
Scalable Bayesian Inference
in the Era of Deep Learning

From Gaussian Processes to Deep Neural Networks

Javier Antorán Cabiscol

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Darwin College May 2024

ar
X

iv
:2

40
4.

19
15

7v
1

 [
st

at
.M

L
]

 2
9

A
pr

 2
02

4

I would like to dedicate this thesis to the memory of my grandmother, Carmen Mir Gavara,
who kept reminding me that I had to submit my thesis.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Javier Antorán Cabiscol
May 2024

Acknowledgements

First and foremost, I would like to thank my supervisor Miguel Hernández-Lobato. Miguel
gave me the opportunity to pursue a PhD at a time when I was unsure what next step to take
professionally. Throughout the PhD, Miguel has given me complete freedom to pursue my
interests and to collaborate freely with other researchers. I have learnt a lot from Miguel’s
capacity to boil down complex topics to their simplest form and from his optimistic outlook
on research. I would also like to thank him for his patience throughout all of the times I
ignored his advice and went on to try things that didn’t work just to find out that his previous
suggestion indeed was the best way forward.

I have been very lucky to have worked with excellent collaborators during my PhD.
There is a relatively widespread bias in academia by which most of the credit for research
publications is assigned to the first author. This creates perverse incentives by which
secondary authors are discouraged from making significant contributions to collaborative
projects. In my experience, the easiest way to perform great research is to have multiple
talented collaborators fully committed to a project. Indeed, most of my work, and definitely
my best work, has been co-first authored with James Allingham, Riccardo Barbano, Shreyas
Padhi, and Andy Lin. Apart from helping me escape the academic credit assignment trap,
James has been a great friend. He is likely the person with whom I have achieved best
working synergy within my professional career. I will always regret not having worked more
closely together during the later stages of our PhDs. Riccardo Barbano is another good
friend with whom I was privileged to work closely. Riccardo introduced me to the world of
computed tomography, resulting in the final content chapter of this thesis. I started working
with Shreyas and Andy in the last two years of my PhD, which allowed me to play a more
senior role in our collaboration. I learned a lot from this arrangement, and watching them
both grow into excellent researchers has felt very rewarding. I would be remiss to not also
give special mention to Dave Janz, who has accompanied me throughout my research into
linearised Laplace and Gaussian processes. I have learned a lot of maths from Dave and I am
very grateful to him for his patience when teaching me new concepts.

viii

I would also like to thank a number of additional collaborators: Alex Terenin, who
introduced me to matrix-free linear algebra and from whom I learned a lot about academic
writing, Laurence Midgeley, whose enthusiasm and endless stream of clever ideas are
inspiring, Erik Daxberger, Umang Bhatt, Johannes Leuschner, Austin Tripp, Vincent Stimper,
Emile Mathieu, Tomas Geffner, Adam Foster, Wenbo Gong, Chao Ma, Chelsea Murray, Zeljko
Kereta, Tameem Adel, Adrian Weller, Bernhard Schölkopf, Bangti Jin, Csaba Szepesvári, and
Eric Nalisnick. Apart from being a great collaborator, I am grateful to Eric for, together with
Max Welling, hosting me during my visit to AMLab at the the university of Amsterdam. I am
also grateful to Artem Artemev and Mark Van der Wilk for our very insightful conversations.

I would like to thank Marine Schimel for patiently putting up with me during the highs
and lows of the PhD and also to Manuel Escolá, Cristina Uruén, Laura Aznar, Beatriz Alegre,
Juan Galvez, Pedro Cabeza, David del Río, Marta Parra, Gergely Flamich, Stratis Markou,
and Miguel García Ortegon, for being good friends. Additionally, I am grateful to Adriá
Garriga Alonso, Andrew Foong, Kris Jensen, Sebastian Ober, Matt Ashman, Tor Erlend
Fjelde, Adrían Goldwaser, Juyeon Hao, Bruno Mlodozeniec, Kenza Tazi, Jonny So, Valerii
Likhosherstov, Aliaksandra Shysheya, Vincent Dutordoir, Runa Eschenhagen, Emile Mathieu,
Will Tebutt, and Isaac Reid for making the CBL a nice environment in which to have spent
the past four years.

I am grateful to Yann Dubois for being the only person I know who shares my obsessive
passion for machine learning, and to Antonio Miguel for very generously dedicating endless
hours to teaching me machine learning during my years as an undergraduate student.

Finally, I would like to thank my parents who gave me every opportunity.

My PhD research has been supported by Microsoft Research, through its PhD Scholarship
Programme, and by the EPSRC. My work was also supported by a number of Tier-2 capital
grants that allowed me access to the University of Cambridge Research Computing Services.
I apologise to the Cambridge HPC staff for taking down the queuing server by submitting too
many jobs one time.

Abstract

Large neural networks trained on large datasets have become the dominant paradigm in machine
learning. These systems rely on maximum likelihood point estimates of their parameters,
precluding them from expressing model uncertainty. This may result in overconfident
predictions and it prevents the use of deep learning models for sequential decision making.

This thesis develops scalable methods to equip neural networks with model uncertainty.
To achieve this, we do not try to fight progress in deep learning but instead borrow ideas
from this field to make probabilistic methods more scalable. In particular, we leverage the
linearised Laplace approximation to equip pre-trained neural networks with the uncertainty
estimates provided by their tangent linear models. This turns the problem of Bayesian
inference in neural networks into one of Bayesian inference in conjugate Gaussian-linear
models. Alas, the cost of this remains cubic in either the number of network parameters or in
the number of observations times output dimensions. By assumption, neither are tractable.

We address this intractability by using stochastic gradient descent (SGD)—the workhorse
algorithm of deep learning—to perform posterior sampling in linear models and their convex
duals: Gaussian processes. With this, we turn back to linearised neural networks, finding the
linearised Laplace approximation to present a number of incompatibilities with modern deep
learning practices—namely, stochastic optimisation, early stopping and normalisation layers—
when used for hyperparameter learning. We resolve these and construct a sample-based EM
algorithm for scalable hyperparameter learning with linearised neural networks.

We apply the above methods to perform linearised neural network inference with ResNet-
50 (25M parameters) trained on Imagenet (1.2M observations and 1000 output dimensions).
To the best of our knowledge, this is the first time Bayesian inference has been performed in
this real-world-scaled setting without assuming some degree of independence across network
weights. Additionally, we apply our methods to estimate uncertainty for 3d tomographic
reconstructions obtained with the deep image prior network, also a first. We conclude by
using the linearised deep image prior to adaptively choose sequences of scanning angles that
produce higher quality tomographic reconstructions while applying less radiation dosage.

Table of contents
Nomenclature xv

1 Introduction 1
1.1 Thesis outline and contributions . 3
1.2 Full list of publications . 5

2 Linear models and Gaussian processes 9
2.1 The weight space view . 10

2.1.1 Understanding our choice of model 12
2.1.2 Posterior inference: from loss functions to distributions 14

2.2 The function space view . 17
2.2.1 Duality . 18
2.2.2 From features to kernels . 19
2.2.3 Bayesian reasoning about functions: Gaussian processes 21
2.2.4 Sampling from Gaussian processes & random features 22

2.3 The Pathwise view . 24
2.3.1 Efficiently sampling from GP posteriors with random features . . . 27
2.3.2 Duality between pathwise conditioning and sample-then-optimise . 27
2.3.3 Decision making: Bayesian optimisation 29

2.4 Model selection . 30
2.4.1 Comparing two models . 32
2.4.2 Hyperparameter optimisation . 33
2.4.3 The evidence of the linear model 34
2.4.4 Effective dimension . 36

2.5 Limitations of conjugate Gaussian-linear Bayesian reasoning 37

3 Approximate inference 39
3.1 Variational Inference . 40

3.1.1 VI in the parameter space of the linear model 43
3.1.2 VI in function space: inducing points 43
3.1.3 Expectation propagation and non-KL divergences 47
3.1.4 Variational inference for neural networks and its limitations 48

3.2 Conjugate Gradients . 49
3.2.1 Hyperparameter learning with CG 49
3.2.2 Limitations of Conjugate Gradient inference 50

TABLE OF CONTENTS xi

3.3 The linearised Laplace approximation . 51
3.3.1 Linearising our network at prediction time 52
3.3.2 A modern view of linearised Laplace 55
3.3.3 Learning hyperparameters with the Laplace evidence 58
3.3.4 Online Laplace methods . 59
3.3.5 Limitations of the linearised Laplace approximation 59

4 Stochastic Gradient Descent for Gaussian Processes 61
4.1 Pathwise conditioning as an optimisation problem 63
4.2 Stochastic estimators of the sampling objective 64

4.2.1 A first approach: mini batching and unbiased random features . . . 66
4.2.2 A lower variance estimator for SGD-based sampling 66
4.2.3 Stochastic Dual Descent . 72
4.2.4 Getting the optimiser right . 81

4.3 SGD for inference with inducing points 82
4.4 Analysing the implicit bias of stochastic gradient descent 87
4.5 Experiments and benchmarks . 91

4.5.1 UCI benchmark datasets . 91
4.5.2 Large-scale Bayesian optimisation 94
4.5.3 Molecule-protein binding affinity prediction 97

4.6 Discussion . 99

5 A modernised Laplace approximation 101
5.1 Post-hoc linearised neural net hyperparameter selection 103
5.2 On the choice of posterior mode . 105
5.3 Linearised Laplace with normalised networks 109

5.3.1 The layerwise prior . 111
5.3.2 The diagonal g-prior . 116

5.4 Additional observations and discussion . 118
5.4.1 Networks with a dense final layer 118
5.4.2 Optimising linearised networks 119
5.4.3 Further implications of our results 121

5.5 Demonstration: hyperparameter selection with the tangent linear model . . 122
5.5.1 Validation of modelling assumptions 123
5.5.2 Validating recommendations across architectures 124
5.5.3 Large scale models . 125

5.6 Discussion . 126

6 Sample-based linearised Laplace 127
6.1 Variational EM for linearised neural networks 128

6.1.1 Conjugate Gaussian regression and the EM algorithm 129

xii TABLE OF CONTENTS

6.1.2 Laplace-approximating non-conjugate likelihoods 131
6.1.3 The issue of limited scalability . 132

6.2 Sample-based inference for the tangent linear model 132
6.2.1 Hyperparameter learning using posterior samples 132
6.2.2 Constructing an efficient estimator of the g-prior 137
6.2.3 Efficient SGD posterior sampling with warm starts 138
6.2.4 Sample-based linearised Laplace predictions 139
6.2.5 Putting the pieces into a single algorithm for image classification . . 140

6.3 Demonstration: Image classification . 141
6.3.1 Comparison with existing approximations on MNIST 141
6.3.2 Predictive performance and robustness on CIFAR-100 144
6.3.3 Predictive performance on Imagenet 147

6.4 Discussion . 149

7 The linearised deep image prior for computed tomography 151
7.1 Preliminaries . 154

7.1.1 Total variation regularisation . 155
7.1.2 Bayesian inference for inverse problems 155
7.1.3 The Deep Image Prior (DIP) . 156

7.2 Linearised DIP uncertainty estimation for CT 157
7.2.1 From a prior over parameters to a prior over images 157
7.2.2 Computing the predictive uncertainty 158
7.2.3 Incorporating TV-smoothness into the prior over the weights 158

7.3 Approaches to scalable inference and hyperparameter learning 161
7.3.1 Conjugate-gradient hyperparameter learning for the PredCP TV prior 162
7.3.2 Randomised SVD preconditioning for CG 165
7.3.3 Scalable sample-based hyperparameter learning with the g-prior . . 165
7.3.4 SGD sampling EM iteration for very large reconstructions 168
7.3.5 Posterior covariance matrix estimation by sampling 168

7.4 Demonstration: uncertainty estimation in CT with the linearised DIP 168
7.4.1 Uncertainty estimation for image reconstruction 169
7.4.2 Volumetric uncertainty estimation 172

7.5 Linearised DIP Bayesian experimental design for CT 176
7.5.1 Sequential inference with linear(ised) models 177
7.5.2 Experimental design with linear(ised) models 178
7.5.3 Construction of the prior covariance K 181

7.6 Demonstration: designing CT angle selection strategies 182
7.7 Discussion . 185

8 Conclusions and future work 187
8.1 Recap of contributions . 187

TABLE OF CONTENTS xiii

8.2 Future Work . 189

References 191

Appendix A Experimental setup details for Chapter 5 213
A.1 Experiments with full Hessian computation 213

A.1.1 CNN . 214
A.1.2 ResNet, Pre-ResNet, and Biased-ResNet 214
A.1.3 FixUp ResNet . 215
A.1.4 Transformer . 215

A.2 U-Net tomographic reconstruction of KMNIST digits 216
A.3 Large scale experiments . 217

Nomenclature

Acronyms / Abbreviations

AD Automatic Differentiation

AI Artificial Intelligence

CG Conjugate Gradient

CNN Convolutional Neural Network

CT Computed Tomography

DIP Deep Image Prior

ELBO Evidence Lower Bound

EP expectation propagation

GGN Generalised Gauss Newton Matrix

GP Gaussian Processes

GP Gaussian Processes

HMC Hamiltonian Monte Carlo

LL Log Likelihood

MAP Maximum A Posteriori

MC Monte Carlo

MCMC Markov Chain Monte Carlo

µCT Micro Computed Tomography

xvi Nomenclature

NLL Negative Log Likelihood

NTK Neural Tangent Kernel

OL Online Laplace

PD Positive Definite

PredCP Predictive Complexity Prior

PSD Positive Semidefinite

RBF Radial Basis Function

RKHS Reproducing Kernel Hilbert Space

SDD Stochastic Dual Descent

SGD Stochastic Gradient Descent

SV GP Stochastic Variational Gaussian Process

TV Total Variation

V I Variational Inference

Chapter 1

Introduction

Programs learnt from data are rapidly displacing programs based on human-designed rules
as the dominant paradigm for computer-based automation. We have seen this in the fields of
computer vision (Dosovitskiy et al., 2021), inverse problems (Arridge et al., 2019), natural
language processing (Wang et al., 2024), information retrieval (Zhu et al., 2024), text and
image generation (Jiang et al., 2024; Saharia et al., 2022), system control (Hu et al., 2022),
scientific discovery (Collaboration et al., 2021; Graczykowski et al., 2022), and even computer
programming (Chen et al., 2021), among others. Practically all of these advances were
enabled by large-scale deep learning (Henighan et al., 2020). Indeed, it is plausible that
given enough data, a flexible enough neural network, and sufficient compute to train the
artificial intelligence (AI), data-driven decision making methods will dominate all traditional
computer programs.

The rules for optimally learning from data were codified in the framework of Bayesian
probability well before the deep learning revolution of the past decade (Cox, 1946; Jaynes
and Justice, 1986; Jeffreys, 1939; Stigler, 1986). Under this framework, we represent our
knowledge, or lack thereof, as probability distributions. When we observe new data, the
information gained is used to update these prior distributions into less entropic posterior
distributions (Gull, 1988; Skilling, 1989). In turn, these act as priors for future inferences.
Although probabilistic methods were extensively leveraged to build primordial neural network
systems (Hinton and van Camp, 1993; Salakhutdinov and Hinton, 2009), modern neural
network methods rely on expressing our beliefs as point estimates instead of probability
distributions. The lack of explicitly modelled uncertainty makes modern deep learning
systems vulnerable to acting spuriously when they encounter situations which were not
provided sufficient coverage in the training data (Goddard, 2023; Weiser and Schweber, 2023).

2 Introduction

Additionally, probabilistic methods remain state of the art for decision-making tasks that
require uncertainty-based exploration, like automated chemical design (Gómez-Bombarelli
et al., 2018).

From a Bayesian perspective, neural networks can be seen as an uncompromising model
choice that puts very little restrictions on the function class to be learnt. The effects of
individual weights are non-interpretable, precluding the design of informative Bayesian
priors for neural network parameters. However, it is likely this is the very feature that allows
us to use neural networks to solve tasks in ways that can not easily be summarised by a
human-readable list of rules. For instance, how to eloquently sustain a conversation or
drive a car. With this idea in place, an intuitive way to explain the seeming incompatibility
between Bayesian inference an neural networks is to think of the former as scoring a set of
prior hypotheses by how well each one it agrees with the data. The problem with modern
neural networks is that there are just too many hypotheses to score. The scoring becomes
prohibitively expensive, especially, when combined with large datasets which are likely to be
fit well by a relatively small region of the neural network parameter space. In other words,
while maximum likelihood learning scales well to the modern big-network and big-data
setting, Bayesian inference does not.

This thesis aims to bridge the gap between Bayesian methods and contemporary deep
learning. This endeavour was pioneered by Mackay (1992a) who extended Bayesian inference
and hyperparameter selection in linear models (which is also attributable to Gull (1989)) to
the neural network setting via the Laplace approximation, naming his class of methods the
evidence framework. In the last 30 years, the methods of machine learning have changed quite
a bit; the scale of the problems tackled and models deployed has grown by multiple orders
of magnitude, precluding the out-of-the-box application MacKay’s methods, and giving me
something to write my thesis about. In fact, similarly to MacKay (1992a), this thesis begins by
making contributions to the field of linear models and Gaussian processes, uses the Laplace
approximation to adapt these methods for approximate inference in neural networks, and
finally applies the developed Bayesian neural networks to efficient data acquisition. Thus, this
thesis is perhaps best described as a modern take on the evidence framework which makes it
scalable to modern problem sizes and amenable to modern deep learning architectures.

To achieve our goals, we are not going to fight progress in deep learning by trying to
re-build it from the ground up to natively use Bayesian inference, for instance by imposing
fancy handcrafted priors on weights whose effect we dont understand. I believe this is a lost
cause. Instead, we are going to build upon the tremendous progress that has been made in
deep learning, and borrow ideas from this field to make Bayesian methods more scalable.

1.1 Thesis outline and contributions 3

For instance, in Chapter 4, we will use stochastic gradient descent—the de-facto method
for training neural networks—to make Bayesian inference in linear models and Gaussian
processes more scalable. Additionally, when dealing with neural networks, we will focus
on the post-hoc inference setting, in which we leverage approximate Bayesian methods, to
obtain uncertainty estimates for pre-trained neural networks. This will ensure the thesis’
contributions remain compatible with the quickly evolving field of deep learning.

1.1 Thesis outline and contributions

This thesis is written with my past self, before embarking on the PhD, as a target audience.
Although some measure theoretic and functional analytic concepts are (infrequently) men-
tioned throughout the thesis, knowledge of these fields is not required to understand the thesis’
contributions. Additionally, I have tried to combine mathematical derivations with a number
of less-technical remarks to help the reader build intuition about the material.

The rest of this thesis is organised as follows.

• Chapter 2 introduces Bayesian inference in conjugate Gaussian-linear models and
Gaussian processes. Particular focus is placed on the duality between the two model
classes because we will make heavy use of it throughout the thesis. We also introduce
the model evidence and discuss hyperparameter learning in linear models. Readers
who posses an adept grasp of Bayesian linear models may skip this chapter. However,
Section 2.3 on pathwise conditioning may still be of interest, since it is slightly more
niche.

• Chapter 3 introduces approximate inference for large scale or non-conjugate linear
models, and for neural networks. We discuss variational inference, conjugate gradient-
based approximate inference, and the Laplace approximation. We discuss the limitations
of each of these approximations emphasising the trade-off between crudeness of
approximation and scalability that they all present. Special focus is placed on the
linearised variant of the Laplace approximation, as its adaption to modern deep learning
will be a key theme of this thesis.

• Chapter 4 leverages stochastic gradient descent to scale Bayesian inference in conjugate
linear models and Gaussian processes to large scale problems. In particular, we
develop a number of quadratic objectives whose minimisers represent samples from the
posterior distribution of a Gaussian process. We analyse their properties and propose

4 Introduction

a series of recommendations on how best to apply stochastic gradient-based solvers
to this setting. We dub our approach stochastic dual descent. It presents a linear
computational cost in the number of observations per gradient step, and we find that a
constant number of steps suffice to obtain good performance across a diverse range of
problem settings. This starkly contrasts with the cubic in the number of observations
cost of exact inference. We also extend stochastic gradient descent to inducing point
posteriors, where a sub-linear cost per step can be achieved. We analyse the spectral bias
of solutions found via stochastic gradient descent, showing that full convergence is not
necessary to achieve strong performance. Experimentally, we show that stochastic dual
descent outperforms conjugate gradient-based inference and variational inference on
standard regression benchmarks and on a large-scale Bayesian optimisation benchmark.
When combined with stochastic dual descent, Gaussian processes are able match the
performance of graph neural networks on a large scale molecular binding affinity
prediction task. This chapter is based on Antorán et al. (2023), Lin et al. (2023b) and
Lin et al. (2024).

• Chapter 5 identifies a number of incompatibilities between the classical linearised
Laplace model evidence objective for model selection and modern deep learning
methodologies, in particular, stochastic optimisation, early stopping, and the use of
normalisation layers. These result in severe deterioration of the model evidence
estimate. We provide recommendations on how to adapt linearised Laplace in light of
these issues. Namely, every neural network weight setting has an associated tangent
linear model, and we recommend using the evidence of this linear model to select the
hyperparameters to be used for linearised Laplace uncertainty estimation. Additionally,
we must select priors over the linearised network weights which counteract a number
of scale invariances introduced by normalisation layers. We empirically validate
our recommendations on MLPs, classic CNNs, residual networks with and without
normalisation layers, generative autoencoders and transformers. This chapter is based
on Antorán et al. (2022) and Antorán et al. (2022).

• Chapter 6 combines the contributions of the previous two chapters to put forth a scalable
sample-based EM algorithm for hyperparameter learning in linearised neural networks.
The E-step is based on stochastic-gradient descent posterior sampling and the M-step
leverages a sample-based estimate of the effective dimension-based hyperparameter
update introduced by Mackay (1992a). We also discuss a number of implementation
details that allow us to work with linearised neural networks without ever instantiating
these models’ Jacobians explicitly. This suite of techniques allows us to scale linearised

1.2 Full list of publications 5

neural network inference to modern architectures and datasets, such as ResNet-50 on
Imagenet. Distinctly from more crude, e.g. factorised, approximations to Bayesian
inference in Neural networks, our approach improves upon the performance of the
pre-trained network we build upon. It provides state of the art results in terms of joint
predictions across multiple inputs, a task of special interest for uncertainty-guided
exploration. This chapter is based on Antorán et al. (2023).

• Chapter 7 applies the methods developed in this thesis to uncertainty estimation and
experimental design for computed tomography (CT) image and volume reconstruction.
In particular, we use the deep image prior architecture for reconstruction and linearise
the network for uncertainty estimation. We develop a novel total-variation based prior
for the linearised deep image prior. Our scalable sample-based EM iteration allows our
method to scale to high-resolution 3d volumetric reconstructions from real-measured
micro CT data. To the best of our knowledge, our work is the first to perform uncertainty
estimation for 3d neural reconstructions. We then go on to leverage the linearised deep
image prior as a data-dependent prior for adaptive CT scanning angle selection. This
allows us to design strategies that reduce by up to 30% the number of scans needed
to match the performance of an equidistant angle baseline on a synthetic task. This
chapter is based on Barbano et al. (2022a), Barbano et al. (2022b), Antoran et al. (2023)
and Antorán et al. (2023).

• Chapter 8 concludes the thesis with an outlook of this thesis’ contributions in the
context of the broader field of machine learning and a discussion of avenues for future
work.

1.2 Full list of publications

I now provide a full list of papers I have written during my time as a PhD student. Titles are
bolded for papers whose content is included in this thesis. I also give a brief description of
my contribution to each of these works. An asterisk superscript ∗ denotes co-first authorship.

1. J.A. Lin∗, S. Padhy∗, J. Antorán∗, A. Tripp, A. Terenin, C. Szepesvári, J. M. Hernández-
Lobato, D. Janz. "Stochastic Gradient Descent for Gaussian Processes Done Right."
In International Conference on Learning Representations (ICLR). 2024

My contribution to to this project consisted of developing the idea, helping my co-
authors debug their code, writing the paper, and helping orchestrate other authors’
contributions.

6 Introduction

2. L.I. Midgley∗, V. Stimper∗, J. Antorán∗, E. Mathieu∗, B. Schölkopf, Hernández-Lobato.
"SE (3) equivariant augmented coupling flows." In Advances in Neural Information
Processing Systems (NeurIPS). 2023. Awarded spotlight presentation.

3. J.A. Lin, J. Antorán, J.M. Hernández-Lobato. "Online Laplace Model Selection
Revisited." In Symposium on Advances in Approximate Bayesian Inference (AABI).
2023. Awarded oral presentation.

4. J.A. Lin∗, J. Antorán∗, S. Padhy∗, D. Janz, J.M. Hernández-Lobato, A. Terenin.
"Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent."
In Advances in Neural Information Processing Systems (NeurIPS). 2023. Awarded oral
presentation.

My contribution to to this project consisted of developing the idea, writing some of the
code, writing the paper, and helping orchestrate other authors’ contributions.

5. R. Barbano, J. Antorán, J. Leuschner, J.M. Hernández-Lobato, B. Jin, Z. Kereta.
"Image Reconstruction via Deep Image Prior Subspaces." In Transactions on Machine
Learning Research (TMLR). 2023

6. J.U. Allingham, J. Antorán, S. Padhy, E. Nalisnick, J.M. Hernández-Lobato. "Learning
Generative Models with Invariance to Symmetries." In NeurIPS 2022 Workshop on
Symmetry and Geometry in Neural Representations. 2022 Allingham et al. (2022)

7. J. Antorán∗, S. Padhy∗, R. Barbano, E. Nalisnick, D. Janz, J. M. Hernández-Lobato.
"Sampling-based inference for large linear models, with application to linearised
Laplace." In International Conference on Learning Representations (ICLR). 2023

My contribution to to this project consisted of developing the idea, writing the codebase
that was used for experiments, running some experiments, writing the paper, and
helping orchestrate other authors’ contributions.

8. J. Antorán∗, R. Barbano∗, J. Leuschner, J.M. Hernández-Lobato, B. Jin. "Uncertainty
Estimation for Computed Tomography with a Linearised Deep Image Prior." In
Transactions on Machine Learning Research (TMLR). 2023

My contribution to to this project consisted of developing the idea, helping my
co-authors debug their code, and writing the paper.

9. R. Barbano∗, J. Leuschner∗, J. Antorán∗, B. Jin, J.M. Hernández-Lobato. "Bayesian
experimental design for computed tomography with the linearised deep image
prior." In Adaptive Experimental Design and Active Learning workshop at ICML. 2022

1.2 Full list of publications 7

My contribution to to this project consisted of developing the idea, helping my
co-authors debug their code, and writing the paper.

10. J. Antorán, D. Janz, J.U. Allingham, E. Daxberger, R.R. Barbano, E. Nalisnick, J. M.
Hernández-Lobato. "Adapting the linearised Laplace model evidence for modern
deep learning." In International Conference on Machine Learning. 2022

My contribution to to this project consisted of developing the idea, writing the codebase
that was used for the experiments, writing the paper, and orchestrating other co-authors’
contributions.

11. C. Murray, J.U. Allingham, J. Antorán, J.M. Hernández-Lobato. "Addressing bias in
active learning with depth uncertainty networks... or not." In Proceedings of Machine
Learning Research (PMLR) 163:59-63. 2022

12. T. Geffner∗, J. Antorán∗, A. Foster∗, W. Gong, C. Ma, E. Kiciman, A. Sharma, A.
Lamb, M. Kukla, N. Pawlowski, M. Allamanis, C. Zhang. "Deep end-to-end causal
inference." arXiv preprint arXiv:2202.02195. 2022

13. J. Antorán, J.U. Allingham, D. Janz, E. Daxberger, E. Nalisnick, J. M. Hernández-
Lobato. "Linearised Laplace inference in networks with normalisation layers and
the neural g-prior." In Symposium on Advances in Approximate Bayesian Inference
(AABI). 2022. Awarded oral presentation.

My contribution to to this project consisted of developing the idea, writing the codebase
that was used for the experiments, writing the paper, and orchestrating other co-authors’
contributions.

14. R. Barbano∗, J. Antorán∗, J.M. Hernández-Lobato, B. Jin. "A probabilistic deep
image prior over image space." In Symposium on Advances in Approximate Bayesian
Inference (AABI). 2022

My contribution to to this project consisted of developing the idea, helping my
co-authors debug their code, and writing the paper.

15. C. Murray, J.U. Allingham, J. Antorán, J.M. Hernández-Lobato. "Depth Uncertainty
Networks for Active Learning." In Bayesian Deep Learning Workshop at the 35th
Conference on Neural Information Processing System. 2021

16. U. Bhatt, J. Antorán, Y. Zhang, Q.V. Liao, P. Sattigeri, R. Fogliato, G. G. Melancon,
R. Krishnan, J. Stanley, O. Tickoo, L. Nachman, R. Chunara, A. Weller, A. Xiang.

8 Introduction

"Uncertainty as a Form of Transparency: Measuring, Communicating, and Using
Uncertainty." In AAAI/ACM Conference on AI, Ethics, and Society. 2021

17. E. Daxberger, E. Nalisnick, J.U. Allingham, J. Antorán, J.M. Hernández-Lobato.
"Bayesian Deep Learning via Subnetwork Inference." In International Conference on
Machine Learning (ICML), 2021.

18. J. Antorán, U. Bhatt, T. Adel, A. Weller, J. M. Hernández-Lobato. "Getting a CLUE:
A Method for Explaining Uncertainty Estimates." In International Conference on
Learning Representations (ICLR). 2021. Awarded oral presentation.

19. E. Daxberger, E. Nalisnick, J. Allingham, J. Antorán, J.M. Hernández-Lobato. "Ex-
pressive yet tractable Bayesian deep learning via subnetwork inference." Symposium on
Advances in Approximate Bayesian Inference (AABI) 2020. Awarded oral presentation.

20. J. Antorán∗, J.U. Allingham∗, J.M. Hernández-Lobato. "Depth uncertainty in neural
networks." In Advances in Neural Information Processing Systems (NeurIPS). 2020

21. J. Antorán∗, J. U. Allingham∗, J. M. Hernández-Lobato. "Variational depth search in
ResNets." In Workshop on Neural Architecture Search at International Conference on
Learning Representations. 2020

Chapter 2

Bayesian reasoning with Gaussian linear
models and Gaussian processes

We start with linear regression, where outputs are given by linear functions of some basis
function expansion of the input variables, as these models play a central role in this thesis.
When a Gaussian prior is placed over the parameters and the targets are assumed to have been
corrupted by additive Gaussian noise, we obtain the Gaussian linear model. This setting is of
special interesting because conjugacy between likelihood and prior leads to the equations of
Bayesian inference admitting closed form solutions. This simplicity does not come at the cost
of flexibility; the use of basis function expansion allows linear regressors to learn arbitrarily
complex functions. This thesis will leverage this fact to tackle the analytical intractability
of Bayesian inference in neural network models; in Chapter 6 we will approximate the
predictions of the neural network with those of a Gaussian linear model with an appropriate
choice of basis function expansion. The key limitation of Gaussian linear regression is its
computational cost, which scales cubically with the number of observations or number of
model parameters. This thesis addresses this limitation in Chapter 4.

I would be remiss to not mention some other excellent references for Gaussian linear
models, such as the seminal texts of Gull (1989) and MacKay (1992b), and the books of
Bishop (2006) (Chapter 3) and Williams and Rasmussen (2006) (Chapter 2). However,
this chapter provides a presentation of the material that emphasises the duality between
parameter-space and function-space, and the pathwise formulation of inference, which
will hopefully make the contributions of the rest of the thesis easily accessible to the
reader. In particular, we start by providing 3 complementary views of Bayesian inference in
Gaussian-linear models: Section 2.1 introduces the parametric weight-space view of linear

10 Linear models and Gaussian processes

regression, Section 2.2 introduces Gaussian processes (GP) , the dual, non-parametric view
of linear regression, and Section 2.3 presents the pathwise view of inference in Gaussian
processes which deals directly with random functions. The latter will be key to designing
computationally efficient inference algorithms in Chapter 4. We then go on to discuss the
importance of the choice of hyperparameters for linear models and how to select them via
marginal likelihood maximisation in Section 2.4. The chapter concludes with a discussion of
the limitations of linear models in Section 2.5.

2.1 The weight space view: Gaussian linear regression

We begin by introducing a multi-output basis-function linear model. We observe a set of
n inputs x1, . . . , xn ∈ X and corresponding outputs y1, . . . , yn ∈ Y ⊆ Rc, where c is the
number of output dimensions. We introduce a basis function expansion ϕ : X → Rc ×H,
that maps inputs into some Reproducing Kernel Hilbert Space (RKHS) H. We will not
provide a review of RKHS, but instead we refer the reader to Paulsen and Raghupathi (2016)
for this. Since we will always work with separable RKHS, we can treat their elements as
vectors, that isH ⊆ Rd, without loss of generality—although sometimes these vectors will
be infinite dimensional—and thus we henceforth treat ϕ(xi) like a c× d dimensional matrix.

We assume that the targets are generated as a linear combination of our featurised inputs,
weighted by a parameter vector w ∈ H ⊂ Rd, and corrupted by additive Gaussian noise with
0 mean and observation-dependent positive definite (PD) and symmetric precision matrix
Bi ∈ Rc×c for each i ≤ n. That is, each target is given by

yi = ϕ(xi)w + εi with w ∼ N (0, A−1) and εi ∼ N (0, B−1
i). (2.1)

The parameter vector w is an unobserved variable which we assume to have been drawn from
a Gaussian prior distribution with precision given by the positive definite matrix A.

Henceforth, we will use the following stacked notation: we write Y ∈ Rnc for the
concatenation of y1, . . . , yn. We stack the expanded observations into the design matrix
Φ = [ϕ(x1)

T , ϕ(x2)
T , . . . , ϕ(xn)

T]T ∈ Rnc×d. We concatenate the additive noise vectors
into E = [εT1 , ε

T
2 , . . . , ε

T
n]

T . Its distribution is a zero centred Gaussian with B ∈ Rnc×nc, the
block diagonal matrix with blocks B1, . . . , Bn, as its precision. With this, our model is

Y = Φw + E with w ∼ N (0, A−1I) and E ∼ N (0, B−1). (2.2)

2.1 The weight space view 11

Without loss of generality we assume A = aI with a ∈ R+; any additional structure in A can
be absorbed into the basis functions ϕ. Additionally, unless specified otherwise, we assume
isotropic observation noise B = bI with b ∈ R+. With this, each output dimension can be
seen as an additional independent observation, and we are free to assume c = 1 without
loss of generality. Finally, for a vector v and a Positive SemiDefinite (PSD) matrix G of
compatible dimensions, ∥v∥2G = vTGv.

Remark On our construction of the multioutput linear model
Our model generates multiple outputs from a weight vector by multiplying with the
matrix-valued features ϕ(xi). This choice differs from the presentation of Bishop (2006),
where a weight matrix multiplies vector-valued features. Our choice is deliberate, as
it will simplify notation when dealing linear approximations to multioutput neural
network functions in later chapters.

Notation for probability distributions We use capital letters to refer to probability
measures, e.g., Π = N (0, A−1) and lowercase letters to refer to their density functions, i.e.
π. These are defined in the standard way via the Radon–Nikodym derivative dΠ = π(w)dν

with ν denoting the Lebesgue measure. We will not concern ourselves any further with
measure theoretic issues. Throughout the thesis we assume any necessary conditions hold
for simplicity. We refer to the parameters of probability distributions which we do not treat
probabilistically as hyperparameters. To make these explicit in our notation for a density
function, we separate the hyperparameters from the point in the sample space at which the
density is evaluated by a semicolon. For instance, we may write the density of our Gaussian
prior atw as π(w; 0, A) where the mean 0 and precisionA are the hyperparameters. However,
whenever there is no ambiguity, we omit the hyperparameters to keep our notation uncluttered.
We write conditional density functions, e.g. likelihood functions, by separating variables
being conditioned on with a vertical bar |. For instance, the likelihood of the linear regression
weights is written as p(Y |w) =

∂PY |w
∂ν

, where PY |w = N (Φw, B−1). When there is no
ambiguity, we do not explicitly include our set of inputs X in our notation to further reduce
clutter. Finally, we will also refer to the density of a distribution by prepending the point at
which it being evaluated to the distribution’s arguments, but separated by a semicolon. That
is, N (w; 0, A−1) = π(w).

12 Linear models and Gaussian processes

Fig. 2.1 Each plot displays four prior function samples, drawn using (2.5). The left side plot
uses an affine basis expansion (2.3), the middle one a 500 element random Fourier expansion
with a Gaussian spectral measure and a lengthscale of ψ = 1 (2.4), and the right side plot
uses a similar Fourier expansion but with a lengthscale of ψ = 0.3.

2.1.1 Understanding our choice of model

The choice of basis is perhaps the most important modelling decision when working with
linear models; our flexibility in the choice of basis makes linear models very powerful. Indeed,
every function can be expressed as a linear combination of a set of basis functions; to see this
just choose an element of the basis to contain the target function. However, we seek more
than just a representation from which our targets can be linearly decoded1. Our basis should
reflect our prior knowledge (and uncertainty) over the target function.

To illustrate the power of the basis function expansion, we provide some examples of
common basis function choices: the affine basis and the random Fourier basis. We restrict
ourselves to X = R and a single output dimension c = 1 for the purpose of visualisation.
The affine basis corresponds to regression with a single linear weight and a bias. That is

ϕ(x) = [1, x]. (2.3)

This model expresses the belief that our target function is a straight line, or plane. Furthermore,
within the set of all possible lines, our 0-centred Gaussian prior over the parametersw expresses
a belief that lines corresponding to weight and bias choices of small magnitude are more
likely a priori. The random Fourier basis (Rahimi and Recht, 2007; Sutherland and Schneider,

1Many trivial choices of basis, like ones with very short lengthscales, allow any target to be linearly decoded
but are not practically useful.

2.1 The weight space view 13

2015) represents the input as a set of cosines with random frequency and phase

ϕs,r(x) =

√
2

d
[cos(sT1 x+ r1), cos(s

T
2 x+ r2), . . . , cos(s

T
d x+ rd)] (2.4)

with si ∼ N (0, ψ−2) and ri ∼ Uniform(0, 2π),

where the subscript in ϕs,r makes explicit the features dependence on the source of randomness
s, r. The lengthscale parameter ψ controls the smoothness of the functions we can express
through the choice of frequency variance. Small values lead to our prior placing most of
weight on smooth functions, while large values generate a mix of functions of different
smoothness.

We use f : X → R to denote the random prior function implied by our model. We
evaluate realisations of this random function by multiplying weight vectors drawn from the
prior over weights with the basis expanded inputs as

f(·) = ϕ(·)w with w ∼ N (0, A−1), (2.5)

and display them in Figure 2.1. We denote by X the array of inputs (ϕ(xi))ni=1, and with
f(X) ∈ Rn the vector given by our prior random function evaluated at these inputs. Pushing
the prior distribution over weights through the product with the feature expansion, we obtain
the prior distribution over function values evaluated at the inputs

f(X) ∼ N (0,ΦA−1ΦT). (2.6)

We visualise the covariance matrices for our affine and random Fourier basis in Figure 2.2.

The choice of basis affects our model’s uncertainty a priori and thus how much data will
be needed to pin down accurate values for the parameters. If we choose a more flexible
function class, then we will need more data to constrain the parameters and vice versa.
The Fourier model with a large value for ψ is more flexible than the affine model since
it can express non-linear functions in the inputs. This additional flexibility is reflected in
the covariance matrix structures shown in Figure 2.2. The linear model assumes strong
correlations throughout the input space. Only a few observations will be enough to constrain
its parameters everywhere. On the other hand, the Fourier model’s band diagonal covariance
structure tells us the model assumes that targets are only correlated when their inputs are
nearby. How close the inputs need to be is given by the width of the diagonal band. Since
each observation will only constrain the random functions locally, many more observations
are necessary to reduce the Fourier model’s uncertainty. Since there are more ways for a

14 Linear models and Gaussian processes

Fig. 2.2 Covariance matrices of the prior distribution over functions evaluated at 501 equally
spaced points in the range [−3, 3] The left side plot uses an affine basis expansion (2.3), the
middle one a 500 element random Fourier expansion with a Gaussian spectral measure and a
lengthscale of ψ = 1 (2.4), and the right side plot uses a similar Fourier expansion but with a
lengthscale of ψ = 0.3.

function to change quickly than slowly, a smaller value of ψ leads to an even more flexible
random Fourier model with a thinner band-diagonal covariance structure. This model will
require even more data to learn.

Suitable feature expansions exist for many types of data, such as images (van der Wilk
et al., 2017), natural text (Collins and Duffy, 2001), and even graphs (Tripp et al., 2023).
Throughout this chapter we will use the Fourier basis as a recurring example. As we will see
in Section 2.2.2, the random Fourier linear model is intimately tied to stationary Gaussian
processes.

2.1.2 Posterior inference: from loss functions to distributions

Having discussed the choice of model, we now turn to learning from data. Intuitively, learning
can be thought of as combining what we knew a priori with the information that the newly
observed data tells us. We can achieve this by scoring candidate parameter vectors by their
density under our prior Π and how closely the corresponding functions pass to the observed
targets (the mapping between weight vectors and functions is given in (2.5)). The latter
requirement is quantified by the probability density of our observations given the weights,
which is known as the likelihood when taken as a function of the weights. Our assumption
on the Gaussianity of the observation noise implies the conditional density over the targets

2.1 The weight space view 15

is p(Y |w) = N (Y ; Φw, B−1). We assume iid inputs, making this density factorise across
observations as

∏n
i=1N (yi;ϕ(xi)w, B

−1
i).

Since we require our functions to simultaneously be constrained by our prior and
likelihood, we construct an objective function by multiplying the two, obtaining the joint
density p(Y |w)π(w) =∏n

i=1 p(yi|w)π(w). Taking a logarithm2 for numerical stability, we
find that the likelihood corresponds to the least squares regression loss and the prior, to
the sum of squares regulariser, both up to an additive constant. That is, we obtain the loss
L : Rd → R+ given by

log p(Y |w) + log π(w) + C =
1

2

n∑
i=1

∥yi − ϕ(xi)w∥2Bi︸ ︷︷ ︸
least squares loss

+
1

2
∥w∥2A︸ ︷︷ ︸

regulariser

:= L(w), (2.7)

where C is the additive constant independent of w and Y . Both terms in the expression
are quadratic, with the curvature of the fit term being M = ΦTBΦT and the regulariser’s
curvature being given by A. The curvature of the full loss is thus ∇2

wL = M + A := H .
This allows for a closed form solution for the maximum a posteriori (MAP) estimate of the
parameters w⋆ = H−1ΦTBY . Thus the MAP function is f⋆(·) = ϕ(·)w⋆. We refer to Bishop
(2006) for more detailed derivations.

Only finding the optima of the loss does not tell us how confident we should be in the
corresponding parameter setting. For instance, if there are many parameter settings obtaining
similar loss values but mapping to very different functions, i.e. the determinant of H is small,
we might become less confident in the MAP estimate. To fully capture the uncertainty in our
parameter estimate we resort to Bayesian inference. We obtain the posterior density over
parameters through Bayes rule

π(w|Y) =
p(Y |w)π(w)∫

w
p(Y |w) dπ(w) . (2.8)

From (2.7) it is clear that the posterior relates to the linear regression loss as π(w|Y) ∝
exp(−L(w))3. Since the loss is quadratic, the posterior is also Gaussian with mean w⋆ and
covariance H−1 := Σ. We illustrate this for our affine model in Figure 2.3. The ratio of
the joint density to the posterior p(Y) =

∫
w
p(Y |w) dπ(w) is known as the “evidence”, a

constant independent of w, which we will discuss in detail in Section 2.4.

2The monotonicity of the logarithm ensures the optima of the function do not change
3It is worth noting that we can use this strategy to construct probability distributions from other positive-valued

functions.

16 Linear models and Gaussian processes

Fig. 2.3 The top left plot shows the d = 2 dimensional posterior landscape of our affine
model fit on a n = 6 observation dataset with B = 2I and A = 6I . The 1, 2 and 3 standard
deviation prior and posterior contours are overlayed on top. We draw 2 samples from the
weight space posterior, which we plot as function samples in the top right plot. The top
right plot also displays the mean and 2 standard deviation contours of the posterior random
function f |Y . The bottom left and bottom right plots display the same objects as the top
right, but for the 500 element random Fourier basis with a Gaussian spectral measure. We set
A = 0.4I for the Fourier models. The lengthscale on the left is ψ = 1 and the right side plot
uses ψ = 0.3.

We draw from the posterior distribution over functions by multiplying posterior weight
samples with our basis expansion

(f |Y)(·) = ϕ(·)w with w ∼ N (w⋆,Σ)

Σ = H−1 = (A+M)−1 and w⋆ = ΣΦTBY, (2.9)

and illustrate this for the different priors introduced in Section 2.1.1, and a small dataset, in
Figure 2.3. Computationally, the cost of evaluating this posterior is dominated by computing
the inverse of the Hessian H which presents cubic cost in the number of observations times
output dimensions O ((nc)3).

2.2 The function space view 17

At an array of test inputs X ′ = (x′i)
n′
i=1 with corresponding featurisation Φ′ ∈ Rn′c×d, we

evaluate the posterior distribution over function values by marginalising out the parameters in
(2.9). Since we are dealing with a linear combination of Gaussian variables, the distribution
over function evaluations will be jointly Gaussian

(f |Y)(X ′) ∼ N (Φ′w⋆, Φ
′ΣΦ′T). (2.10)

We illustrate the marginals of this distribution in Figure 2.3. The affine model presents the
smallest posterior errorbars, as it is the least flexible. We can pin down the value of its
parameters with the least amount of data. The ψ = 1 Fourier model presents a smoother
posterior mean and larger errorbars, a consequence of the model’s increased flexibility.
Additionally, the band diagonal structure of the Fourier model’s covariance (recall Figure
2.2) results in the posterior returning to the prior covariance far enough away from our
observations. For the model with lengthscale ψ = 0.3, this happens so fast that the posterior
ends up matching the 0-mean prior almost everywhere, except very close to the data. Visual
inspection reveals this model choice is too flexible for our toy dataset. We would not expect
this solution to generalise to additional observations. This lack of generalisation is also
reflected in the large errorbars of the posterior.

So far, we have looked at the posterior distribution over functions. However, if we want
to make predictions about observations, we need to take into account that these are generated
as noisy function realisations. The output space distribution that accounts for both the
uncertainty in our parameters and observations is the posterior predictive. For a new input
xn+1, the posterior predictive density over the corresponding target yn+1 is given by

p(yn+1|Y) =

∫
w

p(yn+1|w) dπ(w|Y). (2.11)

In the linear-Gaussian setting, assuming a homoscedastic observation noise of precision b,
this density corresponds to the distribution N (ϕ(x′)w⋆, ϕ(x

′)Σϕ(x′)T + b−1I).

