 0.444 0.430 0.779 0.779 0.462

top-1 0.051 0.192 0.043 0.177 0.121

top-3 0.082 0.207 0.095 0.281 0.145

top-5 0.102 0.215 0.137 0.346 0.159

HousE-5D top-10 0.129 0.217 0.211 0.444 0.174

top-20 0.145 0.210 0.294 0.540 0.178

top-100 0.137 0.152 0.476 0.743 0.145

Sphere 0.384 0.345 0.622 0.653 0.366

top-1 0.060 0.208 0.051 0.191 0.134

top-3 0.098 0.229 0.114 0.304 0.162

top-5 0.120 0.134 0.157 0.375 0.179

HousE-10D top-10 0.150 0.246 0.239 0.485 0.197

top-20 0.169 0.239 0.332 0.588 0.205

top-100 0.173 0.174 0.539 0.793 0.175

Sphere 0.401 0.412 0.539 0.573 0.409

top-1 0.059 0.190 0.051 0.191 0.134

top-3 0.096 0.228 0.111 0.304 0.162

top-5 0.119 0.238 0.156 0.373 0.179

HousE-20D top-10 0.151 0.244 0.238 0.482 0.198

top-20 0.171 0.238 0.322 0.588 0.205

top-100 0.174 0.174 0.540 0.793 0.175

Sphere 0.378 0.406 0.463 0.495 0.394

the best performance in each base method (RotatE, RotatE3D, or

HousE-𝑘D) category in bold.

First, our SpherE outperforms all the baselinemethods in terms of

both Head F1 and Tail F1 on both datasets. Second, after embedding

the entities as spheres instead of vectors, even thoughwe still embed

the relations to be rotations, the performance on the knowledge

graph set retrieve task is boosted significantly, which validates the

expressiveness of our SpherE model. Third, SpherE significantly

outperforms the baseline methods in terms of n-to-n F1, which

shows the superior ability of SpherE in modeling many-to-many
relations. Fourth, SpherE still has a good ability to infer the missing

links in the KG, as the Head RR and Tail RR of unseen triples are

comparable with the top-20 set of FB15K237 and the top-3 set of

WN18RR. On average, each head/tail query of FB15K237 has 3 or

5 correct heads/tails, and each head/tail query of WN18RR has 1

or 3 correct heads/tails. Therefore, the top-20 set of FB15K237 and

the top-3 set of WN18RR are strong baselines for inferring the

correct entity. Fifth, we observe that, as the dimension of rotation

increases, the algorithms perform worse on knowledge graph set

Table 4: Comparison(↑) of Embedding Methods.

Models

WN18RR

Head F1 Tail F1 Head RR Tail RR n-to-n F1

top-1 0.363 0.371 0.147 0.210 0.618

top-3 0.458 0.397 0.329 0.431 0.710

top-5 0.435 0.342 0.397 0.512 0.605

RotatE top-10 0.362 0.240 0.455 0.569 0.400

top-20 0.279 0.155 0.497 0.608 0.232

top-100 0.142 0.052 0.608 0.706 0.053

Sphere 0.712 0.447 0.385 0.385 0.873

top-1 0.356 0.360 0.149 0.210 0.612

top-3 0.460 0.397 0.336 0.436 0.708

top-5 0.439 0.344 0.412 0.521 0.605

RotatE3D top-10 0.365 0.244 0.475 0.592 0.401

top-20 0.281 0.158 0.524 0.643 0.231

top-100 0.143 0.053 0.643 0.753 0.054

Sphere 0.656 0.426 0.413 0.412 0.779

(a) FB15K237

(b) WN18RR

Figure 2: The relation between radius and occurrence count.

retrieval tasks. It could be a future direction to study what causes

the performance drop.

We also validate the interpretability of the radius through exper-

iments. As discussed previously, the radius of an entity encodes its

universality, i.e., how often it appears in the KG triples. We validate

this by calculating the average radius of the entities that have the

same number of appearances in the train, valid and test triples.

The results show that, for both datasets, the more time an entity

occurs, the larger the radius is optimized. Interestingly, when an

entity appears only 1 time in the KG, it is even optimized to have a

negative radius to make its sphere disjoint with others.

5 CONCLUSION
In this paper, to the best of our knowledge, we first introduce

and formulate the problem of knowledge graph set retrieval. We

propose SpherE, an expressive and interpretable model to address

this problem and demonstrate its effectiveness through extensive

experiments on knowledge graph set retrieval.
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