2.2 The function space view: Gaussian processes

A stochastic process is a potentially infinite set of random random variables. We say that a
random function f : X → Rc is a Gaussian process if, for every finite set of points X ∈ X n,
f(X) is jointly Gaussian. Both of the expressions we derived in the previous section for
the prior (2.6) and posterior (2.10) distributions over function evaluations are multivariate

18 Linear models and Gaussian processes

Gaussians, satisfying this definition. Viewing the Gaussian linear model as a Gaussian
process (GP) will allow us to perform Bayesian inference without ever having to work with
the parameters w directly. The use of stochastic processes as priors is known as Bayesian
nonparametrics (Ghosal and van der Vaart, 2017).

2.2.1 Duality

Instead of the usual measure theoretic definition of stochastic processes (Matthews, 2017),
we will derive the function-space view as the convex dual formulation of the Gaussian linear
model (Khan, 2014). We will make heavy use of this duality throughout the rest of the thesis.

Derivation Convex duality of Gaussian linear regression loss
We begin by formulating the linear regression loss L introduced in (2.7) as the
constrained optimisation problem

min
w∈Rd

1

2

n∑
i=1

∥yi − ui∥2Bi
+

1

2
∥w∥2A

s.t. ui = ϕ(xi)w ∀i. (2.12)

We introduce the Lagrangian L : Rd × Rnc × Rnc → R+ with Lagrange multiplier
α ∈ Rnc as

L(w, u, α) =
1

2

n∑
i=1

∥yi − ui∥2Bi
+

1

2
∥w∥2A +

n∑
i=1

⟨αi, ui − ϕ(xi)w⟩. (2.13)

This problem is quadratic in both w and u and Slater’s condition holds (see 5.2 in Boyd
and Vandenberghe (2014)). Thus there is strong duality

min
w∈Rd

L(w) = max
α∈Rnc

inf
w∈Rd

inf
u∈Rnc

L(w, u, α) = max
α∈Rnc

L(w′, u′, α) (2.14)

where the optimal primal variables can be shown, by solving the respective quadratic
problems, to be given by w′ = A−1Φα, and u′i = yi − B−1

i αi. Plugging these in
to the Lagrangian yields the dual loss

L(w′, u′, α) = −1

2
∥α∥2(B−1+ΦA−1ΦT) + αTY (2.15)

2.2 The function space view 19

which is also quadratic but with curvature B−1 + ΦA−1ΦT . It is optimised by taking

α⋆ := (B−1 + ΦA−1ΦT)−1Y (2.16)

Thus we can reparametrise the maximum a posteriori function estimate in terms of the
optimal Lagrange multipliers α⋆ as

f⋆(·) = ϕ(·)w⋆ = ϕ(·)A−1ΦTα⋆. (2.17)

There are nc Lagrange multipliers in the vector α⋆, one per observation and output dimension.
Obtaining them requires solving a nc dimensional system at costO((nc)3). This is in contrast
to the O(d3) cost of the primal solution w⋆. Thus, the dual formulation will be preferable
when nc < d.

An analogous derivation to the one above, given in (Khan, 2014), can be used to find the
dual formulation of the full Gaussian posterior, including the covariance. However, a faster
route is to use the Woodbury matrix to re-write the expression for the posterior covariance
into a form that depends on (B−1 + ΦA−1ΦT)−1, the curvature of the dual problem, as

Σ = (A+ ΦTBΦ)−1 = A−1 − A−1ΦT (B−1 + ΦA−1ΦT)−1ΦA−1. (2.18)

With this, the posterior distribution over functions evaluated at a set of test pointsX ′ = (x′i)
n′
i=1

with featurisation Φ′ ∈ Rn′c×d can be written as

(f |Y)(X ′) ∼ N (Φ′A−1ΦT (B−1 + ΦA−1ΦT)−1Y,

Φ′A−1Φ′T − Φ′A−1ΦT (B−1 + ΦA−1ΦT)−1ΦA−1Φ′T). (2.19)

Again, evaluating this expression presents cost O ((nc)3) as opposed to O(d3) for the primal
form (2.10).

2.2.2 From features to kernels

When working with the dual form of the Gaussian linear model, we no longer encounter the
featurised design matrix Φ ∈ Rnc×d explicitly; it only shows up as part of the nc× nc matrix
ΦA−1ΦT := K, which we will refer to as the kernel matrix.

Taking c = 1 for simplicity of notation but without loss of generality, any feature map of
the form ϕ(·) : X → H defines a symmetric and positive definite kernel k : X × X → R

20 Linear models and Gaussian processes

as k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩ for xi, xj ∈ X . The converse is also true; any symmetric and
positive definite kernel k can be written as an inner product in some RKHSH (Aronszajn,
1950). We now note that the positive definite matrix A can be absorbed into the featurised
design matrices. It can simply be seen as a rotation and shear of the features. Thus, there
exists a kernel that generates our kernel matrix such that [K]i,j = k(xi, xj)∀ i, j = 1, .., N .
This fact will allow us to avoid working with features entirely in favour of their inner products.
In turn, this will allow us to use potentially infinite dimensional feature expansions, where it
may be impossible to explicitly compute the features. The substitution of input inner products
⟨xi, xj⟩with kernel function evaluations k(xi, xj) to obtain a non-linear (in the inputs) version
of existing algorithms is known as the kernel trick (Scholkopf and Smola, 2001). Additionally,
we will henceforth denote the matrix built by evaluating our kernel at all pairs in two arrays of
inputs X and X ′ as KXX′ . That is [KXX′]i,j = k(xi, x

′
j) : i = 1, 2, . . . , n, j = 1, 2, . . . , n′.

We refer to Hofmann et al. (2006) for a tutorial on RKHS.

To illustrate the kernel trick, we consider the random Fourier basis given in (2.4) and let
the number of features d go to infinity. We recover the squared exponential or Radial Basis
Function (RBF) kernel

k(xi, xj) = ⟨ϕs,r(xi), ϕs,r(xj)⟩

=
2

d

d∑
l=1

cos(sTl xi + rl) cos(s
T
l xj + rl) →

d=∞
exp

(−∥xi − xj∥2
ψ2

)
with sl ∼ N (0, ψ−2) and rl ∼ Uniform(0, 2π). (2.20)

Thus, when we use the RBF kernel we are leveraging an infinite dimensional feature expansion
without ever having to compute Fourier features explicitly. We will discuss random feature
approximations to kernels in more detail in Section 2.2.4.

We refer to the partial evaluation of the kernel k(x, ·) = ϕ(x)A−1ϕ(·)T : H → R as the
evaluation functional, which is an element of RKHS in its own right4. Its name comes from
the fact that for a kernel k, there is a unique k(x, ·) ∈ H which evaluates a function φ ∈ H at
the input x ∈ X through the inner product

φ(x) = ⟨φ, k(x, ·)⟩ =
d∑

i=1

αik(xi, x). (2.21)

4To see this note that elements of the RKHS can be written as
∑d

i=1 αik(xi, ·) and then choose all but 1 αi

to be 0.

2.2 The function space view 21

This is the reproducing property, which gives name to the RKHS. A consequence of this
property is that ⟨k(x, ·), k(x′, ·)⟩ = k(xi, xj).

−10 −8 −6 −4 −2 0 2 4

x

−2

−1

0

1

2

k
(x
,·)

kernel evaluation functionals

−10 −8 −6 −4 −2 0 2 4

x

−2

−1

0

1

f ?
(·)

maximum a posteriori function

Fig. 2.4 Left: RBF kernel (ψ = 0.5) evaluation functionals for each observation (black dots)
in a toy 1d dataset. Right: the posterior mean function is a linear combination of evaluation
functionals.

We can now identify the dual expression for the posterior mean function f⋆(·) =

ϕ(·)A−1ΦTα⋆, given in (2.17), as a linear combination of evaluation functionals

f⋆(·) =
n∑

i=1

α⋆,ik(·, xi) = K(·)Xα⋆, (2.22)

where for the last equality we write K(·)X for the stacked evaluation functionals at the
observed datapoints k(·, x1), . . . , k(·, xn), allowing us express functions inH as matrix vector
products. We can think of the evaluation functionals as a basis function expansion of the
inputs xi, i < n. The entries of the linear coefficient vector α⋆ are known as the representer
weights5. Figure 2.4 depicts a set of evaluation functionals for the RBF kernel (2.20) and
how the posterior mean function is constructed as a linear combination of these functions.
The local nature of the kernel leads to the evaluation functionals going to 0 far enough away
from the observations and this behaviour translates to the MAP function f⋆.

2.2.3 Bayesian reasoning about functions: Gaussian processes

We now leverage duality and the kernel trick to re-state the Bayesian model from Section 2.1
directly as a Gaussian process

Y = f(X) + E with f ∼ GP(µ, k) and E ∼ N (0, B−1). (2.23)

5This name is due to the representer theorem of Scholkopf and Smola (2001).

22 Linear models and Gaussian processes

The mean function µ(·) = E(f(·)) and a covariance kernel k(·, ·′) = cov(f(·), f(·′)) uniquely
identify the Gaussian process prior. Without loss of generality, we will assume µ(·) = 0

throughout the rest of this chapter.

The posterior distribution over functions is another Gaussian process f |Y ∼ GP(f⋆, k⋆)
with

f⋆(·) = K(·)X(K +B−1)−1Y

k⋆(·, ·′) = k(·, ·′)−K(·)X(K +B−1)−1KX(·′). (2.24)

Evaluating both of these expressions present a cost cubic in the number of observations and
output dimensions O ((nc)3).

2.2.4 Sampling from Gaussian processes & random features

We saw in (2.5) how to sample from the prior distribution over functions by first sampling
the weights from the prior w ∼ N (0, A−1) and taking an inner product with the feature
expansion ⟨ϕ(·), w⟩. This operation presents a linear cost in the number of features d, resulting
computationally intractable when dealing with an infinite dimensional feature space, such as
the one associated with the RBF kernel (2.20).

Matrix square root sampling Instead, from (2.6), we know that the distribution over prior
function samples evaluated at a pre-fixed set of points X ′ ∈ X n′ is N (0, KX′X′). Thus,
we can evaluate a prior sample at X ′ by transforming an n′ dimensional vector of standard
Gaussian noise with a matrix square root of the covariance. For instance, we may use the
Cholesky decomposition LLT = KX′X′ to compute

f(X ′) = Lu with u ∼ N (0, Icn′). (2.25)

Be that as it may, this approach requires knowing the points at which we want to evaluate our
prior functions a priori and presents a cost cubic in the number of points we want to evaluate
at O ((n′c)3). Furthermore, if X ′ contains repeated points or pairs of points for which the
kernel evaluates to very small values, KX′X′ may be singular or close to singular, resulting in
numerical instability when computing its square root.

2.2 The function space view 23

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

−0.5

0.0

0.5

1.0

φ
s
(0

)φ
s
(·)
T

random Fourier feature convergence

d=10

d=100

d=1000

d=10000

k(0, ·)

Fig. 2.5 Convergence of random Fourier feature basis (given in (2.4)) to the RBF kernel’s
evaluation functional k(0, ·) using the estimator in (2.26) as the number of random features d
increases.

Random feature prior sampling Fortunately, we may approximate prior function samples
to high accuracy using random features (Rahimi and Recht, 2007; Terenin, 2022; Wilson
et al., 2020). In particular, we may use some feature expansion ϕs : X → Rc×d parametrised
by a random variable s with law Ω to construct an unbiased estimator of a kernel function as

k(x, x′) = Es∼Ω ϕs(x)ϕs(x
′)T . (2.26)

We can use these random features to construct a Monte Carlo estimator of a prior function
sample f ∼ GP(µ, k) as

f(·) ≈ f̃(·) = ϕs(·)w with w ∼ N (0, Id) and s ∼ Ω (2.27)

at O(d) cost, where d is the dimensionality of the feature expansion, often referred to as the
number of random features. This parameter controls the error in the approximation, which
goes to 0 as d goes to infinity. We have approximately reversed the kernel trick, recovering
a finite dimensional linear model. We may now evaluate our prior function sample at any
x ∈ X by simply evaluating the random features at x and taking an inner product with the
random weights. Following Wilson et al. (2020), both the next section and Chapter 4 will
efficiently draw approximate posterior function samples by replacing instances of f with f̃ .

Random Fourier features (2.4) can be used to approximate any stationary kernel—that is,
those that can be written as k(x, x′) = k′(x− x′) for k′ : X → R—by taking the distribution
from which the cosine frequencies are sampled Ω to be the normalised spectral measure
of the kernel k. As we saw in (2.20), the RBF kernel is recovered when Ω is chosen to be
Gaussian. We illustrate the convergence of this estimator in Figure 2.5. More sophisticated
Fourier feature sampling strategies have been developed to reduce the variance of the above

24 Linear models and Gaussian processes

estimators (Reid et al., 2023; Yu et al., 2016). Some non-stationary kernels also admit random
features. For instance, there exist random features that describe graphs Reid et al. (2024),
ones that describe sets of binary attributes (Tripp et al., 2023), and ones that approximate the
attention mechanism (Peng et al., 2021).

−10 −8 −6 −4 −2 0 2 4

x

−2

−1

0

1

2

(f
|Y

)(
x

)

variance starvation

exact GP Fourier features d=500

Fig. 2.6 Illustration of variance starvation when using random Fourier features to approximate
a posterior GP. The shaded region represents a one standard deviation credible interval. Our
n = 5000 datapoints are placed close to each other and are largely redundant. This consumes
the degrees of freedom of our d = 500 random features, leading to arbitrary extrapolation
and reduced uncertainty away from the training data. This doesn’t happen with our exact GP,
which effectively uses an infinite number of basis functions.

Variance Starvation Random Fourier features can also be used for approximate posterior
inference at costO(d3). For this, we simply approximate the infinite feature expansion with d
random features and then proceed with linear model inference as in (2.9). However, this is not
advisable, as the degrees of freedom needed to represent posterior functions grow with the
number of observations and d≫ n features are often needed to obtain a good approximation.
This issue is known as variance starvation. It is intimately related to Gibbs ringing and is
discussed in detail in 2.4.2 of Terenin (2022). We illustrate variance starvation in Figure 2.6.

2.3 Pathwise view: working with the posterior random
function

We have so far characterized inference in the Gaussian linear model in terms of the posterior
distribution over its weights and the posterior Gaussian process. These require dealing with
the posterior covariance matrices over weights and observations, respectively. Even storing

2.3 The Pathwise view 25

these in memory can be computationally intractable when the number of parameters or
observations is large, which is the setting of interest of this thesis. This section introduces
pathwise conditioning (Wilson et al., 2020, 2021), a formulation of inference that deals only
with posterior weight or function samples, as opposed to complete posterior distributions. In
turn, this will allow us to deal with vectors of dimension d or nc, as opposed to covariance
matrices, which are quadratic in those quantities. We will build upon the pathwise view of
inference to design scalable approximate inference algorithms in Chapter 4.

For the Bayesian model in (2.23), one can write the posterior random function directly as

(f |Y)(·) = f(·) +K(·)X(K +B−1)−1(Y − f(X)− E) with

E ∼ N (0, B−1) and f ∼ GP(µ, k). (2.28)

It is straight forward to check that the moments of (f |Y) match those of the posterior GP
given in (2.24). Thus, evaluating this expression for a particular prior function sample f and
noise sample E yields a posterior function sample. Although we retain the cubic cost of a
linear solve against (K +B−1), this only needs to be done once. Then we are free to evaluate
the posterior sample at any set of test points X ′ at only linear cost in nc. Additionally, we
avoid the need to store the covariance matrix explicitly.

To gain a better understanding of the pathwise form of the posterior, we can rewrite it as a
sum of three terms

(f |Y)(·) = f⋆(·)︸︷︷︸
posterior mean

+ f(·)︸︷︷︸
prior sample

−K(·)X(K +B−1)−1(f(X) + E)︸ ︷︷ ︸
uncertainty reduction term

(2.29)

with E ∼ N (0, B−1) and f ∼ GP(0, k),

which are illustrated in Figure 2.7. The first component is the posterior mean function
f⋆(·) = K(·)Xα⋆, which we analysed in Section 2.2.2. Its job is ensuring our posterior function
samples pass near the datapoints. To it, we add a prior function sample, whose value will
vary across input space in a data-independent way. The uncertainty reduction term cancels
the effect of the prior function sample near the datapoints.6 It ensures the posterior function
sample takes values close to the posterior mean, and thus close to our observed targets, near
the training data. Just like the posterior, the uncertainty reduction term takes the form of a
linear combination of evaluation functionals K(·)Xαu, with αu = (K +B−1)−1(f(X) + E).
Consequently, far away from the observed data, the posterior function samples revert to the
prior function samples, inflating the uncertainty in the posterior to match the prior uncertainty.

6We say that two points xi and xj are “near” when k(xi, xj) is small.

26 Linear models and Gaussian processes

−10 −5 0 5

x

−3

−2

−1

0

1

2

f

posterior sample f |Y

−10 −5 0 5

x

uncertainty reduction

prior sample f

correction −K(·),Xαu

−10 −5 0 5

x

posterior mean f?

Fig. 2.7 Illustration of the pathwise construction of the posterior function sample, shown on
the left together with a single standard deviation posterior credible region contour. The middle
plot shows a prior function sample together with its corresponding uncertainty reduction
term, which cancels the prior sample near the training data. The right side plot shows the GP
posterior mean function, which is added to the prior sample and uncertainty reduction term
to build the posterior sample.

The pathwise formulation first appeared in the field of geostatistics, where it was referred
to as “Matheron’s rule” (Journel and Huĳbregts, 1978). It has been used to perform inferences
in astrophysics models (Hoffman, 2009; Hoffman and Ribak, 1991) and Gaussian Markov
random fields (Papandreou and Yuille, 2010). More recently, it was re-discovered and
popularised among the Gaussian process community by Wilson et al. (2020), to whom the
form (2.28) is due.

Remark Are GP function samples in the RKHS?
The pathwise formulation of GP posterior samples (2.29) allows us to answer this
question; we must simply check the norm of each term in the RKHS. For the posterior
mean, we have

∥f⋆∥2H =
〈
K(·)Xα⋆, K(·)Xα⋆

〉
= αT

⋆Kα⋆

which will be a finite number as long as the number of observations times output
dimensions nc is finite. We can use the same argument for the uncertainty reduction
term K(·)XαU . However, this is not necessarily true for the prior sample. For infinite
dimensional feature expansions, it can not be written as a linear combination of a
finite number of basis functions. Its RKHS norm may be infinite ∥f∥H =∞. Thus,
neither the GP prior or posterior functions live in the RKHS associated with the GP’s

2.3 The Pathwise view 27

covariance kernel k. However, the difference between the GP prior and posterior
functions always lives in the RKHS f − (f |Y) ∈ H.

2.3.1 Efficiently sampling from GP posteriors with random features

The practical utility of the pathwise formulation (2.28) rests on our ability to efficiently
evaluate a prior function sample. In the infinite-dimensional feature case, this can present a
number of challenges, discussed in Section 2.2.4. However, following Wilson et al. (2020),
we can efficiently approximate the pathwise form of posterior functions using a random
feature approximation of the prior

(f |Y)(·) ≈ f̃(·) +K(·)X(K +B−1)−1(Y − f̃(X)− E) with E ∼ N (0, B−1)

and f̃(·) = ϕs(·)w w ∼ N (0, Id) s ∼ Ω. (2.30)

Importantly, random features are only used to approximate the prior function sample.
Conditioning on the data is done via the exact linear solve, at cubic cost in the number
of observations and output dimensions, avoiding variance starvation. Pathwise sampling
combined with random features provides a very powerful toolkit for decision making under
uncertainty which we will use throughout this thesis.

2.3.2 Duality between pathwise conditioning and sample-then-optimise

We now present the primal form of the pathwise formulation of posterior samples for finite
dimensional feature spaces and show that it is equivalent to the “sample-then-optimise”
posterior sampling strategy for Bayesian linear models (de G. Matthews et al., 2017)7. For
this, we start from the pathwise expression of the posterior over weights

w|Y = w0 + A−1ΦT (B−1 +K)−1(E − Φw0) (2.31)

with E ∼ N (0, B−1) and w0 ∼ N (0, A−1),

which matches (2.28) but we have removed the product with the feature expansion that maps
weight samples to function samples, that is f(·) = ϕ(·)w. Despite returning a d dimensional
weight sample, (2.31) retains a linear solve against (B−1 +K) at cost O ((nc)3).

7Although, I believe this observation to first have been made in Antorán et al. (2023), which forms the basis
of Chapter 6, it is presented here as it constitutes a useful building block for the rest of the thesis.

28 Linear models and Gaussian processes

Derivation Duality of pathwise conditioning and sample-then-optimise
We recall that H = A+ΦTBΦ and then apply the following series of matrix identities
to (2.31)

w|Y = w0 + A−1ΦT (B−1 + ΦA−1ΦT)−1(E + Y − Φw0) (2.32)

= w0 + A−1ΦTB(I + ΦA−1ΦTB)−1(E + Y − Φw0) (2.33)

= w0 + A−1(I + ΦTBΦA−1)−1ΦTB(E + Y − Φw0) (2.34)

= w0 +H−1ΦTB(E − Φw0) (2.35)

= H−1((H − ΦTBΦ)w0 + ΦTB(E + Y)) (2.36)

= H−1(ΦTB(E + Y) + Aw0) (2.37)

with E ∼ N (0, B−1) and w0 ∼ N (0, A−1).

Equation (2.37) recovers an expression containing a linear solve against H , with cost
O (d3). By visual inspection, we can identify that (2.37) matches the form of the maximum a
posteriori weight setting for weight-space model (2.9), but where our targets are perturbed
by adding E and our prior mean is w0. Thus, (2.37) represents the solution to a quadratic
problem analogous to the linear regression loss

w|Y = min
w∈Rd

1

2
∥Y + E − Φw∥2B +

1

2
∥w − w0∥2A (2.38)

with E ∼ N (0, B−1) and w0 ∼ N (0, A−1).

This expression is known in the literature as the “sample-then-optimise” objective.
de G. Matthews et al. (2017) use it in the noiseless case (B−1 = 0) to study the connection
between Bayesian inference and optimisation in overparametrised linear models. Osband et al.
(2018) and Pearce et al. (2020) apply variants of the objective to draw approximate posterior
samples from the posterior distribution over the weights of a neural network, although this
approximation may be very crude.

Leveraging the pathwise or sample-then-optimise formulations for posterior sampling at
scale (large d and large nc) still requires solving large linear systems, which remains an open
problem. Standard methods, such as conjugate gradients and matrix sketching are discussed
in Chapter 3. In Chapter 4 we instead propose to use stochastic gradient descent for pathwise
inference.

2.3 The Pathwise view 29

2.3.3 Demonstration: pathwise conditioning for Bayesian optimisation

We conclude by reviewing how we may use pathwise inference for efficient decision making.
In particular, consider the problem of finding the input which maximises some unknown
function g : X → R in the least number of function evaluations. To this end, we place a GP
prior over the function and choose new points at which to evaluate g as

xnew = argmax
x′∈X

∫
U(x′, f) dPf |Y , (2.39)

where Pf |Y is the measure of the posterior GP and U : X × RX → R is a utility function
(Hansson, 2011). The latter is chosen to trade-off exploration and exploitation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x

−2

−1

0

1

2

g
(x

)

parallel Thompson sampling

Target function g

Posterior samples f |Y
Observations Y

Nearby locations

Top nearby locations

Utility maximisers

Optimisation trace

Fig. 2.8 Illustration of parallel Thompson sampling procedure with multistart gradient-based
optimisation of posterior function samples. Our GP is initialised with 7 observations from g
corresponding to inputs chosen uniformly at random from [0, 1].

For our example, we will use Thompson sampling (Thompson, 1933), where U(x, f) =
1(f(x) = maxx′∈X f(x′))where 1 is the indicator function. At each step, we approximate the
integral in (2.39) with a single Monte Carlo (MC) sample. That is, we draw a single posterior
function sample and choose the input that maximises it xnew = argmaxx′∈X (f |Y)(·). We
then evaluate g(xnew) and add it to the dataset we use to perform posterior inference in our
GP.

In Figure 2.8, we demonstrate a single step of parallel Thompson sampling (Hernández-
Lobato et al., 2017) in a 1d toy problem with X = [0, 1] and where g ∼ GP(0, k) with k
being the Matérn 3/2 kernel. The parallel variant differs from the above explained algorithm
in that at each step we draw multiple posterior functions which we maximise to add multiple
observations to our dataset at each step. We use 3 posterior functions, depicted as dashed
blue lines. We add homoscedastic Gaussian noise of precision

√
1000 to target function

evaluations. We maximise each posterior function by first evaluating it at 7 inputs chosen
uniformly at random from [0, 1]. These are labelled “nearby locations” in the legend. We

30 Linear models and Gaussian processes

keep the inputs corresponding to the top 3 posterior function evaluations, labelled “top nearby
locations”, and use the Adam optimiser to improve them until corresponding local optima of
the posterior functions are found. These are labelled “utility maximisers”. We evaluate the
target function at the utility maximisers and add the corresponding input-observation pairs to
our dataset.

The pathwise formulation of posterior functions is critical to make this algorithm
computationally efficient. It allows us to solve a single linear system to obtain each posterior
function per Thompson step. After this, we may evaluate each posterior function (f |Y)

an arbitrary number of times for its maximisation at only linear cost in the number of
observations. This contrasts with the cubic cost per evaluation that we would have had to
incur had we used the more-traditional definition of a posterior GP in terms of its first and
second moments (2.24). The remaining bottleneck is solving the linear system to update the
posterior functions when the number of observations n becomes large. This challenge will be
dealt with in Chapter 4.

2.4 Model selection: the marginal likelihood, or evidence,
and empirical Bayes

So far we have seen how to perform Bayesian inference over model parameters, how to
transform the posterior distribution over parameters into predictions and how these predictions
can be used to make decisions under uncertainty. All of these techniques rest on our prior
modelling choices. In (2.2), we assumed that our targets are generated as a noisy linear
combination of basis functions ϕ. Furthermore, we assume that the weights of this linear
combination were sampled from a zero-centred Gaussian with precision A and that the
additive observation noise is also Gaussian with precision B. We refer to these quantities (i.e.
ϕ,A,B), over which we do not perform Bayesian inference, as hyperparameters and denote
them by θ ∈ Θ. We henceforth refer to the choice of hyperparameters and the choice of model
interchangeably8. The quality of the inferences that we do make rests on the appropriateness
of our hyperparameter choices (Masegosa, 2020). Although the Bayesian framework forces
us to make our modelling choices explicit, it does not tell us which choices to make.

Intuitively, we should choose our model such that it incorporates all our knowledge about
the generative process of the data. As we saw in Section 2.1.1, the more restrictive the model

8Any model can be written in terms of a broader model class Θ which is indexed by a set of hyperparameters
θ ∈ Θ

2.4 Model selection 31

class, the less degrees of freedom will be left to be pinned down by the data, and the more
confident we can be in our inferences. However, if our strong prior assumptions are wrong,
we risk our inferences being biased and our predictions not reflecting real world outcomes.

In this section, we will depart slightly from the Bayesian framework to introduce model
selection tools that efficiently navigates the bias-variance trade off. To this end, consider the
integral of the likelihood against the prior, which featured as the denominator in Bayes rule
(2.8). For the weight space linear model, this is

log p(Y ; ϕ,B,A) = logEw∼Π[p(Y |w; ϕ,B)] = log

∫
w

p(Y |w; ϕ,B)π(w;A) dw (2.40)

which is known as the log marginal likelihood, or the model evidence. We use the semicolon
; to separate model parameters from hyperparameters on which the likelihood and the prior
depend but over which we do not place a prior or perform inference. We have written out
these hyperparameters in (2.40) for clarity, but we henceforth group them into the tuple
θ = (ϕ,A,B) for brevity. The evidence measures the degree of overlap between the prior
and the likelihood, thus rewarding a choice of prior that concentrates its mass on parameter
settings that fit the training data well. Too broad a prior will spread its probability mass
across many models, only some of which will fit the data, decreasing the evidence. In this
way, the model evidence differs from the training loss; the latter can always be improved by
using a more flexible model. See chapter 28 of MacKay (2003) for additional discussion and
illustrative examples.

Remark Automatic Occam’s razor
In the literature, the model evidence is said to automatically incorporate “Occam’s
razor” since it implicitly favours “simpler” priors (Gull, 1988; Jeffreys, 1939; Mackay,
1992a; Rasmussen and Ghahramani, 2000). In this context, the notion of complexity
refers to the degree of diversity of the hypotheses supported by the prior. For instance,
we would say that the class of affine models is simpler than the class of third order
polynomials, since the latter contains the former and many more functions. Intuitively,
there are many more complex functions than simple ones.
It is important to note that “simple” does not mean more linear, continuous, or having a
lower Lipschitz constant. For instance, a prior over third degree polynomials, where all
of the coefficients of order greater than 0 are set to a fixed quantity—only the bias is
left to be inferred—would be considered simpler and, thus preferred by the evidence, to
a prior over affine models, assuming both families of functions fit the data equally well.

32 Linear models and Gaussian processes

A complementary point of view of (2.40) is that it is the log-density of the training data
when our model is set to the prior. If our prior is able to predict our training observations,
then our posterior will not differ much from our prior, yielding credence to it also being
able to predict yet-unseen datapoints. This intuition is formalised in the framework of
PAC-Bayes bounds (Germain et al., 2016; Masegosa, 2020). Also intimately related to
the model evidence are the framework of minimum description length (Grünwald, 2004)
and other model selection criteria such as Akaike information criterion (Akaike, 1970) and
Bayesian information criterion (Neath and Cavanaugh, 2012).

2.4.1 Comparing two models

The marginal likelihood of of some model M1 differs from the regular likelihood in that the
model parameters have been marginalised out. In this sense, it can be seen as a quantity at
the second level of inference. The first level is inference over parameters, the second is over
model class. We could apply this idea again to construct a third level likelihood to score
members of a family of meta-model classes and so on. Thus, if we want to decide which
model is best among a pair of models M1,M2 we can compute the ratio of their posterior
probabilities at the second level of inference as

p(M1|Y)

p(M2|Y)
=
p(Y |M1)p(M1)

p(Y |M2)p(M2)
. (2.41)

Often the priors are chosen to be uniform over models p(M1) = p(M2) and the posterior
probability ratio matches the likelihood ratio p(Y |M1)

p(Y |M2)
. Likelihood ratios provide a Bayesian

alternative to hypothesis tests. See chapter 37 of MacKay (2003) for a detailed discussion.

Remark On the dangers of model comparison with the evidence
A criticism of marginal likelihood-based model comparison is its sensitivity to the
choice of prior (Kass and Raftery, 1995). This is especially concerning when placing
(seemingly) uninformative priors over our models’ parameters. Intuitively, as our
prior becomes fully uninformative (e.g. an improper uniform distribution over the
parameters), its marginal likelihood goes to 0. In the almost-fully-uninformative regime,
small changes in the prior hyperparameters, which have very little effect on posterior
inferences, can have large effects on the model evidence. In response, a number of
“sensitivity analysis” methods have been introduced to characterise the sensitivity of
the evidence to the prior hyperparameters Sinharay and Stern (2002).

2.4 Model selection 33

One could argue that if we are fully uncertain about the parameters of a model, and the
model’s predictions depend strongly on those parameters, we should be happy to throw
the model in the trash. Yet, this is roughly the case with neural networks, and here we
are. A different, perhaps more Bayesian view is that we should not use the evidence to
perform model selection at all. Instead of discarding one model with less evidence than
another, we should expand out model class and consider both models in our Bayesian
model average. If we were willing to consider both models for comparison in the first
place, then we must have assigned some credibility to both models a priori, and our
inferences should reflect this. This is roughly the view expressed by Adrew Gelman in
a blog post addressing MacKay (2003) chapter on Bayesian model comparison.a

astatmodeling.stat.columbia.edu/2011/12/04/david-mackay-and-occams-razor

2.4.2 Hyperparameter optimisation

We now extend the notion of model comparison to a continuous model space. For our linear
model, the fully Bayesian approach would introduce a prior over θ = (ϕ,A,B) and then
perform inference. Unfortunately, this is rarely done. Performing inference at the higher
levels of a Bayesian hierarchical model is often too computationally expensive to be practical
outside of toy settings. As an alternative, when the number of hyperparameters is small
relative to the number over observations, the posterior distribution over hyperparameters may
be well approximated by a point mass at its mode p(θ|Y) ≈ δ(θ − θ⋆) with

θ⋆ = argmax
θ

p(Y ; θ). (2.42)

In this setting, the likelihood over hyperparameters dominates the prior, and thus the latter
is ignored. Here, the model evidence can provide us with a learning objective to select our
hyperparameters. The possibility of performing gradient-based optimisation of log p(Y ; θ)

makes this approach an attractive alternative to traditional cross validation. We must be
cautious when using this technique when the dataset is small or our hyperparameter space is
large however, as the point-mass-posterior assumption can break, leaving us susceptible to
overfitting.

https://statmodeling.stat.columbia.edu/2011/12/04/david-mackay-and-occams-razor/

34 Linear models and Gaussian processes

2.4.3 The evidence of the linear model

For the Gaussian linear model, the model evidence can be computed in closed form

log p(Y ; ϕ,B,A) = log

∫
w

√
detB
(2π)n

exp

(
−1

2
∥Y − Φw∥2B

)
dN (0, A−1)

= −n
2
log(2π)− 1

2
log det(ΦA−1ΦT +B−1)−1 − 1

2
∥Y ∥2(ΦA−1ΦT+B−1)−1 (2.43)

which amounts to the log density of the targets under a multivariate Gaussian with mean 0 and
covariance ΦA−1ΦT +B−1. The equivalent kernelised form, which can be used to optimise
kernel hyperparameters, like the lengthscale, is obtained by again substituting K = ΦA−1ΦT .
The cost of evaluating (2.43) is cubic in nc because of both the linear solve against K +B−1,
and because of the appearance of the same matrix’s log-determinant. The former appeared in
the expression for the posterior distribution (e.g.(2.24)) but the latter presents a new challenge,
which we will also tackle in the later chapters of this thesis.

Fig. 2.9 The leftmost plot displays the evidence of a d = 500 random Fourier basis function
linear model as a function of the lengthscale ψ parameter for the toy 1d dataset of Figure 2.3.
The evidence of the Affine model, and the ψ = 1 and ψ = 0.3 Fourier models are indicated
as dashed horizontal lines. The posterior mean function, along with 2 standard deviation
errorbars are displayed for each of these models in the three plots on the right. In these, each
model’s evidence is provided in parenthesis in the plot title. Other hyperparameters match
those of Figure 2.3.

2.4 Model selection 35

Using the Woodbury matrix identity and the matrix determinant lemma we recover the
primal form of (2.43), with cost cubic in the number of parameters d

−n
2
log(2π) +

1

2
log detB − 1

2
∥Y − Φw⋆∥2B︸ ︷︷ ︸

data fit

−1

2
∥w⋆∥2A︸ ︷︷ ︸

parameter norm

−1

2
log det

H + A

A︸ ︷︷ ︸
posterior contraction

. (2.44)

This expression more intuitively captures the quality of fit vs simplicity trade-off discussed
at the beginning of the section. There is a data fit term that rewards the posterior mean
for passing near the targets. There is a prior fit term that ensures the norm of the posterior
mean weights are small in the metric given by the prior precision. Finally, the determinant
ratio term measures the contraction of the posterior covariance’s volume relative to the prior
covariance. Up to a constant factor, this quantity matches the information that was gained by
our model by seeing the data, in nats. This captures the intuition that the marginal likelihood
rewards models that are able to explain the targets well a priori, and thus do not learn much
from conditioning on the targets.

Figure 2.9 compares the model evidence for the Affine and random Fourier models
introduced in Section 2.1.1 and the dataset from Figure 2.3. The targets are roughly arranged
in a straight line, making the affine model a good fit. Although different lengthscale Fourier
models can also fit this data, their additional flexibility penalises them; there is no lengthscale
setting for which the Fourier model’s evidence surpasses the Affine model’s. The leftmost
plot shows the evidence as a function of the lengthscale. Too small lengthscale values lead to
too flexible models that overfit. This is the case for the model in the rightmost plot. Too large
lengthscale values would under fit. The optima is somewhere in the middle.

Remark All linear models are wrong, but the evidence can tell us which are useful
“All models are wrong, but some are useful” – George Box
We almost never expect the data we are modelling to have been generated via a noisy
linear combination of basis functions. On the other hand, we usually judge models on
whether their predictions about quantities we care about match empirical outcomes to a
desirable tolerance. It is well known that the Bayesian posterior does not provide optimal
predictions under model misspecification (Draper and Krnjajic, 2010; Masegosa, 2020).
It may seem surprising then, that the linear model’s evidence can be shown, using
the PAC-Bayes framework, to provide guarantees about generalisation performance
(Germain et al., 2016), informing us about whether our models are “useful”.

36 Linear models and Gaussian processes

It is worth noting that PAC-Bayes guarantees no longer hold if we use the model evidence
for hyperparameter selection. If we select among a discrete set off hyperparameters,
we could obtain relaxed guarantees via a union bound, but this would not work for a
continuous hyperparameter space.

2.4.4 Effective dimension

We conclude with a discussion of the effective dimension, a quantity intimately related to
the evidence of the Gaussian linear model (Mackay, 1992a; Maddox et al., 2020; Wipf and
Nagarajan, 2007). We will make heavy use this quantity to derive efficient algorithms for
hyperparameter learning in Chapter 6. Let λ1, λ2, . . . , λd denote the sorted (in descending
order) eigenvalues of the weight space loss curvature M = ΦTBΦ. For a regulariser of the
form A = aI , the effective dimension γ is given by

γ =
d∑

i=1

λi
λi + a

. (2.45)

When λi ≫ a the term inside of the sum will roughly be of value 1. When λi ≪ a it will be
roughly 0. Thus, the effective dimension γ ∈ [0,min(nc, d)] counts the number of directions
in parameter space which are determined by the data.

Following Mackay (1992a), we can construct a more general definition for the effective
dimension that doesn’t require an isotropic regulariser, by taking it to be the trace of the
matrix that maps the maximum likelihood parameter vector H−1Y into the maximum a
posteriori weights (ΦTBΦ + A)−1Y . That is,

γ := Tr
(
ΦTBΦH−1

)
= d− Tr

(
AH−1

)
= Tr

(
K(K +B−1)−1

)
, (2.46)

where we have provided an additional two forms of the quantity, each providing for a
complementary interpretation. Using the cyclical property of the trace we can see that the
leftmost form is equivalent to Tr

(
BΦH−1ΦT

)
. That is, the sum of the ratios of the marginal

posterior predictive variance to noise variance at the observed inputs. Since each observation
reduces the marginal uncertainty in the posterior over functions at that point to at least the
corresponding diagonal entry of B, each diagonal entry of BΦH−1ΦT must be smaller or
equal to 1. The degree to which the predictive variance is smaller than the observation
noise depends on how well the datapoints explain each other. If they explain each other a
lot, i.e. many inputs map to nearby points in the RKHS, the effective dimension decreases.

2.5 Limitations of conjugate Gaussian-linear Bayesian reasoning 37

The middle form of the effective dimension in (2.46) provides us with the same intuition,
but through the ratio of the prior and posterior covariance over the weights. The rightmost
form is the trace of the matrix that maps the representer weights obtained by fitting the data
without regularisation K−1Y onto the representer weights corresponding to the posterior
mean function (K +B−1)−1Y .

Derivation Relating the forms of the effective dimension
We first relate the first and second equalities in (2.46).

Tr
(
H−1ΦTBΦ

)
= Tr

(
(I + A−1ΦTBΦ)−1A−1ΦTBΦ

)
= Tr

(
I − (I + A−1ΦTBΦ)−1

)
= d− Tr

(
AH−1

)
.

We now connect the first and third equalities

Tr
(
H−1ΦTBΦ

)
= Tr

(
B(K −K(K +B−1)−1K)

)
= Tr

(
BK(I − (KB + I)−1KB)

)
= Tr

(
BK(KB + I)−1

)
= Tr

(
K(K +B−1)−1

)
.

2.5 Limitations of conjugate Gaussian-linear Bayesian rea-
soning

We have seen how the linear model with a Gaussian prior over its weights, or Gaussian
process, acts as a conjugate prior for the likelihood induced by Gaussian observation noise,
providing us with a closed form expression for the Bayesian posterior (2.9), and model
evidence (2.43), both Gaussian forms. Alas, conjugacy is quickly lost when constructing
more sophisticated Bayesian models that more accurately describe real-world systems of
interest. It is lost if we define a non-Gaussian prior over the weights, for instance heavy tailed
priors used to model outlier events (West, 2018) or priors designed to favour sparse posteriors,
like the horseshoe (Carvalho et al., 2009). It is lost if we use non-Gaussian likelihoods, like
the categorical used in classification (Bishop and Tipping, 2003), or the Poisson used to
count neural spikes (Heeger, 2000) and X-ray quanta (Elbakri and Fessler, 2003) in computed
tomography. Conjugacy is also lost if our model presents a non-linear relationship between
its parameters and outputs, for instance due to the use of a linking function that constrains the
output range.

38 Linear models and Gaussian processes

Of special interest for this thesis is the use of the neural network function class. These
models can be thought of as basis function linear models in which the basis function
parameters are treated as model parameters, instead of hyperparameters, and thus inferred
from the data. Neural networks are used to model processes where we have little intuition of
what the data-generating process might look like, and thus we can not manually choose a
set of basis functions. To make up for this lack of prior knowledge, very large and flexible
models are paired with vast datasets.

This leads to our second major setback. The closed form expressions of linear model
inference involve cubic operations: linear system solves and log-determinant computations,
both of which present cubic time complexity. We may choose to either pay this cost in terms
of the number of observations times output dimensionsO ((nc)3) or model parametersO (d3)

(when the feature space is finite-dimensional). This provides little consolation in the modern
setting where it is common to work with large datasets. For instance, the Imagenet dataset
(Russakovsky et al., 2015), which is a benchmark three orders of magnitude smaller than
the datasets used to train the largest models in deployment (Dosovitskiy et al., 2021), has
nc ≈ 109. The ResNet-50 neural network (He et al., 2016a), another common benchmark
model that is around 10 times smaller than the state of the art models, presents a parameter
space with d ≈ 25 · 106. One may think that linear models could scaled up to problems
of modern interest via efficient numerical linear algebra routines implemented on GPU
accelerators. However, at these scales, even storing covariance matrices, whose number of
entries are quadratic, becomes intractable due to the O ((nc)2) or O (d2) memory cost. For
instance storing a covariance matrix for a parameter space the size of ResNet-50’s would
require around 2500 Terabytes.

The following chapter reviews approximations to Bayesian inference which may be
tractably computed when faced with non-conjugacy or large covariance matrices. Unfortu-
nately, we will see how these approximations tend to break down when faced with the neural
network model class and real-world sized datasets. The rest of the thesis aims to fill this gap
by introducing methods for very large scale Bayesian reasoning with linear models and neural
networks.

Chapter 3

Approximate inference methods
for linear models and neural networks

The need for approximate inference arises in the linear-Gaussian model when the problem
setting becomes too large, making closed form expressions too computationally expensive
to evaluate. It also arises when working with non-conjugate Bayesian models. This thesis
deals with both settings, 1) Bayesian inference in Gaussian linear models with millions
of parameters and observations, and 2) Bayesian inference in neural networks. On our
way to tackling these problems, this chapter reviews approximate inference methods for
linear models and Gaussian processes, and how these can be extended to neural networks.
Section 3.1 covers Variational Inference (VI) in both its parameter-space and inducing point
flavours. Section 3.2 covers the use of Conjugate Gradient (CG) methods. Finally, Section
3.3 introduces the Laplace approximation as well as its linearised variant for neural networks.
Through different paths, all of these methods provide both an approximation to the posterior
as well as the model evidence. We do not delve into Markov Chain Monte Carlo (MCMC)
techniques, but instead refer refer to Andrieu et al. (2003) for a general overview and to Neal
(1992) for a discussion of their application to neural networks.

40 Approximate inference

3.1 Approximating the posterior distribution:
Variational inference

We commence from Bayes rule (2.8). Making the set of hyperparameters θ ∈ Θ explicit in
the notation, we take logs on both sides of the equality, and re-arrange it as

log p(Y ; θ) = log p(Y |w; θ) + log π(w; θ)− log π(w|Y ; θ), (3.1)

to evaluate the evidence. This expression holds for any value of w, allowing us to take
expectations on both sides of the equality with respect to any distribution over w. We thus
introduce the variational distribution Q, with density q(w) such that dQ = q(w)dν, and use
it to derive the lower bound

log p(Y ; θ) = Ew∼Q [log p(Y |w; θ) + log π(w; θ)− log π(w|Y ; θ)] (3.2)

≥ Ew∼Q [log p(Y |w; θ) + log π(w; θ)] +H (Q) :=M(Q, θ). (3.3)

We refer to M(Q, θ) as the Evidence Lower BOund (ELBO) and H is the differential
entropy. The inequality is true because the cross entropy can be decomposed into a sum
of an entropy and the KL divergence between the distributions being compared, and the
latter term is greater or equal to 0. That is, adopting the density-based notation for the
KL divergence KL(q(w) ∥ π(w|Y)) =

∫
log Q

Πw|Y
dQ, we have Ew∼Q [− log π(w|Y ; θ)] =

H (Q) + KL(q(w) ∥ π(w|Y)) ≥ H (Q). Thus, when KL(q(w) ∥ π(w|Y)) = 0 and thus
the variational posterior matches the Bayesian posterior q(w) = π(w|Y), (3.3) becomes an
equality, and the ELBO matches the evidence log p(Y ; θ) =M(Q, θ).

The ELBO allows us to transform the problem of Bayesian inference into one of
variational optimisation. By maximising M with respect to our variational distribution
Q ∈ Q, we approximate the Bayesian posterior distribution in the sense of minimising
KL(q(w) ∥ π(w|Y)) (Hinton and van Camp, 1993). We may do this even if our search space,
the variational family Q, does not contain the true posterior Πw|Y /∈ Q. This allows us to
tractably approximate the Bayesian posterior even when this distribution is analytically or
computationally intractable (Attias, 1999). Evaluating the ELBO does not require conjugacy,
only being able to evaluate the log-likelihood function and the prior log-density. We
demonstrate this for a 1d toy classification example, where the likelihood is Bernoulli, in
Figure 3.1. The expectation in (3.3) is often unbiasedly estimated via Monte Carlo. Thus, the
requirements on the variational distribution are that we can sample from it and that we can

3.1 Variational Inference 41

−5.0 −2.5 0.0 2.5 5.0

w0 (bias)

−2

0

2

4

6

8

w
1

(s
lo

p
e)

distribution contours

HMC samples

Q

−4 −2 0 2 4

x

0.0

0.2

0.4

0.6

0.8

1.0

y

predictive samples

observations

sig(fq)

EQ sig(fq)

sig(fHMC)

EHMC sig(f)−8

−6

−4

−2

L
o
ssL

(w
)

Fig. 3.1 Classification example with our affine linear model, where we place a Gaussian prior
over the weights, we use a sigmoid linking function and a Bernoulli likelihood. The left
plot shows how the loss landscape, which up to a constant matches the log posterior density,
presents a non quadratic form; the top of the distribution is wider than the bottom. We
approximate this posterior with a Gaussian variational distribution Q and with Hamiltonian
Monte Carlo (HMC). In this setting, only the latter method provides an unbiased approximation.
Despite this, the plot on the right shows how both approximations lead to similar predictions.
However, the variational approximation places more mass on low slope functions, resulting
in slight underestimation of the steepness of the sigmoid.

compute its entropy. Relaxing the latter constraint is an active area of research (Titsias and
Ruiz, 2019; Uppal et al., 2023).

Remark Protection against overfitting
It is often said that variational parameters are protected against overfitting. This is
because optimising the ELBO with respect to these parameters always brings the
variational distribution closer to the true posterior. Thus, choosing a more flexible
variational family that leads to a tighter ELBO should always lead to a better posterior
approximation. Unfortunately, the same is not true about the model hyperparameters,
whose optimisation with the ELBO can lead to overfitting (see, for instance, Ober et al.
(2021)).

The ELBO can also act as a hyperparameter selection objective, acting as a substitute
for the model evidence when the later is not tractable. However, if the variational posterior
differs from the true posterior, the hyperparameter learning objective will be biased (see, for
instance, Turner and Sahani (2011)). We illustrate this bias in Figure 3.2. The variational
EM algorithm (Bishop, 2006; Dempster et al., 1977; Neal and Hinton, 1998) implements this

42 Approximate inference

0 5 10

prior precision a

−10

−9

−8

−7

n
a
ts

model evidence

log p(Y ; aI)

M(Πw|Y , aI)

M(Q, aI)

−2 0 2
w0 (bias)

−2

−1

0

1

2

w
1

(s
lo

p
e)

distribution contours

Πw|Y
Q

−4 −2 0 2 4

x

−4

−2

0

2

4

(f
|Y

)(
x

)

posterior function marginals

−15.0

−12.5

−10.0

−7.5

−5.0 L
(w
,A

=
6
I
)

Fig. 3.2 Variational inference in the Gaussian affine linear model, fit to the toy dataset dataset
in Figure 2.3. The leftmost plot shows the model evidence as a function of the isotropic
prior covariance A = aI . We also display an ELBO where the variational posterior is set
to the true posterior when a = 6, denoted Πw|Y in the plot. The bound is tight at a = 6, as
predicted by (3.3). However, since the posterior over the weights does not change as we scan
a, the optima of the ELBO, marked with a red dot, differs from the optima of the evidence.
Hyperparameter selection with this objective would be biased. We also display, in green,
the ELBO corresponding to a different variational posterior Q. Since Q, doesn’t match the
true posterior for any value of a, the bound is never tight. It is also a biased estimate of the
evidence. The middle plot shows the loss function when a is set to 6 as well as the 1, 2 and 3
standard deviation contours for the log-density of Πw|Y and Q. Finally, the rightmost plot
shows the mean and 2 standard deviation errorbars of the posterior distribution over functions
corresponding to each of the 2 variational posteriors under consideration.

idea by iterating variational posterior optimisation and hyperparameter optimisation steps:
1) setting Q = argmaxQ∈QM(Q, θ) in the E step and 2) θ = argmaxθ∈ΘM(Q, θ) in the
M step. If Πw|Y ∈ Q, the E step will attain the exact posterior and the EM algorithm is
guaranteed to not decrease the model evidence. Alternatively, one may optimiseM with
respect to {Q, θ} jointly using gradient-based optimisation.

Remark The dangers of model comparison with the ELBO
The ELBO is not a reliable tool for model comparison. If a model obtains a larger
ELBO than another, it is not guaranteed to have a larger evidence. The model with the
smaller ELBO could have a larger evidence and the difference in ELBO values could
be due to there being more slack in the second model’s bound.

Beyond approximate inference in predictive models, the ELBO also plays an important
role in information theory and data compression; we refer to Flamich (2019); Hinton and van
Camp (1993) and chapter 33 of MacKay (2003) for in-depth discussion.

3.1 Variational Inference 43

3.1.1 VI in the parameter space of the linear model

We now provide the explicit form of the ELBO for the weight-space Gaussian linear model
introduced in (2.2) paired with a multivariate Gaussian variational family Q = N (wq,Σq)

with variational parameters wq ∈ Rd and Σq ∈ Rd×d. In this case, the true posterior is
contained within the variational family. The ELBO is

M(wq,Σq, A,B, ϕ) =
1

2
Ew∼N (wq ,Σq)

[
− n log(2π)− log detB−1 − ∥Y − Φw∥2B
− log detA−1 − ∥w∥2A + log detΣq + d

]
, (3.4)

where we have substituted Q for its variational parameters, which uniquely define the
distribution, in the ELBO’s arguments. Evaluating the expectation we obtain

M(wq,Σq, A,B, ϕ) =
1

2

(
− n log(2π)− log detB−1 − log detA−1 − ∥wq∥2A − Tr(ΣqA)

− ∥Y − Φwq∥2B − Tr(ΦΣqΦ
TB) + log detΣq + d

)
. (3.5)

This expression will be of particular interest in Chapter 5 and Chapter 6, where we will use the
Laplace approximation to the posterior, a multivariate Gaussian, as the variational distribution
for large scale models. The variational posterior distribution over functions is computed
analogously to (2.9) by substituting the Bayesian weight posterior with its approximation

fq(·) = ϕ(·)w with w ∼ N (wq,Σq). (3.6)

3.1.2 VI in function space: inducing points

We now look at the dual form of variational inference for linear models where the approximate
distribution is specified directly over function outputs. To this end, we introduce an array
of m inducing points Z = (z1, z2, . . . , zm) with zi ∈ X . The variational inducing point
framework of Titsias (2009a,b) substitutes our observed targets Y with the inducing targets
U ∈ Rcm, each of which is associated with an inducing point. We start by constructing a
Gaussian process conditioned on the set of inducing locations and targets

(f (Z)|U) ∼ GP(µ(Z)
f |U , k

(Z)
f |U), (3.7)

44 Approximate inference

where the superscript notation (Z) makes explicit that the input locations correspond to Z and
not X . The mean and covariance functions are given by

µ
(Z)
f |U(·) = K(·)ZK

−1
ZZU k

(Z)
f |U(·, ·′) = K(·,·′) −K(·)ZK

−1
ZZKZ(·′), (3.8)

where [KZZ]ij = k(zi, zj), i, j ≤ m and we again use KZ(·) for the stacked evaluation
functionals k(zi, ·), i ≤ m. These expressions match (2.24), with the observed inputs X and
targets Y replaced by the inducing inputs Z and inducing targets U .

We now place a multivariate Gaussian variational distribution over the inducing targets
Q = N (u

(Z)
q , K

(Z)
q), with u(Z)

q ∈ Rcm and K(Z)
q ∈ Rcm×cm. Following Titsias (2009a),

we choose the mean and covariance of this distribution that minimises the KL divergence
between the variational Gaussian process EU∼Q[f

(Z)|U] and the posterior Gaussian process
f |Y (Matthews et al., 2016)1. These are

u(Z)
q = KZZ(KZZ +KZXBKXZ)

−1KZXBY (3.9)

K(Z)
q = KZZ(KZZ +KZXBKXZ)

−1KZZ , (3.10)

where [KXZ]ij = k(xi, zj), i < n j < m. Using this, we marginalise out the inducing targets
in (3.7), arriving at the optimal variational Gaussian process

(f (Z)|Y) ∼ GP(µ(Z)
f |Y , k

(Z)
f |Y), (3.11)

with mean and covariance functions

µ
(Z)
f |Y (·) = K(·)Z(KZZ +KZXBKXZ)

−1KZXBY (3.12)

k
(Z)
f |Y (·, ·′) = K(·,·′) +K(·)Z((KZZ +KZXBKXZ)

−1 −K−1
ZZ)KZ(·′). (3.13)

These expressions contain linear solves against KZZ instead of K. The number of inducing
points is typically chosen to be smaller than the number of observations m < n and thus the
cost is lowered from O ((nc)3) to O ((mc)3).

1In practise, this KL divergence between stochastic processes can be minimised by minimising the KL
divergences between the multivariate Gaussians given by evaluating the variational GP and posterior GP at the
set of observed and inducing inputs {X,Z} jointly.

3.1 Variational Inference 45

Connecting inducing points to the Nyström approximation

The expressions (3.12) and (3.13) match those that we obtain if we substitute our Gaussian
process prior with GP(0, K(·),ZK

−1
ZZKZ,(·′)), and proceed with exact GP inference, as in

Section 2.2.3. With this, every instance of K is replaced with KXZK
−1
ZZKZX , revealing that

the variational Gaussian process amounts to a Nyström approximation of the kernel matrix
(Wild et al., 2021).

Derivation Nyström pathwise representation of the optimal variational GP
To show the connection between the Nyström approximation and variational inducing
point GPs, we leverage the pathwise formulation of the GP random function (2.28) but
replace every instance of with KXZK

−1
ZZKZX , yielding

(f (Z)|Y)(·) = f(·) +K(·)ZK
−1
ZZKZX(KXZK

−1
ZZKZX +B−1)−1(Y − f (Z)(X)− ε)

ε ∼ N (0, B−1) f ∼ GP(0, k) f (Z)(·) = K(·)ZK
−1
ZZf(Z).

(3.14)

We now check the correctness of this expression by calculating the moments of
this Gaussian process’ marginal distributions and show them to match those of the
KL-optimal variational Gaussian process given in (3.12) and (3.13). Write

E[(f (Z)|Y)(·)] = K(·)ZK
−1
ZZKZX(KXZK

−1
ZZKZX +B−1)−1Y (3.15)

= K(·)ZK
−1
ZZKZXB(KXZK

−1
ZZKZXB + I)−1Y (3.16)

= K(·)Z(KXZBKXZ +KZZ)
−1KZXBY (3.17)

= µ
(Z)
f |Y (·) (3.18)

46 Approximate inference

y

x x
Fig. 3.3 Illustration of variational inducing point GP inference with a squared exponential
kernel on 10k datapoints from sin(2x)+cos(5x)with observation noise distributionN (0, 0.5).
The inducing point locations are marked with purple dots. All variational parameters are fit
with SVGP (3.27). The true GP posterior is marked with a think black dashed line. Contours
denote 2 standard deviation credible intervals for the predictive posterior. Infill asymptotics
considers x ∼ N (0, 1). A large number of points near zero result in a very ill-conditioned
kernel matrix. VI can summarise the data with only 20 inducing points. Large domain
asymptotics considers data on a regular grid with fixed spacing. Note that most of the data is
not visible in the plot. This problem is better conditioned. However, 1024 inducing points
are not enough to summarise the data, leading to poor performance.

and

Cov((f (Z)|Y)(·)− µ(Z)
f |Y (·)) (3.19)

= E((f (Z)|Y)(·)− µ(Z)
f |Y (·), (f (Z)|Y)(·′)− µ(Z)

f |Y (·′)) (3.20)

= K(·,·′) −K(·)ZK
−1
ZZKZX(KXZK

−1
ZZKZX +B−1)−1KXZK

−1
ZZKZ(·′) (3.21)

= K(·,·′) +K(·)ZK
−1
ZZ

(
−I + I −KZXB(KXZK

−1
ZZKZXB + I)−1KXZK

−1
ZZ

)
KZ(·′)
(3.22)

= K(·,·′) +K(·)ZK
−1
ZZ

(
−I + (KZXBKXZK

−1
ZZ + I)−1

)
KZ(·′) (3.23)

= K(·,·′) +K(·)Z
(
−K−1

ZZ + (KZXBKXZ +KZZ)
−1
)
KZ(·′) (3.24)

= k
(Z)
f |Y (·, ·′) (3.25)

which recovers (3.12) and (3.13), as claimed.

This relationship allows us to gain intuition about the properties of inducing point
approximations. These will work well when the conditioning number of K is large.
Intuitively, if multiple observed inputs are similar they can be modelled with a single inducing
point and analogously if multiple rows of K nearly linearly dependent, their action can be
captured by a single row of KZZ . On the other hand, a dataset where different inputs map

3.1 Variational Inference 47

to distant points in the RKHS will be poorly approximated by m < n inducing points. We
illustrate these properties in Figure 3.3.

Hyperparameter learning with inducing points

Titsias (2009a) uses the optimal variational GP, given in (3.11), to construct the ELBO

M(Z, θ) =− n

2
log(2π)− 1

2
log det

(
B−1 +KXZK

−1
ZZKZX

)
− 1

2
∥Y ∥2

(B−1+KXZK−1
ZZKZX)−1 −

1

2
Tr
(
B(K −KXZK

−1
ZZKZX)

)
, (3.26)

where the inducing target values are marginalised, leaving the inducing point locations Z as
the only variational parameters to be optimised together with the hyperparameters θ.

Two limitations of the bound in (3.26) are that it’s data-fit term can not be decomposed
into a sum of each observation’s contributions, precluding minibatch estimators, and that it is
only valid for Gaussian likelihoods. Hensman et al. (2013) addresses both of these issues by
introducing the ELBO

M(u(Z)
q , K(Z)

q , Z, θ) =E
(f (Z)|U)∼GP(µ(Z)

f |U ,k
(Z)
f |U)

U∼N (u
(Z)
q ,K

(Z)
q)

log p
(
Y |(f (Z)|U)

)
+ KL(N (u(Z)

q , K(Z)
q) ∥ N (0, KZZ)), (3.27)

where p
(
Y |(f (Z)|U)

)
is the conditional density of the targets given the variational GP. (3.27)

can be shown to be a lower bound on (3.26). Here, the mean and covariance of the variational
distribution over U are left as variational parameters to be optimised. However, learning a
quadratic number of parameters for the covariance can lead to numerical instability. GPs fit
with (3.27) are often referred to as Stochastic Variational Gaussian Processes (SVGP).

3.1.3 Expectation propagation and non-KL divergences

So far, we have discussed algorithms that choose the variational posterior such that its KL
divergence to the Bayesian posterior is minimised. However, there is a rich literature that
studies the minimisation of other divergences. We only review these works briefly, as they
play no role in the later chapters of this thesis.

The power expectation propagation (EP) algorithm (Minka, 2004, 2007) targets the
alpha-divergence between a variational posterior, built as a series of site approximations,

48 Approximate inference

one for each observation, and the true posterior. Power EP is a generalisation of regular EP
(Minka, 2001; Opper and Winther, 2005) with the latter targeting reverse KL divergences at
each site. In turn, EP can be understood as a generalisation of the belief propagation algorithm
(Pearl, 1982, 1988). Hernández-Lobato and Adams (2015) extended the EP framework to
neural networks, developing an algorithm coined “probabilistic backpropagation”. Furthering
this line of work, Hernández-Lobato et al. (2016) applied alpha divergences to black box
variational inference problems, doing away with the EP framework. Li (2018) extends
variational inference to target the family of Rényi divergences (Rényi, 1961), which also
generalise the KL-divergence. EP can also be shown to target a dual of the variational lower
bound (Li, 2018). This idea has been used to construct hybrid algorithms, which may present
better properties for hyperparameter optimisation (Adam et al., 2021; Li et al., 2023).

3.1.4 Variational inference for neural networks and its limitations

Neural networks present very high dimensional and strongly multimodal posterior distributions.
This has made it difficult to develop variational inference methods for neural networks that
effectively navigate the trade-off between scalability and accuracy of approximation.

The most common choice of variational distribution is a Gaussian that factorises across
dimensions2. This choice allows for simple implementation and is relatively computationally
inexpensive. As a result, it has persisted from the first works on VI for neural networks
(Hinton and van Camp, 1993; Saul and Jordan, 1998) to more modern approaches (Blundell
et al., 2015; Graves, 2011). However, it can be shown that modelling dependencies between
posterior weights is necessary to obtain calibrated uncertainty estimates (Foong et al., 2020).

There have been efforts to leverage more flexible variational distributions. Louizos
and Welling (2017) use normalising flows as variational approximations. Dusenberry et al.
(2020) target multiple posterior modes with rank-1 Gaussian approximations. Ober and
Aitchison (2021) construct an inducing-point based variational distribution with autoregressive
structure across layers. On the other hand, Gal and Ghahramani (2016) and Antorán et al.
(2020) obtain scalability to very large neural networks by using very crude variational
distributions that consist of randomly zeroing subsets of network weights, and network layers,
respectively. Another family of approaches re-cast popular optimisation algorithms, like
Adam, as variational inference (Khan et al., 2018; Khan and Rue, 2023; Osawa et al., 2019).
Unfortunately, despite these efforts, variational methods often reach solutions that under-
perform traditional maximum likelihood learning of NN parameters in terms of predictive

2Factorised approximations are also referred to as mean field approximations.

3.2 Conjugate Gradients 49

accuracy (Ashukha et al., 2020; Wenzel et al., 2020) or underestimate predictive uncertainty
(Foong et al., 2019a, 2020).

3.2 Approximating the posterior computation:
Conjugate Gradients

As we saw in Chapter 2, the main impediment to posterior inference in the Gaussian linear
model is having to solve large systems of linear equations (see (2.9) (2.24) (2.28)). These
present time complexityO ((nc)3) and memory complexityO ((nc)2) in kernelised form and
the same complexity, but in the number of parameters d, when dealing with the weight-space
form. The most widely used algorithm to solve linear systems, both in the context of GPs
(Artemev et al., 2021; Gibbs and MacKay, 1996; Wang et al., 2019), and also more generally
(Boyd and Vandenberghe, 2014; Press et al., 2007), is Conjugate Gradients (CG).

CG is an iterative algorithm. Given the system (K +B−1)
−1
Y , CG performs a single

matrix-vector product (K +B−1)Y , with cost O ((nc)2), at each iteration. The algorithm
recovers the exact solution after at most nc steps, asymptotically recovering the cubic cost.
However, the algorithm often converges much faster, delivering very accurate approximations
of the linear system solution after only a few iterations. The speed of convergence depends
on system conditioning, which we discuss in detail in Section 3.2.2.

3.2.1 Hyperparameter learning with CG

Optimising linear model hyperparameters with the marginal likelihood requires both solving
linear systems against the loss Hessian matrix and also computing its log-determinant.
Although, we can not compute the log-determinant with CG, we can can compute its gradient
as ∂θ log det(K +B−1) = Tr ((K +B−1)−1∂θ(K +B−1)). We now apply Hutchinson
(1990)’s trick to substitute the trace with an expectation, obtaining

∂θ log p(Y ; θ) =
1

2
Ez∼N (0,Inc)z

T (K +B−1)−1∂θ(K +B−1)z

+
1

2
Y T (K +B−1)−1∂θ

(
K +B−1

)
(K +B−1)−1Y. (3.28)

The above expression is approximated by constructing a MC estimator of the expectation.
Evaluating each MC sample requires a linear solve against K +B−1. It is straight forward
to apply the same trick to the primal form of the model evidence. This approach, which

50 Approximate inference

y

x x
Fig. 3.4 Illustration of variational inducing point GP inference with a squared exponential
kernel on 10k datapoints from sin(2x)+cos(5x)with observation noise distributionN (0, 0.5).
The inducing point locations are marked with purple dots. All variational parameters are fit
with SVGP (3.27). The true GP posterior is marked with a think black dashed line. Contours
denote 2 standard deviation credible intervals for the predictive posterior. Infill asymptotics
considers x ∼ N (0, 1). A large number of points near zero result in a very ill-conditioned
kernel matrix, preventing CG from converging (we draw 2000 posterior by CG for 10 minutes
on an RTX 2070 GPU.). Large domain asymptotics considers data on a regular grid with
fixed spacing. Note that most of the data is not visible in the plot. This problem is better
conditioned, allowing CG to recover the exact solution.

was first used by Gibbs and MacKay (1996), has become the most popular approximation
for hyperparameter learning with large-scale GPs (Gardner et al., 2018). CG for linear
model hyperparameter learning can been paired with preconditioning and low precision
computation (Maddison et al., 2016) or variational lower bounds (Artemev et al., 2021) to
reduce time-to-convergence.

3.2.2 Limitations of Conjugate Gradient inference

The chief limitation of CG is that its convergence speed decreases as the matrix we are solving
against becomes more ill-conditioned. Given the system (K +B−1)

−1
Y , the number of

matrix-vector products needed to guarantee convergence of CG to within a tolerance of ε is

O
(√

cond(K +B−1) log
cond(K +B−1)∥Y ∥

ε

)
(3.29)

with cond(K +B−1) =
λmax(K +B−1)

λmin(K +B−1)
,

where λmax(K + B−1) and λmin(K + B−1) are the maximum and minimum eigenvalues
of K + B−1. See (Terenin et al., 2023) for further discussion on (3.29). Although CG
performs well in many GP use cases, for instance (Gardner et al., 2018; Wang et al., 2019),

3.3 The linearised Laplace approximation 51

the condition number cond(K+B−1) need not be bounded, and conjugate gradients may fail
to converge quickly (Terenin et al., 2023). We illustrate this in Figure 3.4. Nonetheless, by
exploiting the quadratic structure of the objective, substantially better worst-case convergence
rates can be shown for CG than alternatives, like gradient descent (Blanchard and Krämer,
2010; Zou et al., 2021). This makes the results of Chapter 4, where we show that SGD can
be used to approximate GP posteriors notably faster than alternative methods, surprising.

3.3 Approximating the function class:
the linearised Laplace approximation

The Laplace approximation is a classical technique in Bayesian statistics for constructing
Gaussian surrogates for analytically intractable posterior distributions. The Laplace approxi-
mation was first applied to neural networks by MacKay (1992a). We will also focus on the
neural network setting here, as it is of primary interest for the rest of this thesis, forming
the basis of Chapter 5, Chapter 6 and Chapter 7. In doing this, we will also see how the
Laplace approximation can be applied to non-conjugate linear models which can be seen as a
particular case of neural networks.

Let the the function g : Rd ×X → Rc be a neural network and v ∈ V ⊆ Rd refer to its
parameters, flattened into a single vector. We train it to solve a c output prediction problem,
by minimising a loss of the form

Lg(v) =
n∑

i=1

ℓ(yi, g(v, xi)) +R(v), (3.30)

where the subscript in Lg makes explicit that our model is the NN g, ℓ is a data fit term
(a negative log-likelihood) which we assume to include any linking functions, and R is a
regulariser. We do not assume either to be quadratic. This procedure returns the weights
v⋆ ∈ argminv∈Rd Lg(v) 3.

Notation for gradients and Hessians We use m ∂mv [g(v, x)](v′) to denote the mth order
mixed partial derivatives of g with respect to v evaluated at (v′, x). We use ∂mx f(x′) to refer
to ∂mx [f(x)](x′) for single argument functions, where no ambiguity exists.

3We use ∈ since NN loss functions are almost always multimodal and thus there exist a set of multiple
minimisers.

52 Approximate inference

With that, the Laplace method constructs a locally quadratic approximation to Lg around
the mode

Lg(v) = Lg(v⋆) +
1

2
∥v − v⋆∥2∂2

vLg(v⋆)
+O(v3), (3.31)

where the first order term cancels since ∂vLg(v⋆) = 0 and ∂2vLg(v⋆) ∈ Rd×d is the Hessian
of the loss at v⋆. We use this quadratic approximation to the loss to define the negative log
density of an approximate posterior, which by inspection corresponds to the Gaussian

N
(
v⋆, (∂

2
vLg(v⋆))

−1
)
. (3.32)

Remark The asymptotic exactness of the Laplace approximation
The Bernstein–von Mises theorem tells us that for any likelihood function ℓ and under
relatively weak conditions, the posterior distribution converges to a Gaussian centred
at the maximum likelihood parameter setting as the number of observations goes to
infinity, i.e. n→∞ (Bernstein, 1946; Walker, 1969). This result yields credence to the
Laplace approximation in big-data settings. Indeed, MacKay (1992a) reports increased
approximation accuracy for larger number of observations.

Despite the Laplace approximation being the first method developed for Bayesian reasoning
with NNs (MacKay, 1992a), modern adaptions of the method, some of which are introduced
in Chapter 5 and Chapter 6, represent the state-of-the-art in the field of Bayesian deep learning
(Antorán et al., 2023; Daxberger et al., 2021a). The method has also seen success when
applied to non-conjugate linear models, where the likelihood is non-Gaussian (Rue et al.,
2009). We go on to discuss the use of the Laplace approximation, in its linearised variant, for
predictive variance estimation and for model evidence approximation in neural networks.

3.3.1 Linearising our network at prediction time

Despite the closed form of the Laplace posterior over NN parameters, integrating out the param-
eters to evaluate the posterior distribution over functions g(v, ·), v ∼ N (v⋆, (∂

2
vLg(v⋆))

−1)

remains analytically intractable. MacKay (1992a) resolves this by introducing an additional
approximation: a local linearisation of the neural network function around v⋆. We also do

3.3 The linearised Laplace approximation 53

this, introducing the affine model h : Rd ×X → Rc, which performs the map

h(w, x) := g(v⋆, x) + J(x)(w − v⋆) (3.33)

where J(xi) := ∂v[f(v, xi)](v⋆) ∈ Rc×d is the Jacobian of the NN function evaluated at x
with respect to its weights, and we denote the approximate model’s parameters as w ∈ Rd to
highlight their linear relationship with the output. With this, the marginals of the posterior
distribution over functions h(w, ·), w ∼ N (v⋆, (∂

2
vLg(v⋆))

−1) become closed form and
Gaussian

N (g(v⋆, x
′), J(x′)(∂2vLg(v⋆))

−1J(x′)T). (3.34)

Here, we have used that the expectation of an affine transform of a Gaussian random variable
is the affine transformation of the mean, and since the mean is v⋆, the first order term in (3.33)
cancels, leaving only g(v⋆, x′).

MacKay (1992a) makes one final approximation. He substitutes the Hessian of
the data-fit loss ∂2v [ℓ(y, g(v, x))](v⋆) for the Generalised Gauss Newton matrix (GGN)
J(x)T∂2ŷℓ(y, ŷ)J(x)

T evaluated at the MAP predictions ŷi = g(v⋆, xi). With this, the
precision of the Laplace posterior becomes

n∑
i=1

J(xi)
T∂2ŷiℓ(yi, ŷi)J(xi)

T︸ ︷︷ ︸
GGN

+ ∂2vR(v⋆)︸ ︷︷ ︸
Hessian of regulariser

(3.35)

where ∂2vR(v⋆) ∈ Rd×d is the Hessian of the regulariser, and ∂2yiℓ(yi, ŷi) ∈ Rc×c is the GGN
corresponding to the contribution of each observation to the likelihood.

Remark Comparing the Hessian and the GGN
Using the chain rule of the product, we can decompose the Hessian into the GGN,
which captures the curvature of the likelihood function but linearises the NN function,
and a second term consisting of the gradient of the log-likelihood multiplied with the
Hessian of the NN function

∂2v [ℓ(y, g(v, x))](v⋆) = J(x)T∂2ŷℓ(y, ŷ)J(x)
T︸ ︷︷ ︸

GGN

+∂ŷ[ℓ(y, ŷ)](g(v⋆, x))∂
2
v [g(v, x)](v⋆).

(3.36)

54 Approximate inference

−5 0 5
v̄1 − v?

−4

−2

0

2

4

v̄ 2
−
v ?

distribution contours

inv. GGN

−2.5 0.0 2.5
x

−3

−2

−1

0

1

2

3

f
(v
,x

)
v
∼
Q

Laplace predictive

−2.5 0.0 2.5
x

−3

−2

−1

0

1

2

3

h
(w
,x

)
w
∼
Q

lin. Laplace predictive

−20

−15

−10

−5 lo
ssL

g (w
)

Fig. 3.5 Left: 2d projection of a neural network loss landscape around a mode v⋆. We also
display the 1, 2 and 3 standard deviation contours of the linearised Laplace (i.e. using the
GGN approximation to the Hessian) posterior computed at the mode. Middle: we push
Laplace posterior through the NN function and display mean and 2 standard deviation credible
regions of the posterior predictive distribution. These do not fit the data. We also display
the functions corresponding to 4 posterior samples. Right: the linearised Laplace predictive
distribution fits the data well and provides sensible errorbars (2 standard deviation credible
regions of the posterior predictive distribution).

From this, we can see that the GGN will be a good approximation to the Hessian when
the gradient of the data-fit loss ∂ŷ[ℓ(y, ŷ)](g(v⋆, x)) is small. It will be exact when we
are at an optima of the fit term. For instance, when the NN parametrises the mean of a
Gaussian likelihood and the NN output perfectly interpolates the training targets.
Unlike the exact Hessian, the GGN is guaranteed to be PSD. This makes it often preferred
in the second order optimisation literature (Becker and LeCun, 1989; Martens, 2014;
Schraudolph, 2002), since negative curvature results in linear system solutions lying at
infinity, causing optimisers to diverge. Furthermore, the GGN is cheaper to compute
than the full Hessian and better lends itself to efficient block-wise approximations.
Examples of the latter are the iLQR algorithm (Bemporad et al., 2002) and the Kronecker
factored approximation (Martens and Grosse, 2015).

Lawrence (2000) found that the Laplace approximation, without the linearisation step,
resulted in very poor quality predictive distributions that did not even assign high density to
the train targets. Ritter et al. (2018) make a similar observation, but ameliorate the issue by
introducing additional hyperparameters that decrease the variance of the posterior over the
weights. We reproduce this result in Figure 3.5. We also show how the true NN posterior can
present strongly non-Gaussian features near a mode, leading the Laplace approximation to
place some of its mass in very low density regions of the true posterior. It is this that causes

3.3 The linearised Laplace approximation 55

poor predictions. However, local linearisation resolves the issue. This incongruence was
resolved recently, roughly 30 years after the publication of Mackay (1992a), by the modern
formulation of the linearised Laplace approximation (Antorán et al., 2022; Immer et al.,
2021b; Khan et al., 2019b), which we describe in the next section.

3.3.2 A modern view of linearised Laplace

We now present a modern re-interpretation of the linearised Laplace methodology described
in the previous section. The key observation, made by Khan et al. (2019b), is that the
GGN-Laplace posterior matches the true posterior of the tangent linear model h. Using a
similar reasoning, Immer et al. (2021b) argue that the GGN-Laplace posterior should be
paired with the tangent linear model at prediction time. The authors show that this results in
more accurate posterior predictive distributions, which we reproduce in Figure 3.5. Building
on this, Antorán et al. (2022) and Antorán et al. (2023) present a linearisation-first derivation
of linearised Laplace, which we go on to present here.

The linearised Laplace method consists of two consecutive approximations, the latter of
which is necessary only if ℓ or R are non-quadratic. That is, if the likelihood or prior are
non-Gaussian.

1. We take a first-order Taylor expansion of g around v⋆, yielding the surrogate model
given in (3.33). This model’s weights linearly combine the rows of the Jacobian matrix,
which can be seen as a feature expansion of the input. To make this connection explicit,
we henceforth adopt the notation ϕ(x) = J(x). The linear model’s loss is

Lh(w) =
n∑

i=1

ℓ(yi, h(w, xi)) +R(w). (3.37)

If this expression is quadratic, we may proceed with conjugate linear-Gaussian inference
as described in Chapter 2. The Laplace approximation is not needed.

2. If the linear model’s loss is non quadratic, we locally approximate it with the Laplace
method. This yields a Gaussian posterior of the form

N (v⋆, (∂
2
vLh(v⋆))

−1). (3.38)

Since the NN and tangent linear model share gradients, that is ∂vLg(v) = ∂hLh(w),
if v⋆ is a local optima of Lg it will also be one of Lh. Direct calculation shows that
∂2vLh(v⋆) = A+ ΦTBΦ = H , for ∇2

wR(v⋆) = A and B a block diagonal matrix with

56 Approximate inference

blocks Bi = ∇2
ŷi
ℓ(yi, ŷi) evaluated at ŷi = h(v⋆, xi) = g(v⋆, xi). We have once again

used notation matching the one used for conjugate Gaussian-linear models in Chapter
2 to highlight the Laplace approximation’s Gaussianisation of the likelihood and prior.

Linearised Laplace has returned us a conjugate Gaussian multi-output linear model with the
GGN as its posterior precision.

Remark Linearisation as a modelling choice
We could go a step further and view the linearisation step as a modelling choice. That is,
we would be adopting a Gaussian linear model with basis functions matching the NN’s
Jacobian around v⋆. This would not be a data independent basis, however. The NN
has been fit to our dataset in order to find v⋆. We overlay the Jacobian basis functions
on top of a toy 1d dataset on which the corresponding NN was trained in Figure 3.6.
The basis functions present sharp changes in the input regions where there is data, and
are more smooth elsewhere. The same is true for the equivalent kernel. Given this
data dependence, it is somewhat surprising that linearised Laplace does not result in
uncertainty underestimation given that we are using our data twice: one to train our
NN and another for inference in the tangent linear model. The most common case of
double use of data resulting in overfitting is hyperparameter learning with the model
evidence. This overfitting happens, for instance, in the deep kernel learning model
(Ober and Rasmussen, 2019; Ober et al., 2021), which uses the- linear model evidence
to fit basis functions parametrised by neural networks. My intuition is that linearised
Laplace escapes overfitting because the NN’s weights are not trained with the linearised
model’s evidence, but with some bespoke NN loss function. As a result, the Jacobian
basis functions do not perfectly pass through the training targets.

The linearised posterior distribution over NN outputs at a new input x′ ∈ X is thus

N (g(v⋆, x
′), ϕ(x′)H−1ϕ(x′)T), (3.39)

matching the expression used by (MacKay, 1992b) and given in (3.34). In other words,
linearised Laplace simply augments our pre-trained NN’s predictions with with Gaussian
errorbars. Keeping the NN outputs as the mean presents a large advantage over alternative
approaches to Bayesian inference in deep learning which often trade off goodness of fit
with quality of uncertainty estimates (Daxberger et al., 2021a,b; Snoek et al., 2019a).
Additionally, linearised Laplace tends to provide sensibly shaped errorbars, contrasting with

3.3 The linearised Laplace approximation 57

−5.0 −2.5 0.0 2.5 5.0

x

−1

0

1

2

[φ
(x

)]
i

Jacobian basis

−5.0 −2.5 0.0 2.5 5.0

x

−2

0

2

4

φ
(x
i
)φ

(x
)T

evaluation functionals

−5.0 −2.5 0.0 2.5 5.0

x

−2

−1

0

1

2

φ
(x

)w
,

w
∼

Π

prior funciton samples

Fig. 3.6 Illustration of the prior implied by the linearised NN. The leftmost plot shows 4
dimensions of the Jacobian basis (i.e. the Jacobian with respect to 4 of the NN weights)
function of a 2 layer residual MLP trained on the 1d toy dataset introduced by Antorán et al.
(2020). This dataset is displayed as black dots. The middle plot shows the kernel implied by
the Jacobian basis. It is non-stationary. The rightmost plot shows 4 samples drawn from the
linearised NN prior, with the NN loss mode’s prediction g(v⋆, ·) removed.

other approximations which fail simple tests like “in-between” uncertainty (Foong et al.,
2019b) or “far-away” uncertainty (Kristiadi et al., 2020).

Remark Connections to the neural tangent kernel and infinitely wide NNs
The Neural Tangent Kernel (NTK) (Jacot et al., 2018; Lee et al., 2019) is intimately
related to linearised Laplace. The NTK matches the linearised model given in (3.33),
but with the Taylor expansion point being the point where the NN weights are initialised,
instead of an optima of the loss. As the NN width increases, and under some relatively
weak conditions which we will not discuss here, the mode of the NN loss goes to
the initialisation point. In this setting, the linearised Laplace posterior matches the
posterior of a GP with the NTK as its covariance kernel. This distribution is different,
however, from the true posterior of the infinitely wide NN model (de G. Matthews et al.,
2018). The latter also corresponds to a GP, but its kernel is not the NTK. It is the outer
product of the Jacobians of the NN’s last layer weights. Thus, the NTK is a sum of the
infinitely wide NN kernel and also some other kernels with features matching the NN’s
non-last layer Jacobians.

58 Approximate inference

3.3.3 Learning hyperparameters with the Laplace evidence

An important limitation of linearised Laplace is its predictive variance’s sensitivity to the
curvature of the likelihood B and regulariser A. The values of these matrices derived from
the loss used to train the NN often result in miss-calibrated uncertainty, and large performance
gains can be obtained by tuning them. To this end, the Laplace approximation provides us
with and an estimate of the model evidence, which may be used to learn A and B as well as
other hyperparameters.

Again denoting our set of hyperparameters as θ, we re-arrange Bayes rule (2.8) to expose
the model evidence on the left hand side, substitute the posterior density for our Gaussian
approximation (3.38), and evaluate the functions at v⋆, obtaining

log p(Y ; θ) ≈ log p(Y |v⋆) + log π(v⋆)−N (v⋆; v⋆, H
−1)

= log p(Y |v⋆) + log π(v⋆)−
1

2
log detH +

d

2
log(2π) := Gv⋆(θ), (3.40)

where we make the dependence of the approximation on the linearisation point v⋆ explicit
by introducing it as a subscript to G. If we do not have access to the explicit joint
density of parameters and observations p(Y |v⋆)π(v⋆), we may use the loss function L(v⋆)
instead. However, we have to introduce the normalisation factors for the respective Gaussian
approximations of the likelihood and prior

Gv⋆(θ) = −Lf (v⋆)−
1

2
log detH +

1

2
log detA+

1

2
log detB − n

2
log(2π). (3.41)

We may tune the hyperparameters θ for a NN by choosing them to maximise Gv⋆(θ). This
may improve our errorbar calibration4, but will not change our NN’s outputs however, as its
parameters are held fixed at v⋆. Mackay (1992a) proposes to re-train the NN from scratch
using the new hyperparameters. Steps of NN training and hyperparameter optimisation are
iterated until a joint stationary point of the parameters and hyperparameters is found

v⋆ ∈ argmin
v∈Rd

Lf (v, θ⋆) and θ⋆ ∈ argmin
θ∈Θ

Gv⋆(θ) (3.42)

where we have made the loss’ dependence on the hyperparameters explicit by adding them as
an argument.

4It most likely will not and fixing this is the object of Chapter 5. But one could plausibly conclude that it
might from reading the relevant literature.

3.3 The linearised Laplace approximation 59

3.3.4 Online Laplace methods

The size of the neural networks and datasets has grown dramatically since 1992. As a
result, nowadays, re-training our NN multiple times after hyperparameter updates introduces
a prohibitive computational cost. This motivates Online Laplace (OL) approaches which,
at timestep t with parameters vt and hyperparameters θt, perform a step of NN parameter
optimisation to minimise Lf (vt; θt), obtaining vt+1, followed by a hyperparameter update to
maximise Gvt+1(θt) (Foresee and Hagan, 1997; Friston et al., 2007; Immer et al., 2021a)5.
Critically, the Laplace approximation of the evidence is constructed with both the NN loss
and GGN evaluated at the current NN parameter setting vt+1. Since optimisation has not
converged, vt+1 /∈ argminv∈Rd Lf (v; θ). Thus Gvt+1(θt), which discards the first-order Taylor
expansion term, is unlikely to provide a local approximation to the true model evidence.
Despite this, online Laplace methods have seen success recently, for instance for learning data
augmentation hyperparameters (Immer et al., 2022) and model invariance hyperparameters
(van der Ouderaa et al., 2023).

In Lin et al. (2023a), a piece of work not covered in this thesis, we construct a Taylor
expansion-based Gaussian approximation to the evidence that does not discard the first order
term, and thus may be more suitable for online use. We then show that this approximation
corresponds to the exact evidence of the tangent linear model. Interestingly, when we drop
the first order term, we recover a variational lower bound on the evidence of the linear model,
providing some justification for the online approaches of Foresee and Hagan (1997); Friston
et al. (2007); Immer et al. (2021a).

3.3.5 Limitations of the linearised Laplace approximation

Linearised Laplace presents a number of critical limitations and addressing these is the object
of much of the rest of this thesis.

Linearised Laplace shares the limitations of linear model inference discussed in Chapter
2: cubic compute cost and quadratic memory cost, in either the number of NN parameters d
or the number of outputs times observations nc. In modern deep learning problems, both of
these quantities tend to be in the tens of millions, or larger. Fortunately, linearising the NN
allows us to leverage the approximations for linear models discussed in Section 3.1, Section
3.2, and the ones we will introduce next, in Chapter 4. Additionally, there are a number of
approximations that exploit the structure of the linearised NN, such as last layer methods

5Friston et al. (2007) refers to the described online Laplace procedure as Variational Laplace.

60 Approximate inference

(Eschenhagen et al., 2021; Kristiadi et al., 2020), Kronecker factorised approximations
(Immer et al., 2023b; Ritter et al., 2018), and subnetwork methods (Daxberger et al., 2021b).

Additionally, linearised Laplace presents some unique limitations. Firstly, its basis
functions, the NN Jacobians, are computationally expensive to deal with. For a given in
put x ∈ X , computing the Jacobian expansion J(x) requires either c passes of backward
mode Automatic Differentiation (AD) or d passes of forward mode AD. Clearly the former is
preferable for most neural networks, but it still presents an issue when dealing with high-
dimensional output spaces, for instance, in many-way image classification, image-restoration,
or language modelling. For a large enough model, even storing the c × d dimensional
Jacobian features may be too expensive. In a textbook implementation of linearised Laplace,
Jacobians appear at two different points: 1) when constructing the GGN matrix at inference
time, and 2) when making predictions for a new observation x′. The former problem can
be partially ameliorated by leveraging the equivalency between the GGN and the Fisher
information matrix for exponential family likelihoods—almost all of the ones used in machine
learning. In particular, the Fisher admits unbiased stochastic estimation by sub-sampling
output dimensions (Kunstner et al., 2019; Martens, 2014). Unfortunately, the predictive
covariance does not admit this sort of approximation. Chapter 6 presents an implementation
of linearised Laplace that completely avoids instantiating Jacobian matrices.

Finally, astute readers may have noticed that the assumption that we find a local optima of
the NN training loss is unrealistic. NN optimisation landscapes present a large number of
symmetries and invariances, and stochastic optimisation is almost always used to minimise
them. Furthermore, early stopping is also almost always used. These techniques prevent
us from finding a local minima of the loss. This is intentional, it can be thought of as
regularisation, because reaching a very low loss value would almost surely mean we are
overfitting. One may thus wonder how not having access to a minimum of the loss affects the
linearised Laplace approximation? This is addressed in Chapter 5.

Chapter 4

Sampling from Gaussian Process
posteriors using Stochastic Gradient
descent

“When solving a given problem, try to avoid solving a more general problem as an intermediate
step.” — Vladimir Vapnik

Gaussian processes (GPs) provide a comprehensive framework for learning unknown
functions in an uncertainty-aware manner. This often makes GPs the model of choice
for sequential decision-making, achieving state-of-the-art performance in tasks such as
optimising molecules in computational chemistry settings (Gómez-Bombarelli et al., 2018)
and automated hyperparameter tuning (Hernández-Lobato et al., 2014; Snoek et al., 2012).

As we have seen in previous chapters, the main limitation of Gaussian processes is that
their computational cost is cubic in the training dataset size. Significant research efforts
have been directed at addressing this limitation, resulting in two key classes of scalable
inference methods: (i) inducing point methods (Hensman et al., 2013; Titsias, 2009a), which
approximate the GP posterior, and (ii) conjugate gradient methods (Artemev et al., 2021;
Gardner et al., 2018; Gibbs and MacKay, 1996), which approximate the computation needed
to obtain the GP posterior. Note that in structured settings, such as geospatial learning in low
dimensions, specialised techniques are available (Wilkinson", 2019; Wilson and Nickisch,
2015). Throughout this chapter, we focus on the generic setting, where scalability limitations
are as of yet unresolved.

62 Stochastic Gradient Descent for Gaussian Processes

In recent years, stochastic gradient descent (SGD) has emerged as the leading technique
for training deep learning models at scale (Ruder, 2016; Tian et al., 2023). It has also been
applied to kernel methods (Dai et al., 2014), and even connected to variational Bayesian
inference (Mandt et al., 2017). While the principles behind the effectiveness of SGD are not
yet fully understood, empirically, SGD often leads to good predictive performance—even
when it does not fully converge. The latter is the default regime in deep learning, and has
motivated researchers to study implicit biases and related properties of SGD (Belkin et al.,
2019; Zou et al., 2021).

In the context of GPs, SGD is commonly used to learn kernel hyperparameters—by
optimising the marginal likelihood (Chen et al., 2020, 2022; Gardner et al., 2018) or closely
related variational objectives (Hensman et al., 2013; Titsias, 2009a). In this chapter, we
explore applying SGD to the complementary problem of approximating GP posterior samples
given fixed kernel hyperparameters. In one of his seminal books on statistical learning theory,
Vladimir Vapnik (1995) famously said: "When solving a given problem, try to avoid solving
a more general problem as an intermediate step." Motivated by this viewpoint, as well as the
aforementioned property of good performance often not requiring full convergence when
using SGD, we ask: Do the linear systems arising in GP computations necessarily need to be
solved to a small error tolerance? If not, can SGD help accelerate these computations?

We answer the latter question affirmatively, with specific contributions as follows. (i)
In Section 4.2, we develop a scheme for drawing GP posterior samples by applying SGD
to a quadratic problem. In particular, we re-cast the pathwise conditioning technique of
(Wilson et al., 2020) as an optimisation problem, and, in Section 4.3, extend the method
to inducing point GPs. In Section 4.2.2, we develop a novel low-variance SGD sampling
estimator applicable to both linear models, where the kernel is finite dimensional, and
GPs. For the kernelised setting, in Section 4.2.3, we introduce Stochastic Dual Descent
(SDD), an optimisation scheme that targets a better conditioned dual objective in place of
the more-common kernel ridge regression objective. (ii) In Section 4.4, we characterise the
implicit bias in SGD-approximated GP posteriors showing that despite optimisation not fully
converging, these match the true posterior in regions both near and far away from the data.
(iii) Finally, in Section 4.5, we present the following experimental evidence:

1. On standard UCI regression benchmarks with up to 2 million observations, stochastic
dual descent either matches or improves upon the performance of conjugate gradients,
while strictly outperforming other baselines.

2. On large-scale parallel Bayesian optimisation, stochastic gradient descent is shown
to be superior to preconditioned conjugate gradients and inducing point variational

4.1 Pathwise conditioning as an optimisation problem 63

inference, both in terms of the number of iterations and in terms of wall-clock time.
In turn, stochastic dual descent is shown to be superior to vanilla stochastic gradient
descent.

3. On a molecular binding affinity prediction task, where Gaussian processes have
not previously been shown to be competitive with deep learning approaches, the
performance of stochastic dual descent matches that of graph neural networks.

The methods and insights developed in this chapter, in particular the low-variance SGD
estimator of weight-space posterior samples, will play a key role in scaling the linearised
Laplace method to large scale neural networks and datasets in Chapter 6.

4.1 Pathwise conditioning as an optimisation problem

Both a Gaussian process’ posterior mean and posterior samples can be expressed as solutions
to quadratic optimisation problems. For the primal, weight-space form, the expressions for
the mean and samples were provided in Chapter 2, in (3.37) and (2.38), respectively. Here
we study the more general kernelised form. To simplify notation, we assume the output
dimension is c = 1 throughout this chapter. As a result, our noise precision matrix B is
diagonal. Additionally, we assume our kernel k is stationary, or at least admits random
features.

The GP posterior mean minimises the ridge regression loss over functions in the RKHS:

f⋆(·) = argmin
f∈H

n∑
i=1

[B]ii(yi − ⟨k(xi, ·), f⟩2 + ∥f∥2H. (4.1)

Using the representer theorem (Schölkopf et al., 2001), we transform this objective into a
quadratic problem over the representer weights α ∈ Rn

f⋆(·) = K(·)Xα⋆ =
n∑

i=1

α∗ ik(xi, ·) α⋆ = argmin
α∈Rn

n∑
i=1

[B]ii(yi −KxiXα)
2 + ∥α∥2K . (4.2)

Its optima is α⋆ = (K + B−1)−1Y , matching (2.16). Recall that we refer to k(xi, ·) as the
evaluation functionals, and we henceforth refer to ∥α∥2K = αTKα as the regulariser. To
construct respective optimisation problem for obtaining posterior samples, we part from
the decomposed pathwise expression given in (2.29), which we repeat here for the reader’s

64 Stochastic Gradient Descent for Gaussian Processes

convenience

(f |Y)(·) = f⋆(·)︸︷︷︸
posterior mean

+ f(·)︸︷︷︸
prior sample

−K(·)X(K +B−1)−1(f(X) + E)︸ ︷︷ ︸
uncertainty reduction term

(4.3)

with E ∼ N (0, B−1) and f ∼ GP(0, k).

The posterior mean can be obtained by solving (4.2). We approximate the prior function
sample f using a sum of random Fourier features f̃ , as described in Section 2.3.1. Each
posterior sample’s uncertainty reduction term is parametrised by a set of representer weights.
These are given by a linear solve against a noisy prior sample evaluated at the observed
inputs (K +B−1)−1(f̃(X) + ε). Thus, by analogy to (4.2), we can construct an optimisation
objective targeting a sample’s representer weights as

argmin
α∈Rn

n∑
i=1

[B]ii(f̃(xi) + εi −KxiXα)
2 + ∥α∥2K (4.4)

with E ∼ N (0, B−1) and f̃(·) = ϕs(·)w w ∼ N (0, Id) s ∼ Ω,

where εi are the individual entries of E = [ε1, ε2, . . . , εn]
T . We denote as ϕs a d dimensional

random feature expansion. Unless specified otherwise, we assume a stationary kernel and
use a cosine expansion with random frequencies drawn from our kernel’s spectral density Ω.

Remark Dividing and conquering
We explicitly separate the posterior mean and 0-mean samples into two separate
optimisation problems: (4.2) and (4.4). However, this need not be the case. We could
shift the solution of the sampling objective by exactly the mean function by regressing
onto (f̃(X) + E + Y) instead of (f̃(X) + E). Unfortunately, when doing this, we
find the target vector Y to often dominate the objective, resulting in a worse quality
estimates of the GP posterior variance.

4.2 Stochastic estimators of the sampling objective

We now develop and analyse techniques for drawing samples from GP posteriors using
stochastic gradient descent. We provide three different stochastic estimators. First a simple,
general purpose one in Section 4.2.1. This objective will prove useful when dealing with
inducing point GPs, where the innovations discussed next are not applicable. Then, in Section

4.2 Stochastic estimators of the sampling objective 65

−5.0

−2.5

0.0

2.5

5.0
In

fi
ll

a
sy

m
p
to

ti
cs

Stochastic Gradient Descent Conjugate Gradients Variational Inference

-7 -3.5 0 3.5 7

−4

−2

0

2

4

L
a
rg

e-
d
o
m

a
in

a
sy

m
p
to

ti
cs

-7 -3.5 0 3.5 7 -7 -3.5 0 3.5 7

Exact GP Approximations

−5.0

−2.5

0.0

2.5

5.0

In
fi
ll

a
sy

m
p
to

ti
cs

Stochastic Gradient Descent Conjugate Gradients Variational Inference

-7 -3.5 0 3.5 7

−4

−2

0

2

4

L
a
rg

e-
d
o
m

a
in

a
sy

m
p
to

ti
cs

-7 -3.5 0 3.5 7 -7 -3.5 0 3.5 7

Exact GP Approximations

−5.0

−2.5

0.0

2.5

5.0

In
fi
ll

a
sy

m
p
to

ti
cs

Stochastic Gradient Descent Conjugate Gradients Variational Inference

-7 -3.5 0 3.5 7

−4

−2

0

2

4

L
a
rg

e-
d
o
m

a
in

a
sy

m
p
to

ti
cs

-7 -3.5 0 3.5 7 -7 -3.5 0 3.5 7

Exact GP Approximations

−5.0

−2.5

0.0

2.5

5.0
In

fi
ll

a
sy

m
p
to

ti
cs

Stochastic Gradient Descent Conjugate Gradients Variational Inference

-7 -3.5 0 3.5 7

−4

−2

0

2

4

L
a
rg

e-
d
o
m

a
in

a
sy

m
p
to

ti
cs

-7 -3.5 0 3.5 7 -7 -3.5 0 3.5 7

Exact GP Approximations

Fig. 4.1 Comparison of SGD, CG (Wang et al., 2019) and SVGP (Hensman et al., 2013) for GP
inference with a squared exponential kernel on 10k datapoints from sin(2x) + cos(5x) with
observation noise distribution N(0, 0.5). We draw 2000 function samples with all methods by
running them for 10 minutes on an RTX 2070 GPU. Infill asymptotics considers xi ∼ N(0, 1).
A large number of points near zero result in a very ill-conditioned kernel matrix, preventing
CG from converging. SGD converges in all of input space except at the edges of the data.
SVGP can summarise the data with only 20 inducing points. Note that CG converges to the
exact solution if one uses more compute, but produces significant errors if stopped too early,
as occurs under the given compute budget. Large domain asymptotics considers data on a
regular grid with fixed spacing. This problem is better conditioned, allowing SGD and CG
to recover the exact solution. However, 1024 inducing points are not enough for SVGP to
summarise the data.

4.2.2, one with reduced variance when drawing 0-mean posterior samples. We will also
provide the weight-space counterpart of this estimator. We will go on to investigate the
conditioning of the quadratic objectives targeted by these estimators. This will lead us to
develop our third method Stochastic Dual Descent in Section 4.2.3, which brings favourable
conditioning to the kernelised setting. Finally, Section 4.2.4 compares different approaches
to stochastic optimisation and provides guidelines on best practices. As a preview of this
section’s contributions, we showcase SGD’s performance, and compare it to CG and inducing
point VI, on a pair of toy problems designed to capture complementary computational
difficulties, in Figure 4.1.

66 Stochastic Gradient Descent for Gaussian Processes

4.2.1 A first approach: mini batching and unbiased random features

The optimisation problem (4.2), requires O(n2) operations to compute both the square error
and regulariser terms exactly. The square error loss term is amenable to minibatching, which
gives an unbiased estimate in O(n) operations. Assuming that k admits random features, we
can stochastically estimate the regulariser by expressing the kernel matrix as the expectation of
an outer product of feature expansions (see Section 2.2.4). That is, ∥α∥2K = Es∼Ωα

TΦsΦ
T
s α

where Φs ∈ Rn×d is the stacked d-dimensional random feature expansion of the n inputs.
Combining both estimators gives our SGD objective

n

r

r∑
i=1

[B]ii(yi −KxiXα)
2 + αTΦsΦ

T
s α (4.5)

where r is the minibatch size. This regulariser estimate is unbiased even when drawing
a single Fourier feature per step d = 1. The number of features controls the variance.
Evaluating (4.5) presentsO(n) complexity, in contrast with theO(n2) complexity of one CG
step. It is straight forward to apply the same estimators to the 0-mean sampling objective in
(4.4) obtaining

n

r

r∑
i=1

[B]ii(f̃(xi) + εi −KxiXα)
2 + αTΦsΦ

T
s α, (4.6)

with a per-step cost of O(ns), for s the number of posterior samples drawn. We discuss
sublinear inducing point techniques further on, in Section 4.3.

4.2.2 A lower variance estimator for SGD-based sampling

Empirically, the minibatch estimator in (4.6) results in high gradient variance. This is
because our targets contain unstructured noise εi, which is difficult to predict. We propose
an alternative sampling objective function which shares the same gradient in expectation,
but whose stochastic estimates may present lower variance. We provide both kernelised
and weight-space forms for the new objective. We then analyse the variance of the new
weight-space objective.

4.2 Stochastic estimators of the sampling objective 67

Kernelised form

We modify the sampling objective (4.4) by moving the noise into the regulariser term

argmin
α∈Rn

n∑
i=1

[B]ii(f̃(xi)−KxiXα)
2 + ∥α− E ′∥2K (4.7)

with E ′ ∼ N (0, B) and f̃(·) = ϕs(·)w w ∼ N (0, Id) s ∼ Ω,

which inverts the covariance of the distribution the noise is sampled from. We highlight
this change with the prime notation E ′. This modification preserves the optimal representer
weights since objective (4.7) equals (4.4) up to a constant.

Derivation Equivalency of kernelised sampling objectives
To show the equality of both objectives up to a constant, we show both have the same
gradient.
Let LLT = B−1 be the Cholesky factorisation of the noise covariance, let f(X) ∼
N (0, K), and let ϵ ∼ N (0, In). Our objectives are

∥f(X) + Lϵ−Kα∥2B + ∥α∥2K (4.8)

and

∥f(X)−Kα∥2B +
∥∥α− L−T ϵ

∥∥2
K
. (4.9)

Taking derivatives with respect to α, we have

∂α
(
∥f(X) + Lϵ−Kα∥2B + ∥α∥2K

)
(4.10)

= −2KB (f(X) + Lϵ−Kα) + 2Kα (4.11)

= −2K(Bf(X)−BKα + L−T ϵ− α), (4.12)

and

∂α
(
∥f(X)−Kα∥2B +

∥∥α− L−T ϵ
∥∥2
K

)
(4.13)

= −2KB (f(X)−Kα) + 2K(α− L−T ϵ) (4.14)

= −2K(Bf(X)−BKα + L−T ϵ− α), (4.15)

68 Stochastic Gradient Descent for Gaussian Processes

respectively. These expressions match, giving the claim. Furthermore, since both
objectives are strictly convex, they both have the same unique minimum.

Weight-space form

We now apply the same trick for the weight-space form of the sample-then-optimise objective
(2.38). This will allow us to scale the linearised Laplace method to real-world sized deep
learning problems in Chapter 6. We begin by stating the zero-mean sample-then-optimise
objective:

L(w) =
1

2
∥E − Φw∥2B +

1

2
∥w − w0∥2A (4.16)

with E ∼ N (0, B−1) and w0 ∼ N (0, A−1).

Inspecting the expression, we consider how it may be stochastically estimated:

• The first term is data dependent. It corresponds to the scaled squared error in fitting E
as a linear combination of Φ. Its gradient requires stochastic approximation for large
datasets.

• The second term, a regulariser centred at w0, does not depend on the data. Its
gradient can thus be computed exactly at every optimisation step. This differs from
the kernelised setting, where the regulariser contained the kernel matrix and required
stochastic estimation.

Again, we encounter random noise in the targets, and thus, the variance of a mini-batch
estimate of the gradient of ∥Φz − E∥2B may be large. Instead, for E and w0 defined as above,
we propose the following alternative loss, again equal to (4.16) up to an additive constant
independent of the variable being optimised:

L′(w) =
1

2
∥Φw∥2B +

1

2
∥w − w′

0∥2A with w′
0 = w0 + A−1ΦTBE (4.17)

where E ∼ N (0, B−1) and w0 ∼ N (0, A−1).

The mini-batch gradients of L′ and L are equal in expectation and both objective’s optima is
the same. However, in L′, the randomness from the noise samples E and the prior sample
w0 both feature within the regularisation term—the gradient of which can be computed
exactly—rather than in the data-dependent term.

4.2 Stochastic estimators of the sampling objective 69

Derivation Equivalency of weight space sampling objectives
Again, the losses L and L′ are strictly convex, thus to confirm they have the same
unique minimum, it suffices to consider the respective first order optimality conditions.
We introduce ζ ∈ Rd and ζ ′ ∈ Rd such that ∂wL(ζ) = 0 and ∂wL′(ζ ′) = 0. We have,

∂wL(ζ) = ΦTB(Φζ − E) + A(ζ − w0), (4.18)

and

∂wL
′(ζ ′) = ΦTBΦζ ′ + A(ζ ′ − A−1ΦTBE − w0) (4.19)

= ΦTB(Φζ ′ − E) + A(ζ ′ − w0) (4.20)

Thus ζ = ζ ′ almost surely. Moreover, L′(w) = L(w) + C for all w, for C a constant
independent of w.

For completeness, we provide an alternative path to checking the validity of our sampling
objectives. We study the distribution of their optima.

Derivation Distribution of optima of weight-space sampling losses
To determine the distribution of ζ = argminw∈Rd L(w), we note that it is a linear
transformation of zero-mean Gaussian random variables, and thus itself a zero-mean
Gaussian random variable. Rearranging the first order optimality condition, we find
that

ζ = H−1(ΦTBE + Aθ0). (4.21)

Thus

E[ζζT] = H−1E[(ΦTBE + Aθ0)(ΦTBE + Aθ0)T]H−1 (4.22)

= H−1
(
ΦTBE[EET]BΦ + AE[θ0θ0]A+ 2ΦTBE[E(θ0)T]A

)
H−1 (4.23)

= H−1(ΦTBΦ + A)H−1 = H−1HH−1 = H−1, (4.24)

and so ζ ∼ N (0, H−1).

70 Stochastic Gradient Descent for Gaussian Processes

Analysis of minibatch gradient variance

Consider the variance of the single-datapoint stochastic gradient estimators for both weight-
space objectives’ data dependent terms. At z ∈ Rd, for datapoint indices sampled as
j ∼ Uniform({1, . . . , n}), these are

ĝ = nϕ(xj)
T (ϕ(xj)z − εj) and ĝ′ = nϕ(xj)

Tϕ(xj)z (4.25)

for L and L′, respectively. Direct calculation, shows that

1
n
[Varĝ − Varĝ′] = Var(ΦTBE)− 2Cov(ΦTBΦz,ΦTBE) =: ∆. (4.26)

Note that both Varĝ and Varĝ′ are d×dmatrices. We impose an order on these by considering
their traces: we prefer the new gradient estimator ĝ′ if the sum of its per-dimension variances
is lower than that of ĝ; that is if Tr∆ > 0. We analyse two key settings:

• At initialisation, taking w = w0 (or any other initialisation independent of E),

Tr∆ = Tr{ΦTBE[EET]BΦ} − Tr{ΦTBΦE[w0ET]BΦ} = TrM > 0. (4.27)

Recall that M = ΦTBΦ. We used that E[EET] = B−1 and since E is zero mean and
independent of w0, we have E[w0ET] = Ew0EET = 0. Thus, the new objective L′ is
always preferred at initialisation.

• At convergence, that is, at ζ = argminw∈Rd L(w), assuming a prior precision of the
form A = aI , a more involved calculation, contained in Appendix C.3 of Antorán et al.
(2023), shows that L′ is preferred if

2aγ > TrM, (4.28)

where γ is the effective dimension (2.46). This is satisfied if the regulariser a is large
relative to the eigenvalues of M , (see Appendix C.4 of Antorán et al. (2023)), that is,
when the effective dimension is low and the parameters are not strongly determined by
the data relative to the prior. In practise, we find this to be the case for most heavily
overparametrised models, like linearised neural networks, which are central to the
following chapters of this thesis.

When L′ is preferred both at initialisation and at convergence, we expect it to have lower
variance for most minibatches throughout training. Even if the proposed objective L′ is not

4.2 Stochastic estimators of the sampling objective 71

preferred at convergence, it may still be preferred for most of the optimisation, before the
noise is fit well enough.

Remark Sticking the landing... or not.
The regular sample-then-optimise objective (4.16) uses random noise as targets in its
fit term. There may be an optima of this fit term where we can perfectly interpolate
the noise targets. At this point, not only is the gradient of the fit term 0, but so is any
minibatch estimate we construct. Of course, the regulariser prevents the optima of the
full objective from matching the optima of the fit term.
On the other hand, the fit term of our proposed objective (4.17) has no targets (or 0
targets). Clearly, the regulariser prevents the optima of the proposed objective being
the zero vector. Thus, at the optima, the data-fit term’s gradient variance will not go to
zero.
With this, we can build intuition for the result in (4.28). The weaker the regulariser,
the closer the full objective optima is to the optima of the fit term, where the regular
sample-then-optimise objective (4.16) presents lower variance.

w

Fig. 4.2 Left: optimisation traces for the relative L2 error in the weight-space posterior
sample using our proposed sample-then-optimise objective L′ (4.17) and the existing one L
(4.16). The model is a linearised NN Section 7.2.1 and the task is MNIST. The plotted lines
are averaged across 16 samples and 5 seeds. The low variance objective allows a ≈ 16×
reduction in batch size without reduction in weight-space posterior sample accuracy. Right:
gradient variance throughout optimisation for a single-sample minibatch estimator (r = 1)
of the kernelised sampling objectives. We use an RBF kernel on the elevators dataset
(n ≈ 16k). Again L′ refers to the low variance estimator (4.7). In both plots we run SGD
with Nesterov momentum ρ = 0.9 and geometric averaging.

72 Stochastic Gradient Descent for Gaussian Processes

Demonstration of low-variance sampling objective

Figure 4.2 illustrates the benefits of both our weight space and kernelised low variance
sampling objectives. For the weight-space version, we use the Jacobian feature expansion
corresponding to a LeNet style CNN with d = 29226 weights. Its linearisation point is found
by pre-training the model on MNIST.

4.2.3 Stochastic Dual Descent

We now analyse the curvature of the quadratic objectives used for GP posterior sampling in
Section 4.2.1 and Section 4.2.2. This leads us propose a better conditioned objective. In the
context of this new objective, we question our previous choice of stochastic approximation.
We compare mini-batching and random-feature approximations, and building upon the
insights gained, propose a random-coordinate estimator with more desirable properties than
either. The resulting algorithm: Stochastic dual descent (SDD) can be seen as an adaptation
of the stochastic dual coordinate ascent algorithm of Shalev-Shwartz and Zhang (2013) to the
large-scale deep-learning-type gradient descent framework. We also incorporate insights on
stochastic approximation from the theoretical work of Dieuleveut et al. (2017) and Varre et al.
(2021).

Assuming an isotropic noise precision, B = bI , the kernelised posterior sampling
objectives provided in Section 4.2.1 and Section 4.2.2 are of the form

Lp(α) :=
1

2
∥z −Kα∥2 + b−1

2
∥α∥2K

over α ∈ Rn and for some choice of target vector z ∈ Rn. In the kernel literature (Shalev-
Shwartz and Zhang, 2013; Smola and Schölkopf, 1998), the kernel ridge regression objective
Lp is known as the primal objective, and thus the subscript p. We adopt this naming in the
context of this subsection1. The primal gradient and Hessian are

∂αLp(α) = K(b−1α− z +Kα) and ∂2αLp(α) = K(K + b−1I), (4.29)

respectively. Recall that the speed at which our optimiser approaches α⋆ = (K + b−1I)−1z ∈
Rn is determined by the condition number of the Hessian: the larger the condition number,
the slower the convergence speed. The intuitive reason for this correspondence is that, to

1In the Bayesian linear model and Gaussian process literature, the weight space view is refereed as the
primal form, while the kernelised view is refereed to as the dual form. In the kernel literature, the opposite is
true; methods that deal with objects living in the RKHS are referred to as dual.

4.2 Stochastic estimators of the sampling objective 73

guarantee convergence, the step-size needs to scale inversely with the largest eigenvalue of the
Hessian, while progress in the direction of an eigenvector underlying an eigenvalue is governed
by the step-size multiplied with the corresponding eigenvalue. Letting λi : Rn×n → R return
the ith largest eigenvalue of a matrix, for the primal objective, the tight bounds on the relevant
eigenvalues are

0 ≤ λn(K(K + b−1I)) ≤ λ1(K(K + b−1I)) ≤ κn(κn+ b−1),

where κ = supx∈X k(x, x) is finite by assumption. These bounds only allow for a step-size
β on the order of (κn(κn+ b−1))−1 and, since they do not bound the minimum eigenvalue
away from zero, we do not have a priori guarantees for the performance of gradient descent.

A dual objective

Consider, instead, minimising the dual objective

Ld(α) =
1

2
∥α∥2K+b−1I − αT z. (4.30)

The dual Ld has the same unique minimiser as Lp, namely α⋆. We go on to show the duality
of (Lp, b

−1Ld); the factor of b−1 is immaterial.

Derivation Strong duality of SDD objective Ld (4.30)
We claim that

min
α∈Rn

Lp(α) = −b−1 min
α∈Rn

Ld(α),

with α⋆ minimising both Lp and Ld.
That α⋆ minimises both Lp and Ld can be established from the first order optimality
conditions. Now, for the duality, observe that we can write minα∈Rn Lp(α) equivalently
as the constrained optimisation problem

min
u∈Rn

min
α∈Rn

1

2
∥u∥2 + b−1

2
∥α∥2K subject to u = Kα− z .

Observe that this is quadratic in both u and α. Introducing Lagrange multipliers η ∈ Rn,
in the form b−1η, where we recall that b−1 > 0, the solution of the above is equal to

74 Stochastic Gradient Descent for Gaussian Processes

that of
min
u∈Rn

min
α∈Rn

sup
η∈Rn

1

2
∥u∥2 + b−1

2
∥α∥2K + b−1ηT (z −Kα− u) .

This is a finite-dimensional quadratic problem, and thus we have strong duality (see,
e.g., Examples 5.2.4 in Boyd and Vandenberghe, 2014). We can therefore exchange
the order of the minimum operators and the supremum, yielding the again equivalent
problem

sup
η∈Rn

{
min
u∈Rn

1

2
∥u∥2 − b−1ηTu

}
+

{
min
α∈Rn

b−1

2
∥α∥2K − b−1ηTKα

}
+ b−1ηT z.

Noting that the two inner minimisation problems are quadratic, we solve these analyti-
cally using the first order optimality conditions, that is α = η and u = b−1η, to obtain
that the above is equivalent to

sup
η∈Rn

−b−1

(
1

2
∥η∥2K+b−1I − ηT z

)
= −b−1 min

η∈Rn
Ld(η) .

The result follows by chaining the above equalities.

The dual gradient and Hessian are given by

∂αLd(α) = b−1α− z +Kα and ∂2αLd(α) = K + b−1I. (4.31)

Observe that when running gradient descent on the dual objective Ld, we can use a step-size
of order (κn+ b−1)−1. That is, κn higher than before. Moreover, since the condition number
of the dual satisfies cond(K + b−1I) ≤ 1+κnb, we have faster convergence, and can provide
an a priori bound on the number of iterations required for any fixed error level for any length
n sequence of observations.

Remark The conditioning of weight-space sampling objectives
The weight space sampling objectives (4.16) and (4.17) both present the Hessian
M +A = H . Here, the Hessian of the data fit term appears only once, instead of twice
(like in the Hessian of Lp (4.29)). For A = aI , a ≤ λd(H), and thus the conditioning
number can be bounded from above. Thus, the improvements from the dual kernelised
objective are already baked-into non-kernelised weight-space objectives. This makes

4.2 Stochastic estimators of the sampling objective 75

sense, since in Section 2.2.1 we saw that the weight space problem is also a dual to the
kernelised regression problem (but a different dual than Ld).

Remark An RKHS view of the dual gradient
In Section 4.1, we derived the primal objective Lp (4.29) by applying the representer
theorem to the regularised regression problem formulated in the RKHS

1

2

n∑
i=1

(yi − ⟨k(xi, ·), f⟩2 +
1

2
b−1∥f∥2H.

We did this because we can not fit infinite dimensional objects into our computers.
However, an alternative could have been to take gradients directly in the RKHS

f ′ = K(·)X(Y − f(X)) + b−1f,

apply them to get our updated function

fnew = f − βf ′ = f − β(K(·)X(Y − f(X)) + b−1f),

and then express this in terms of representer weights

fnew = f − βf ′ = K(·)X
(
α− β(Y − f(X) + b−1α)

)
,

and thus we have

αnew = α− β(Y − f(X) + b−1α) = α− β∂αLd(α).

In other words, we can derive the dual objective by performing gradient descent in the
RKHS and projecting back onto the representer weights once the gradient update has
been performed. Thus, the dual objective is “dual” in the sense that it operates directly
in the RKHS.

Demonstration: dual gradients

To illustrate the discussion so far, we compare the progress of dual and the primal gradient
descent when computing the GP posterior mean representer weights on the UCI pol regression

76 Stochastic Gradient Descent for Gaussian Processes

Fig. 4.3 Comparison of full-batch primal and dual gradient descent on pol with varying
step-sizes. Primal gradient descent becomes unstable and diverges for βn greater than
0.1. Dual gradient descent is stable with larger step-sizes, allowing for markedly faster
convergence than the primal. For βn = 0.1, the dual method makes more progress in the
K-norm, whereas the primal in the K2-norm.

task, with results shown in Figure 4.3. There, for the step-sizes we tried, gradient descent
with the primal objective was only stable up to βn = 0.1, and diverged for larger step-sizes.
In contrast, gradient descent with the dual objective is stable with a step-size as much as 500×
higher. It converges faster and to a better solution. We show this on three evaluation metrics:
1) distance to α⋆ measured in ∥ · ∥2K , the K-norm (squared), 2) in ∥ · ∥2K2 , the K2-norm
(squared), and 3) test set root mean square error (RMSE). To understand the difference
between the two norms, note that the K-norm error bounds the error of approximating
f⋆ = K(·)Xα⋆ with f = K(·)Xα uniformly. Indeed, as shown below, we have the bound

∥f − f⋆∥∞ ≤
√
κ∥α− α⋆∥2K , (4.32)

where κ = supx∈X k(x, x). Uniform norm guarantees of this type are crucial for sequential
decision making tasks, such as Bayesian optimisation, where test input locations may be
arbitrary. The K2-norm metric, on the other hand, reflects training error. Examining the
gradients, it is immediate that the primal gradient optimises for the K2-norm, while the dual
for the K-norm. And indeed, we see in Figure 4.3 that when both methods use βn = 0.1,
up to 70k iterations, the dual method is better on the K-norm metric and the primal on K2.
Later, the dual gradient method performs better on all metrics. This, too, is to be expected, as
the minimum eigenvalue of the Hessian of the dual loss is higher than that of the primal loss.

4.2 Stochastic estimators of the sampling objective 77

Derivation Uniform bound on function approximation error
We first introduce some machinery that allows us to formally reason about elements in
a (potentially) infinite dimensional RKHSH. For observations X , let KX(·) : H → Rn

be the linear operator mapping h 7→ f(X), where f(X) = (f(x1), . . . , f(xn)). We
will writeK(·)X for the adjoint ofKX(·), and observe thatK is the matrix of the operator
KX(·)K(·)X with respect to the standard basis.
With that, first, observe that,

∥f − f⋆∥∞ = sup
x∈X
|f(x)− f⋆(x)| (defn. of sup norm)

= sup
x∈X
|⟨k(x, ·), f − f⋆⟩| (reproducing property)

≤ sup
x∈X
∥k(x, ·)∥H∥f − f⋆∥H (CBS)

≤ √κ∥f − f⋆∥H , (defn. of κ)

Now, observe that f = K(·)Xα and f⋆ = K(·)Xα⋆, and so we have the equalities

∥f − f⋆∥2H = ⟨K(·)X(α− α⋆), K(·)X(α− α⋆)⟩ (defn. norm)

= ⟨α− α⋆, KX(·)K(·)X(α− α⋆)⟩ (defn. adjoint)

= ∥α− α⋆∥2K . (defn. K)

Combining the above two equalities yields the claim.

Randomised Gradients: Random Features versus Random Coordinates

We now study the construction of a stochastic objective to estimate the dual gradient (4.31) in
linear time. The minibatching plus random feature estimator presented in Section 4.2.1 is not
suitable for the dual objective because the kernel matrix does not appear in the regulariser of
the dual objective. However, it does appear in the data fit term. Thus, we compare random
feature and minibatch estimators.

We begin with random features. Recall that K = Es∼ΩΦsΦ
T
s where Φs ∈ Rn×d is a d

dimensional random feature expansion of X . It follows that

∂̃αLd(α) = b−1α− z + ΦsΦ
T
s α

gives an unbiased estimate of ∂αLd(α).

78 Stochastic Gradient Descent for Gaussian Processes

An alternative is to use minibatching

∂̂αLd(α) = neie
T
i ∂αLd(α) = nei(b

−1αi − zi + [K]iα) with i ∼ Uniform{1, . . . , n},
(4.33)

where ei are the elements of the canonical basis, i.e. e1 = [1, 0, 0, . . .]T . Thanks to
E[neieTi] = I , this is also an unbiased estimate of ∂αLd(α). Note that the cost of calculating
either ∂̃αLd(α) or ∂̂αLd(α) is linear in n, achieving our goal of reduced computation time.
Also, note that while ∂̃αLd(α), which we call the random feature estimate, is generally a
dense vector, ∂̂αLd(α), is sparse. Since all but one coordinates of ∂̂αLd(α) are zero, we refer
to this as the random coordinate estimate2.

The nature of the noise introduced by these estimators, and thus their qualities, are quite
different. In particular, one can show that∥∥∥∂̂αLd(α)− ∂αLd(α)

∥∥∥ ≤ ∥∥(neieTi − I)(K + b−1I)
∥∥∥α− α⋆∥ .

As such, the noise introduced by ∂̂αLd(α) is proportional to the distance between the current
iterate α, and the optima α⋆. The noise goes to 0 when the optima is reached. This estimator
does stick the landing! For ∂̃αLd(α), letting K̃ = ΦsΦ

T
s , we have∥∥∥∂̃αLd(α)− ∂αLd(α)

∥∥∥ =
∥∥∥(K̃ −K)α

∥∥∥ .
As such, the error in ∂̃αLd(α) is not reduced as α approaches α⋆. In the optimisation literature,
∂̃α would be classed as an additive noise gradient oracle, whereas ∂̂α as a multiplicative noise
oracle (Dieuleveut et al., 2017). Intuitively, multiplicative noise oracles automatically reduce
the amount of noise injected as the iterates get closer to their target. While harder to analyse,
multiplicative noise oracles often yield better performance: see, for example, Varre et al.
(2021).

Remark Incompatibility of multiplicative noise with the weight-space problem
Unfortunately, the random coordinate estimator (4.33) is not applicable to the weight
space sample-then-optimise objective (4.17). The multiplicative noise estimator relies
on the data-fit and regulariser terms being minibatched jointly. This is possible in the
kernelised setting, since they are both n dimensional. However, in the weight-space
setting, the data-fit objective is composed of n terms, while the regulariser is composed

2In practise, we implement this estimator by sampling multiple coordinates at each step, not just one.

4.2 Stochastic estimators of the sampling objective 79

Algorithm 1: Stochastic dual descent for approximating α⋆ = (K + b−1I)−1z

Inputs: Kernel matrix K with rows K1, . . . , Kn ∈ Rn, targets z ∈ Rn,
likelihood precision b > 0, number of steps T ∈ N+, batch size r ∈ {1, . . . , n},
step size β > 0, momentum parameter ρ ∈ [0, 1), averaging parameter χ ∈ (0, 1]
Set v0 = 0; α0 = 0; α0 = 0 ; // all in Rn

while t ∈ {1, . . . , T} do
Sample It = (it1, . . . , i

t
r) ∼ Uniform{1, . . . , n} independently ; // rand.

coord.
gt =

n
r

∑
i∈It((Ki + b−1ei)

T (αt−1 + ρvt−1)− bi)ei ; // gradient estimate
vt = ρvt−1 − βgt ; // velocity update
αt = αt−1 + vt ; // parameter update
αt = χαt + (1− χ)αt−1 ; // geometric averaging

Output: αT

of d terms, one per model parameter. One could subsample the parameters of the
linear model in the data-fit term, but this would require us having to compute the full
dataset’s feature expansion at each step. This would be computationally intractable
for the Jacobian basis functions we deal with in the later chapters of this thesis. Thus,
for the weight-space formulation, we must fall-back on additive-noise and the reduced
variance estimator corresponding to the objective in (4.17) is the best we can do.

Remark Can we apply the variance reduction strategy of Section 4.2.2 to the
random coordinate estimator of the dual objective?
The variance reduction strategy presented earlier in this chapter amounts to moving
the random noise in the sample-then-optimise targets from the data fit term to the
regulariser. Here, we do this for the dual gradient (4.31). Letting the noisy targets
be z = f(X) + E , we move E to the regulariser while inverting its covariance by
premultiplying by the noise precision b

∂αLd = (Kα− f(X)− E) + b−1E = Kα− f(X)︸ ︷︷ ︸
new fit gradient

− b−1(α− bE)︸ ︷︷ ︸
new reg. gradient

.

Now, by inspection, it is clear that the random coordinate estimator, which subsamples
the entries of the fit term and regulariser jointly, produces the same result when applied
to both of the forms of the dual gradient written above. It is clear that we have nothing
to gain by applying the variance reduction strategy.

80 Stochastic Gradient Descent for Gaussian Processes

Fig. 4.4 A comparison of dual (stochastic) gradient descent on the pol data set with either
random Fourier features or random coordinates, using batch size r = 512, momentum ρ = 0.9
and averaging parameter χ = 0.001 (see Section 4.2.4 for explanation of latter two). Random
features converge with βn = 5× 10−4 but perform poorly, and diverge with a higher step-size.
Random coordinates are stable with βn = 50 and show much stronger performance on all
metrics. We include a version of random coordinates where only the Kα term is subsampled:
this breaks the multiplicative noise property, and results in an estimate which is worse on
both the K-norm and the K2-norm metric.

We term the combination of the dual gradient (4.31) with random coordinate estimation
(4.33) as Stochastic Dual Descent (SDD). The corresponding algorithm is provided in
algorithm 1. We discuss optimisation strategies in Section 4.2.4. We henceforth distinguish
this algorithm from the one that uses the primal loss (4.4) and minibatching of only the fit
term, as opposed to random coordinate estimation, by referring to the latter as SGD.

Demonstration: additive vs multiplicative noise

In Figure 4.4, we compare variants of stochastic dual descent with either random (Fourier)
features or random coordinates. We see that random features, which produce high-variance
additive noise, can only be used with very small step-sizes and have poor asymptotic
performance. We test two versions of random coordinates: ∂̂αLd(α), where, as presented, we
subsample the whole gradient, and an alternative, neieTi (Kα)− y − b−1α, where only the
Kα term is subsampled. While both are stable with much higher step-sizes than random
features, the latter has worse asymptotic performance. This is a kind of Rao-Blackwellisation
trap: introducing the known value of −y + b−1α in place of its estimate neieTi (−y + b−1α)

destroys the multiplicative property of the noise, making things worse, not better.

4.2 Stochastic estimators of the sampling objective 81

Fig. 4.5 Comparison of optimisation strategies for random coordinate estimator of the dual
objective on the pol data set, using momentum ρ = 0.9, averaging parameter χ = 0.001,
batch size r = 128, and step-size βn = 50. Nesterov’s momentum significantly improves
convergence speed across all metrics. The dashed olive line, marked arithmetic averaging,
shows the regular iterate up until 70k steps, at which point averaging commences and the
averaged iterate is shown. Arithmetic iterate averaging slows down convergence in K-norm
once enabled. Geometric iterate averaging, on the other hand, outperforms arithmetic
averaging and unaveraged iterates throughout optimisation.

4.2.4 Getting the optimiser right

Momentum, or acceleration, is a range of modifications to the usual gradient descent updates
that aim to improve the rate of convergence, in particular with respect to its dependence on
the curvature of the optimisation problem (Polyak, 1964). We use Nesterov’s momentum
(Nesterov, 1983), as adapted for deep learning by Sutskever et al. (2013), because it is readily
available in standard deep learning libraries. Algorithm 1 gives the precise updates. We
use a momentum of ρ = 0.9 throughout. Comparing the plots in Figure 4.5, we see that
momentum is vital on this problem, independently of iterate averaging.

When gradient updates are stochastic with additive noise and step-size is constant, the
resulting iterates will bounce around the optimum rather than converging. In this setting, one
can recover a convergent algorithm by arithmetically averaging the tail iterates, a procedure
called Polyak–Ruppert averaging (Polyak, 1990; Polyak and Juditsky, 1992; Ruppert, 1988).
While Polyak–Ruppert averaging is necessary with constant step-size and additive noise,
it is not under multiplicative noise (Varre et al., 2021), and indeed can slow convergence.
We recommend using geometric averaging instead, where we let α0 = α0 and, at each step,
compute

αt = χαt + (1− χ)αt−1 for an averaging parameter χ ∈ (0, 1],

82 Stochastic Gradient Descent for Gaussian Processes

Fig. 4.6 Comparison of stochastic dual descent on pol with batch size r = 512 and averaging
parameter χ = 0.001, using different optimisers. While Adam and Nesterov perform similarly
on Test RMSE, the latter has much closer convergence in both K-norm and K2-norm

and return αT . Geometric averaging is an anytime approach. It does not rely on fixed
averaging-window size, and thus can be used in combination with early stopping, and the
value of χ can be tuned adaptively. Here and throughout, we set χ = 100/T , for T the total
number of steps we perform. Figure 4.5 shows that geometric averaging outperforms both
arithmetic averaging, and simply returning the last iterate αT without any averaging.

Demonstration: Comparing Polyak momentum and geometric averaging with popular
optimisers

In Figure 4.6, we report the performance of different optimisers on the dual problem. While
algorithms such as AdaGrad, RMSprop, and Adam are designed to tackle problems with a
non-constant curvature, the problem of sampling from a GP posterior is quadratic. Here,
Nesterov-type momentum is theoretically rate-optimal. For all optimisers, we tune the
step-size in a range of [0.01, 100] and report the best performance; Adam with 0.05, AdaGrad
with 10, RMSProp with 0.05, and Nesterov’s momentum with 50. As predicted by the theory,
Nesterov does best.

4.3 SGD for inference with inducing points

So far, our sampling objectives have presented linear cost in the dataset size. In the large-scale
setting, algorithms with costs independent of the dataset size are often preferable. For GPs,
this can be achieved through inducing point posteriors (Hensman et al., 2013; Titsias, 2009a),
reviewed in Section 3.1.2, to which we now extend SGD sampling.

4.3 SGD for inference with inducing points 83

Let Z = (z1, z2, . . . , zm) ∈ Xm be a set of m ∈ N inducing points.

By inspecting (3.12), we see that the optimal inducing point mean µ(Z)
f |Y can be written

µ
(Z)
f |Y (·) = K(·)Zα⋆ =

m∑
j=1

α∗ ik(zj, ·) α⋆ = argmin
α∈Rm

n∑
i=1

[B]ii(yi −KxiZα)
2 + ∥α∥2KZZ

,

(4.34)

and we can parameterise the uncertainty reduction term in the same way but with representer
weights given by

argmin
α∈Rm

n∑
i=1

[B]ii(f(xi) + εi −KxiZα)
2 + ∥α∥2KZZ

(4.35)

with f (Z)(xi) ∼ N (0, KxiZK
−1
ZZKZxi

) and E ∼ N (0, B−1).

Derivation Derivation of inducing point sampling objectives (4.34) and (4.35).

Both expressions are derived in the same way, with only the targets we regress against
changing between the objective for the variational posterior mean and samples. We part
from the pathwise form of the 0-mean Kullback–Leibler-optimal inducing point GP

(f (Z)|Y)(·) =
= f(·) + u

(Z)
f |Y (·)−K(·)ZK

−1
ZZKZX(KXZK

−1
ZZKZX +B−1)−1(f (Z)(X) + E)

E ∼ N (0, B−1) f ∼ GP(0, k) f (Z)(·) = K(·)ZK
−1
ZZf(Z).

and apply the Woodbury identity to obtain

K(·)ZK
−1
ZZKZX(KXZK

−1
ZZKZX +B−1)−1(f (Z)(X) + ε) (4.36)

= K(·)Z(KXZBKXZ +KZZ)
−1KZXB(f (Z)(X) + ε) (4.37)

= K(·)Zα⋆. (4.38)

Now, we recognize (KXZBKXZ+KZZ)
−1KZXB(f (Z)(X)+ε) = α⋆ as the expression

for the optimiser of a ridge-regularised linear regression problem—see (2.7)—with
parameters α, features KXZ , Gaussian noise of covariance B−1, and regulariser
curvature KZZ . The targets are given by the random variable (f (Z)(X) + E).

84 Stochastic Gradient Descent for Gaussian Processes

−6

−3

0

3

6

In
fi
ll

a
sy

m
p
to

ti
cs

10 Inducing Points 15 Inducing Points 20 Inducing Points

-7 -3.5 0 3.5 7

−4

−2

0

2

4

L
a
rg

e-
d
o
m

a
in

a
sy

m
p
to

ti
cs

1000 Inducing Points

-7 -3.5 0 3.5 7

2000 Inducing Points

-7 -3.5 0 3.5 7

3000 Inducing Points

Exact GP Approx. Inducing GP Inducing GP

Fig. 4.7 Comparison of exact and approximate inducing point posteriors for a GP with
squared exponential kernel and 10k data points generated using the true regression function
sin(2x) + cos(5x) under two different data-generation schemes: infill asymptotics, which
considers xi ∼ N (0, 1), and large-domain asymptotics, which considers xi on an evenly
spaced grid with fixed spacing. We see that the approximation needed to apply inducing
points is only inaccurate in situations where the inducing point posterior itself has significant
error, which generally manifests itself as error bars that are larger than those of the exact
posterior.

Exact implementation of (4.35) is precluded by the need to draw prior samples from a
Gaussian with covariance KXZK

−1
ZZKZX . This would require inverting KZZ , which presents

cubic cost in m and may be poorly conditioned. However, we identify this matrix as a
Nyström (i.e. low rank for m < n) approximation to K. Thus, we can approximate (4.35)
by replacing f (Z) ∼ GP(0, K(·),ZK

−1
Z,ZKZ,(·)) with f ∼ GP(0, k(·, ·)), which can be, in turn,

accurately approximated with random features (2.27). The error in approximating f (Z) with
f is small when the number of inducing points m is large and the inducing points are close
enough to the data. That is, whenever the inducing point GP is a good approximation to the
posterior GP.

Remark on the Error in the Nyström Approximation KX,ZK
−1
Z,ZKZ,X ≈ K

Figure 4.7 compares the KL-optimal inducing point posterior GP with that obtained

4.3 SGD for inference with inducing points 85

when taking the prior function samples which we fit with the representer weighed evalu-
ation functionals to be f(X) with f ∼ GP(0, k) instead of f (Z)(X) = KXZK

−1
ZZf(Z).

This amounts to approximating the Nyström-type matrix KX,ZK
−1
Z,ZKZ,X with its

exact counterpart KX,X . Both of these matrices become very similar if there is an
inducing point placed sufficiently close to every data point. In practice, this tends to
occur when an inducing point is placed within roughly a half-length-scale of every
observation. This is effectively what is needed for inducing point methods to provide a
good approximation of the exact GP. This is reflected in Figure 4.7, where we see that
our approximate inducing point posterior differs from the exact inducing point posterior
only in situations where the latter fails to be a good approximation to the exact GP in
the first place. This manifests as the approximate method providing larger error bars.
When the number of inducing points increases, both methods become indistinguishable
from each other and the exact GP. Fortunately, the linear cost of SGD in the number of
inducing points allows us to use a very large number of these in practice.

We now turn to stochastic estimation of the inducing point sampling objectives (4.34)
and (4.35). Sadly, none of the tricks developed in this chapter are applicable. Since the
curvature of the data-fit term KZXBKXZ differs from that of the regulariser Kzz, we can not
apply stochastic dual descent. Additionally, the data fit term is a sum of n terms, while the
regulariser is a sum of m terms; we can not apply the random coordinate estimator either.
Finally, the low-variance estimator of Section 4.2.2, would require sampling the noise in
the regularisation term from N (0, K−1

zz KZXBKXZK
−1
zz), which is also intractable for large

numbers of inducing points. With this, we apply the simple minibatching plus random feature
stochastic estimator given in (4.5) to the inducing point sampling objective.

The inducing point objectives differ from those presented in previous sections in that
there are O(m) and not O(n) learnable parameters, and we may choose the value of m and
locations Z freely. The cost of inducing point representer weight updates is thus O(sm),
where s is the number of samples.

Demonstration: inducing point SGD

We demonstrate the inducing point variant of our method, on houseelectric, our largest
dataset (n=2M). We select varying numbers of inducing points from the pool of train points.
In particular, we use a K-nearest-neighbour algorithm to find and eliminate the points nearest
to other points (in terms of euclidean distance). Figure 4.8 shows the time required for 100k
SGD steps scales roughly linearly with inducing points. It takes 68m for full SGD and 50m,

86 Stochastic Gradient Descent for Gaussian Processes

n mmm

Fig. 4.8 Test RMSE and negative log-likelihood (NLL) obtained by SGD and its inducing
point variants, for decreasing numbers of inducing points, given in the rightmost plot, as a
function of time on an A100 GPU, on the houseelectric dataset (n ≈ 2M).

25m, and 17m for m=1099m, 728k, and 218k, respectively. Performance in terms of RMSE
and NLL degrades less than 10% even when using 218k points.

Model Inducing SGD Standard SGD CG SVGP
m 218 782 431 489 1 099 206 1 844 352 1 844 352 1 024

RMSE 0.08± 0.00 0.08± 0.00 0.08± 0.01 0.09± 0.00 0.87± 0.14 0.10± 0.02
Hours 0.28± 0.01 0.41± 0.09 0.83± 0.17 2.69± 0.91 2.62± 0.01 0.04± 0.00
NLL -1.10± 0.05 -1.11± 0.04 -1.13± 0.04 -1.09± 0.04 2.07± 0.58 -0.94± 0.13

Table 4.1 Time to convergence (on an A100 GPU) and predictive performance for all
approximate inference methods under consideration in this chapter, including inducing point
SGD, on the houseelectric dataset. Experimental details are provided below, in Section 4.5.

Table 4.1 provides quantitative results for inducing point SGD on the houseelectric
dataset. SGD’s time to convergence is shown to scale roughly linearly in the number of
inducing points. However, for this dataset, keeping only 10% of observations as inducing
points and thus obtaining 10× faster convergence leaves performance unaffected. This
suggests the dataset can be summarised well by a small number of points. Indeed, SVGP
obtains almost as strong performance as SGD in terms of RMSE with only 1024 inducing
points. SVGP’s NLL is weaker however, which is consistent with known issues of uncertainty
overestimation when using a too small amount of inducing points. On the other hand, the
large and potentially redundant nature of this dataset makes the corresponding optimisation
problem ill-conditioned, hurting CG’s performance.

4.4 Analysing the implicit bias of stochastic gradient descent 87

0.0

0.4

0.8

1.2
p

o
l

RMSE to Test Data

0

15

30

45
RMSE to Exact GP

0

20
Euclidean Error

400

600
0

1
RKHS Error

1.0

2.5

0.0

1.2

2.4

3.6

el
ev

a
to

rs

0.0

0.3

0.6

0.9

0.0

3.5

30

160
0.0

0.6

0

5

0.0

0.4

0.8

1.2

b
ik

e

0.0

0.6

1.2

1.8

0

100

30

160
0.0

1.5

0.0

1.5

10−1100 101 102 103

Time in sec

0.4

1.0

1.6

2.2

p
ro

te
in

10−1100 101 102 103

Time in sec

0.0

0.6

1.2

1.8

0

6

10−1100 101 102 103

Time in sec

23k

25k
0

1

10−1100 101 102 103

Time in sec

0.6

1.8

SGD (optimal noise) SGD (low noise) CG (optimal noise) CG (low noise)

Fig. 4.9 Convergence of the GP posterior mean with SGD and CG as a function of time (on
an A100 GPU) on the pol (N ≈ 15k), elevators (N ≈ 16k), bike (N ≈ 17k) and protein
(N ≈ 46k) datasets, while setting the noise scale to (i) maximise exact GP marginal likelihood
and (ii) to 10−3, labelled low noise. We plot, in left-to-right order, test RMSE, RMSE to the
exact GP mean at the test inputs, which is related to the K2 norm ∥α− α⋆∥K2 , representer
weight euclidean error ∥α− α∗∥, and RKHS error ∥µf |Y − µSGD∥H = ∥α − α⋆∥K , i.e. K
norm. In the latter two plots, the low-noise setting is shown on the bottom.

4.4 Analysing the implicit bias of stochastic gradient descent

We have detailed an SGD-based scheme for obtaining approximate samples from a poste-
rior Gaussian process. Despite SGD’s significantly lower cost per-iteration than CG, its
convergence to the true optima, shown in Figure 4.9, is much slower in both Euclidean
representer weight space, and the reproducing kernel Hilbert space (RKHS) induced by the
kernel. Despite this, the predictions obtained by SGD are very close to those of the exact GP,
and effectively achieve the same test RMSE. Moreover, Figure 4.10 shows the SGD posterior
on a 1D toy task exhibits error bars of the correct width close to the data, and which revert
smoothly to the prior far away from the data. Empirically, differences between the SGD and
exact posteriors concentrate at the borders of data-dense regions.

We now argue the behavior seen in Figure 4.10 is a general feature of SGD: one can expect
it to obtain good performance even in situations where it does not converge to the exact solution.

88 Stochastic Gradient Descent for Gaussian Processes

v

Fig. 4.10 SGD error and spectral basis functions. Top-left: SGD (blue) and exact GP (black,
dashed) fit to a n=10k, toy regression dataset. Top-right: 2-Wasserstein distance (W2)
between both processes’ marginals. The W2 values are low near the data (interpolation
region) and far away from the training data. The error concentrates at the edges of the
data (extrapolation region). Bottom: The low-index spectral basis functions lie on the
interpolation region, where the W2 error is low, while functions of index 10 and larger lie on
the extrapolation region where the error is large.

Consider posterior function samples in pathwise form, namely (f |Y)(·) = f(·) +K(·)Xα,
where f ∼ GP(0, k) is a prior function sample and α are the learnable representer weights.
We characterise the behavior of SGD-computed approximate posteriors by splitting the input
space X into 3 regions, which we call the far-away, interpolation, and extrapolation regions.
This is done as follows.

(I) The Far-away Region. This corresponds to points sufficiently distant from the observed
data. Here, for kernels that decay over space, the evaluation functionals k(xi, ·) go to zero.
Thus, both the true posterior and any approximations formulated pathwise revert to the prior.
More precisely, let X = Rd, let k satisfy limc→∞ k(x′, c · x) = 0 for all x′ and x in X , and
let (f |Y)(·) be given by (f |Y)(·) = f(·) + K(·)Xα, with α ∈ Rn. Then, for any fixed α,
any choice of x ∈ X , it follows immediately that limc→∞(f |Y)(c · x) = f(c · x). Therefore,
SGD cannot incur error in regions which are sufficiently far away from the data. This effect
is depicted in Figure 4.10.

(II) The Interpolation Region. This includes points close to the training data. We characterise
this region through subspaces of the RKHS, where we show SGD incurs small error.

4.4 Analysing the implicit bias of stochastic gradient descent 89

Let K = V ΛV T be the eigendecomposition of the kernel matrix. We index the
eigenvalues Λ = diag(λ1, . . . , λn) in descending order. Define the spectral basis functions
as eigenvector-weighed linear combinations of evaluation functionals

v(i)(·) =
n∑

j=1

[V]ji√
λi
k(xj, ·). (4.39)

These functions are orthonormal with respect to the RKHS inner product. To characterise
them further, consider the following characterisation of eigenvalues and eigenvectors in the
RKHSH

v(i)(·) = argmax
v∈H

{
n∑

i=1

v(xi)
2 : ∥v∥H = 1, ⟨v, v(j)⟩ = 0,∀j < i

}
. (4.40)

This tells us that the top spectral basis function, v(1)(·), is a function of fixed RKHS norm—
that is, of fixed degree of smoothness, as defined by the kernel k—which takes maximal
values at the observations x1, .., xn. Thus, v(1) will be large near clusters of observations.
The same will be true for the subsequent spectral basis functions, which also take maximal
values at the observations, but are constrained to be RKHS-orthogonal to previous spectral
basis functions. Figure 4.10 confirms that the top spectral basis functions are indeed centred
on the observed data.

Empirically, SGD matches the true posterior in the region of the top spectral basis
functions, i.e. in the data dense regions. We now formalise this observation by showing
that SGD converges quickly in the directions spanned by spectral basis functions with large
eigenvalues. For this, we consider the primal objective (4.2) with minibatching for the data
fit but no random feature estimation of the regulariser; this provides us with a sub-Gaussian
additive noise estimator of the gradient. To simplify the analysis, we assume the use of
arithmetic iterate averaging, as opposed to geometric averaging, and no momentum. Let
projv(i)(·) be the orthogonal projection onto the subspace spanned by v(i).

Proposition 1. Let δ > 0. Let B−1 = b−1I for b−1 > 0. Let µSGD be the predictive mean
function obtained by arithmetically-averaged SGD after t steps, starting from an initial
set of representer weights equal to zero, and using a sufficiently small learning rate of
0 < β < b−1

λ1(λ1+b−1)
. Assume the stochastic estimate of the gradient is G-sub-Gaussian. Then,

with probability 1− δ, we have for i = 1, .., N that

∥∥projv(i) µf |Y − projv(i) µSGD
∥∥
H ≤

1√
λit

(
b∥Y ∥2
η

+G

√
2

t
log

N

δ

)
. (4.41)

90 Stochastic Gradient Descent for Gaussian Processes

This is an extension of a standard result on the convergence of SGD (LeCun et al., 1992)
to the span of the spectral basis functions. For the proof, as well as an additional pointwise
convergence bound, and a variant that handles projections onto general subspaces spanned by
basis functions, we refer to Appendix E of Lin et al. (2023b). In general, we expect G to be
at most O(λ21∥Y ∥∞) with high probability. An analogous result is straightforward to obtain
for the dual gradient (4.31). It allows us to raise our learning rate to 0 < β < 1

λ1+b−1 .

The result extends immediately from the posterior mean to posterior samples. As
consequence, SGD converges to the posterior GP quickly in the data-dense region, namely
where the spectral basis functions corresponding to large eigenvalues are located. Since
convergence speed on the span of each basis function is independent of the magnitude of the
other basis functions’ eigenvalues, SGD can perform well even when the kernel matrix is
ill-conditioned. This is shown in Figure 4.9.

(III) The Extrapolation Region. This can be found by elimination from the input space of
the far-away and interpolation regions, in both of which SGD incurs low error. Consider the
spectral basis functions v(i)(·) with small eigenvalues. By orthogonality of v(1), .., v(N), such
functions cannot be large near the observations while retaining a prescribed norm. Their
mass is therefore placed away from the observations. SGD converges slowly in this region,
resulting in a large error in its solution in both a Euclidean and RKHS sense, as seen in Figure
4.9. Fortunately, due to the lack of data in the extrapolation region, the excess test error
incurred due to SGD nonconvergence may be low, resulting in benign nonconvergence (Zou
et al., 2021). Figure 4.10 shows the Wasserstein distance to the exact GP predictions is high
in this region, as SGD tends to return small representer weights, thereby reverting to the prior.

Demonstration: resilience to ill conditioning

We explore how this section’s result affects the algorithms under consideration by setting a
small isotropic noise variance of b−1 = 10−6 and running them on our set of UCI regression
datasets. Table 4.2 shows the performance of CG severely degrades on all datasets. SVGP
diverges for all datasets. SGD’s results remain essentially-unchanged. This is because the
noise only changes the smallest kernel matrix eigenvalues substantially and these do not
affect convergence in the direction of the top spectral basis functions. This mirrors results
presented in Figure 4.9.

4.5 Experiments and benchmarks 91

Dataset pol elevators bike protein keggdir 3droad song buzz houseelec
N 15000 16599 17379 45730 48827 434874 515345 583250 2049280

R
M

SE

SGD 0.13± 0.00 0.38± 0.00 0.11± 0.00 0.51± 0.00 0.12± 0.00 0.11± 0.00 0.80± 0.00 0.42± 0.01 0.09± 0.00
CG 0.08± 0.00 0.35± 0.00 0.04± 0.00 0.50± 0.00 0.08± 0.00 0.15± 0.01 0.85± 0.03 1.41± 0.08 0.87± 0.14

SVGP 0.10± 0.00 0.37± 0.00 0.08± 0.00 0.62± 0.00 0.10± 0.00 0.64± 0.01 0.82± 0.00 0.34± 0.00 0.10± 0.02

R
M

SE
† SGD 0.13± 0.00 0.38± 0.00 0.11± 0.00 0.51± 0.00 0.12± 0.00 0.11± 0.00 0.80± 0.00 0.42± 0.01 0.09± 0.00

CG 0.16± 0.01 0.68± 0.09 0.05± 0.01 3.03± 0.23 9.79± 1.06 0.34± 0.02 0.83± 0.02 5.66± 1.14 0.93± 0.19
SVGP — — — — — — — — —

Table 4.2 Mean and std. err. of the test RMSE and low-noise test RMSE (†) obtained by the
GP predictive mean computed with SGD, CG and SVGP. The latter method is omitted for the
low noise setting, where it fails to run. Metrics are reported for the datasets normalised to
zero mean and unit variance. The full experimental setup is described below in Section 4.5.

4.5 Experiments and benchmarks

We now turn to empirical evaluation of SGD GPs and SDD GPs. We compare these
with the two most popular scalable Gaussian process techniques: preconditioned conjugate
gradient (CG) optimisation (Gardner et al., 2018; Wang et al., 2019) and sparse stochastic
variational inference (SVGP) (Hensman et al., 2013; Titsias, 2009a). We employ the
jax.scipy CG implementation and follow Wang et al. (2019) in using a pivoted Cholesky
preconditioner of size 100. Our preconditioner implementation resembles the implementation
of the TensorFlow Probability library. For a small subset of datasets, we find the
preconditioner to lead to slower convergence, and we report the results for conjugate gradients
without preconditioning instead. We employ the GPJax (Pinder and Dodd, 2022) SVGP
implementation and initialise inducing point locations with the K-means algorithm. In all
SGD and SDD experiments, we use a Nesterov momentum value of ρ = 0.9 and geometric
averaging with χ = 100/T for T the total number of steps. The latter is chosen on a
task-dependent basis. For SGD, at each step, we draw 100 random features to unbiasedly
estimate the regulariser term. When drawing posterior samples with all methods we use
pathwise conditioning with 2000 random Fourier features to draw each prior function.

4.5.1 UCI benchmark datasets

We first compare SGD-based predictions with baselines in terms of predictive performance,
scaling of computational cost with problem size, and robustness to the ill-conditioning of
linear systems. Following Wang et al. (2019), we consider 9 datasets from the UCI repository
(Dua and Graff, 2017) ranging in size from n = 15k to n ≈ 2M datapoints and input

92 Stochastic Gradient Descent for Gaussian Processes

dimensionality from d′ = 3 to d′ = 90. We report mean and standard deviation over five
90%-train 10%-test splits for the small and medium datasets, and three splits for the largest
dataset.

GP hyperparameters We use a zero prior mean function and the Matérn-3/2 kernel, and
share hyperparameters across all methods, including baselines. For each dataset, we choose
a homoscedastic Gaussian noise variance, a single kernel variance, and a separate length
scale per input dimension. For datasets with less than 50k observations, we tune these
hyperparameters to maximise the exact GP marginal likelihood (2.43). The cubic cost of
this procedure makes it intractable at a larger scale: instead, for datasets with more than 50k
observations, we obtain hyperparameters using the following procedure:

1. From the training data, select a centroid data point uniformly at random.

2. Select the subset of 10k data points with the smallest Euclidean distance to the centroid.

3. Find hyperparameters by maximizing the exact GP marginal likelihood using this
subset of data.

4. Repeat the preceding steps for 10 different centroids, and average the resulting
hyperparameters.

This approach avoids aliasing bias Barbano et al. (2022b) due to data subsampling and is
tractable for large datasets.

Inference method hyperparameters We run SGD for 100k steps, with a fixed batch size of
512 for both the mean function and samples. For all regression experiments, we use a learning
rate of 0.5 to estimate the mean function representer weights, and a learning rate of 0.1 to
draw samples. For SDD, we use step-sizes 100× larger than SGD, except for elevators,
keggdirected and buzz, where this causes divergence and we use 10× larger step-sizes
instead. We run CG to a tolerance of 0.01, except for the 4 largest data sets, where we stop
CG after 100 iterations—this still provides CG with a larger compute budget than first-order
methods. For SVGP, we use 3, 000 inducing points for the smaller five data sets and 9, 000 for
the larger four, so as to match the runtime of the other methods. For all methods, we estimate
predictive variances for log-likelihood computations from 64 function samples drawn using
pathwise conditioning.

4.5 Experiments and benchmarks 93

Data pol elevators bike protein keggdir 3droad song buzz houseelec
Size 15k 17k 17k 46k 49k 435k 515k 583k 2M

R
M

SE

SDD 0.08± 0.00 0.35± 0.00 0.04± 0.00 0.50± 0.01 0.08± 0.00 0.04± 0.00 0.75± 0.00 0.28± 0.00 0.04± 0.00
SGD 0.13± 0.00 0.38± 0.00 0.11± 0.00 0.51± 0.00 0.12± 0.00 0.11± 0.00 0.80± 0.00 0.42± 0.01 0.09± 0.00
CG 0.08± 0.00 0.35± 0.00 0.04± 0.00 0.50± 0.00 0.08± 0.00 0.18± 0.02 0.87± 0.05 1.88± 0.19 0.87± 0.14
SVGP 0.10± 0.00 0.37± 0.00 0.08± 0.00 0.57± 0.00 0.10± 0.00 0.47± 0.01 0.80± 0.00 0.32± 0.00 0.12± 0.00

Ti
m

e
(m

in
) SDD 1.88± 0.01 1.13± 0.02 1.15± 0.02 1.36± 0.01 1.70± 0.00 3.32± 0.01 185± 0.56 207± 0.10 47.8± 0.02

SGD 2.80± 0.01 2.07± 0.03 2.12± 0.04 2.87± 0.01 3.30± 0.12 6.68± 0.02 190± 0.61 212± 0.15 69.5± 0.06
CG 0.17± 0.00 0.04± 0.00 0.11± 0.01 0.16± 0.01 0.17± 0.00 13.4± 0.01 192± 0.77 244± 0.04 157± 0.01
SVGP 11.5± 0.01 11.3± 0.06 11.1± 0.02 11.1± 0.02 11.5± 0.04 152± 0.15 213± 0.13 209± 0.37 154± 0.12

N
LL

SDD -1.18± 0.01 0.38± 0.01 -2.49± 0.09 0.63± 0.02 -0.92± 0.11 -1.70± 0.01 1.13± 0.01 0.17± 0.06 -1.46± 0.10
SGD -0.70± 0.02 0.47± 0.00 -0.48± 0.08 0.64± 0.01 -0.62± 0.07 -0.60± 0.00 1.21± 0.00 0.83± 0.07 -1.09± 0.04
CG -1.17± 0.01 0.38± 0.00 -2.62± 0.06 0.62± 0.01 -0.92± 0.10 16.3± 0.45 1.36± 0.07 2.38± 0.08 2.07± 0.58
SVGP -0.67± 0.01 0.43± 0.00 -1.21± 0.01 0.85± 0.01 -0.54± 0.02 0.60± 0.00 1.21± 0.00 0.22± 0.03 -0.61± 0.01

Table 4.3 Root mean square error (RMSE), compute time (on an A100 GPU), and negative
log-likelihood (NLL), for 9 UCI regression tasks for all methods considered. We report mean
values and standard error across five 90%-train 10%-test splits for all data sets, except the
largest, where three splits are used. Targets are normalised to zero mean and unit variance.
This work denoted by SDD.

Results The results, reported in Table 4.3, show that SDD matches or outperforms all
baselines on all UCI data sets in terms of root mean square error of the mean prediction
across test data. SDD strictly outperforms SGD on all data sets and metrics, matches CG
on the five smaller data sets, where the latter reaches tolerance, and outperforms CG on the
four larger data sets. The same holds for the negative log-likelihood metric (NLL), except on
bike, where CG marginally outperforms SDD. Since SDD requires only one matrix-vector
multiplication per step, as opposed to two for SGD, it provides about 30% wall-clock time
speed-up relative to SGD. Although we run SDD for 100k iterations to match the SGD
baseline, SDD often converges earlier than that.

Remark Why SGD and SDD outperform CG on large problems
SGD and SDD present two key advantages which make them perform well on very
large scale tasks. The first is their relative insensitivity to problem conditioning (see
Section 4.4). We only expect SGD to converge in the direction of the top eigenvectors
of the curvature matrix. Poor conditioning will make it converge slowly in the bottom
eigendirections, but optimisation noise would prevent convergence in those directions
anyway. On the other hand, CG’s runtime is heavily determined by conditioning (see
Section 3.2.2). The second is SGD and SDD’s compatibility with early stopping. From
Figure 4.9, we see that SGD makes the vast majority of its progress in prediction space

94 Stochastic Gradient Descent for Gaussian Processes

in its first few iterations, improving roughly monotonically with the number of steps.
Thus, early stopping after 100k iterations incurs only moderate errors. In contrast, CG
monotonically decreases euclidean error and error measured in the RKHS norm but
its initial steps actually increase test error (which is more related to the K2 norm),
resulting in very poor performance if stopped too early.

4.5.2 Large-scale Bayesian optimisation

A fundamental goal of scalable Gaussian processes is to produce uncertainty estimates useful
for sequential decision making. Motivated by problems in large-scale recommender systems,
where both the initial dataset and the total number of users queried are simultaneously large
(Elahi et al., 2016; Rubens et al., 2015), we benchmark SGD on a large-scale Bayesian
optimisation task. We draw a target function from a GP prior f ∼ GP(0, k) and optimise it on
X = [0, 1]d

′ using parallel Thompson sampling (Hernández-Lobato et al., 2017), which we
described in Section 2.3.3. We use an acquisition batch size of 1000 samples, and maximise
them with a multi-start gradient descent-based approach described in Section 2.3.33. We
run 30 acquisition steps, acquiring a total of 30k observations. We set the search space
dimensionality to d′ = 8, the largest considered by Wilson et al. (2020), and initialise all
methods with the same dataset of 50k observations sampled uniformly at random from X .
To eliminate model misspecification confounding, we use a Matérn-3/2 kernel and consider
length scales of (0.1, 0.2, 0.3, 0.4, 0.5) for both the target function and our models. For each
length scale, we repeat the experiment for 10 seeds.

In large-scale Bayesian optimisation, training and posterior function optimisation costs
can become significant, and predictions may be needed on demand. For this reason, we
include two variants of the experiment, one with a small compute budget, where SGD and
SDD are run for 15k steps, SVGP is given 20k steps and CG is run for 10 steps, and one
with a large budget, where all methods are run for 5 times as many steps. We present
the results on this task, broken down by lengthscale value, in Figure 4.11. In both large
and small compute settings, and across lenghtscales, SDD makes the most progress, in
terms of maximum value found, while using the least compute. Unlike SVGP and CG, The
performance of SDD and SGD degrades gracefully when compute budget is limited. Here,
SVGP performs well—on par with SGD—in the large length scale setting, where many
observations can likely be summarised with 1024 inducing points. CG suffers from slow
convergence due to ill-conditioning here. On the other hand, CG performs on par with SGD

3Please refer to Appendix A.3 of Lin et al. (2023b) for more details on our function maximisation strategy.

4.5 Experiments and benchmarks 95

in the better-conditioned small length scale setting, while SVGP suffers. In the large compute
setting, all methods perform similarly per acquisition step for all length scales except the
small one, where SVGP suffers.

96 Stochastic Gradient Descent for Gaussian Processes

Fig. 4.11 Maximum function values, with mean and standard error across 10 seeds, obtained
by parallel Thompson sampling, for functions with different length-scales ψ, plotted as
functions of acquisition steps and the compute time on an A100 GPU. All methods share
an initial data set of 50k points, and take 30 Thompson steps, acquiring a batch of 1000
points in each. The algorithms perform differently across the length-scales: CG performs
better in settings with smaller length-scales, which give better conditioning; SVGP tends to
perform better in settings with larger length-scales and thus higher smoothness; SGD and
SDD perform well in both settings.

4.5 Experiments and benchmarks 97

4.5.3 Molecule-protein binding affinity prediction

The binding affinity between a molecule and certain proteins is a widely used preliminary
filter in drug discovery (Pinzi and Rastelli, 2019), and machine learning is increasingly
used to estimate this quantity (Yang et al., 2021). In this final experiment, we show that
Gaussian processes with SDD are competitive with graph neural networks for binding affinity
prediction.

Dataset setup We use the dockstring regression benchmark of García-Ortegón et al.
(2022), which contains five tasks, corresponding to five different proteins. The inputs are the
graph structures of 250k candidate molecules, and the targets are real-valued affinity scores
from the docking simulator AutoDock Vina (Trott and Olson, 2010). We perform all of the
preprocessing steps for this benchmark outlined by García-Ortegón et al. (2022), including
limiting the maximum docking score to 5. For each protein, we use a standard train-test splits
of 210k and 40k molecules, respectively. These were produced by structure-based clustering
to avoid similar molecules from occurring both in the train and test set. We use Morgan
fingerprints of dimension 1024 (Rogers and Hahn, 2010) to represent the molecules.

Primer on fingerprints, Tanimoto Kernel and its random features Molecular fingerprints
are a way to encode the structure of molecules by indexing sets of subgraphs present in a
molecule. There are many types of fingerprints. Morgan fingerprints represent the subgraphs
up to a certain radius around each atom in a molecule (Rogers and Hahn, 2010). The
fingerprint can be interpreted as a sparse vector of counts, analogous to a ‘bag of words’
representation of a document. Accordingly, the Tanimoto coefficient T(x, x′), also called the
Jaccard index, is a way to measure similarity between fingerprints, given by

T(x, x′) =

∑
i min(xi, x

′
i)∑

imax(xi, x′i)
.

This function is a valid kernel and has a known random feature expansion using random
hashes (Tripp et al., 2023). We use this kernel for our GPs. The feature expansion builds
upon prior work for fast retrieval of documents using random hashes that approximate the
Tanimoto coefficient; that is, a distribution Ph over hash functions h such that

P(h(h(x) = h(x′)) = T(x, x′) .

98 Stochastic Gradient Descent for Gaussian Processes

Per Tripp et al. (2023), we extend such hashes into random features by using them to index a
random tensor whose entries are independent Rademacher random variables. We use the
random hash of Ioffe (2010).

Gaussian process Setup As the Tanimoto kernel itself has no hyperparameters, the only
kernel hyperparameters are a constant scaling factor a−1 > 0 for the kernel, the noise variance
b−1, and a constant GP prior mean µ0 (the Gaussian process regresses on y−µ0 in place of y).
These were chosen by Tripp et al. (2023) by maximising the evidence of an exact GP given a
randomly chosen subset of the data and held constant during the optimisation of the inducing
points. The values are given in Table 4.4. The same values are also used for SGD and SDD
to ensure that the differences in accuracy are solely due to the quality of the GP posterior
approximation. The SGD method uses 100-dimensional random features for the regulariser.

Data ESR2 F2 KIT PARP1 PGR

a−1 0.497 0.385 0.679 0.560 0.630
b−1 0.373 0.049 0.112 0.024 0.332
µ0 -6.79 -6.33 -6.39 -6.95 -7.08

Table 4.4 Hyperparameters for all Gaussian process methods used in the molecule-protein
binding affinity experiments of Section 4.5.3.

Results

In Table 4.5, following García-Ortegón et al. (2022), we report R2 values. Alongside results
for SDD and SGD, we incldue results from García-Ortegón et al. (2022) for XGBoost, and
for two graph neural networks, MPNN (Gilmer et al., 2017) and Attentive FP (Xiong et al.,
2019), the latter of which is the state-of-the-art for this task. We also include the results for
SVGP reported by Tripp et al. (2023). These results show that SDD matches the performance
of Attentive FP on the ESR2 and FP2 proteins, and comes close on the others. To the best of
our knowledge, this is the first time Gaussian processes have been shown to be competitive
on a large-scale molecular prediction task.

4.6 Discussion 99

Method ESR2 F2 KIT PARP1 PGR

Attentive FP† 0.627 0.880 0.806 0.910 0.678
MPNN† 0.506 0.798 0.755 0.815 0.324
XGBoost† 0.497 0.688 0.674 0.723 0.345

Method ESR2 F2 KIT PARP1 PGR

SDD 0.627 0.880 0.790 0.907 0.626
SGD 0.526 0.832 0.697 0.857 0.408
SVGP‡ 0.533 0.839 0.696 0.872 0.477

Table 4.5 Test set R2 scores obtained for each target protein on the dockstring molecular
binding affinity prediction task. Results with (·)† are from García-Ortegón et al. (2022), those
with (·)‡ are from Tripp et al. (2023). SVGP uses 1000 inducing points. SDD denotes this
work.

4.6 Discussion

In this chapter, we explored using stochastic gradient algorithms to approximately compute
Gaussian process posterior means and function samples at scale. We derived optimisation
objectives with linear and sublinear (via inducing points) cost for both. We studied variance
reduction techniques for the posterior sampling objective and also its conditioning. The
latter investigation led to the development of stochastic dual descent, a specialised first-order
stochastic optimisation algorithm for Gaussian processes. To design this algorithm, we
combined a number of ideas from the optimisation literature with Gaussian-process-specific
ablations, arriving at an algorithm which is simultaneously simple and matches or exceeds the
performance of relevant baselines. We showed that SGD can produce accurate predictions,
even in cases when it is early stopped and does not converge to an optimum. We developed a
spectral characterisation of the effects of non-convergence, showing that it manifests itself
mainly through error in an extrapolation region located away—but not too far away—from the
observations. We benchmarked SGD and SDD, showing they yield strong performance on
standard regression benchmarks and on a large-scale Bayesian optimisation benchmark. SDD
matches the performance of state-of-the-art graph neural networks on a molecular binding
affinity prediction task.

Being able to perform posterior inference in large-scale linear models, through stochastic
optimisation, is the first step towards tackling the ultimate goal of this thesis: performing
Bayesian reasoning with large-scale neural networks. Chapter 5 will further pursue this
goal by studying connections between linear models and neural networks through the
linearised Laplace approximation. In particular, the next chapter will focus on hyperparameter
optimisation using the model evidence. Building upon this, Chapter 6 will use the methods
introduced in this chapter to scale Bayesian inference to large-scale linearised NNs. For this,
we will have to work with the non-kernelised setting, where SDD is not-applicable. We will
rely on SGD instead.

Chapter 5

Adapting the linearised Laplace model
evidence for modern deep learning

Model selection and uncertainty estimation are two important open problems in deep
learning. The former aims to select network hyperparameters and architectures without
costly cross-validation (Immer et al., 2021a, 2022; Mackay, 1992a). The latter provides a
measure of fidelity of network predictions that can be used in downstream tasks such as
experimental design (Barbano et al., 2022b), sequential decision making (Janz et al., 2019),
and in safety-critical settings (Fridman et al., 2019). This thesis does not attempt to compute
exact Bayesian posterior credible regions or the exact model evidence for NNs. This is likely
impossible when dealing with large-scale networks. Instead, we will sacrifice orthodoxy and
pursue Bayesian-inspired methods that scale well and provide good results. To this end, we
focus on a classical approximate approach to these two problems: the linearised Laplace
method (Mackay, 1992a), which has recently been shown to be one of the best performing
methods for approximate inference in neural networks (Daxberger et al., 2021a,b; Immer
et al., 2021b; Khan et al., 2019a; Kristiadi et al., 2020).

Linearised Laplace approximates the output of a neural network (NN) with a first order
Taylor expansion (a linearisation) around optimal NN parameters. It then uses standard
linear-model-type error bars to approximate the uncertainty in the output of the NN, while
retaining the NN point-estimate as the predictive mean. The latter feature means that, unlike
other Bayesian deep learning procedures, the linearised Laplace uncertainty estimates do not
come at the cost of the accuracy of the predictive mean (Antorán et al., 2020; Ashukha et al.,
2020; Snoek et al., 2019a). A downside of the method is that its uncertainty estimates are very
sensitive to the choice of the prior precision hyperparameter (Daxberger et al., 2021b). Our

102 A modernised Laplace approximation

work looks at the model evidence maximisation method for choosing this hyperparameters,
as used in the seminal work of Mackay (1992a). In contrast with often used cross-validation,
evidence maximisation reduces model selection to an (often convex) optimisation problem,
and can scale to a large number of hyperparameters.

The methods studied in this chapter differ from those of Mackay (1992a) in that we deal
with the fully post-hoc setting. In modern settings, retraining our NN every time we update
the hyperparameters is prohibitively expensive. Thus, we work with a pre-trained NN and do
not re-train it once the hyperparameters have been updated. This chapter also differs from the
recent body of work of Immer et al. (2021a, 2023a, 2022), since the latter focuses on the
online setting, where the NN is trained and the hyperparameters are optimised concurrently.
We consider the post-hoc setting to be the one of most general interest, since it ensures
compatibility with existing and future deep learning training techniques.

Our contributions, presented after a review of the necessary preliminaries in Section 5.1,
are the identification of certain incompatibilities between the assumptions underlying the
classical linearised Laplace model evidence and modern deep learning methodology, and a
number of recommendations on how to adapt the method in light of these. In particular:

• A core assumption of linearised Laplace is that the point of linearisation is a minimum
of the training loss. When the neural network is not trained to convergence (and
this is almost never done), this does not hold and results in severe deterioration of
the model evidence estimate. In Section 5.2, we show that this can be corrected by
instead considering the optima of the linearised model’s loss, that is solving a quadratic
optimisation problem.

• In Section 5.3, we show that for networks with normalisation layers (such as batch
norm (Ioffe and Szegedy, 2015)), the linearised Laplace predictive distribution can fail
to be well-defined. However, this can be resolved by separately parametrising the prior
corresponding to normalised and non-normalised network parameters. We also show
that a standard feature-normalisation method, the g-prior (Minka, 2000; Zellner, 1986),
resolves this pathology.

We provide both theoretical and, in Section 5.5, empirical justification for both points above.
The resulting recommended procedure significantly outperforms a naïve linearised Laplace
implementation on a series of standard tasks and a wide range of neural architectures:
MLPs, classic CNNs, residual networks with and without normalisation layers, generative
autoencoders and transformers.

5.1 Post-hoc linearised neural net hyperparameter selection 103

5.1 Post-hoc linearised neural net hyperparameter selection

We consider the problem of selecting a Gaussian prior precision, hereon also referred to
as the regulariser, with the objective of obtaining calibrated linearised Laplace uncertainty
estimates. We go on to review the aspects of linearised Laplace that pertain to post-hoc
selection of this hyperparameter. We refer the reader to Section 3.3 for a detailed review of
linearised Laplace.

Setup and notation

We consider the post-hoc setting. We work with a neural network g : V × X 7→ Y with
parameter space V ⊆ Rd, input space X and output space Y ⊆ Rc. We assume access to a
pre-trained set of weights ṽ ∈ V which we keep fixed throughout the chapter. Additionally,
we assume these were obtained by minimising a regularised objective of the form

Lg,A(v) = L(g(v, ·)) + ∥v∥2A, (5.1)

for L : YV×X 7→ R+ of the form L(g(v, ·)) = ∑n
i ℓ(yi, g(v, xi)) where ℓ is a negative log-

likelihood function. We assume any linking functions are absorbed into ℓ. ∥v∥2A corresponds
to the log density of a Gaussian prior over v for some initial value the of the positive-definite
prior precision matrix A ∈ Rd×d. However, we henceforth treat A as a model hyperparameter.
Throughout this chapter we use · to denote by a vector-matrix or matrix-matrix product where
this may help with clarity.

Linearisation and posterior approximation

The parameter setting ṽ acts as the linearisation point around which we approximate g with
the affine function

h(w, x) = g(ṽ, x) + ∂v[g(v, x)](ṽ) · (w − ṽ), (5.2)

with parameters w ∈ Rd. We then approximate the loss function for the linearised
model, Lh,A(w) = L(h(w, ·)) + ∥w∥2A, with a second order Taylor expansion about
ṽ. Since ∂wh(ṽ, ·) = ∂vg(ṽ, ·) and, by assumption, ṽ∈ argminv Lg,A, we have that
∂wLh,A(ṽ) = ∂vLg,A(ṽ) = 0, and thus the first order term vanishes. This leaves us with the
approximation

Lh,A(ṽ) +
1

2
∥w − ṽ∥2∂2

wLh,A(ṽ). (5.3)

104 A modernised Laplace approximation

We define an approximate posteriorQ by taking its Lebesgue density to be proportional to the
exponential of minus this approximate loss. That is, a Gaussian with mean ṽ and covariance
(∂2wLh,A(ṽ))

−1. We henceforth adopt the notation of Chapter 2 and Section 3.3, writing the
Hessian of Lh,A at ṽ as

∂2wLh,A(ṽ) =M + A with M = ∂2w[L(h(w, ·))](ṽ), (5.4)

and J(·) = ∂vg(ṽ, ·) for the Jacobian of g at ṽ. The approximate predictive posterior is given
by the GP h(w, ·), w ∼ Q. Since h is affine, this is again Gaussian. Its marginal at a test
point x′ ∈ X is

N (g(w⋆, x
′), J(x′)(M + A)−1J(x′)T). (5.5)

Model selection

The predictive posterior h(w, ·), w ∼ Q corresponds to a GP with covariance kernel
J(·)(M +A)−1J(·′)T , revealing an explicit dependence on the regulariser A. This parameter
significantly affects the predictive posterior variance, but we have no simple method for
choosing it a priori. We instead follow an empirical-Bayes procedure: we interpret A as the
precision of a prior Π = N (0, A) and choose A as that most likely to generate the observed
data given the prior linearised model h(w, ·); w ∼ Π. This yields the objective

Gṽ(A) = −
1

2

[
∥ṽ∥2A + log det(A−1M + I)

]
+ C, (5.6)

where C is independent of A. We have made explicit the objective’s dependence on the
linearisation point, which we assume fixed throughout optimisation of A, with the subscript ṽ.
Equation (5.6) is called the model evidence. Throughout, we will constrain A to the set of
positive diagonal matrices, as in Mackay (1992a). Maximising Gṽ is a concave optimisation
problem.

Discussion: advantages and limitations of linearised Laplace in the modern setting

The posterior predictive mean is fixed to match g(ṽ, ·), ignoring that a change in A will
almost surely change the modes of Lg,A. This choice keeps the NN’s predictions unchanged.
This is considered an advantage of linearised Laplace over competing Bayesian deep learning
methods, which are often forced to compromise the accuracy of their predictive mean for
better calibrated uncertainty.

5.2 On the choice of posterior mode 105

We made a number of assumptions in our derivation. First, that the data-fit term L is
convex. This is satisfied by the standard losses used to train neural networks. We also
assumed that the true posterior over the NN weights is sharply peaked around its optima such
that it can be approximated well by a quadratic expansion and that h is a good approximation
to g near the linearisation point. These assumptions we do not question further. We made
one further important assumption, that the linearisation point ṽ is a local minimum of Lg,A

and thus it is also a minima of the linearised loss Lh,A. This final assumption will be the
focus of our work.

Since the linearised Laplace method with model-evidence maximisation was first intro-
duced by Mackay (1992a), deep learning training procedures and architectures have changed.
Stochastic first order methods are used to minimise the loss function in place of the second
order full-batch methods common in classical literature (Amari et al., 2000; LeCun et al.,
1996). We often do not use a low value of the loss Lg,A as a stopping criterion, but instead
monitor some separate validation metric. Also, normalisation layers are ubiquitous.

Since the derivations of this section assume that we linearise g and expand Lh,A about a
local minimum of Lg,A (and thus of Lh,A), modern practises pose difficulties for the presented
method. The rest of this chapter explores these issues, proposes a modern adaptation of the
linearised Laplace method, and discusses some interesting special cases.

5.2 On the choice of posterior mode

We consider a naïve implementation of the linearised Laplace method in the context of
modern neural networks as that using the linearisation point ṽ in the expression for the model
evidence Gṽ (5.6), even if this point is known to not be a local minimum of Lg,A. We now
propose an alternative.

We begin, as before, by linearising g about ṽ, the point returned by (possibly stochastic
or incomplete) optimisation of the neural network loss Lg,A and constructing the feature
expansion J : x 7→ ∂vg(ṽ, ·). Under broad assumptions discussed in Section 5.4.1, this choice
means the posterior mean g(ṽ, ·) is contained within the linear span of the Jacobian features
J(·)1. This yields credence to the interpretation of the linear model’s error bars as uncertainty
about the NN output.

1When the NN’s output layer is linear, g(ṽ, ·) is a linear combination of the final layer activations and the
Jacobian contains the last layer activations.

106 A modernised Laplace approximation

We diverge from Section 5.1 in how we approximate Lh,A. We start by noting that since
ṽ is not a local minimum of Lg,A, it is not one of Lh,A either.

Observation 2. For network g with linearisation h about ṽ and a positive definite regulariser
A, if ṽ is not a stationary point of Lg,A, it is not a local minimum of Lh,A.

Derivation Proof of observation 2

Proof. Since ṽ is not a stationary point ofLg,A, the gradient ∂vLg,A(ṽ) is not identically
zero. But ∂vLg,A(ṽ) equal to∑

i

∂ŷi [ℓ(ŷi, yi)](g(ṽ, xi))∂v[g(v, xi)](ṽ) + ∂v[∥v∥2A](ṽ)

=
∑
i

∂ŷi [ℓ(ŷi, yi)](h(ṽ, xi))∂w[h(w, xi)](ṽ) + ∂w[∥w∥2A](ṽ),

which is in turn equal to ∂wLh,A(ṽ). Since this is thus non-zero, ṽ cannot be a local
minimum of Lh,A.

Thus, ṽ is not a suitable point for a quadratic approximation to Lh,A without a first order
term. However, for any given A, the loss for the linearised model Lh,A is a convex function
of w (L is convex and h is linear in w), and thus has a well defined minimiser; expanding the
loss about this minimiser will yield a more faithful approximation to the evidence. Moreover,
for each fixed w, Gw(A) is concave in A, yielding a maximiser. Iteratively minimising the
convex Lh,A(w) and maximising the concave Gw(A) yields a simultaneous stationary point
(w⋆, A⋆) satisfying

w⋆∈ argminw Lh,A⋆(w) and A⋆∈ argmaxA Gw⋆(A).

Our adaption performs evidence maximisation with an affine model h where the basis
expansion J is fixed. Unlike Mackay (1992a), we do not retrain the neural network. Instead,
we re-fit the linear model. Chapter 6 will introduce methods that efficiently implement this
iterative optimisation scheme.

In practice, we make one further approximation: rather than evaluating the curvature
∂2wL(h(w, ·)) afresh at successive modes of Lh,A found during the iterative procedure for
computing (w⋆, A⋆), we use the curvature at the linearisation point M = ∂2w[L(h(w, ·))](ṽ)
throughout. This avoids the expensive re-computation of the Hessian; experimentally we

5.2 On the choice of posterior mode 107

Fig. 5.1 Linearised Laplace predictive mean and std-dev for a 2.6k parameter MLP trained on
toy dataset from Antorán et al. (2020). Choosing A with Gṽ yields error bars larger than the
marginal std-dev of the targets. Recommendation 1 (using Gw⋆) solves this.

find that this does not affect the results2 (see Section 5.5.1). The resulting model evidence
expression matches that in (5.6), with only the weights featuring in the norm changed,

Gw⋆(A) = −
1

2

[
∥w⋆∥2A + log det(A−1M + I)

]
+ C. (5.7)

Recommendation 1. While using the linearisation point ṽ in the construction of the feature
expansion J and the Hessian M (as introduced in Section 5.1), find a joint optimum (w⋆, A⋆)

for the feature-linear model and employ these to construct the corresponding model evidence
Gw⋆ (equation (5.7)) and to compute the predictive variance (equation (5.5)).

We thus recommend employing a posterior distribution for h of the same form as given in
(5.5), but with prior precision A⋆. We do not recommend using the mean predictions of the
tangent linear model h(w⋆, ·) as the posterior mean function since this introduces additional
computational load while empirically providing little to no benefit. We verified this across a
range of tasks, including image classification and tomographic image reconstruction. This is
illustrated for a 1d toy problem in Figure 5.2. Here, the linearised model’s mean resembles
the NN’s mean but is less smooth. We attribute this non-smoothness to the inclusion of a
linear dependence on ReLU features from network layers near the input.

108 A modernised Laplace approximation

Fig. 5.2 Comparison of the predictive means a a 2.6k parameter MLP trained on toy dataset
from Antorán et al. (2020) (blue) with the posterior mean of its tangent linear model with an
isotropic Gaussian prior (green) and the posterior mean of the tangent linear model with the
diagonal g-prior, introduced in Section 5.3.2 (red).

Fig. 5.3 Histograms of the individual entries of ṽ and w⋆ for the models in the bias exclusion
experiment of Section 5.5.1. We use a d = 46k ResCNN described in Section 5.5 and train it
on MNIST.

Demonstration: 1d regression and a simple CNN

Figure 5.1 shows how choosing the prior precision with the evidence objective that contains
the linearisation point ṽ results in uncertainty overestimation; the predictive distribution’s
marginal standard deviation is much larger than the marginal standard deviation of the targets.
This is resolved by applying recommendation 1. We further explore the differences between
the norm of the linear model MAP w⋆ and the linearisation point ṽ by, in Figure 5.3, plotting
the histogram for both given a small ResNet-style CNN described in Section 5.5. The linear
model weights present a much narrower distribution around 0. This is commensurate with
their use in the model evidence resulting in larger prior precisions and thus smaller errorbars.

2The Hessian depends on the linear model weights w only trough the predictions made by the linear model.
If our pre-trained NN is well-fit to the data, we do not expect the linearised NN’s MAP predictions to differ
much from the NN prediction at the linearisation point.

5.3 Linearised Laplace with normalised networks 109

The plot also ablates whether considering model biases in the linearisation makes a difference
to this recommendation, and it does not.

5.3 Linearised Laplace with normalised networks

We now study linearised Laplace in the presence of scale-invariance introduced by normali-
sation layers. For this, we put forth the following formalism:

Definition 3 (Normalised networks). We say that a set of networks G ⊂ YV×X is normalised
if V can be written as a direct sum V ′ ⊕ V ′′, with V ′′ non-empty, such that for all networks
g ∈ G and parameters v′ + v′′ ∈ V ′ ⊕ V ′′,

g(v′ + v′′, ·) = g(v′ + cv′′, ·)

for all c ∈ R+.

Throughout, we write v′, v′′ to denote the respective projections onto V ′,V ′′ of a parameter
v ∈ V; for ease of notation, we will assume these projections are aligned with a standard
basis on V . That is, we write our parameter vectors as the sum of cv′′, which is only non-zero
for normalised weights and g is invariant to c, and v′, for which the opposite holds.

Remark Example to illustrate how definition 3

Consider an MLP g : V×X → Y with a single input dimensionX = R, a single output
dimensionY = R, single hidden layer and 2 hidden units V = R4. We apply layer norm
after the input layer parameters. The model parameters are v = [v1, v2, v3, v4] ∈ V
with v1, v2 belonging to the input layer and v3, v4 to the readout layer. We assume there
are no biases without loss of generality.
Denoting the outputs of the first parameter layer a = [v1x, v2x], layer norm applies the
function

a− E[a]√
Var(a)

b+ e with E[a] = 0.5v1x+ 0.5v2x

and Var(a) = 0.5(v1x− E[a])2 + 0.5(v2x− E[a])2

110 A modernised Laplace approximation

for b ∈ R, e ∈ R. Now take c ∈ R+ to see that the output of the layernorm layer is
invariant to scaling the input layer parameters by c

ca− E[ca]√
Var(ca)

=
c(a− E[a])
c
√

Var(a)
=

a− E[a]√
Var(a)

.

Thus, we have g([v1, v2, v3, v4], ·) = g([cv1, cv2, v3, v4], ·).
Now let V be the result of the internal direct sum V = V ′⊕V ′′, and v′, v′′ be projections
of v onto the subspaces V ′ &V ′′, respectively, so that v = v′ + v′′. The operator + is
defined as the vector sum, as usual. In the simplest case where V ′ and V ′′ are aligned
with the standard basis, this corresponds to vectors in V ′ having zero valued entries in
the place of parameters to which normalisation is applied, v′ = [0, 0, v3, v4]. Vectors in
V ′′ are non-zero for normalised parameters, v′′ = [v1, v2, 0, 0]. Finally, we write the
property of interest

g(v′ + cv′′, ·) = g(v′ + v′′, ·).

Our formalism requires only that a single group of normalised parameters V ′′ exists.
However, by applying the definition repeatedly, introducing a separate scaling constant per
layer, we encompass networks with any number of normalisation layers, and all our results
extend to this case. This formalism can be used to model the scale-invariant effect of layer
norm (Ba et al., 2016), group norm (Wu and He, 2020) or batch norm (Ioffe and Szegedy,
2015), and even some so-called normalisation-free methods (Brock et al., 2021a,b). However,
it is worth noting that each of these normalisation strategies introduce additional effects that
are not of interest to this chapter and are deliberately not described by our formalism.

Our focus on normalised networks is motivated by the following observation:

Proposition 4. For any normalised network g and positive definite matrix A, the loss Lg,A

has no local minima.

To see this, note that the data term fit L(g(v′ + cv′′, ·)) is invariant to the choice of c > 0,
but we can always decrease the prior term ∥v′ + cv′′∥2A by decreasing c. Since c ∈ R+ has no
minimal value, Lg,A(v

′ + cv′′) = L(g(v′ + cv′′, ·)) + ∥v′ + cv′′∥2A has no local minima. This
is illustrated in Figure 5.4.

As in Section 5.2, minimisers of the linear loss Lh,A remain well-defined (the loss remains
strictly convex). However, in this case, ṽ cannot minimise Lh,A: the linearisation point

5.3 Linearised Laplace with normalised networks 111

Fig. 5.4 Log likelihood L(g(v, ·)) (left) and log posterior Lg,A (left middle) density for an
MLP with layer norm, both plotted as functions of a 2d slice of the input layer weights. The
horizontal axis corresponds to the direction of ṽ while the vertical to w⋆. The linearisation
point found with SGD ṽ (⋆) is not an optima ofLg,A. We can always increase the value ofLg,A

by moving towards the origin along the horizontal axis, without changing the likelihood. ṽ is
not an optima of the linear model’s Log likelihood L(h(w, ·)) (middle right) or log posterior
Lg,A (right) either. The linear model log posterior Lh,A is convex and optimised by w⋆ (⋆).

minimises Lh,A only if it minimises Lg,A (recall observation 2), and this is now impossible!
To correct this, from hereon we follow recommendation 1.

An even larger concern raised by proposition 4 is that the linearisation point is identified
only up to the scaling c of the normalised parameters ṽ′′. Since c is arbitrary, and does not
affect the predictions of the neural network (by definition), it ought not affect the predictive
variance returned by the linearised Laplace method. However, due to scaling of the Jacobian
features with c which we go on to show in the following section, in general, it does. See
Figure 5.5 for a demonstration of this.

5.3.1 The layerwise prior

As shown by the following proposition, it suffices to regularise linear model weights
corresponding to the normalised parameters w′′ ∈ V ′′ separately from w′ ∈ V ′, and choose
both regularisation strengths with the model evidence (5.7), to recover a unique predictive
posterior independent of c.

Proposition 5. For normalised neural networks, using a regulariser of the form ∥w′∥2A′ +

∥w′′∥2A′′ with A′ and A′′ parametrised independently and chosen according to recommenda-
tion 1, the predictive posterior h(w, ·), w ∼ Q induced by a linearisation point ṽ′ + cṽ′′ is
independent of the choice of c > 0.

112 A modernised Laplace approximation

Fig. 5.5 For a normalised MLP with an isotropic prior precision, modifying the scale of the
normalised weights ṽ′′ in the linearisation point changes the error bars after hyper-parameter
optimisation (right). Incorporating recommendation 2 fixes the issue (left).

Briefly, the result follows because the Jacobian entries corresponding to weights cv′′ scale
with c−1. This is illustrated in Figure 5.4 (leftmost plot), where as we move further from the
origin, weight settings of equal likelihood L(g(v, ·)) move further from each other. Given an
un-scaled reference solution (w⋆, A⋆), as we vary c in cṽ′′, the linear model weights and prior
precisions that simultaneously optimise Lh,A⋆ and Gw⋆ scale as (w′

⋆, cw
′′
⋆), and (A′

⋆, c
−2A′′

⋆)

respectively. These scalings cancel each other in the predictive posterior, which remains
invariant. When A′′ can not change independently of A′, this cancellation does not occur. An
empirical demonstration is provided in Figure 5.5. We now present the full proof.

Derivation Proof of proposition 5

Notation Consider a linearisation point ṽ′+ṽ′′, with corresponding linearised function
h, basis function J and Hessian M . For c > 0, hc, Jc,Mc denote these quantities
corresponding to a linearisation point ṽc := ṽ′ + cṽ′′. Moreover, we write

J =

[
J ′

J ′′

]
and M =

[
M ′ XT

X M ′′

]

for the sub-entries of J and M with dependencies on v′ and v′′ respectively, with X
containing cross-terms. We refer to sub-entries of Jc and Mc in the same manner.
With notation in place, we have the following scaling result:

5.3 Linearised Laplace with normalised networks 113

Lemma 6. Let g be a normalised network and consider two alternative linearisation
points ṽ = ṽ′ + ṽ′′ and ṽc = ṽ′ + cṽ′′ for some c > 0. Then,[

J ′
c

cJ ′′
c

]
= J and

[
M ′

c cXT
c

cXc c2M ′′
c

]
=M.

Moreover, for all w ∈ V , hc(w′ + cw′′, ·) = h(w′ + w′′, ·).

Proof. First, we consider J ′
c and J ′′

c . For J ′
c, take any ṽ′ ∈ V ′ and consider the

directional derivative Dv′g(ṽ
′ + cṽ′′). From the limit definition,

Dv′g(ṽ
′ + cṽ′′, ·) = lim

δ↓0

1

δ
[g((ṽ′ + δv′ + cṽ′′), ·)− g((ṽ′ + cṽ′′), ·)]

= lim
δ↓0

1

δ
[g((ṽ′ + δv′ + ṽ′′), ·)− g((ṽ′ + ṽ′′), ·)]

= Dv′g(ṽ
′ + ṽ′′, ·).

From the Jacobian-product definition, we have J ′
c · v′ = J ′ · v′. Since v′ ∈ V ′ was

arbitrary and we are working on a finite-dimensional Euclidean space, this shows
J ′
c = J ′. For J ′′

c , consider Dv′′g(ṽ
′ + cṽ′′) for v′′ ∈ V ′′ arbitrary. We have

Dv′′g(ṽ
′ + cṽ′′, ·) = lim

δ↓0

1

δ
[g((ṽ′ + cṽ′′ + δv′′), ·)− g((ṽ′ + cṽ′′), ·)]

= lim
δ↓0

1

δ

[
g(ṽ′ + ṽ′′ +

δ

c
v′′), ·)− g((ṽ′ + ṽ′′), ·)

]
=

1

c
lim
δ′↓0

1

δ′
[g((ṽ′ + ṽ′′ + δ′v′′), ·)− g((ṽ′ + ṽ′′), ·)]

=
1

c
Dv′′g(ṽ

′ + ṽ′′, ·).

Repeating the same argument as for J ′
c, we obtain J ′′

c = 1
c
J ′′.

Now, we look at the scaling of hc. By definition, using that g is normalised and the
previously derived scaling for Jc,

hc(w
′ + cw′′, ·) = g(ṽ′ + cṽ′′, ·) + J ′

c(w
′ − ṽ′) + J ′′

c (cw
′′ − cṽ′′)

= g(ṽ′ + ṽ′′, ·) + J ′(w′ − ṽ′) + J ′′(w′′ − ṽ′′)
= h(w′ + w′′, ·),

which is the claimed result.

114 A modernised Laplace approximation

For Mc, we examine it entry-wise. We have,

[Mc]mn = ∂wm∂wn [L(hc(w, ·))](ṽc)
=
∑
i

∂wm [hc(w, xi)](ṽc) · ∂2ŷi [ℓ(ŷi, yi)](hc(ṽc, xi)) · ∂wn [hc(w, xi)](ṽc)

+
∑
j

∂ŷi [ℓ(ŷi, yi)](hc(ṽc, xi)) · ∂wm∂wn [hc(w, xj)](ṽc).

Now since hc is affine, it has no curvature and thus ∂wm∂wnhc(w, x) is identically zero
for all w ∈ V and x ∈ X . With that, the second term in the sum vanishes. For the first
sum, consider the middle term, the curvature of the negative log-likelihood function,
and use hc(w′ + cw′′, ·) = h(w′ + w′′, ·) to see that it is invariant to c. Finally, note
that ∂wmhc and ∂wnhc are entries of Jc and inherit scaling from therein. Specifically,
if both wm and wn belong to V ′′, we obtain c2 scaling; if just one belongs to V ′′, we
get c scaling, and otherwise we obtain constant scaling. This completes the result for
Mc.

We now turn to how the optimal weights and regularisation parameters scale with the
parameter c.

Lemma 7. For c > 0, let hc be a linearisation of a normalised network g about ṽ′+ cṽ′′.
Then (wc, Ac) are an optima of the resulting objectives (Lhc,Ac ,Gwc) respectively if and
only if they are of the form

(wc, Ac) = (w′
⋆ + cw′′

⋆ , A
′
⋆ + c−2A′′

⋆)

where (w⋆, A⋆) are optima of (Lh,A⋆ ,Gw⋆) with h a linearisation of g about ṽ′ + ṽ′′.

Proof. To prove the result, we will show that Lhc,Ac(w
′ + cw′′) = Lh,A⋆(w

′ + w′′) for
all w′+w′′ ∈ V and Gwc(A

′+ c−2A′′) = Gw⋆(A
′+A′′) for all strictly diagonal positive

matrices A′, A′′ of compatible sizes. Then, the result follows by noting that for c > 0

fixed, the mappings w′ + w′′ 7→ w′ + cw′′ and A′ + A′′ 7→ A′ + c−2A′′ are bĳections.
Consider the objective Lhc,Ac . By definition, Lhc,Ac(w

′ + cw′′) is given by

L(hc(w
′+cw′′, ·)) + ∥w′∥2A′

c
+ ∥cw′′∥2A′′

c

= L(h(w′ + w′′, ·)) + ∥w′∥2A′
⋆
+ ∥w′′∥2A′′

⋆
,

where the equality follows by lemma 6 and the definition of Ac. The bottom expression
is equal to Lh,A⋆(w

′ + w′′) proving the equality for the loss term.

5.3 Linearised Laplace with normalised networks 115

Consider the objective Gwc . For our claim, we need to show that

∥wc∥2A′+c−2A′′ + log
det(Mc + A′ + c−2A′′)

det(A′ + c−2A′′)

= ∥w⋆∥2A′+A′′ + log
det(M + A′ + A′′)

det(A′ + A′′)
.

The equality ∥wc∥A′+c−2A′′ = ∥w⋆∥A′+A′′ holds trivially. We now show equality of the
determinants. Let d′, d′′ denote the dimensions of V ′ and V ′′ respectively. By the Schur
determinant lemma, the numerator det(Mc + A′ + c−2A′′) is equal to

det(M ′′
c +

A′′
d′:

c2
) det(M ′

c + A′
:d′ −X(M ′′

c +
A′′

d′:

c2
)−1XT),

where A′
:d′ = [A′

ij : i, j ≤ d′] and A′′
d′: is defined similarly. Using lemma 6, det(M ′′

c +
A′′

d′:
c2

) = (1
c2
)d

′′det(M ′′ + A′′
d′:). Expanding the Schur complement term and using

lemma 6 shows that it is independent of c. In turn, the denominator is given by

det(A′ + c−2A′′) = (
1

c2
)d

′′det(A′
:d′) det(A′′

d′:)

= (
1

c2
)d

′′det(A′ + A′′),

The (1
c2
)d

′′ terms in the numerator and denominator cancel, yielding the claim.

Proof of proposition 5. Using lemma 6 and lemma 7 and the notation defined therein,

∥J∥2(M+A⋆)−1 = ∥Jc∥2(Mc+Ac)−1 .

Thus the errorbars induced by linearising about ṽ′ + ṽ′′ and ṽ′ + cṽ′′ are equal for all
c > 0.

We note that proposition 5 holds even when A⋆ is found by evaluating the Hessian at
the optima of the linear model loss instead of w⋆, instead of linearisation point ṽ—the
latter is our suggestion in Section 5.2. This is because w′′

⋆ scales with ṽ′′ (lemma 7).

By induction, proposition 5 applies to networks with multiple normalisation layers. Note
that the proof of the results required for proposition 5 depends crucially on being able to scale
A′′

c with c while keeping A′
c fixed. This motivates our recommendation:

Recommendation 2. When using the linearised Laplace method with a normalised network,
use an independent regulariser for each normalised parameter group present.

116 A modernised Laplace approximation

An example of a suitable regulariser for a network with normalised parameter groups
v(1), v(2), . . . , v(L) and non-normalised parameters v′ would be

a′∥w′∥2 + a1∥w(1)∥2 + a2∥w(2)∥2 + . . .+ aL∥w(L)∥2

for independent parameters a′, a1, a2, . . . , aL > 0 and w(1), w(2), . . . , w(L) referring to the
linear model weights corresponding to the NN weights in each normalised parameter group.
Usually, this involves setting independent priors for each layer of the network.

5.3.2 The diagonal g-prior

We now present a different class of diagonal prior which exploits the scaling of the likelihood
curvature with the linearisation point (lemma 6) to resolve the issue of scale indeterminacy in
the predictive posterior.

Proposition 8. For normalised neural networks, using a regulariser of the form ∥w∥2A with

A = a diagM

for a ∈ R+ and M = ∂2w[L(h(w, ·))](ṽ), the predictive posterior h(w, ·), w ∼ Q induced by
a linearisation point ṽ′ + cṽ′′ is independent of the choice of c > 0.

Derivation Proof of proposition 8

We adopt the notation used in lemma 6 and lemma 7.

Proof. Let A = a diagM for a model with linearisation point ṽ′ + ṽ′′. By lemma 6,
for a model with linearisation point ṽc := ṽ′ + cṽ′′, with c > 0, the corresponding
regulariser is

Ac = a

[
diagM ′ 0

0 c−2 diagM ′′

]
= a

[
diagM ′

c 0

0 diagM ′′
c

]
.

With that, lemma 6 and lemma 7, we have

∥J∥2(M+A)−1 = ∥Jc∥2(Mc+Ac)−1 .

5.3 Linearised Laplace with normalised networks 117

Thus the errorbars induced by linearising about ṽ′ + ṽ′′ and ṽ′ + cṽ′′ are equal for all
c > 0.

This is a diagonal version of what is known in the literature as the g-prior (Zellner, 1986)
or scale-invariant prior (Minka, 2000). It has the advantage over the layer-wise prior of
only having one free parameter to learn via the evidence. Additionally, unlike the layerwise
prior, the posterior corresponding to the g-prior is invariant to the scale of the linearisation
point for any value of the free parameter a ∈ R+, not just for the one that maximises the
evidence Gw⋆ . A practical implementation must ensure that no entries of diagM are 0 to
preserve positive definiteness in cases where the log-likelihood function is not strictly convex.
A further advantage of the diagonal g-prior is that it normalises the scales of the Jacobian
entries corresponding to different NN weights, as illustrated in Figure 5.6. For this reason,
the diagonal g-prior may, in general, improve the conditioning of the linearised model’s loss
Lh,A. Indeed, this prior is intimately related to the Jacobi preconditioner.

Fig. 5.6 Left: Histogram of the absolute value of Jacobian entries, training data, across
model weights and training datapoints. We use the NN depicted in Figure 5.1, with and
without g-prior scaling. Middle: 15 randomly chosen Jacobian basis functions. Right: Same
functions with g-prior scaling.

Remark The history of the g-prior
The g-prior was originally introduced by Zellner (1986), It consists of a centred Gaussian
with covariance matching the inverse of the Fisher information matrix. Resultantly,
the g-prior ensures inferences are independent of the units of measurement of the
covariates (Minka, 2000). Since then, it has extensively used in the context of model
selection for generalised linear models (Baragatti and Pommeret, 2012; Bové and
Held, 2011; Liang et al., 2008). In the large-scale setting, we have overcome the
computational intractability of the Fisher by diagonalising the g-prior while preserving
its scale-invariance property.

118 A modernised Laplace approximation

5.4 Additional observations and discussion

The above analysis leads to a number of observations and further insights into linearised
Laplace. The reader should note that the · notation will be doing some heavy lifting in terms
of denoting Jacobian vector products taken such that their dimensions are compatible.

5.4.1 Networks with a dense final layer

We look at networks with a dense linear final layer, a (very general) special case. Letting l

denote the number of non last layer weights such that v:l is the vector of all network parameters
but those of the last layer, and vl: are the last layer weights, we deal with models of the form

g(v, ·) = φ(v:l, ·) · vl:, (5.8)

where φ(v:l, ·) is the output of the penultimate layer. The derivative of the neural network
with respect to the dense final layer weights is

∂vl:g(v, ·) = φ(v:l, ·),

and thus the final layer activations φ(v:l, ·) are contained within the Jacobian matrix. Con-
sequently, the neural network output g(v, ·) is always contained in the linear span of the
Jacobian basis. This motivates recommendation 1, where we argue for the use of ṽ for
network linearisation, as it allows for an easy linear model error-bars interpretation for the
resulting uncertainty.

Also, the form of the linearised model h simplifies in the dense final layer case when the
network is fully normalised. Here d′′, the dimension of V ′′, matches l, and thus we can write
g(v′ + v′′, ·) = φ(v′′:l, ·) · v′l:. The derivative of φ in the direction of the linearisation point ṽ′′:l
is zero

∂v′′:lφ(ṽ
′′
:l, ·) · ṽ′′:l = 0. (5.9)

Thus cancellation occurs in (5.2), as

h(w, ·) = φ(v:l, ·) · vl: + ∂vg(ṽ, ·) · (w − ṽ)
= φ(v:l, ·) · vl: + ∂vg(ṽ, ·) · w − ∂v:lg(ṽ, ·) · v:l − ∂vl:g(ṽ, ·) · vl:
= φ(v:l, ·) · vl: + ∂vg(ṽ, ·) · w − ∂v′′:lg(ṽ, ·) · v

′′
:l − φ(v:l, ·) · vl:

= J(·)w, w ∼ Q. (5.10)

5.4 Additional observations and discussion 119

That is, a linear model based on the features J(·)= ∂v[g(v, ·)](ṽ). This removes implementa-
tion complications that would stem from considering the zeroth order term in the affine linear
model when it comes to finding the MAP of the linearised model w⋆ ∈ argminw∈Rd Lh,A(w).

Derivation Jacobian null space of fully normalised networks
Consider a normalised network g, the linearisation point ṽ′ + ṽ′′, and the directional
derivative with respect to parameters v′′ in the direction of ṽ′′, denotedDṽ′′g(ṽ

′+ ṽ′′, ·).
On one hand, this is just the partial derivative of g with respect to v′′ evaluated at ṽ′′

and projected onto ṽ, and thus Dṽ′′g(ṽ
′ + cṽ′′, ·) = ∂v′′g(ṽ, ·) · ṽ. On the other hand,

from the limit definition of the directional derivative,

Dṽ′′g(ṽ
′ + cṽ′′) = lim

δ↓0

1

δ
[g(ṽ′ + (δ + c) ṽ′′, ·)− g(ṽ′ + cṽ′′, ·)]

= 0,

and thus ∂v′′g(ṽ, ·) · ṽ = 0.
The quantity appearing in equation (5.9) is ∂v′′:lφ(ṽ

′′
:l, ·) · ṽ′′:l . We now observe that for a

fully normalised network, each of the outputs of the penultimate layer [φ(v:l, ·)]i, with
the output dimension being indexed by i, is a fully normalised network (definition 3)
in its own right. Hence, we can apply the same reasoning as above to see that
∂v′′:lφ(ṽ

′′
:l, ·) · ṽ′′:l = 0.

5.4.2 Optimising linearised networks

Our adapted linearised Laplace method requires identifying the joint stationary point (w⋆, A⋆).
In general, this does not admit a closed-form solution. Instead, we alternate gradient-based
optimisation ofLh,A and Gv. For normalised networks with dense output layers, implementing
the simplified linear model (5.10) directly yields faster and more stable optimisation. Obtaining
the gradients of Gv involves computing Hessian log-determinants, which in turn requires
approximations in the context of large networks. In this chapter’s experiments (Section 5.5),
we will rely on the KFAC (Martens and Grosse, 2015) approximation for this. In Chapter
6, we will introduce a more accurate sample-based approximation. We go on to provide a
derivation for the gradient of Lh,A, algorithm 2 and discuss implementation trade-offs.

120 A modernised Laplace approximation

The linear model loss gradient

We now discuss the optimisation of the loss for the predictor h(w, ·) = J(·) ·w where w ∈ V
is the linear model’s parameter vector. This corresponds to fully normalised networks with a
dense final layer. We note that the procedure for the non-simplified Taylor expanded model
g(ṽ, ·) + J(·) · (w− ṽ) is analogous, but the targets are shifted to be Y − g(ṽ, ·) + Φṽ. Here,
we denote NN Jacobians as J(·) = ∂vg(ṽ, ·) ∈ Rc×d, we stack then across train points to
produce the design matrix Φ ∈ Rnc×d, and c is the output dimensionality |Y|.

We wish to optimise w according to the objective Lh,A(w) = L(h(w, ·)) + ∥w∥2A. We
adopt a first order gradient-based approach. We first consider the gradient of L(h(w, ·)) =∑

i ℓ(J(xi) · w, yi). Using the chain rule and evaluating at an arbitrary w̄ ∈ V we have

∂w[L(h(w, ·))](w̄) =
∑
i

∂ŷ[ℓ(ŷi, yi)](J(xi) · w̄) · ∂w(J(xi) · w̄)

=
∑
i

∂ŷ[ℓ(ŷi, yi)](J(xi) · w̄) · J(xi).

Evaluating the affine function h consists of computing the Jacobian vector product J(xi)w̄.
This can be done while avoiding computing the Jacobian explicitly by using forward mode
automatic differentiation or finite differences. We find both approaches to work similarly
well, with finite differences being slightly faster, and forward mode automatic differentiation
more numerically stable. This chapter’s experiments use finite differences, so we present this
approach here. Specifically, we employ the method of Andrei (2009) to select the optimal
step size. Chapter 6 will use automatic differentiation. We then evaluate the loss gradient at
the linear model output, denoting this vector in our algorithm as g = ∂ŷ[ℓ(ŷ, y)](J(x) · w̄).
This gradient can often be evaluated in closed form. Finally, we project g onto the weights
by multiplying with the Jacobian. This vector Jacobian product is implemented using
automatic differentiation. That is, gTJ(xi) = ∂v[g

T · g(v, xi)](ṽ). We combine these steps in
algorithm 2.

Evaluating the gradient of ∥w̄∥2A is trivial.

5.4 Additional observations and discussion 121

Algorithm 2: Efficient evaluation of the likelihood gradient for the linearised model
Inputs: Neural network g, Observation x, Linearisation point ṽ, Weights to optimise

w, Likelihood function ℓ(·, y), Machine precision ϵ
1 δ =

√
ϵ(1 + ∥ṽ∥∞)/∥w∥∞ // Set FD stepsize (Andrei, 2009)

2 ŷ = J(x) · w ≈ g(x,ṽ+δw)−g(x,ṽ−δw)
2δ

// Two sided FD approximation to Jvp

3 g = ∂ŷ[ℓ(ŷ, y)](J(x) · w) // Evaluate gradient of loss at J(x) · w
4 gT · J(x) = ∂v[g

T · g(v, x)](ṽ) // Project gradient with backward mode

AD

Output: gT · J(x)

5.4.3 Further implications of our results

We now discuss details and implications of the presented recommendations and results.

Magnitude of linearisation point in normalised networks Optimising a normalised
neural network returns a solution for the normalised weights (those in V ′′) up to some scaling
factor c > 0. How is c determined? Recall, from (5.9), that for any v′′ ∈ V ′′, the directional
derivative of the NN output in the direction of v′′ is zero. This is also illustrated in Figure 5.4.
With this in mind, the dynamics of optimisation can be understood by analogy to a Newtonian
system in polar coordinates. The weights are a mass upon which the data fit gradient acts
as a tangential force. When discretised, this gradient pushes the weights away from zero.
On the other hand, regularisation from the prior term acts like a centripetal force, pushing
the weights towards the origin. The resulting c is thus proportional to the variance of the
gradients of v′′, and as such dependent on the learning rate and batch size hyperparameters,
while being inversely proportional to the regularisation strength, e.g. weight decay. This has
been studied extensively in the optimisation literature, including Cai et al. (2019); Hoffer
et al. (2018); Li et al. (2020); Lobacheva et al. (2021); van Laarhoven (2017).

On network biases in the Jacobian feature expansion Most normalisation techniques
introduce scale invariance by dividing subsets of network activations by an empirical estimate
of their standard deviation. These activations depend on the values of both weights and biases.
On the other hand, practical use of linearised Laplace commonly considers uncertainty due to
only network weights (Daxberger et al., 2021b; Maddox et al., 2021), excluding bias entries
from Jacobian and Hessian matrices. This departure from our assumptions can break the
scale invariance necessary for lemma 6. Whether invariance is (approximately) preserved for
the weights in the bias-exclusion setting depends on the relative effect of weights and biases
on each subset of normalised activations. Invariance is preserved if the biases have small

122 A modernised Laplace approximation

impact. Empirically, we find that the inclusion (or exclusion) of biases does not alter the
improvements obtained from applying our recommendations (see Figure 5.7).

Implications for the (non-linearised) Laplace method The (non-linearised) Laplace
method (Kristiadi et al., 2020; Ritter et al., 2018) approximates the intractable posterior by
means of a quadratic expansion around an optima, but without the linearisation step given
in equation (5.2). As discussed in Section 5.2, when employing stochastic optimisation,
early stopping, or normalisation layers, we will not find a minimiser of Lg,A. Without a
well-behaved surrogate linear model loss to fall back on, the Laplace method can yield very
biased estimates of the model evidence.

5.5 Demonstration: hyperparameter selection with the
tangent linear model

We proceed to provide empirical evidence for our assumptions and recommendations.
Specifically, in Section 5.5.1, we validate the assumptions made in throughout this chapter.
Then, in Section 5.5.2, we demonstrate that our recommendations yield improvements
across a wide range of architectures. In these first two subsections, we employ networks
containing at most 46k weights, since this is the largest model for which we can tractably
compute the Hessian on an A100 GPU. This choice avoids confounding the effects described
throughout the chapter with any further approximations. In Section 5.5.3, we show that
our recommendations yield performance improvements on the 25M parameter ResNet-50
network while employing the KFAC approximation to the Hessian (Daxberger et al., 2021a;
Martens and Grosse, 2015). Throughout, we focus on the layerwise prior precision, described
in Section 5.3.1. We leave extensive evaluation of the g-prior for Chapter 6.

Unless specified otherwise, we: 1) train a NN to find ṽ using standard stochastic
optimisation algorithms, 2) linearise the network about ṽ as in (5.2), 3) optimise the linear
model weights using Lh,A (algorithm 2) and layer-wise regularisation parameters with Gw⋆

(5.7), 4) compute the linearised predictive distribution with (3.39). We repeat this procedure
with 5 random seeds and report mean results and standard error. For each seed, the methods
compared produce the same mean predictions g(ṽ, ·), only differing in their predictive
variance. In this setting, the test Negative Log-Likelihood (NLL, lower is better) can be
understood as a measure of uncertainty miscalibration. The full set of experimental details
for this chapter are provided in Chapter A.

5.5 Demonstration: hyperparameter selection with the tangent linear model 123

5.5.1 Validation of modelling assumptions

We validate the key conjectures stated throughout the chapter. If not specified otherwise,
we employ a 46k parameter ResNet (He et al., 2016a) with batch-normalisation after every
convolutional layer. The output layer is dense, satisfying (5.10).

Choice of Hessian In Section 5.2, we suggest evaluating the Hessian of Lh at the
linearisation point ṽ (instead of w⋆) for model evidence optimisation (5.7). This avoids the
need to recompute the Hessian throughout optimisation. Figure 5.7 (left) shows how the
improvement from using the recommended model evidence Gw⋆ , as opposed to Gṽ, dominates
the effect of the choice of Hessian evaluation point.

Fig. 5.7 Comparison of the test NLL improvement obtained when switching from Gṽ to Gw⋆

to optimise the prior precision A relative to the impact of (left) evaluating the Hessian at ṽ or
w⋆, and (right) excluding network biases from the basis functions. Both plots use a d = 46k
ResNet with batch norm trained on MNIST.

Dependence on c for isotropic precisions In Figure 5.5, we illustrate the dependence of
the predictive posterior on the scale of normalised weights c for an isotropic prior precision
A= aI , i.e. recommendation 2 is ignored. We use a 2.6k parameter 2 hidden layer fully
connected NN with layer norm after every layer except the last and a 1d regression task.
Changing c changes the optimal a and, consequently, the predictive uncertainty changes.
With layer-wise a this effect vanishes (as predicted by proposition 5).

Treatment of NN biases Excluding the Jacobians of network biases from our basis
function expansion breaks the scaling properties presented in lemma 6. In Figure 5.7 (right),
we show that the effect of excluding biases is dominated by the choice of the model evidence
between Gw⋆ and Gṽ.

Early stopping We evaluate whether more thorough optimisation of the NN weights with
Lg leads to a linearisation point ṽ closer tow⋆ in the sense of the implied optimal regularisation
and induced posterior predictive distribution. We perform this analysis on normalised and

124 A modernised Laplace approximation

1 60 120 180 240

15

20

25

30

35

40

W
2 2

(W
as

se
rs

te
in

)

BatchNorm

Trn NLL
Val NLL

W2
2

1 60 120 180 240

0

200

400

600

FixUp

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.8

1.0

N
LL

NN training epochs

Fig. 5.8 Wasserstein distance between predictive posteriors obtained when using Gṽ and Gw⋆

throughout NN training (i.e. the linearisation point ṽ is changing). The vertical black line
indicates optimal (val-based) early stopping.

unnormalised networks (for which use the non scale-invariant FixUp regularisation instead
(Zhang et al., 2019)), since ṽ is guaranteed to never match w⋆ for the former. Surprisingly, the
Wasserstein-2 distance between predictive distributions obtained with Gṽ and Gw⋆ increases
with more optimisation steps in both cases. Thus, more thorough optimisation does not help.

Transformer CNN ResNet Pre-ResNet FixUp U-Net

Gw⋆

single a 0.162 ± 0.042 0.025 ± 0.000 0.017 ± 0.000 0.017 ± 0.000 0.055 ± 0.006 -1.793 ± 0.050

layerwise a 0.162 ± 0.042 0.025 ± 0.000 0.016 ± 0.001 0.016 ± 0.000 0.061 ± 0.005 -2.240 ± 0.027

Gṽ single a 0.310 ± 0.060 0.253 ± 0.001 0.252 ± 0.006 0.220 ± 0.004 0.153 ± 0.021 -1.164 ± 0.052

layerwise a 0.162 ± 0.042 0.205 ± 0.002 0.236 ± 0.005 0.239 ± 0.004 0.200 ± 0.018 -1.703 ± 0.023

Table 5.1 Validation of recommendations across architectures. All results are reported as
negative log-likelihoods (lower is better). In each column, the best performing method is
bolded. For eachM, if single or layerwise a optimisation performs better, it is underlined.

5.5.2 Validating recommendations across architectures

We evaluate the utility of recommendation 1, and recommendation 2 on a range of architectures
and tasks: 1) a transformer architecture on the pointcloud-MNIST variable length sequence
classification task. This model uses layer norm in alternating layers, 2) a LeNet-style CNN
with batch norm placed after every convolutional layer and a dense output layer tasked with
MNIST classification, 3) a ResNet with batch norm after every layer except the dense output
layer (MNIST classification), 4) the same ResNet but with batch norm substituted by (non
scale-invariant) FixUp regularisation (MNIST classification). 5. a pre-ResNet (He et al.,

5.5 Demonstration: hyperparameter selection with the tangent linear model 125

2016b). This architecture differs from ResNet in that batch norm is placed before each weight
layer instead of after them; the implication is that there is only 1 normalised group of weights
encompassing all weights but those of the dense output layer (MNIST classification). 6. a
fully convolutional U-net autoencoder tasked with tomographic reconstruction (regression)
of a KMNIST character from a noisy low-dimensional observation. We reproduce the
experimental setting of Barbano et al. (2022c) for this task. Group norm is placed after every
layer except the last, which is convolutional.

As shown in Table 5.1, the application of recommendation 1 yields notably improved
performance across all settings. Applying recommendation 2 yields modest improvements
for classification networks with normalisation layers but large improvements for the U-net.
Interestingly, layer-wise regularisation degrades performance in the (non-normalised) FixUp
ResNet.

5.5.3 Large scale models

batch norm FixUp

Gw⋆,simple

single a 0.112 ± 0.004 0.128 ± 0.000

layerwise a 0.109 ± 0.003 0.096 ± 0.000

Gw⋆

single a 0.190 ± 0.005 0.249 ± 0.002

layerwise a 0.194 ± 0.009 0.193 ± 0.001

Gṽ single a 0.570 ± 0.004 0.412 ± 0.000

layerwise a 0.567 ± 0.004 0.360 ± 0.000

Table 5.2 Test negative log-likelihoods for ResNet-50 on CIFAR10.

We validate our recommendations on the 25M parameter ResNet-50 network trained
on the CIFAR10 dataset. This model places batch norm after every layer except the dense
output layer. We also consider a normalisation-free FixUp ResNet-50. Table 5.2 shows
that both of our recommendations yield better test NLL, with larger gains obtained by the
batch norm network. The normalisation-free FixUp setting does not simplify as in eq. (5.10).
Nonetheless, assuming the simplified model evidence, denoted Gv⋆,simple , when obtaining the
linear model optima yields improved performance for all models.

126 A modernised Laplace approximation

5.6 Discussion

This chapter has identified and addressed two pitfalls of a naïve application of linearised
Laplace to modern NNs in the post-hoc setting. First, the optima of the loss function is
not found in practice. This invalidates the assumption that the point at which we linearise
our model is stationary. However, every linearisation point implies an associated basis
function linear model. As we use this model to provide errobars, we propose to choose
hyperparameters using the evidence of this model. This requires only the solving of a convex
optimisation problem, one much simpler than NN optimisation. Second, normalisation layers
introduce an invariance to the scale of NN weights and thus the linearisation point can only be
identified up to a scaling factor. We show that to obtain a predictive posterior that is invariant
to this scaling factor, the regulariser must be independently parametrised for each normalised
group of weights, e.g. different layers. We also show that a classical feature normalisation
method, the g-prior, solves this issue. Our experiments confirm the effectiveness of these
recommendations across a wide range of model architectures and sizes.

With these advancements, and the scalable SGD-based sampling from Chapter 4, we are
almost ready to perform Bayesian inference and hyperparameter optimisation with large scale
linearised neural networks. The only remaining impediment is computing the log-determinant
term in the expression for the model evidence. Chapter 6 will provide the final piece of the
puzzle by introducing an accurate method to learn the linearised Laplace prior precision
using only posterior samples.

Chapter 6

Scalable uncertainty estimation and
hyperparameter learning for neural
networks with sample-based linearised
Laplace inference

“One thing that should be learned (...) is the great power of general purpose methods, of
methods that continue to scale with increased computation even as the available computation
becomes very great.” — Richard Sutton

The linearised Laplace method, originally introduced by Mackay (1992a), and reviewed
in Section 3.3, has received renewed interest in the context of uncertainty quantification for
modern neural networks (NN) (Daxberger et al., 2021a; Immer et al., 2021b; Khan et al.,
2019b). The method constructs a surrogate Gaussian linear model for the NN predictions,
and uses the error bars of that linear model as estimates of the NN’s uncertainty. However,
the resulting linear model is very large; the design matrix is sized number of parameters by
number of datapoints times number of output classes. Thus, both the primal (weight space)
and dual (observation space) formulations of the linear model are intractable. This restricts
the method to small network or small data settings. Moreover, the method is sensitive to
the choice of regularisation strength for the linear model (Antorán et al., 2022; Immer et al.,
2021a). This chapter develops methods to scale inference and hyperparameter selection to
very large linear models with a particular focus on linearised neural networks.

128 Sample-based linearised Laplace

To scale inference and hyperparameter selection in Gaussian linear regression, we
introduce a sample-based Expectation Maximisation (EM) algorithm. It interleaves E-steps,
where we infer the model’s posterior distribution over parameters, given some choice of
hyperparameters, and M-steps, where the hyperparameters are improved given the current
posterior. Our contributions here are two-fold:

1. We perform posterior sampling for large-scale linearised neural networks using stochas-
tic gradient descent with the low-variance sample-then-optimise objective introduced
in Section 4.2.2, which we use to approximate the E-step.

2. We introduce a method for hyperparameter selection that only requires access to
posterior samples, and not the full posterior distribution. This forms our M-step.

Combined, these allow us to perform inference and hyperparameter selection by solving a
series of quadratic optimisation problems using stochastic gradient descent, and thus avoiding
an explicit cubic cost in any of the problem’s properties. Our method readily extends to
non-conjugate settings, such as classification problems, through the use of the Laplace
approximation. In the context of linearised NNs, our approach also differs from previous
work in that it avoids instantiating the full NN Jacobian matrix, an operation requiring as
many backward passes as output dimensions in the network.

We demonstrate the strength of our inference technique in the context of the linearised
Laplace procedure for image classification on CIFAR100 (100 classes × 50k datapoints)
and Imagenet (1000 classes × 1.2M datapoints) using an 11M parameter ResNet-18 and
a 25M parameter ResNet-50, respectively. The methods introduced in this chapter will
allow us to perform uncertainty estimation in high-resolution volumetric tomographic image
reconstruction in Chapter 7.

The rest of this chapter is organised as follows. Section 6.1 introduces a variational
EM algorithm for linearised neural networks. Section 6.2 discusses a series of methods to
scale up the aforementioned algorithm to the large model and large dataset setting. Section
6.3 demonstrates these methods on large-scale image classification. Finally, Section 6.4
concludes the chapter.

6.1 Variational EM for linearised neural networks

We consider the multioutput conjugate Gaussian linear model class, introduced in Chapter 2,
and which we review here. Our choice of basis functions are induced by a first order Taylor

6.1 Variational EM for linearised neural networks 129

expansion of a NN g : V × X → Rc around its pre-trained parameters ṽ ∈ V ⊆ Rd. We will
work with fully normalised networks with a dense final layer1. In Section 5.4.1 we showed
that, when linearised, these take the simplified form

h(w, ·) = ϕ(·)w,

where ϕ(x) = ∂vg(ṽ, x) ∈ Rc×d is the NN’s Jacobian evaluated at x ∈ X , which acts as a
feature expansion of the input.

With that, the generative process we assume relates our inputs x1, . . . , xn ∈ X and
corresponding outputs y1, . . . , yn ∈ Y ⊆ Rc is

Y = Φw + E with w ∼ N (0, A−1I) and E ∼ N (0, B−1),

where Y ∈ Rnc is the concatenation of y1, . . . , yn, B is a block diagonal matrix, built
from (Bi)

n
i=1, a set of c× c blocks representing the noise precision for each iid observation,

and Φ = [ϕ(x1)
T ; . . . ;ϕ(xn)

T]T ∈ Rnc×d is the embedded design matrix. We define M =

ΦTBΦ ∈ Rd×d, which matches the curvature of the Gaussian likelihood. Finally, A ∈ Rd×d

is a positive definite prior precision matrix, which we treat as a hyperparameter.

6.1.1 Conjugate Gaussian regression and the EM algorithm

Our goal is to infer the posterior distribution for the parameters w given our observations,
under the setting of A most likely to have generated the observed data. We use an iterative
procedure inspired by Mackay (1992a), which alternates computing the posterior for w,
denoted Πw|Y , for a given choice of A, and updating A, until the pair (A,Πw|Y) converge to a
locally optimal setting. This corresponds to an EM algorithm (Bishop, 2006; Dempster et al.,
1977).

With that, we start with some initial A ∈ Rd×d, and iterate:

• (E step) Given A, the posterior for w, denoted Πw|Y , is computed exactly as

Πw|Y = N (w⋆, H
−1) where H =M + A and w⋆ = H−1ΦTBY. (6.1)

1In Chapter 7, we will work with models without a dense final layer. Fortunately, the procedures discussed in
this chapter may be applied out-of-the-box to this setting by shifting the linear model targets by the constant-in-w
terms in the NN’s Taylor expansion.

130 Sample-based linearised Laplace

• (M step) We lower bound the log-probability density of the observed data, i.e. the
evidence, for the model with posterior Πw|Y and precision A′ as

log p(Y ;A′) ≥ −1
2
∥w⋆∥2A′ − 1

2
log det(I + A′−1M) + C =:M(w⋆, A

′), (6.2)

for C independent of A′. We choose a new setting for A that improves this lower bound.

Derivation Derivation of (6.2) as a lower bound on the evidence

To show this we part from the Gaussian ELBO for the Gaussian-linear model given in
(3.5)

log p(Y ;A) ≥M(wq,Σq, A) =
1

2

(
− n log(2π)− log detB−1 − log detA−1

− ∥wq∥2A − ∥Y − Φwq∥2B + log detΣq

− Tr(ΦΣqΦ
TB) + d− Tr(ΣqA)

)
.

and choose Σq = (M +A)−1 = H−1, which is the optimal setting, for any value of wq

and A. With this we note that

Tr (ΦH−1ΦTB) = d− Tr(H−1A) = γ,

are both expressions for the effective dimension (see (2.46)), which cancel out. This
leaves us with

M(wq, A) =
1

2

(
− ∥wq∥2A − log detA−1 + log detΣq

− ∥Y − Φwq∥2B − n log(2π)− log detB−1
)
,

which matches (6.2) when we set wq to w⋆ and identify the constant in A terms as
C = 1

2
(−∥Y − Φwq∥2B − n log(2π)− log detB−1) = log p(Y |wq;B).

Remark On the ELBO in (6.2)
M(w⋆, A) has a variational parameter, the posterior mean and a hyperparameter the
prior precision. For each prior precision, there is an optima posterior mean which makes
the bound tight. At each M step, we update our prior precision, and the variational

6.1 Variational EM for linearised neural networks 131

posterior’s covariance updates automatically with the new regulariser, leaving the
posterior mean as the only variational parameter to be found anew in successive E steps.
Because the log-likelihood is quadratic, its curvature M is fixed throughout the EM
iteration.

6.1.2 Laplace-approximating non-conjugate likelihoods

We now consider the setting where the linearised model’s loss, defined as

Lh,A(v) = L(h(w, ·)) + ∥w∥2A, (6.3)

for L : YV×X 7→ R+ of the form L(h(w, ·)) =
∑n

i ℓ(yi, h(w, xi)), and ℓ is a negative
log-likelihood function, is non quadratic. That is, L corresponds to a non-Gaussian density.

We employ the Laplace approximation (see Section 3.3.2 for a review) for the E-step.
That is, we construct a Gaussian approximate posterior as

N (w⋆, H
−1) with w⋆ = argmin

w∈Rd

Lh,A(v)

and H = ΦTBΦ + A .

Here, B ∈ Rnc×nc is a again a block diagonal matrix built from blocks Bi = ∂2ŷiℓ(yi, ŷi)

which we evaluate at predictions ŷi = h(ṽ, xi) = g(ṽ, xi) in place of h(w⋆, xi), since the
latter would change each time the regulariser A is updated, requiring expensive re-evaluation.
This decision was recommended in Section 5.2 and ablated in Section 5.5.1.

We plug in the above expressions into the Laplace evidence, given in (6.2), for the M step.
However, this may no longer represent a lower bound on the true evidence. The EM procedure
from Section 6.1.1 is for the conjugate Gaussian-linear model, where it carries guarantees on
non-decreasing model evidence, and thus convergence to a local optimum. These guarantees
do not hold for non-conjugate likelihood functions, e.g., the softmax-categorical, where the
Laplace approximation is necessary. Instead, we are guaranteed convergence to a local optima
of the evidence of a surrogate model with Laplace approximated likelihood.

132 Sample-based linearised Laplace

6.1.3 The issue of limited scalability

The above inference and hyperparameter selection procedure for Πw|Y and A is futile when
both d and nc are large. The E-step requires the inversion of a d× d matrix and the M-step
evaluating its log-determinant, both cubic operations in d. These may be rewritten to instead
yield a cubic dependence on nc (as in Section 2.2.1), but under our assumptions, that too
is not computationally tractable. Instead, we now pursue a stochastic approximation to this
EM-procedure.

6.2 Sample-based inference for the tangent linear model

We now present the chapter’s main contribution, a stochastic approximation (Nielsen, 2000)
to the iterative algorithm presented in the previous section. Our M-step, presented in Section
6.2.1, requires only access to samples from Πw|Y . We then touch on a number of practical
and implementation matters. We provide an efficient implementation of the g-prior in
Section 6.2.2. Section 6.2.3 discusses an efficient implementation of the SGD posterior
sampling methods introduced in Chapter 4. These constitute our E-step. We discuss efficient
sample-based predictions for linearised neural networks in Section 6.2.4. We conclude with
a full description of our inference algorithm in Section 6.2.5, with special attention to its
application to image classification.

6.2.1 Hyperparameter learning using posterior samples

For now, assume that we have an efficient method of obtaining samples from a zero-mean
version of the posterior ζ1, . . . , ζk ∼ N (0, H−1) := Π0

w|Y , and access to w⋆, the mean of
Πw|Y . Evaluating the first order optimality condition forM(w⋆, A) yields that the optimal
choice of A satisfies

∥w⋆∥2A = Tr{H−1M} =: γ, (6.4)

where the quantity γ is the effective dimension of the regression problem (see Section 2.4.4). It
can be interpreted as the number of directions in which the weights w are strongly determined
by the data. Setting A = aI 2 for a = γ/∥w⋆∥2 yields a contraction step converging towards
the optimum ofM (Mackay, 1992a). We thus hereon refer to such a contraction step as a
MacKay update.

2We absorb additional prior structure into the basis functions in Section 6.2.2

6.2 Sample-based inference for the tangent linear model 133

Derivation First order optimality condition
Consider the derivative ofM. We have,

∂A log p(Y ;A) = −1

2

[
∂A∥w⋆∥2A + ∂A log det(A+M)− ∂A log detA

]
, (6.5)

where we expanded log det(I + A−1M) = log det(A +M) − log detA. Taking the
respective derivatives and setting equal to zero at A, this leads to the condition

w⋆w
T
⋆ = (I − (I + A−1M)−1)A−1. (6.6)

Post-multiplying by A and applying the push-through identity, we obtain

w⋆w
T
⋆ A =M(A+M)−1. (6.7)

For the above to hold, it is necessary that the traces of both sides are equal. Thus,

∥w̃∥2A = Tr{w̃w̄TA} = Tr{M(A+M)−1} = γ, (6.8)

which is the stated first order optimality condition, up to a cyclic permutation.

Computing γ directly requires the inversion of H , a cubic operation. We instead rewrite
γ as an expectation with respect to Π0

w|Y using Hutchinson (1990)’s trick, and approximate it
using samples as

γ = Tr{H−1M} = Tr{H− 1
2MH− 1

2} = Eζ1∼Π0
w|Y

[ζT1 Mζ1] (6.9)

≈ 1
k

∑k
j=1 ζ

T
j Φ

TBΦζj := γ̂.

We then select a = γ̂/∥w⋆∥2. We have thus avoided the explicit cubic cost of computing
the log-determinant in the expression forM (given in (6.2)) or inverting H . Due to the
block diagonal structure of B, γ̂ may be computed in O(n) Jacobian vector products as
γ̂ = 1

k

∑k
j=1

∑n
i=1 ζ

T
j ϕ(xi)

TBiϕ(xi)ζj .

Demonstration: MacKay’s effective-dimension-based M-step

We empirically motivate the fixed-point iteration M-step introduced by Mackay (1992a), by
comparing it with alternative approaches to updating hyperparameters. In particular, we
compare MacKay’s update with the standard Laplace M-step evidence, denotedM and given

134 Sample-based linearised Laplace

Fig. 6.1 Left: exact model evidence for a linearised 2 hidden layer MLP with layer normalisa-
tion together with the lower bound presented in (6.2),M, and an ELBO where the Gaussian
posterior covariance is decoupled from the regulariser. All curves use an initial regulariser of
a = 500 and have a marker placed at their optima. The value proposed by the MacKay update
is marked with a vertical green line. Right: values of the regularisation strength a obtained at
successive EM iterations while using the different update strategies under consideration for
the M step. Note that when we assume access to the exact evidence function, the regulariser
converges in a single step and no EM iteration is necessary.

in (6.2), and a Gaussian ELBO, of the form given in (3.5), with both the mean and covariance
acting as variational parameters. The latter two approaches differ in that the ELBO’s posterior
covariance is not clamped to the optimum value for the current regulariser A, and thus the
bound is less tight. That is, ELBO’s covariance does not change with the regulariser while
performing the M-step. Both of these objectives differ from the MacKay update in that they
provide an objective which requires gradient-based optimisation in the M-step. Instead, the
MacKay update has a closed-form.

The plot on the left of Figure 6.1 compares the exact linearised Laplace evidence for a 2
hidden layer MLP with layernorm trained on the toy dataset of Antorán et al. (2020) with
the boundM (6.2) and with the decoupled ELBO (6.2). We evaluate all of these exactly,
without resorting to Monte Carlo sampling. The initial regulariser is set to a = 500. The
ELBO is only tight for regulariser values very close to initialisation, resulting in very small
M steps. M is tangent to the evidence at the same point as the ELBO but presents a much
better approximation as we move away from a = 500. The optimum ofM is much closer to
the optimum of the evidence. The MacKay update does not use a lower bound but instead
provides an updated value for a which is even closer to the optimum of the evidence. The
right hand side plot shows the change in the regularisation parameter across successive
M-steps using the update methods under consideration. The MacKay M-step converges to
the optima of the evidence in 2 steps. UsingM as an objective results in convergence after 5
steps. On the other hand, the ELBO update requires around 100 steps. Figure 6.2 further
illustrates hyperparameter learning in the 1d toy setting by showing the successive lower

6.2 Sample-based inference for the tangent linear model 135

Fig. 6.2 Exact linear model evidence for a linearised 2 hidden layer MLP with layer
normalisation together with the lower bound presented in (6.2),M (left and middle plots),
and an ELBO, where the Gaussian posterior covariance is decoupled from the regulariser
(right side plot), at different EM steps. We update the regularisation strength with MacKay’s
fixed point iteration for the left side plot. Note thatM curves are shown in this plot. We
maximiseM in the middle plot and we maximise the ELBO in the right hand side plot. All
curves use an initial regulariser of a = 5 and we place a vertical dashed line at each step’s
update. Starting below the optimal regularisation strength makes convergence behaviour
differ from that of Figure 6.1, which starts from above the optima.

bounds obtained by each of the approaches under consideration at each M-step. Interestingly,
the MacKay update produces regulariser updates that almost exactly maximiseM.

Demonstration: Comparing estimators of the effective dimension

The effective dimension estimator introduced in (6.9) is in kernelised form. A different
unbiased estimator may be obtained in weight-space form following the derivation provided
in (2.46). That is

d− Tr (AH−1) ≈ d− 1

k

k∑
j=1

ζTj Aζj with ζj ∼ Π0
w|Y (6.10)

Figure 6.3 compares both estimators when applied to the 1d toy problem used to generate
Figure 6.5 from the main text. In particular, we use a linearised 2 hidden layer MLP with 50
hidden units and layernorm after every hidden layer (d = 2700). We use the “Matérn” dataset
of Antorán et al. (2020). We use 8 samples from the exact linearised Laplace posterior to
compute effective dimension estimates and repeat this procedure 1000 times to characterise
the behaviour of each estimator. As a reference, we also compute the exact effective dimension
using eigendecomposition.

136 Sample-based linearised Laplace

°50 °25 0 25 50 75 100 125 150
eff dim estimate

10°4

10°3

10°2

10°1

de
ns

ity

eff dim estimator with K=8 samples

exact eff dim g

weight space estimator g(q) , var: 654.19

pred space estimator g(f) , var: 9.16

Fig. 6.3 Histogram, with bin heights normalised to represent density estimates, of the effective
dimension estimates produced by the primal form (weight space) estimator (6.10) and the
kernelised (prediction space) estimator (6.9). Both distributions are roughly centred at the
true effective dimension but the kernelised estimator presents much lower variance.

Both estimators present distributions centred at the true effective dimension value.
However, the prediction space (kernelised) estimator presents a much lower variance of
9.16 as opposed to 654.19 for the weight space estimator. Additionally, the weight space
estimator distribution places a substantial amount of probability mass on negative effective
dimension values. From the form of (6.10), we see that this is due to our 8-sample estimator
overestimating posterior variance. On the other hand, the kernelised estimator in (6.9) can
only produce positive values.

Remark Extension of the MacKay update to layerwise prior precision parameters

We can leverage the primal form expression for the effective dimension given in (6.10)
to extend the MacKay update to the layer-wise regulariser setting (see Section 5.3.1).
Consider a sub-vector of our weight vector contiguous between the ith and jth weights
written asw⋆i:j . Note that we only choose contiguous weights for notational convenience
but it is not necessary to do so in general.
The first order optimality condition is satisfied if for any i, j with i < j, we have

j∑
k=i

[A]kkw
2
⋆k

= j − i−
j∑

k=i

[A]kk[(A+M)−1]kk := γi:j. (6.11)

6.2 Sample-based inference for the tangent linear model 137

We assume [A]kk = a for all i ≤ k < j. Thus, we may update the regulariser for
each separate weight sub-vector as a = γi:j/∥w⋆i:j∥2. However, we find this leads to
slower convergence than when estimating a single prior precision for the whole model.
Combined with the weight-space estimator of the effective dimension (6.10) presenting
higher variance, this make layerwise prior precision estimation with the MacKay update
less attractive.

6.2.2 Constructing an efficient estimator of the g-prior

We use the diagonal g-prior, introduced in Section 5.3.2, with with a prior precision of the
form a diagM , where the diag operator takes as input a matrix and returns a diagonal version
of the matrix. This leaves a single free parameter a ∈ R+, which will be estimated using
MacKay updates, as described in Section 6.2.1. However, this requires the prior precision
to be isotropic. We achieve this by absorbing the scaling structure diagM into our feature
expansion as

ϕ′(x) = ϕ(x) diag(s) for s ∈ Rd with entries si = [M]
−1/2
ii , (6.12)

where i ≤ d and diag s denotes a diagonal matrix with entries given by the vector s. And thus
we work with the scaled Jacobian features ϕ′(·) throughout, while assuming a prior precision
of the form A = aI . Notice that the covariance kernels implied by these expansions match
aϕ′(·)ϕ′(·′)T = aϕ(·) diag(M)ϕ(·′)T ; our generative model is unchanged.

We now turn to computing the scaling vector s. Naïvely, each entry would be computed
as sj =

(∑n
i=1 e

T
j ϕ(xi)

TBiϕ(xi)ej
) 1

2 for ej j ≤ d the unit vectors corresponding to the
canonical basis for the euclidean space Rd. This would require O(nd) Jacobian vector
products, which is intractable for large models and datasets.

Instead we stochastically estimate s using k samples as

s = EE∼N (0,B−1)(Φ
TBE)⊙−0.5 ≈

(
1

k

k∑
j=1

(ΦTBEj)⊙2

)⊙−0.5

with Ej ∼ N (0, B−1),

(6.13)

where ⊙ refers to the elementwise power. The number of Jacobian vector products needed is
now O(nk).

138 Sample-based linearised Laplace

6.2.3 Efficient SGD posterior sampling with warm starts

All that is left is obtaining the linear model’s posterior mean w⋆ and sampling from the 0
mean posterior Π0

w|Y for the E-step. For the former, we target the liner model’s loss function
Lh,A, given in (6.3), with stochastic gradient descent. For the latter, we use the low variance
weight-space sampling objective introduced in Section 4.2.2 and which we re-state here for
the reader’s convenience

1

2
∥Φw∥2B +

1

2
∥w − w′

0∥2A with w′
0 = w0 + A−1ΦTBE (6.14)

where E ∼ N (0, B−1) and w0 ∼ N (0, A−1).

Notice how we can re-use samples used to estimate the g-prior scaling vectors ΦTBEj in
(6.13) to compute the regulariser target w′

0.

In order to limit computational cost, we sample the stochastic regularisation terms w′
0,

only once, and keep them fixed throughout EM iteration. This results in the optima of the
sampling objective being close for successive iterations with different regularisation strength
values. This comes at the cost of a small bias in our estimator which we find to be negligible
in practise. We separate w′

0 into a sum consisting of a prior sample from w0 and a data
dependent term, denoted A−1ΦTBE . The former scales with a−1/2 while the latter with a−1.
This allows us to update each term in closed form each time a changes in the M step. We
initialise our posterior samples at w0 at the first EM iteration and warm start them with the
previously optimised values in successive iterations. Similarly, we warm-start the posterior
mode w⋆ at the previous solution between iterations, initialising it to zero for the first iteration.
We optimise both our samples and posterior mean using stochastic gradient descent with
Nesterov momentum. In particular, we follow the recommendations given in Section 4.2.4.
We only depart from this for non-quadratic likelihoods, like softmax cross entropy, where we
substitute geometric iterate averaging with a linearly decreasing step-size schedule (Bach,
2014). As a preview of this procedure, we display the SGD optimisation traces for the
posterior mean w⋆ and samples ζ throughout all steps of our EM procedure for a linearised
ResNet-18 trained on the CIFAR100 dataset in Figure 6.4.

Remark The impact of SGD’s bias on our hyperparameter updates
Letting B = bI for simplicity, our estimate of the effective dimension amounts to
estimating theK2 norm, or output space norm of our samplesEζb∥Φζ∥2 = b∥h(ζ,X)∥2
(6.9). The other term appearing in the MacKay update is the A norm of our posterior

6.2 Sample-based inference for the tangent linear model 139

Fig. 6.4 Left: prior precision optimisation traces for ResNet-18 on CIFAR100 varying n.
samples. Middle: same for the eff. dim. Right: average sample norm and posterior mean
norm throughout successive EM steps’ SGD runs while varying n. samples. Note that traces
almost perfectly overlap. 1 posterior sample is enough to obtain a very accurate estimate
of the effective dimension. As a result, the optimisation traces corresponding to different
numbers of samples almost perfectly overlap.

mean ∥w⋆∥2A. In Chapter 4 we saw how SGD converges quickly in the output space, but
slowly in the weight space, both in an L2 sense (see Figure 4.9). As a result, we expect
to obtain an accurate estimate of the effective dimension, but not of ∥w⋆∥2A. Given that
we initialise the MAP setting of the weights at 0 for SGD optimisation, we expect that
SGD will result is us underestimating ∥w⋆∥2A. In turn, this will lead to overestimation
of our regulariser when setting it with a = γ/∥w⋆∥2A. Indeed, this issue will appear in
very large scale problems in Section 6.3 and in Section 7.4.2.

6.2.4 Sample-based linearised Laplace predictions

The linearised Laplace distribution over function outputs at an input x is the Gaussian
N (g(ṽ, x), ϕ(x)H−1ϕ(x)T). Here, we are following Section 3.3 and Chapter 5 in using the
neural network output g(ṽ, ·) as the predictive mean, rather than the surrogate model mean
h(w⋆, ·). However, even given H−1, evaluating this naïvely requires instantiating ϕ(x), at
a cost of c vector-Jacobian products (i.e. backward passes). This is prohibitive for large c.
However, expectations of any function σ : Rc → R under the predictive posterior can be
approximated using only samples from Π0

w|Y as

EΠw|Y [σ] ≈ 1
k

∑k
j=1 σ (g(ṽ, x) + ϕ(x)ζj) with ζ1, . . . , ζk ∼ Π0

w|Y , (6.15)

requiring only k Jacobian-vector products. In practice, for classification, we find k much
smaller than the number of classes c suffices.

140 Sample-based linearised Laplace

Algorithm 3: Sampling-based linearised hyperparameter learning and inference
Inputs: initial a > 0; k, k′ ∈ N , number of samples for stochastic EM and

prediction, respectively.
Compute g-prior scaling vector s as in (6.12)
Sample random regularisers w′

0,1, . . . , w
′
0,k per (6.14)

while a has not converged do
Find posterior mode w̄ by optimising linear model loss L(h(w, ·)), given in (6.3)
Draw posterior samples ζ1 . . . ζk by optimising objective L′ with w′

0,1, . . . , w
′
0,k

Estimate effective dimension γ̂, per (6.9), using samples ζ1 . . . ζk
Update prior precision a← γ̂/∥w̄∥22

Sample k′ random regularisers w′
0,1, . . . , w

′
0,k′ using optimised a

Draw corresponding posterior samples ζ ′1, . . . , ζ ′k′ using (6.14)
Output: posterior samples ζ ′1, . . . , ζ ′k′

6.2.5 Putting the pieces into a single algorithm for image classification

We now combine the methods described so far into a single algorithm that avoids storing
Hessian H or covariance matrices H−1, computing their log-determinants, or even instantiat-
ing Jacobian matrices ϕ(x), all of which have prevented the scalability of previous linearised
Laplace implementations. We interact with NN Jacobians only through Jacobian-vector
and vector-Jacobian products, which have the same asymptotic computational and memory
costs as a NN forward-pass (Novak et al., 2022). Unless otherwise specified, we use the
diagonal g-prior and a scalar regularisation parameter. Algorithm 3 summarises our method
and Figure 6.5 shows an illustrative example.

An algorithm for image classification

Algorithm 4 provides a detailed procedure for applying our stochastic EM iteration to image
classification while using g-prior feature scaling, described in (6.12). Therein, σ denotes the
softmax function. The curvature of the softmax cross entropy loss at xi, denoted Bi, is given
by Bi = diag[(pi) − pipTi] for pi = σ(g(ṽ, xi)) denoting our neural network’s predictive
probabilities. The notation⊙ refers to the elementwise product and to the elementwise power
when used in an exponent.

The key hyperparameters of our algorithm are the number of samples to draw for the
EM iteration, the number of EM steps to run, and SGD hyperparameters, namely learning
rate, number of steps and batch-size. Empirically, we find that at most 5 EM steps are
necessary for hyperparameter convergence and that as little as 1 sample can be used for

6.3 Demonstration: Image classification 141

a

a

Fig. 6.5 Illustration of our procedure for a fully connected NN on the toy dataset of Antorán
et al. (2020). Top: prior function samples present large std-dev. (left). When these samples
are optimised (middle shows a 2D slice of weight space), the resulting predictive errorbars
are larger than the marginal target variance (right). Bottom: after EM, the std-dev. of prior
functions roughly matches that of the targets (left), the overlap between prior and posterior is
maximised, leading to shorter sample trajectories (center), and the predictive errorbars are
qualitatively more appealing (right).

the algorithm without degrading performance. Choosing SGD hyperparameters is more
complicated. However, we are aided by the fact that lower loss values correspond to more
precise posterior mean and sample estimates. As a result, we can tune these parameters on
the train data, no validation set is required.

6.3 Demonstration: Image classification

We demonstrate our linear model inference and hyperparameter selection approach on the
problem of estimating the uncertainty in NN predictions with the linearised Laplace method.
First, in Section 6.3.1, we perform an ablation analysis on the different components of our
algorithm using small LeNet-style CNNs trained on MNIST. In this setting, full-covariance
Laplace inference (that is, exact linear model inference) is tractable, allowing us to evaluate
the quality of our approximations. We then demonstrate our method at scale on CIFAR100
classification with a ResNet-18 (Section 6.3.2) and Imagenet with ResNet-50 (Section 6.3.3).
We look at both marginal and joint uncertainty calibration and at computational cost.

6.3.1 Comparison with existing approximations on MNIST

We first evaluate our approach on MNIST c=10 class image classification, where exact
linearised Laplace inference is tractable. The training set consists of n=60k observations

142 Sample-based linearised Laplace

Algorithm 4: Sampling-based linearised Laplace inference for image classification
Inputs: Linearised network h, unscaled feature expansion ϕ linearisation point w⋆,

observations x1, . . . , xn, negative log-likelihood function ℓ, initial precision
a > 0, number of samples k

Define Bi:
pi ← σ(h(w⋆, xi))
return diag(pi)− pipTi

for j = 1, . . . , k do
w0

j ∼ N (0, a−1I)
w′

j ← a−1
∑n

i=1 ϕ(xi)
T ϵj where ϵj ∼ N (0, Bi)

ζj ← w0
j

w⋆ ← 0

s← a−1
[
1
k

∑k
j=1w

′⊙2
j

]⊙−1/2

while a has not converged do
for j = 1, . . . , k do

ζj ← SGDz

(
∥Φ(s⊙ z)∥2B + a∥z − w0

j − (s⊙ w′
j)∥22, init=ζj

)
w⋆ ← SGDw (

∑n
i=1 ℓ(yi, h((s⊙ w), xi)) + a∥w∥22, init=w⋆)

γ̂ ← 1
k

∑k
j=1

∑n
i=1 ∥(ζj ⊙ s)Tϕ(xi)T∥2Bi

a′ ← γ̂/∥w⋆∥22
for j = 1, . . . , k do

w0
j ←

√
a
a′
w0

j

w′
j ← a

a′
w′

j

a← a′

Output: Optimised precision a and weight samples ζ1, . . . , ζk

and we employ 3 LeNet-style CNNs of increasing size: “LeNetSmall” (d=14634), “LeNet”
(d=29226) and “LeNetBig” (d=46024). The latter is the largest model for which we can
store the covariance matrix on an A100 GPU. We draw samples and estimate posterior modes
using SGD with Nesterov momentum. We use 5 seeds for each experiment, and report the
mean and std. error.

Fidelity of sampling-based inference We compare our methods uncertainty using 64
SGD-based samples against approximate methods based on the NN weight point-estimate
(MAP), a diagonal covariance, and against a KFAC estimate of the covariance (Martens
and Grosse, 2015; Ritter et al., 2018) implemented with the Laplace library, in terms of
similarity to the full-covariance lin. Laplace predictive posterior. As standard, we compute
categorical predictive distributions with the probit approximation (Daxberger et al., 2021a).
All methods use the same layerwise prior precision obtained with 5 steps of full-covariance

https://github.com/AlexImmer/Laplace

6.3 Demonstration: Image classification 143

LeNetSmall
d′=14634

LeNet
d′=29226

LeNetBig
d′=46024

10−4

10−3

sy
m

.K
L

difference with full lin. Laplace predictive

sampling KFAC diag MAP

LeNetSmall
d′=14634

LeNet
d′=29226

LeNetBig
d′=46024

100

W
2

Fig. 6.6 Left: similarity to exact lin. Laplace predictions on the MNIST test-set, in terms of
symmetric KL and Wasserstein-2 distance, for different approximate methods applied to NNs
of increasing size. Centre right: comparison of EM convergence for a single hyperparameter
across approximations. Right: layerwise convergence for exact and sampling methods.

EM iteration. The results are on the left hand side of Figure 6.6. For all three LeNet sizes,
the sampled approximation presents the lowest categorical sym. KL and logit W2 distance to
the exact lin. Laplace pred. posterior. The fidelity of competing approximations degrades
with model size but that of sampling increases.

Accuracy of sampling hyperparameter selection We first compare our SGD sampling EM
iteration with 16 samples to full-covariance EM on LeNet, both without the g-prior. Figure
6.6, middle-right, shows that for a single precision hyperparameter, both approaches converge
in about 3 steps to the same value. In this setting, the diagonal covariance approximation
diverges, and KFAC converges to a biased solution. We also consider learning layer-wise
prior precisions by using the layerwise version of MacKay’s M-step update. Here, neither the
full covariance nor sampling methods converge within 15 EM steps. The precisions for all
but the final layer grow in all steps. This reveals a pathology of this prior parametrisation:
only the final layer’s Jacobian, i.e. the final layer activations, are needed to accurately predict
the targets; other features are pruned away.

We further compare the evidence approximations implied by a number of popular Laplace
posterior approximations to the one from our SGD-based posterior samples. Figure 6.7
displays the evidence approximations obtained by plugging different posterior covariance
approximations into the Laplace evidence given in (6.2). In particular, we consider the
full-covariance Laplace evidence (denotedM in the plot), which we note does not match the
exact model evidence due to the non-quadratic classification loss, the KFAC approximation
to the covariance (labelled KFAC GGN), a single-sample KFAC Fisher estimate of the
covariance (KFAC EF), the KFAC empirical Fisher matrix, and a diagonal Laplace covariance.
We refer the reader to Daxberger et al. (2021a); Immer et al. (2021a) for a review of these

144 Sample-based linearised Laplace

Fig. 6.7 Full covariance linearised Laplace evidenceM together with approximations to this
curve that rely on different covariance matrix approximations. A marker is placed at each
curve’s optima. We consider convolutional networks of increasing size (left to right) trained
on the MNIST dataset.

approximations. We also include the linear-Gaussian ELBO given in (3.5) and discussed in
Section 6.1.1, where the approximate posterior is given by 16 SGD-based samples. In all
cases, we initialise the regulariser at an optima found by applying the EM algorithm while
using the full covariance Laplace evidenceM in the M-step. In this way, we may use the
deviation of different objectives’ optima from the optima ofM as estimates of the bias in
their corresponding approximations. The KFAC and KFAC-Fisher approximations result in a
systematic overestimation of the evidence optima which grows with model size. This issue
is even more pronounced for the diagonal covariance approximation. Surprisingly, we find
the empirical Fisher to provide an accurate approximation. A similar finding is reported by
(Immer et al., 2021a). This is surprising, given that the empirical Fisher is known to provide
a heavily biased estimate of loss curvature and thus perform poorly for optimisation tasks
(Kunstner et al., 2019). The sample-based ELBO shows close to no bias in its optima. This
matches our experiments from Section 6.3.2, where the sample-based EM algorithm behaves
well even when using very few samples.

6.3.2 Predictive performance and robustness on CIFAR-100

We showcase the stability and performance of our approach by applying it to CIFAR100
c=100-way image classification. The training set consists of n=50k observations, and we
employ a ResNet-18 model with d ≈ 11M parameters. To the best our knowledge, this is
the first lin. Laplace approach that is capable of scaling to the CIFAR100 dataset, as the

6.3 Demonstration: Image classification 145

high-parameter and high-output dimensions prove intractable even on modern hardware.
Unless specified otherwise, we run 8 steps of EM with 6 samples to select a. We then
optimise 64 samples to be used for prediction. We run each experiment with 5 different seeds
reporting mean and std. error.

Stability and cost of sampling algorithm Figure 6.4 shows that our sample-based EM
converges in 6 steps, even when using a single sample. At convergence, a ≈ 104 and γ̂ ≈ 700,
so 2aγ = 2 × 700 × 104 = 1.4 × 107 > 1.1 × 107 = TrM . Thus, (4.28) is satisfied and
our low variance sample-then-optimise objective (4.17) presents better properties even at
convergence. We use 50 epochs of optimisation for the posterior mode and 20 for sampling.
When using 2 samples, the cost of one EM step with our method is 45 minutes on an A100
GPU; for the KFAC approximation, this takes 20 minutes.

0 1 2 3 4 5

corruption severity

−5

−4

−3

−2

−1

te
st

LL

KFAC
MAP
Ensemble (5)
Sampling-Probit

Fig. 6.8 Performance under distribution shift for ResNet-18 on CIFAR100.

Evaluating performance in the face of distribution shift We employ the standard
benchmark for evaluating methods’ test Log-Likelihood (LL) on the increasingly corrupted
data sets of Hendrycks and Gimpel (2017); Snoek et al. (2019a). We compare the predictions
made with our approach to those from deep ensembles, arguably the strongest baseline
for uncertainty quantification in deep learning (Ashukha et al., 2020; Lakshminarayanan
et al., 2017). We use a 5 element ensemble, as this is standard in the literature (Antorán
et al., 2020; Daxberger et al., 2020) and the number of vector Jacobian products needed
to train it roughly matches the amount used for 7 steps of sample-based EM optimisation
with 6 posterior samples. We also consider a point-estimated predictions (MAP), and with
a KFAC approximation of the lin. Laplace covariance (Ritter et al., 2018). For the latter,

146 Sample-based linearised Laplace

constructing full Jacobian matrices for every test point is computationally intractable, so we
use 64 samples for prediction, as we do for SGD sampling. The KFAC covariance structure
leads to fast log-determinant computation, allowing us to learn layer-wise prior precisions
(following Immer et al., 2021a) for this baseline using 10 steps of non-sampled EM. For
both lin. Laplace methods, we use the standard probit approximation to the categorical
predictive distribution (Daxberger et al., 2021b). Figure 6.8 shows that for in-distribution
inputs, ensembles performs best and KFAC overestimates uncertainty, degrading LL even
relative to point-estimated MAP predictions. Conversely, our method improves LL. For
sufficiently corrupted data, our approach outperforms ensembles, also edging out KFAC,
which fares well here due to its consistent overestimation of uncertainty.

κ MAP Ensemble (5) KFAC Sampling
marginal LL 1 -1.40± 0.00 -0.90± 0.00 -1.12± 0.01 -1.07± 0.01

joint LL

2 -13.97± 0.01 -6.86± 0.01 -4.92± 0.04 -5.14± 0.04
3 -27.89± 0.03 -14.17± 0.03 -10.83± 0.12 -10.77± 0.09
4 -41.83± 0.03 -22.29± 0.04 -19.02± 0.22 -18.04± 0.18
5 -55.89± 0.02 -31.07± 0.09 -29.40± 0.40 -26.75± 0.26

Table 6.1 Comparison of methods’ marginal and joint prediction performance for ResNet-18
on CIFAR100.

Joint predictions Joint predictions are essential for sequential decision making, but are
often ignored in the context of NN uncertainty quantification (Janz et al., 2019). To address
this, we replicate the “dyadic sampling” experiment proposed by Osband et al. (2022). We
group our test-set into sets of κ data points and then uniformly re-sample the points in each set
until sets contain τ points. That is, multiple coppies of the κ original points. We then evaluate
the LL of each set jointly. Since each set only contains κ distinct points, a predictor that
models self-covariances perfectly should obtain an LL value at least as large as its marginal
LL for all values of κ. We use τ=10(κ− 1) and repeat the experiment for 10 test-set shuffles.
Our setup remains the same as above but we use Monte Carlo marginalisation to push our
Gaussian predictive distribution through the softmax instead of the probit approximation,
since the latter discards covariance information. Table 6.1 shows that ensembles make
calibrated predictions marginally but their joint predictions are poor, an observation also
made by Osband et al. (2023). Our approach is competitive for all κ, performing best in the
challenging large κ cases.

6.3 Demonstration: Image classification 147

0.0 0.2 0.4 0.6 0.8 1.0

predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ri
ca

la
cc

ur
ac

y

CIFAR100 predicted probability vs empirical accuracy

KFAC
MAP
Ensemble (5)
Sampling-MC

Fig. 6.9 Confidence vs accuracy plot (also known as a reliability diagram) for our CIFAR100
classification experiment.

Calibration of predictive uncertainty For the standard CIFAR100 test set, we separate
our predicted probabilities into 10 equal width bins between 0 and 1. For each bin, we plot
the proportion of targets that coincide with the class for which the predicted probability
falls into the bin. This is shown in Figure 6.9. KFAC overestimates uncertainty at all
confidence levels whereas MAP underestimates it. Both sample-based linearised Laplace and
ensembling show significantly improved calibration. While ensembles show a small amount
of uncertainty overestimation consistently, our method underestimates uncertainty for low
predicted probabilities and overestimates it for large predicted probabilities.

6.3.3 Predictive performance on Imagenet

We demonstrate the scalability of our approach by applying it to Imagenet c=1000-way image
classification (Russakovsky et al., 2015). The training set consists of n≈1.2M observations,
and we employ a ResNet-50 model with d ≈ 25M parameters. To the best our knowledge,
this is the first lin. Laplace approach that is capable of scaling to the Imagenet dataset, as the
high-parameter and high-output dimensions prove intractable even on modern hardware. Our
setup largely matches that described in Section 6.3.2 for CIFAR100 but we run 6 steps of EM
with 6 samples to select a single regulariser parameter a. We then optimise 90 samples to be
used for prediction. Our computational budget only allows for a single run. Thus, we do not
provide errorbars.

148 Sample-based linearised Laplace

Fig. 6.10 Prior precision optimisation trajectories for ResNet-50 on Imagenet.

κ MAP Ensemble KFAC Sampling
5 NNs init 5EM 6EM α=11.4

marginal LL 1 -0.936 -0.815 -1.449 -1.493 -0.924 -0.917

joint LL

2 -9.347 -6.700 -6.289 -6.286 -7.814 -5.611
3 -18.733 -13.268 -12.112 -12.246 -15.065 -10.675
4 -28.093 -20.029 -19.872 -20.493 -22.416 -16.154
5 -37.416 -26.938 -29.839 -31.221 -29.787 -21.981

Table 6.2 Comparison of methods’ marginal and joint predictive performance for ResNet-50
on Imagenet.

Stability and cost of sampling algorithm At each EM step, we run 10 epochs of
optimisation to find the linear model’s posterior mean and a single epoch of optimisation to
draw samples. Each EM step takes roughly 26 hours on a TPU-v3 accelerator. Figure 6.10
shows the regularisation strength reaches values∼150 in 1 step and then drifts slowly towards
lower values without fully converging within 6 steps. This suggests the optimal a value may
lie bellow 100. Unfortunately, we are unable to verify this, as the required computational
cost exceeds our budget. Taking a ≈ 100 and γ̂ ≈ 105, we obtain 2aγ ≈ TrM = 2.5× 107.
According to (4.28) and thus our proposed sampling objective is expected to reduce variance
throughout optimisation.

Marginal and joint predictions Using the same setup from the CIFAR100 joint prediction
experiment above, but drawing 90 samples with our method and KFAC, we make marginal and
joint predictions on the Imagenet test set. The results are shown in Table 6.2. Our methods
regulariser optimisation trajectory in Figure 6.10 suggests a value lower than the one obtained
after 6 EM steps (a = 114) may be preferred. Thus, we also report results with a value 10
times lower: a = 11.4. For KFAC, we optimise layerwise prior precisions using 5 EM steps.
This leads to small precisions which produce underconfident predictions and poor results. We

6.4 Discussion 149

attribute this to bias in the KFAC estimate of the covariance log-determinant. For comparison,
we include KFAC results with a single regularisation parameter set to our initialisation value
a=10000 (labelled “init”). This choice maintains or improves performance across κ values.
Similarly to CIFAR100, ensembles obtains the strongest marginal test log-likelihood followed
by our sampling approach for both regularisation strength values. KFAC overestimates
uncertainty providing worse marginal performance than a single point-estimated network for
both regularisation strength values. With a=11.4, our sampling approach performs best in
terms of joint LL. Again, we find ensembles model joint-dependencies poorly. For κ values
between 2 and 5, their performance is comparable to that of the KFAC approximation.

Concurrently with the present work, Deng et al. (2022) introduce “ELLA”, a Nyström-
based approximation to the Laplace covariance. With ResNet-50 on Imagenet, the authors
report a marginal (κ=1) test LL of -0.948, which is worse than our MAP model. However,
differences in the MAP solution upon which the Laplace approximation is built (theirs obtains
-0.962 LL) make Deng et al. (2022)’s results not directly comparable with ours. ELLA
does not provide a model evidence objective and thus Deng et al. (2022)’s result relies on
validation-based tuning of the regularisation strength.

6.4 Discussion

This chapter introduced a sample-based approximation to inference and hyperparameter
selection in Gaussian linear multi-output models. The approach is asymptotically unbiased,
allowing us to scale the linearised Laplace method to ResNet models on CIFAR100 and
Imagenet without discarding covariance information, which was computationally intractable
with previous methods. The uncertainty estimates obtained through our method are well-
calibrated not just marginally, but also jointly across predictions. Thus, our work may be
of interest in the fields of active and reinforcement learning, where joint predictions are of
importance, and computation of posterior samples is often needed.

With this, we have largely delivered on the goals of the thesis; scaling calibrated uncertainty
estimation to real-world-sized models and datasets. Chapter 7, applies the methods developed
so far to uncertainty estimation and experimental design for tomographic image reconstruction.
Our scalable methods will allow us to perform uncertainty estimation for high-resolution
volumetric reconstructions from neural networks, a problem not tackled before because of its
large computational cost.

150 Sample-based linearised Laplace

Since the publication of Antorán et al. (2023), which formed the basis for this chapter,
there have been further efforts, using both Bayesian and non-Bayesian methods, to obtain
calibrated uncertainty estimates from large NNs trained on large datasets. Most notable is the
work of Osband et al. (2023), who use the sample-then-optimise objective (2.38) to draw
samples of the weights of a small ad-hoc neural network placed on top of a pre-trained model’s
final layer activations. This procedure does not even approximately draw samples from the
true posterior of the ad-hoc network’s weights, but provides calibrated uncertainty estimates
in practise, both in terms of marginal and joint predictions. Also worth mentioning is the
work of Shen et al. (2024), which represents the latest effort to adapt a standard optimiser used
in deep learning to learn the mean and variance vector of a mean field variational posterior.

Chapter 7

Uncertainty estimation and experimental
design for computed tomography with the
linearised deep image prior

Linear inverse problems in imaging aim to recover an unknown image x ∈ Rdx from
measurements y ∈ Rc, which are often modelled by the application of a forward operator
T ∈ Rc×dx to the image, and the addition of Gaussian noise ε ∼ N (0, b−1Ic). That is

y = T x+ ε. (7.1)

This acquisition model is ubiquitous in machine vision, computed tomography (CT), and
magnetic resonance imaging, among other applications. Due to the inherent ill-posedness of
the task (e.g. c≪ dx), suitable regularisation, or prior assumptions, are crucial for the stable
and accurate recovery of x (Ito and Jin, 2014; Tikhonov and Arsenin, 1977).

In this chapter, we focus on CT. Here, an emitter sends X-ray quanta through the object
being scanned. The quanta are captured by dp detector elements placed opposite the emitter.
Each row of T tells us about which regions (pixels) the X-ray quanta will pass through before
reaching a detector element. This is illustrated in Figure 7.1. The number of X-ray quanta
measured by a detector pixel conveys information about the attenuation coefficient of the
material present along the quanta’s path. This procedure is repeated at dB angles, yielding a
measurement of dimension c = dp · dB, corresponding to the c× dx sized linear operator T ,
which is given by the discrete Radon transform.

152 The linearised deep image prior for computed tomography

0∘

90∘

180∘

45∘135∘

β∘

=y A +ϵx𝒯

Fig. 7.1 A schematic diagram of 2D parallel beam CT geometry, used in our image
reconstruction experiments. In the diagram, the detector is set to angle β. At this angle, a dp
dimensional observation is generated by the application of a dp × dx sized block of the T
operator to the input x. In this plot, dp = 3, dx = 64 and the non-zero entries of the dp × dx
sized block of T correspond to the pixels with blue colouring that the X-ray quanta pass
through. We scan at dB angles, generating a full c = dpdB dimensional observation.

In recent years, deep-learning based approaches have achieved outstanding performance
on a wide variety of tomographic problems (Arridge et al., 2019; Ongie et al., 2020; Wang
et al., 2020). Most deep learning methods are supervised; they rely on large volumes of paired
training data. Alas, these often fail to generalise out-of-distribution (Antun et al., 2020);
small deviations from the distribution of the training data can lead to severe reconstruction
artefacts. Pathologies of this sort call for both unsupervised deep learning methods—free
from training data and thus mitigating hallucinatory artefacts (Bora et al., 2017; Heckel
and Hand, 2019; Tölle et al., 2021)—and uncertainty quantification (Kompa et al., 2021;
Vasconcelos et al., 2022)—informing the user about (un)reliability in reconstructions.

We focus on the deep image prior (DIP), perhaps the most widely adopted unsupervised
deep learning approach (Ulyanov et al., 2018a). DIP regularises the reconstructed image
x̃ by reparametrising it as the output of a deep convolutional neural network (CNN). It
does not require paired training data, relying solely on the structural biases induced by
the CNN architecture. The DIP has proven effective on tasks ranging from denoising and
deblurring to challenging tomographic reconstructions (Baguer et al., 2020; Barutcu et al.,
2022; Cui et al., 2021; Darestani and Heckel, 2021; Gong et al., 2019; Knopp and Grosser,
2021; Liu et al., 2019). Nonetheless, the DIP only provides point reconstructions without
uncertainty estimates.

153

or
ig

in
al

im
ag

e

error
std

-d
ev

Fig. 7.2 X-ray reconstruction (501×501 px2) of a walnut (left), the absolute error of its CT
reconstruction (top) and pixel-wise uncertainty from the linearised DIP (bottom).

In this chapter, we apply the methods developed through this thesis to equip DIP
reconstructions with reliable uncertainty estimates. In literature, there are two notable
probabilistic reformulations of the DIP (Cheng et al., 2019; Tölle et al., 2021), but their focus
is on preventing overfitting rather than accurately estimating uncertainty. Distinctly from
these, we only estimate the uncertainty associated with a specific reconstruction. We do this
by computing Gaussian-linear model type error-bars for a local linearisation of the DIP around
its mode (Immer et al., 2021a; Khan et al., 2019a; Mackay, 1992a), and refer to the method
as linearised DIP. Linearised approaches have recently provided state-of-the-art uncertainty
estimates for supervised deep learning models (Daxberger et al., 2021b). We also explore
the incorporation of the total variation (TV) regulariser, ubiquitous in CT reconstruction, as
a Bayesian prior for the weights of the linearised model. This regulariser is unnormalised
and does not lend itself to standard Laplace (i.e. local Gaussian) approximations (Helin
et al., 2022a). We tackle this issue using predictive complexity prior (PredCP) framework of
Nalisnick et al. (2021).

We demonstrate our approach on high-resolution CT reconstructions of real-measured
2D and 3d Micro CT (µCT) projection data. An example of the former is in Figure 7.2.
Empirically, the method’s pixel-wise uncertainty estimates predict reconstruction errors more
accurately than existing approaches to uncertainty estimation with the DIP. This is not at
the expense of accuracy in reconstruction: the reconstruction obtained using the standard
regularised DIP method (Baguer et al., 2020) is preserved as the predictive mean, ensuring
compatibility with advancements in DIP research.

We then go on to leverage the aforementioned uncertainty estimates to perform adaptive
experimental design for CT scan angle selection. We consider a setting where the CT scan is
performed in two phases. First, a sparse pilot scan is performed to provide data with which to
fit adaptive methods. These are then used to adaptively select angles for a full scan using the

154 The linearised deep image prior for computed tomography

linearised deep image prior as a data-dependent prior. We demonstrate this procedure with a
synthetic dataset where a different “preferential” angle is most informative for each image.
Unlike simple linear models, the linearised DIP’s designs depend on previously observed
targets. This adaptivity allows linearised DIP designs to outperform the equidistant angle
baseline, which is almost always used in deployment.

The contributions of this chapter can be summarised as follows.

• We propose a novel approach to bestow reconstructions from the TV-regularised DIP
with uncertainty estimates, by linearising the DIP around its optimised reconstruction
and providing the linear model’s error-bars as a surrogate for those of the DIP. We
perform sample-based EM inference in this model, scaling to high resolution real-
measured 2d reconstructions and 3d volumetric reconstructions. To be best of our
knowledge, this is the first instance of uncertainty estimation for NN-based 3d volumetric
CT reconstruction. Our approach yields far more accurate uncertainty estimation than
existing probabilistic formulations of the DIP.

• We leverage the linearised DIP as a data-dependent prior for CT experimental design.
This allows us to perform adaptive design, where successive acquisition locations
dependent on previous observed targets (as opposed to only the input locations), while
preserving the tractability of a linear model. This method outperforms equidistant
angle selection on a synthetic task.

The rest of this chapter is organised as follows. Section 7.1 covers the DIP, the TV
regulariser and other preliminaries not introduced earlier in the thesis. Section 7.2 presents
the linearised DIP and a novel TV-based prior for the linear model’s parameters. Section
7.3 discusses efficient approaches to inference. Section 7.4 presents a demonstration of
the linearised DIP on real-measured high-resolution µCT data. Section 7.5 introduces
experimental design with linear models and discusses how the linearised DIP can be used
within this framework. Finally, Section 7.6, demonstrates our approach to experimental
design on synthetic data, and Section 7.7 concludes the chapter.

7.1 Preliminaries

This section reviews some CT-specific concepts that were not covered in earlier chapters of
the thesis.

7.1 Preliminaries 155

7.1.1 Total variation regularisation

The imaging problem, given in (7.1), admits a linear subspace of solutions consistent with
the observation y1. Thus, regularisation is needed for stable reconstruction. Total variation
(TV) is perhaps the most well established regulariser (Chambolle et al., 2010; Rudin et al.,
1992). The anisotropic TV semi-norm of an image vector x ∈ Rdx imposes an L1 constraint
on image gradients:

TV(x)=
∑
i,j

|xi,j − xi+1,j|+
∑
i,j

|xi,j − xi,j+1|, (7.2)

where x ∈ Rh×w denotes the vector x reshaped into an image of height h by width w, and
dx = h ·w. This leads to the regularised reconstruction formulation

x̃ ∈ argmin
x∈Rdx

L(x) with L(x) := b∥ T x− y∥22 + TV(x), (7.3)

where the hyperparameter b > 0 determines the strength of the regularisation relative to the
fit term.

7.1.2 Bayesian inference for inverse problems

The Bayesian framework provides a consistent approach to uncertainty estimation in imaging
problems (Kaipio and Somersalo, 2005; Seeger and Nickisch, 2011; Stuart, 2010). The image
to be recovered is treated as a random variable. Instead of finding a single best reconstruction
x̃, we aim to find a posterior Px|y, with density ρ(x|y) that scores every candidate x ∈ Rdx

according to its agreement with the observation y and prior density ρ(x). The loss in (7.3) can
be viewed as the negative log of an unnormalised posterior density, i.e. ρ(x|y)∝exp(−L(x)),
and x̃ as its mode, i.e. the maximum a posteriori (MAP) estimate. The least squares loss
corresponds to a Gaussian likelihood p(y|x) = N (y; T x, I) and the TV regulariser to a
prior over images P with density ρ(x) ∝ exp(−λTV(x)). With this, we are ready to crank
the lever of Bayesian reasoning, as introduced in Section 2.1.2.

Our work partially departs from this framework in that it solely concerns itself with
characterising plausible reconstructions around the mode x̃ (Mackay, 1992a). This has two
key advantages, 1) tractability: the likelihood induced by NN reconstructions is strongly
multi-modal, and both analytically and computationally intractable. In contrast, the posterior

1This statement disregards the effects of the observation noise, which introduces a strictly convex constraint,
but in practise it is very weak.

156 The linearised deep image prior for computed tomography

for the local model is Gaussian; 2) interpretablity: even if we could obtain the full posterior,
downstream stakeholders not versed in probability are likely to have little use for it. A single
reconstruction and its pixel-wise uncertainty may be more interpretable to end-users (Antorán
et al., 2021; Bhatt et al., 2021).

7.1.3 The Deep Image Prior (DIP)

The DIP (Ulyanov et al., 2018a, 2020) reparametrises the reconstructed image as the output
of a CNN g : Rd → Rdx with learnable parameters v ∈ Rd and a fixed input, which we have
omitted from our notation for clarity. The DIP can be seen as a reparametrisation of the
reconstructed image that provides a favourable structural bias. We introduce the optimisation
problem

ṽ ∈ argmin
v∈Rd

b∥ T g(v)− y∥22 + TV(g(v)), (7.4)

and the recovered image is given by x̃ = g(ṽ). Penalising the TV of the DIP’s output avoids
the need for early stopping and improves reconstruction fidelity (Baguer et al., 2020; Liu
et al., 2019). The standard choice of CNN architecture is the fully convolutional U-net
(Ronneberger et al., 2015). We also adopt this architecture in this chapter. Although the
parameters v must be optimised separately for each new measurement y, we follow (Barbano
et al., 2022c; Knopp and Grosser, 2021) to reduce the cost with task-agnostic pretraining.

Since its introduction by Ulyanov et al. (2018a, 2020), the DIP has been improved with
early stopping (Wang et al., 2021), TV regularisation (Baguer et al., 2020; Liu et al., 2019),
and pretraining (Barbano et al., 2023, 2022c; Knopp and Grosser, 2021). We build upon
these recent advancements by providing a scalable method to estimate the error-bars of DIP’s
reconstructions. This is a relatively unexplored topic. Building upon Garriga-Alonso et al.
(2019) and Novak et al. (2019), Cheng et al. (2019) show that in the infinite-channel limit,
the DIP converges to a Gaussian process (GP). In the finite-channel regime, the authors
approximate the posterior distribution over the DIP’s parameters with stochastic gradient
Langevin dynamics (SGLD) (Welling and Teh, 2011). Laves et al. (2020) and Tölle et al.
(2021) use factorised Gaussian variational inference (Blundell et al., 2015) and MC dropout
(Hron et al., 2018; Vasconcelos et al., 2022), respectively. These probabilistic treatments
of DIP primarily aim to prevent overfitting, as opposed to accurately estimating uncertainty.
While they can deliver uncertainty estimates, their quality tends to be poor. In fact, obtaining
reliable uncertainty estimates from deep-learning based approaches, like the DIP, largely
remains a challenging open problem (Antorán, 2019; Antorán et al., 2020; Ashukha et al.,
2020; Barbano et al., 2022a; Foong et al., 2020; Snoek et al., 2019b).

7.2 Linearised DIP uncertainty estimation for CT 157

7.2 Linearised DIP uncertainty estimation for CT

In this section, we build a probabilistic model to characterise the uncertainty associated
with reconstructions around ṽ, a mode of the regularised DIP objective obtained using (7.4).
Section 7.2.1 describes the construction of a linearised surrogate for the DIP reconstruction.
Section 7.2.2 describes how to compute the surrogate model’s error-bars and use them to
augment the DIP reconstruction. Section 7.2.3 discusses how we include the effects of TV
regularisation into the surrogate model.

7.2.1 From a prior over parameters to a prior over images

After training the DIP to an optimal TV-regularised setting x̃ = g(ṽ) using (7.4), we linearise
the network around ṽ by applying (3.33), and obtain the affine in w ∈ Rd function h(w). The
error-bars obtained from Bayesian inference with h(w) will tell us about the uncertainty in x̃.
To this end, consider the Bayesian model,

y|w ∼ N (T h(w), b−1I), w ∼ N (0, A−1)

with h(w) := g(ṽ) + ϕ(w − ṽ), (7.5)

where ϕ = ∂vg(ṽ) ∈ Rc×d is the Jacobian of our NN2. We will select the precision A to
incorporate TV constraints into the computed error-bars in Section 7.2.3. We have introduced
the noise variance b−1 as an additional hyperparameter which we will learn using the marginal
likelihood.

Demonstration: sampling from the linearised DIP prior

To provide intuition about the linearised model, we push samples from w ∼ N (0, A−1),
through h. The resulting reconstruction samples are drawn from a Gaussian distribution with
covariance K ∈ Rdx×dx given by ϕA−1ϕ⊤. We show an example in Figure 7.3. Here, the
Jacobian ϕ introduces structure from the NN function around the linearisation point ṽ. For
this example, we train our NN on CT data simulated by using the KMNIST dataset as the
original images. Thus, out prior samples contain features from the KMNIST character that
the DIP was trained on.

2In this chapter, ϕ is a matrix, as opposed to a function that returns a matrix, because our NN’s input is
clamped to a constant.

158 The linearised deep image prior for computed tomography

Fig. 7.3 Samples from different priors over the reconstructed image x. From left to right,
the plots show samples from the TV prior with density ∝ exp(−TV(x)), drawn with HMC,
from an isotropic Gaussian prior, from a linearised DIP trained on a MNIST character, and
from the same model but paired with the TV-PredCP prior over the weights introduced in
Section 7.2.3. The latter leads to smoother samples with less artefacts than the standalone
linearised DIP prior.

7.2.2 Computing the predictive uncertainty

We augment the DIP reconstruction x̃ with Gaussian predictive error-bars computed with
the linearised model h described in (7.5). This yields the predictive distribution N (x̃, Kx|y).
Denoting the reconstruction space kernel matrix K = ϕA−1ϕ⊤ ∈ Rdx×dx , the observation
space prior covariance Kyy = TKT⊤ ∈ Rc×c, and the cross terms Kxy = KT⊤ ∈ Rdx×c,
the posterior covariance Kx|y ∈ Rdx×dx is given by

Kx|y = ϕ(b2ϕ⊤ T ⊤ T ϕ+ A)−1ϕ⊤ = K −Kxy(Kyy + b−1I)−1K⊤
xy. (7.6)

Importantly, (7.6) depends on the inverse of the observation space covariance Kyy + b−1I ,
which we expect to be much lower dimensional than the covariance over reconstructions, or
parameters. Thus, the cost of computing (7.6) scales as O(dxc2).

7.2.3 Incorporating TV-smoothness into the prior over the weights

This section aims to design a prior that constraints h’s error-bars, such that the model only
considers low TV reconstructions as plausible. Our architecture if fully convolutional. We
follow the guiding intuition that if the CNN’s filters are smooth, its output will be so as well.
With this, we place a block-diagonal Matérn-1/2 covariance Gaussian prior on the linearised
model’s weights, similarly to Fortuin et al. (2021). In particular, we introduce dependencies
between parameters in the same CNN filter by constructing A as a block diagonal matrix.
We denote the block corresponding to each filter as Ak, where k indexes the filter. These

7.2 Linearised DIP uncertainty estimation for CT 159

Fig. 7.4 A schematic of the U-net architecture used in our 2d µCT experiments experiments.
For KMNIST, we use a reduced, 3-scale U-net without group norm layers. Each light-
blue rectangle corresponds to a multi-channel feature map. We highlight the architectural
components corresponding to each block 1, . . . , D for which a separate prior is defined with
red and yellow boxes.

matrix blocks are given by

[A−1
k]ij,i′j′ = a−1

k exp
(−√(i− i′)2 + (j − j′)2

ψk

)
, (7.7)

where the tuple (i, j) indexes the spatial location of a specific filter pixel in terms of height
and width. The per-filter lengthscale ψk regulates the filter smoothness. The hyperparameter
a−1
k determines the marginal prior variance for each filter. Both parameters are shared among

all filters in an architectural block in the U-net, indexed by k ∈ {1, 2, . . . , r}. We write
ψ = [ψ1, ψ2, . . . , ψr] and a−1 = [a−1

1 , a−1
2 , . . . , a−1

r]. A diagram of our U-net architecture that
highlights all architectural blocks is provided in Figure 7.4. The chosen U-net architecture is
fully convolutional and thus (7.7) applies to all parameters, reducing to a diagonal covariance
for 1× 1 convolutions.

In Figure 7.5, we experimentally verify that an image generated from a linearised NN
prior with smoother filters will present lower TV. In particular, we find a bĳective relationship
between the each filter’s lengthscale ψk and the expected TV Ewk∼N (0,A−1

k)[TV(ϕw)] where
wk is a sub-vector of w and the other filter’s parameters (non wk) are held fixed. This suggests
we may use the predictive complexity prior (PredCP) framework of Nalisnick et al. (2021) to
construct a prior over the parameters which acts as a surrogate for the TV prior. In particular,

160 The linearised deep image prior for computed tomography

Fig. 7.5 Experimental evidence of the monotonicity (and thus invertibility) of the relationship
between a CNN block’s lengthscale ψk and the expected TV κ = Ewk∼N (0,A−1

k)[TV(ϕw)],
computed across 50 linearised U-nets trained on different the KMNIST images. The horizontal
axis represents lengthscale ψ ∈ [0.01, 100]. κ is estimated with 10k Monte Carlo samples. In
the bottom row we scale the marginal variances of JA−1J⊤ to be 1 for every value of ψ. This
decouples ψ from a−1, allowing us to observe the smoothing effect from larger lengthscales.

we construct a prior over the lengthscale parameters as:

r∏
k=1

Exp(κk)
∣∣∣∣∂κk∂ψk

∣∣∣∣ , (7.8)

with κk := Ewk∼N (0,A−1
k)

∏r
i=1,i ̸=k δ(wi)

[TV(ϕw)] (7.9)

where the subscript k indicates we select the subvector of weights corresponding to CNN
block k. We have related a block’s contribution to the expected TV, κk, to the block’s filter
lengthscale ψk via the change of variables formula. The independence across blocks assumed
in (7.8) ensures dimensionality preservation, formally needed in the change of variables. It
follows from the triangle inequality that

∑
κk is an upper bound on the expectation under the

distribution Ew∼N (0,A−1)[TV(ϕw)], further motivating the factorisation.

Derivation Factorising yields an upper bound on the expected TV

Let S be the set of indices for all adjacent pixel pairs in an image. These images are
flattened into dx length vectors and thus can be indexed by a single number. We denote

7.3 Approaches to scalable inference and hyperparameter learning 161

by ϕj ∈ Rd the row of the Jacobian ϕ corresponding to pixel i. We denote by ϕjk the
Jacobian row subvector corresponding to pixel i and weights in NN block k. With this

Ew∼N (0,A−1) [TV(ϕw)] =
∑

(i,j)∈S
Ew∼N (0,A−1)|(ϕiw − ϕjw)|

=
∑

(i,j)∈S
Ewk∼N (0,A−1)|

r∑
k

(ϕik − ϕjk)wk)|]

≤
∑

(i,j)∈S

r∑
k

Ewk∼N (0,A−1
k) [|(ϕik − ϕjk)wk|]

=
r∑
k

EN (0,A−1
k)

∏r
i=1,i ̸=k δ(wi)

 ∑
(i,j)∈S

|(ϕi − ϕj)w|

=

r∑
k

κk,

Thus, the separable form of the TV prior as a regulariser ensures that the expected TV
under the joint distribution of parameters is also regularised.

Note that (7.8) can be computed analytically. However, its direct computation is costly
and we instead rely on numerical methods, described in Section 7.3.1. In Figure 7.3 we show
samples from the linearised NN model where ψ is chosen using the marginal likelihood with
TV-PredCP constraints. Incorporating the TV-PredCP leads to smoother samples with less
discontinuities.

7.3 Approaches to scalable inference and hyperparameter
learning

In a typical tomography setting, the dimensionality dx of the image x and c of the observation
y can be large, e.g. dx > 1e5 and c > 5e3. Thus holding the input space covariance matrices
(e.g. K and Kx|y) in memory is infeasible. This also complicates computing determinants,
needed to evaluate Gaussian densities, and to learn hyperparameters. Following Chapter 6,
we develop a series of approaches that avoid instantiating these matrices explicitly. We only
access Jacobian and covariance matrices through matrix–vector products.

162 The linearised deep image prior for computed tomography

Section 7.3.1 introduces a hyperparameter learning objective that combines the linearised
model’s evidence with the TV-PredCP prior over filter lengthscales. We approximate the
objective’s gradients with CG. Section 7.3.2 discusses the computation of a randomised
preconditioner for CG. Section 7.3.3 discards the TV-PredCP prior in favour of the g-prior.
This allows us to employ the sample-based EM iteration from Chapter 6, in combination with
CG, to accelerate inference. Section 7.3.4 discusses the extension of the latter algorithm to
very large 3d volumetric reconstructions by substituting CG solves with SGD (as suggested
in Chapter 4). Finally, we discuss making sample-based predictions that model covariances
between pixels in Section 7.3.5

7.3.1 Conjugate-gradient hyperparameter learning for the PredCP TV
prior

In this subsection we consider hyperparameter learning with the TV-PredCP prior introduced
in Section 7.2.3. Here, the prior precision A is parametrised in terms of the vectors of
block-wise marginal variances a−1 ∈ Rd and block-wise lengthscales ψ ∈ Rd. To learn ψ, we
combine the above objective with the TV-PredCP’s log-density, which acts as a regulariser.
The resulting expression used to learn the full set of hyperparameters (b−1, a−1, ψ) resembles
a Type-II MAP (Williams and Rasmussen, 2006) objective

log p(y|ψ; b−1, a−1) + log p(ψ; a−1)

≈− 1

2
b||y − T g(ṽ)||22 −

1

2
w⊤

⋆ Aw⋆ −
1

2
log |Kyy + b−1I|

−
r∑

k=1

κk + log

∣∣∣∣∂κk∂ψk

∣∣∣∣+ C, (7.10)

where C is independent of the hyperparameters and the vector w⋆ ∈ Rdw is the posterior
mean of the linear model’s parameters (see Section 5.2). We compute it as

w⋆ = A−1ϕ⊤ T ⊤(Kyy + b−1I)−1 (y + T (ϕṽ − g(ṽ))) (7.11)

and solve the therein contained linear system with CG. The vector we solve against consists
of the observations offset by the constant in w terms in the tangent linear model (7.5).

The remaining bottleneck in evaluating (7.10) is the log-determinant log |Kyy + b−1I|,
which has a cost O(c3). Alas, we cannot apply the sample-based MacKay update from
Section 6.2.1 to learn hyperparameters other than the entries of a diagonal prior precision

7.3 Approaches to scalable inference and hyperparameter learning 163

matrix. Thus, we resort to gradient descent with CG-based log-determinant gradient trace
estimation, as described in Section 3.2.1. We use a preconditioner, which we describe in
Section 7.3.2. Despite this, the large computational cost associated with this method only
allows us to perform a single EM step. We summarise the procedure in algorithm 5. We go
on to describe efficient estimation of the TV-PreCP term gradients.

Algorithm 5: Linearised deep image prior PredCP-TV inference
Inputs: noisy measurements y, a CNN g(·), operator T , initial prior precision A.

1 ṽ ← fit_DIP(T , y, g(v)) // by minimising (7.4)
2 w⋆ ← fit_linearised_model(T , y, g(ṽ)) // using (7.11)
3 P ← compute_preconditioner(T , g(ṽ), A) // following Section
7.3.2.

4 σ2
y , {a−1

k , ψk}rk=1 ← optimise_hyperparams(T , y, g(ṽ), w⋆,P) // with
(7.10), and eqs. (7.12) and (7.13). Use preconditioned CG.

5 K̂x|y ← fast_sampling(T , g(ṽ), σ2
y, {a−1

k , ψk}Dk=1,P) // following
Section 7.3.5 and with preconditioned CG.

Output: mean reconstruction g(ṽ), posterior covariance estimate K̂x|y

MC sampling for TV-PredCP optimisation

For large images, exact evaluation of the expected TV with (7.9) is computationally intractable.
Instead, we estimate the gradient of κk with respect to θ = (σ2, ψ) using a Monte-Carlo
approximation of the expectation

∂κk
∂θ

= Ewk∼N (0,A−1
k)

[
∂ TV(x)

∂x
ϕk
∂wk

∂θ

]
, (7.12)

where ϕk =
∂g(v)
∂vk
|v=ṽ. ∂ TV(x)

∂x
is evaluated at the sample x=ϕkwk and ∂wk

∂θ
is the reparametri-

sation gradient for wk, a prior sample of the weights of CNN block k. The gradient for the
Jacobian log-determinant term is ∂

∂θ
log
∣∣∂κk

∂θ

∣∣ = ∂2κk

∂θ2
/∂κk

∂θ
, and since the second derivative of

the TV semi-norm is almost everywhere zero, we have

∂2κk
∂θ2

= Ewk∼N (0,A−1
k)

[
∂ TV(x)

∂θ
ϕk
∂2wk

∂θ2

]
. (7.13)

Demonstration: blockwise lengthscale optimisation

In Figure 7.6, demonstrate the use of (7.10) to learn the full set of prior hyperparameters
depicted in Figure 7.4. We also ablate the TV-PredCP regulariser to better understand its

164 The linearised deep image prior for computed tomography

Fig. 7.6 Optimisation traces for the lengthscales and marginal variances corresponding to our
U-net’s 3× 3 convolution layers. We consider both MLL and Type-II MAP and we use the
Walnut data described in Section 7.4. The TV-PredCP leads to larger prior lengthscales ψ
and lower variances a−1.

effects. We refer to the ablated setting as “MLL” and the setting where the TV-PredCP is
kept as “Type-II MAP”. We use the high-resolution real-measured dataset of Der Sarkissian
et al. (2019) and provide full details on the experimental setup in Section 7.4.1.

During MLL and Type-II MAP optimisation, many layers’ prior variance goes to a−1 ≈ 0.
This phenomenon is known as “automatic relevance determination” (Mackay, 1996; Tipping,
2001), and simplifies our linearised network, preventing uncertainty overestimation. Type-II
MAP hyperparameters optimisation drives ψ to larger values, compared to MLL. This restricts
the linearised DIP prior, and thus the induced posterior, to functions that are smooth in a TV
sense, leading to smaller error-bars.

7.3 Approaches to scalable inference and hyperparameter learning 165

7.3.2 Randomised SVD preconditioning for CG

CG’s convergence can greatly be accelerated by using a preconditioner P−1 which approxi-
mates (Kyy + b−1)−1. We use randomised SVD methods (Halko et al., 2011; Martinsson
and Tropp, 2020), as we find them to be more numerically stable and provide better per-
formance than pivoted Cholesky methods, despite the latter being more common in the
literature (Wang et al., 2019). Our preconditioner is based on a randomised approximation of
Kyy = T ϕA−1ϕ⊤ T ⊤ as Ũ Λ̃Ũ⊤, where Ũ ∈ Rc×r and r ≪ c. The steps to construct this
approximation are

• Constructing a standard normal test matrix R ∈ Rc×r with entries sampled from
N (0, I).

• Computing the (thin) QR decomposition Q̃R̃ = KyyR where Q̃ ∈ Rc×r is an
orthonormal matrix.

• Constructing symmetric matrix B ∈ Rr×r (much smaller than Kyy) as B = QTKyyQ.

• Computing the eigendecomposition B = V ΛV ⊤, and recovering Ũ = QV .

This method requires O(r) matrix vector products with Kyy to construct not only an
approximate basis but also its complete factorisation. Our approximation isP = Ũ Λ̃Ũ⊤+b−1I

The final step is to invert P in O(r3) time using the Woodbury identity

P−1 = bI − b2Ũ(bŨ⊤Ũ + Λ̃−1)−1Ũ⊤.

We choose a value of r = 400.

7.3.3 Scalable sample-based hyperparameter learning with the g-prior

As shown in Figure 7.6, stochastic-gradient optimisation of hyperparameters requires
thousands of steps. When the number of observations c is large, solving many linear systems
to estimate the log determinant gradient at each gradient step becomes too expensive to be
practical.

We address this issue by adapting the sample-based EM iteration of Chapter 6 to the
2d CT setting. We use the diagonal g-prior A = aTr(ϕ⊤ T ⊤ T ϕ), implemented by scaling
the feature vectors, as in (6.12). However, unlike in Chapter 6, n = 1 and thus computing
the scaling vectors in closed form is tractable. For the E-step, we draw samples using the
weight-space form of pathwise conditioning, given in (2.31) and re-stated here for the CT

166 The linearised deep image prior for computed tomography

Algorithm 6: Kernelised sampling-based linearised inference for CT
Inputs: Linearised network h, linearisation point ṽ, measurements y, discrete Radon

transform T , U-Net Jacobian ϕ, initial precision a > 0, number of samples
m, noise precision B = bI

Function Kvp(v, a, T ϕ, s, B−1):
return T ϕ(a−1diag(s⊙2))ϕT T T v + B−1v

s← (
∑

i<c(T i ϕ)
⊙2)−1/2 // i indexes output dimensions and ⊙ refers

to an operation applied to vector entries elementwise.
while a has not converged do
P ← Compute-preconditioner(Kvp)
for j = 1, . . . ,m do

ζ0j ← T ϕ(s⊙ w0,i) + Ej where Ej ∼ N (0,B−1) and w0,i ∼ N (0, A−1)

cj ← CG
(
Kvp, ζ0j , precond.=P

)
ζj ← w0,j − T ϕ(a−1diag(s⊙2))ϕT T T cj

δ ← T (ϕṽ − h(ṽ))
c← CG (Kvp, y+δ, precond.=P)
w⋆ ← s⊙ a−1ϕT T T c
γ̂ ← 1

m

∑m
j=1 ∥ T ϕ(s⊙ ζj)∥22

a′ ← γ̂/∥w⋆∥22
a← a′

Output: Optimised precision a

7.3 Approaches to scalable inference and hyperparameter learning 167

Fig. 7.7 Left 3 plots: traces of prior precision, eff. dim., and marginal test LL vs EM steps for
our tomographic reconstruction task with c = 7680 described in Section 7.4. Right: joint test
LL for varying image patch sizes for sample-based EM inference with the g-prior, inference
in the TV-PredCP DIP model (Section 7.2.3, labelled “lin-Unet”) and MC Dropout (labelled
“MCDO”).

setting

ζi = w0,i − A−1ϕ⊤ T ⊤(Kyy + b−1I)−1 (Ei + T ϕw0,i)

with Ei ∼ N (0, b−1I) and w0,i ∼ N (0, A−1),

and we use preconditioned CG for to solve the linear system. We do not warm-start our
CG iteration, drawing new prior and noise samples (Ei, w0,i) at succesive E steps. We find
the linear model’s posterior mode w⋆ by using preconditioned CG to solve (7.11). The
preconditioner is described in Section 7.3.2.

There exists unidentifiability between our isotropic noise precision parameter b and the
prior precision a. We resolve this by fixing b = 1 and setting

a = γ̂/∥w⋆∥2 with γ̂ =
1

m

m∑
i=1

∥ T ϕζi∥22

in the M step. We run this EM algorithm, described in detail in algorithm 6, to convergence.

Demonstration: CG sample-based EM iteration

Similarly to image classification (recall Section 6.3), the key hyperparameter is the number
of samples to draw for the EM iteration. Again, as shown in Figure 7.7, the number of
samples can be kept low (e.g. 2), and we find around 5 steps to suffice for convergence of
the prior precision. Our large preconditioner results in CG always hitting the desired low
error tolerance within 10 steps. When the problem is small enough for CG to be tractable,

168 The linearised deep image prior for computed tomography

preconditioning makes our kernelised EM algorithm notably faster than its primal form
SGD-based counterpart from Section 6.3.

7.3.4 SGD sampling EM iteration for very large reconstructions

In settings where the dimensionality of the observation vector y is very large, i.e. c ≥ 50k,
CG may fail to converge quickly. 3d volumetric reconstruction is an example of such a setting.
Here, the the dimensionality of the observation can be larger than the number of parameters of
the 3d CNN used for reconstruction, i.e. c ≳ d. We deal with this, by substituting CG-based
sampling for SGD-based sampling in our sample-based EM algorithm, described in Section
7.3.3. That is, we apply algorithm 6, but with every instance of CG substituted with SGD. We
use the Nesterov plus geometric averaging SGD variant for quadratic problems described in
Section 4.2.4.

7.3.5 Posterior covariance matrix estimation by sampling

The covariance matrix Kx|y is too large to fit into memory for high-resolution tomographic
reconstructions. Instead, we draw samples from N (x; 0, Kx|y) via pathwise conditioning as

xi = ϕw0,i − ϕA−1ϕ⊤ T ⊤(Kyy + b−1I)−1 (Ei + T ϕw0,i)

with Ei ∼ N (0, b−1I) and w0,i ∼ N (0, A−1).

We compute the solution to the linear systems via Preconditioned CG for 2d reconstruction
problems and via SGD for 3d problems.

Since only nearby pixels are expected to be correlated, we estimate cross covariances for
patches of only up to 10× 10 adjacent pixels. Using larger patches yields no improvements.
We use the biased, but lower variance, estimator K̂x|y = 1

2m
[
∑m

j=1 diag(xj)⊙2 + xjx
⊤
j] for

(xi)
m
i=1 samples from the 0-mean posterior predictive distribution over a given patch.

7.4 Demonstration: uncertainty estimation in CT with the
linearised DIP

We now demonstrate the approach on real-measured cone-beam µCT data of a walnut
(Der Sarkissian et al., 2019). We first consider reconstructing the middle (2d) slice of the

7.4 Demonstration: uncertainty estimation in CT with the linearised DIP 169

target volume from sparse measurements in Section 7.4.1. We then demonstrate the scalability
of our methods by estimating uncertainty for the full 3d volumetric reconstruction in Section
7.3.4. In all cases, we have access to a “ground truth” reconstruction obtained from an
exhaustive dense scan. We use the pre-trained U-net models from Barbano et al. (2022c).In
all cases, we have access to a “ground truth” reconstruction obtained from an

7.4.1 Uncertainty estimation for image reconstruction

We begin by reconstructing a 2d image. We target the 501× 501 px2 (dx = 251 001) central
slice of the volumetric data of Der Sarkissian et al. (2019). We consider two levels of sparsity.
The first uses a subset of measurements taken from dB = 60 angles and dp = 128 detector
rows (c = 7680). The second setting uses dp = 256 detector rows and thus c=15360. Here,
K is too large to store in memory and Kyy too expensive to assemble repeatedly. Our U-net
has d=2.97M parameters.

Fig. 7.8 Left 3 plots: traces of prior precision, eff. dim., and marginal test LL vs EM steps
for our tomographic reconstruction task with c = 15360 described in Section 7.4. Right:
joint test LL for varying image patch sizes for sample-based EM inference with the g-prior,
inference in the TV-PredCP DIP model (Section 7.2.3, labelled “lin-Unet”) and MC Dropout
(labelled “MCDO”). In this case, our initialisation for a is close to the optima; its value only
changes by around 50% throughout EM iteration, and mostly in the first step.

c = 7680 c = 15360
LL wall-clock time (min.) LL wall-clock time (min.)

Method marginal (10× 10) params optim. prediction marginal (10× 10) params. optim. prediction
MCDO-Ug(v) 0.028 2.474 0 3′ 0.002 2.762 0 3′

lin.-Ug(v) 2.214 2.601 1260′ 14′ − − − −
sampl.-lin.-Ug(v) 2.341 2.869 12′ 14′ 2.310 2.972 15′ 14′

Table 7.1 Tomographic reconstruction: test LL and wall-clock times (A100 GPU) for both 2s
reconstruction data sizes.

Comparing hyperparameter learning schemes We consider two different families for
the prior precision over the weights A, each is matched with a different inference scheme.

170 The linearised deep image prior for computed tomography

The first is the CNN-block-wise Matérn-1/2 TV-PredCP prior introduced in Section 7.2.3.
We pair it with CG-based marginal likelihood estimation for hyperparameter learning, as
described in Section 7.3.1. The large cost of this approach only allows us to perform a single
EM step and we are restricted to the smaller c = 7680 setting. The second model is the
g-prior, which we combine with CG-sampling-based EM iteration, described in Section 7.3.3.
We label this method “sampled” in our plots. Unless otherwise specified, we use 16 samples
for stochastic EM, and 1024 for prediction. While, the TV-PredCP model’s layerwise prior
variance and lengthscales take 21 hours to converge (the corresponding optimisation traces
are in Figure 7.6, the g-prior model takes only 12 minutes—both on an A100 GPU. These
times are provided in Table 7.1. Figure 7.7 and Figure 7.8 show that sample-based EM
iteration converges within 4 steps and using as few as 2 samples for both the c=7680 setting
and the c=15360 setting (although the reported times use 5 steps and 16 samples). Avoiding
explicit estimation of the covariance log-determinant gradient provides us with a two order of
magnitude speedup.

x

PSNR: 26.35 dB; SSIM: 0.789

lin
.-

D
IP

x̂ |x̂− x|

T
V

-M
A

P

std-dev

y

PSNR: 26.35 dB; SSIM: 0.730

D
IP

-M
C

D
O

0.00

0.15

0.30

0.45

0.00

0.15

0.30

0.45

0.00

0.03

0.06

0.09

Fig. 7.9 Reconstruction of a 501 × 501 px2 slice of a scanned Walnut from c = 7680
dimensional measurements using lin.-DIP (using the TV-PredCP prior) and DIP-MCDO
along with their respective uncertainty estimates. The zoomed regions (outlined in red) are
given in top-left.

Evaluating predictive performance We compare both of our linearised DIP models
with MC dropout (MCDO), the most common baseline for NN uncertainty estimation in
tomographic reconstruction (Laves et al., 2020; Tölle et al., 2021). Figure 7.9 shows,
qualitatively, that the marginal standard deviation assigned to each pixel by the linearised DIP
(TV-PredCP) aligns with the pixelwise error in the U-net reconstruction in a fine-grained
manner in the c = 7680 setting. By contrast, MCDO, spreads uncertainty more uniformly

7.4 Demonstration: uncertainty estimation in CT with the linearised DIP 171

Fig. 7.10 Original 501×501 pixel walnut image and reconstruction error for a c=15360
dimensional observation, along with pixel-wise std-dev obtained with sampling lin. Laplace
and MCDO.

0.0 0.2 0.4 0.6 0.8 1.0

posterior credible interval

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ri
ca

lc
ov

er
ag

e

Image reconstruction predicted error vs empirical error

sampled lin. U-Net
lin. U-Net
MCDO U-Net

Fig. 7.11 Empirical coverage of test targets for posterior credible intervals of increasing width
for our U-net 2d tomographic reconstruction experiment with c = 7680. Both linearised
DIP variances are under-confident, although the g-prior sampling EM variant is much better
calibrated. MCDO is overconfident.

across large sections of the image. Figure 7.10 shows a similar result but for the c=15360

setting and the g-prior DIP model. Table 7.1, Figure 7.7 and Figure 7.8 show that the
Log-Likelihood obtained with the g-prior sampling EM DIP exceeds that obtained with the
TV-PredCP model, potentially due to the former optimising the prior precision to convergence,
while we can only afford a single EM step for the latter. Both methods outperform MCDO,
in terms of both marginal and joint LL. Interestingly, MCDO’s predictions are very poor
marginally but improve significantly when considering covariances.

Uncertainty calibration For the c = 7680 setting, we compute normalised residuals by
subtracting our predictions from the targets and dividing by the predictive standard deviation.
Our predictive distribution for these normalised residuals is the centred unit variance Gaussian.
We consider posterior credible intervals centred at 0 and of increasing width and plot the

172 The linearised deep image prior for computed tomography

proportion of test points that fall within them in the left side plot of Figure 7.11. We
find dropout inference to underestimate the magnitude of the residuals across all credible
interval widths. Linearised inference with TV-PredCP consistently overestimates uncertainty,
potentially due to non-converged EM underfitting. The g-prior combined with 5 steps of EM
barely overestimates uncertainty, presenting the best overall calibration.

Fig. 7.12 Histogram of the absolute pixelwise error computed between the reconstructed
walnut image, given c = 7680 observations, and the ground-truth for both lin.-Unet with
g-prior (left) and MCDO-Unet (right). We overlay histograms of both methods’ predictive
standard deviations across pixels.

We further asses calibration by comparing the histogram of the reconstruction errors
made by our U-Net to the histogram of marginal, i.e. pixelwise, predictive standard deviation
in Figure 7.12 for the c = 7680 setting and in Figure 7.13 for the c = 15360 setting. In
both plots, sample-based linearised Laplace inference slightly overestimates uncertainty and
MCDO systematically underestimates uncertainty in the pixels where the reconstruction
error is largest. Interestingly, our method shows to be slightly worsely calibrated in the
more data-rich setting; the reconstruction error decreases faster than the predictive standard
deviation with the addition of new data.

7.4.2 Volumetric uncertainty estimation

We consider 3d reconstruction of the Walnut data with a downscaled resolution of dx =

(167px)3 ≈ 4, 65M voxels, from dB = 20 equally distributed angles, and we sub-sample
projection rows and columns by a factor of 3. This corresponds to a c = 1.6M dimensional
observation space. We use a d ≈ 5M parameter 3d CNN. We perform sample-based EM
inference, drawing samples with SGD. This procedure is illustrated in Figure 7.15. It is
not clear from the plot that EM has converged, but we can not afford the computation for
more than 4 steps. To the best of my knowledge, this is the first instance of uncertainty

7.4 Demonstration: uncertainty estimation in CT with the linearised DIP 173

Fig. 7.13 Histogram of the absolute pixelwise error computed between the reconstructed
walnut image, given c = 15360 observations, and the ground-truth for both lin.-Unet with
g-prior (left) and MCDO-Unet (right). We overlay histograms of both methods’ predictive
standard deviations across pixels.

estimation for deep-learning based volumetric image reconstruction. Three slices of the
reconstructed volume, along with their respective error and uncertainty maps are provided
in Figure 7.14. We provide error and pixelwise uncertainty histograms in Figure 7.16. Our
method underestimates uncertainty in the tails, but this is somewhat alleviated with successive
EM steps.

174 The linearised deep image prior for computed tomography

xy
-s

lic
e

x x† x̂ |x− x̂| std-dev

xz
-s

lic
e

yz
-s

lic
e

Fig. 7.14 From left to right: 1) Ground truth reconstructions of three 167× 167 px2 slices
from the 167 × 167 × 167 px3 Walnut data from Der Sarkissian et al. (2019). 2) Filtered
backprojections (i.e. reconstructions obtained by pseudoinverting the operator T) from
c = 1.6M observations. 3) Unet reconstructions. 4) Absolute error in Unet reconstructions.
5) Pixelwise standard deviations obtained with the linerised Unet and the g-prior.

Fig. 7.15 Traces of prior precision α and eff. dim. γ̂ vs EM steps for the c = 1.6M 3d
volumetric reconstruction task.

7.4 Demonstration: uncertainty estimation in CT with the linearised DIP 175

0.0 0.2 0.4 0.6

10−5

10−4

10−3

10−2

10−1

100

101

102

EM step: 0

0.0 0.2 0.4 0.6

EM step: 1

0.0 0.2 0.4 0.6

EM step: 2

0.0 0.2 0.4 0.6

EM step: 3

0.0 0.2 0.4 0.6

EM step: 4

|x− x̂|
std-dev

Fig. 7.16 Histograms (y-axes are normalised to represent empirical densities) of the voxel-wise
error computed between the reconstructed 3d volumetric walnut and the ground-truth, along
with the histograms of pixelwise predictive standard deviations across voxels.

176 The linearised deep image prior for computed tomography

7.5 Linearised DIP Bayesian experimental design for CT

In CT, Bayesian experimental design leverages an a-priori model to select the scanning angles
which are expected to yield the highest fidelity reconstruction. Adaptive design further
incorporates information gained at previous angles to inform subsequent angle selections
(Chaloner and Verdinelli, 1995). These methods are of great practical interest since they
promise to reduce radiation dosages and scanning times. Alas, existing CT design methods
often struggle to improve over equidistant angle choice (Shen et al., 2022). Furthermore,
the requisite of additional computations before subsequent scans makes adaptive methods
impractical for many applications.

Critically important to experimental design is the choice of prior (Feng, 2015; Foster, 2021).
Linear models allow for tractable computation of quantities of interest for experimental design,
but their predictive uncertainty is independent of previously measured values, disallowing
adaptive design (Burger et al., 2021). More complex model choices make inference difficult,
necessitating approximations which can degrade performance (Helin et al., 2022b; Shen et al.,
2022).

This section aims to make adaptive design practical by considering a setting where the
CT scan is performed in two phases. First, a sparse pilot scan is performed to provide data
with which to fit a adaptive methods. These are then used to select angles for a full scan. We
demonstrate this procedure with a synthetic dataset where a different “preferential” angle is
most informative for each image. Preferential directions appear commonly in industrial CT
for material science and in medical CT for medical implant assessment. We use the linearised
Deep Image Prior (DIP) (Barbano et al., 2022a) as a data-dependent prior for adaptive design
which preserves the tractability of conjugate Gaussian-linear models. Unlike simple linear
models, the linearised DIP outperforms the equidistant angle baseline. Finally, we show that
designs obtained with the linearised DIP perform well under traditional (non DIP-based)
regularised-reconstruction.

Section 7.5.1 covers sequential inference in the conjugate Gaussian-linear setting. Section
7.5.2 introduces experimental design with linear models and linearised neural networks.
Finally, Section 7.6 demonstrates our approach on a synthetic CT scanning angle selection
task.

7.5 Linearised DIP Bayesian experimental design for CT 177

lin
ea

r D
IP

 st
d-

de
v

20

40

60

va
ria

nc
e

acquired angle at t = 0

5

10

15

20

25

30
acquired angle at t = 1

iso
tro

pi
c

st
d-

de
v

04590135180
angle

40

60

80

100

120

va
ria

nc
e

04590135180
angle

40

60

80

100

120

Fig. 7.17 Top row: the linearised DIP assigns prior variance to pixels where edges are present,
guiding angle selection so that X-ray quanta cover these pixels. Bottom row: the isotropic
linear model’s variance does not depend on the measurements. Angles 45 and 135 are chosen
since they are oblique and maximise quanta path-length in the image.

7.5.1 Sequential inference with linear(ised) models

Let Ba be the set of all possible angles at which we can scan. The task is to choose the
subset of angles B ⊂ Ba which produces the highest-fidelity reconstruction. We shall add
angles sequentially over T steps. The set B(t) denotes the chosen angles up to step t < T ,
and B̄(t) = Ba \ B(t) the angles left to choose from. B(0) denotes the set of angles used in the
initial pilot scan, and B = B(T) the full design. We incorporate a decision to scan at angle
β ∈ B̄(t) by concatenating the matrix T β ∈ Rdp×dx , which contains a row for each detector
pixel at angle β, to the operator. After step t, the operator T (t) ∈ Rdp·dB(t)×dx stacks dB(t) of
these matrices, with dB(t) = |B(t)|. T̄ (t) ∈ Rdp·dB̄(t)×dx denotes the forward operator for the
angles left to choose from.

For design, we place a multivariate Gaussian prior on x with zero mean and covariance
matrix K ∈ Rdx×dx . Together with the Gaussian noise model in (7.1), this gives a
conjugate Gaussian-linear model. The vector y(t) ∈ Rdp·dB(t) of all measurements at step t is
distributed as

y(t)|x ∼ N (T (t) x, b−1Ic) with x ∼ N (0, K).

178 The linearised deep image prior for computed tomography

Thus, K(t)
yy+ b−1I , with K

(t)
yy = T (t)K(T (t))⊤, is the measurement covariance and the

posterior over x is

x|y(t) ∼ N (µx|y(t) , Kx|y(t)),

with µx|y(t) = K(T (t))⊤(K(t)
yy+ b−1I)−1y(t),

and Kx|y(t) = K −K(T (t))⊤(K(t)
yy+ b−1I)−1 T (t)K. (7.14)

The predictive covarianceKx|y(t) completely characterises the uncertainty of the reconstruction
at step t and is the building block for the angle selection criteria in Section 7.5.2.

With this, a concern may be that natural images often exhibit heavy-tailed non-Gaussian
statistics (Seeger and Nickisch, 2011). Furthermore, by (7.14), Kx|y(t) depends on the choice
of angles through T (t), but not on the measurements made at said angles y(t), precluding
adaptive design. In Section 7.5.3, we will address both of these concerns by constructing
a very flexible data dependent covariance kernel from the Jacobian of a NN, recovering
adaptive design capabilities.

7.5.2 Experimental design with linear(ised) models

Acquisition objectives. Since the linear design task is submodular (Seeger, 2009), we
greedily add one single angle per acquisition step 3. We consider two popular acquisition
objectives.

The first objective, expected information gain (EIG) (Mackay, 1992b), is the expected
reduction in the posterior entropy H(Px|y) from scanning at angle β. At step t, it is given by

EIG := H(Px|y(t))− Eyβ |y(t) [H(Px|y(t),yβ)] = log det(b−1IdB(t)
+ T β Kx|y(t)(T β)⊤) + C

(7.15)

where the constant C = − log det(b−1I) is independent of the angle choice. Intuitively, the
determinant of the matrix T β Kx|y(t)(T β)⊤ ∈ Rdp×dp penalises angles for which different de-
tector elements make correlated measurements and the log term encourages the measurements
from all detector pixels to be similarly informative. EIG is known as a (D)eterminant-optimal
objective.

3Submodularity guarantees this procedure obtains a score within a (1− 1/e) factor of the optimal strategy.

7.5 Linearised DIP Bayesian experimental design for CT 179

Derivation Expected information gain

The entropy of a multivariate Gaussian isH(N (µ,K)) = 1
2
log det(K)+ d

2
(log(2π)+1).

We compute the posterior covariance log-determinant at time t from the covariance at
time t− 1 using the matrix determinant lemma

log det(Kx|y(t)) =− log det(K−1
x|y(t−1))− log det(bI)

− log det(b−1I + T (t)Kx|y(t−1) T ⊤,(t)).

Note that both sides of the equality are independent of the targets y. Thus we drop the
expectation in (7.15). With that, we have

EIG = log det(Kx|y(t−1))− log det(Kx|y(t))

= log det(Kx|y(t−1))− [− log det(K−1
x|y(t−1))− log det(bI)

− log det(b−1I + T β Kx|y(t−1)(T β)⊤)]

=− log det(b−1I) + log det(b−1I + T β Kx|y(t−1)(T β)⊤)

= log det(b−1I + T β Kx|y(t−1)(T β)⊤) + C

where the constant C = − log det(b−1I) is independent of angle choice, yielding the
angle selection objective.

Remark What information are we gaining?
EIG quantifies the information (in nats) we expect to gain by observing the detector
elements’ measurements for an angle or set of angles (Mackay, 1992b). EIG is also
equal to the mutual information between the reconstruction x and the new measurement
yβ conditional on the previous measurements y(t−1), i.e. MI(x, yβ|y(t−1)), giving an
interpretation as aiming to select the angleβmost informative towards the reconstruction.
For fixed model hyperparameters, EIG is always greater or equal than 0 since making
additional measurements cannot increase the uncertainty in the reconstruction.

The second objective, which we find to perform better empirically, is to choose the angles
for which our prediction has the largest expected squared error (ESE) in measurement space

ESE := Eyβ , x|y(t) [(y
β − T β x)⊤(yβ − T β x)] = Tr(T β Kx|y(t)(T β)⊤) + C. (7.16)

180 The linearised deep image prior for computed tomography

This objective is equivalent to EIG in the setting where our detector has a single pixel.

Remark Motivating ESE
The ESE objective in (7.16) aims to minimise the squared prediction error in mea-
surement space. Objectives of this kind are commonly known as (A)verage-optimal.
However, ESE is A-optimal over measurement space y, not over image space x. ESE is
crucially different from minimising the arguably more relevant expected squared recon-
struction error, a more computationally expensive criterion. ESE can be understood
as a naïve simplification of EIG, by discarding correlations between detector pixels,
making log det(T β Kx|y(t−1)(T β)⊤) match

∑
i≤dp

log[T β Kx|y(t−1)(T β)⊤]ii. Then, the
order of log and sum are switched, something that will only preserve the output (up
to a constant independent of β) if every element under the sum is the same. Having
reached this point, since the log function is monotonic, it does not affect angle selection
and the criterion matches the trace of T β Kx|y(t−1)(T β)⊤.

Efficient acquisition. Constructing the matrix T β Kx|y(t)(T β)⊤ repeatedly for each
candidate angle β ∈ B̄(t) requires O(dp · dB̄(t)) matrix vector products, which is very
costly even for moderate size scanners. Instead, we estimate the matrix for every angle
simultaneously by drawing m samples from N (0, T̄ (t)

Kx|y(t)(T̄
(t)
)⊤). That is, we sample

Rdp·dB̄(t) sized vectors containing the concatenated “pseudo measurements” for each unused
angle β ∈ B̄(t). We again use pathwise conditioning⊕

β∈B̄(t)

yβi = T̄ (t)
(
xi −K(T (t))⊤(K(t)

yy+ b−1I)−1(Ei+ T (t) xi)
)

with

xi ∼ N (0, K) and Ei ∼ N (0, b−1I). (7.17)

Here, i ∈ {1, ...,m} indexes different samples and
⊕

denotes the concatenation of vectors
generated for each β ∈ B̄(t). Now, for each angle β ∈ B̄(t), we compute

T β Kx|y(t)(T β)⊤ ≈ 1

m

∑m
i=1y

β
i (y

β
i)

⊤,

which is then used to estimate the acquisition objective (7.15) or (7.16). The log term makes
EIG estimates only asymptotically unbiased (i.e. as m → ∞) but we find the bias to be
insignificant. Once the angle β that maximises (7.15) or (7.16) is chosen, we update K(t+1)

yy

as

K(t+1)
yy =

[
K

(t)
yy T (t)K(T (t+1))⊤

T (t+1)K(T (t))⊤ T (t+1)K(T (t+1))⊤

]
, (7.18)

7.5 Linearised DIP Bayesian experimental design for CT 181

and repeat the procedure, i.e. return to (7.17).

ground truth

0°

36°

72°108°

144°

0°

36°

72°108°

144°

linear DIP (g-prior)

0°

36°

72°108°

144°

linear DIP (g-prior), retrained

angles 6-10 angles 11-15 angles 16-20 initial angles (0) equidistant selection

0°

36°

72°108°

144°

isotropic

Fig. 7.18 First 20 angles selected by each method under consideration for an example image.

7.5.3 Construction of the prior covariance K

Now we describe the construction of the Gaussian prior covariance K ∈ Rdx×dx over
reconstructions. We consider a range of models, building from very simple models to flexible
data-driven ones that allows for adaptive design.

Isotropic model. The simple choice K = Idx assumes uncorrelated pixels, and it implies
a ridge regulariser for the reconstruction, which is known to perform poorly in imaging.

Matérn-1/2 Process. Antoran et al. (2023), and also Section 7.2.3, employ the Matérn-
1/2 covariance [K]ij,i′j′ = exp(−ψ−1

√
(i− i′)2 + (j − j′)2), where (i, j) index the pixel

locations in the image x in terms of height and width respectively, as a surrogate for the TV
regulariser.

Linearised deep image prior This data-driven prior is constructed by first fitting a DIP
model on the measurements taken during the pilot scan with (7.4). We then adopt a linear
model on the basis expansion given by the Jacobian of the trained U-net, denoted ϕ ∈ Rdx×d.
The resulting covariance matrix K = ϕA−1ϕ⊤ incorporates information about the pilot
measurements on which the NN was trained through its Jacobians ϕ. It assigns higher prior
variance being near the edges in the reconstruction (this is shown in Figure 7.17), which
are most sensitive to a change in U-net parameters. The covariance A−1 ∈ Rd×d weights
different Jacobian entries. We consider two different structures for A−1.

• The filter-wise block-diagonal matrix of Section 7.2.3. This choice uses a large number of
hyperparameters and thus risks overfitting to the pilot scan measurements.

• The neural g-prior, introduced in Section 5.3.2. We implement it through feature scaling, as
described in Section 6.2.2. We update the feature scaling vectors every 5 acquired angles.

182 The linearised deep image prior for computed tomography

The Matérn model has its lengthscale as a free hyperparameter. Learning this hyperpa-
rameter from the data makes the model adaptive. The filter-wise DIP prior has filter-wise
marginal variances and lengthscales. We set these such that the model evidence is maximised
given the pilot scan measurements using gradient-based optimisation. Since the number of
pilot observations is small, the exact evidence (2.43) is tractable. We omit the global prior
variance scaling hyperparameter from all models since the choice of this value only alters
the width of the posterior errorbars, but not their shape. As a result, experimental design is
invariant to the choice of global prior variance scaling4. The same is true for the isotropic
observation noise precision b.

Fig. 7.19 Examples of synthetic images used for our experiments.

7.6 Demonstration: designing CT angle selection strategies

We now demonstrate the experimental design objectives from Section 7.5.2 coupled with the
models from Section 7.5.3. In almost all real-world CT deployments, the scanning angles are
chosen to be equidistant. This strategy is known to be very hard to beat, and we will use it as
our strong baseline. We will also test weather the DIP-based designs work well exclusively
for DIP-based reconstructions or if they generalise to non-NN-based reconstruction methods.

Experimental setup We simulate CT measurements y from 128×128 (dx = 16384) pixel
images of 3 superimposed rectangles. Their orientation is sampled from a single normal
distribution with zero mean and standard deviation 2.86◦. Thus, images in this class contain
edges in roughly two perpendicular “preferential” directions (see Figure 7.18 and Figure
7.19). We simulate CT measurements by applying the discrete Radon transform operator
T ∈ Rc×dx and adding Gaussian noise with standard deviation matching 5 % of the average
absolute value of the noiseless measurements T x to generate y. We divide the scanning
range [0◦, 180◦) into 200 selectable angles (i.e. |Ba| = 200). The pilot scan measures at 5

4I was made aware of this by David Janz via personal communication and then I verified it experimentally.

7.6 Demonstration: designing CT angle selection strategies 183

10 15 20 25 30 35 40
#total acquired angles

30

31

32

33

34

35

36

PS
NR

 [d
B]

DIP reconstructions angle selection by ESE

DIP trained on pilot scan ((0))
DIP retrained every 5 angles

10 15 20 25 30 35 40
#total acquired angles

25

26

27

28

29

30

31

32

33

PS
NR

 [d
B]

TV reconstructions angle selection by ESE

DIP trained on pilot scan ((0))
DIP retrained every 5 angles

10 15 20 25 30 35 40
#total acquired angles

25

26

27

28

29

30

31

32

33

PS
NR

 [d
B]

TV reconstructions

ESE
EIG

Fig. 7.20 Reconstruction PSNR vs n. angles scanned, averaged across 30 images (5% noise).

equidistant angles, on which we fit all models’ hyperparameters and the linearised DIP’s
U-net. Then, we apply the methods in Section 7.5.2 to produce designs consisting of 35
additional angles. For every 5 acquired angles, we evaluate reconstruction quality using
both the DIP (7.4), and the traditional NN-free TV regularised approach (7.3). We include
equidistant and random angle selection as strong and weak baselines, respectively. On an
A100 GPU, a full linearised DIP acquisition step with K = 3000 samples takes 9 seconds
and the full design takes 5 minutes.

For the linearised DIP, we consider both training our U-net and prior hyperparameters
only on the pilot scan, and also retraining every 5 angles. Figure 7.18 shows both approaches
can identify and prioritise the preferential direction, leading to reconstructions that outperform
the equidistant angle baseline by over 1.5 dB in the range of [10, 15] angles. This is shown in
Figure 7.20. During this initial stage, the linearised DIP requires roughly 30% less scanned
angles to match the equidistant baseline’s performance. The performance gap decreases as
we select more angles, although linearised DIP remains more efficient even after 40 angles.
Retraining the U-net provides most benefits in the large angle regime. It increases focus on
preferential directions and consistently provides gains >0.5dB after 20 angles. All gains over
the equidistant baseline are obtained with both DIP reconstruction (7.4) and traditional TV
regularised reconstruction (7.3).

The isotropic and Matérn-1/2 models’ uncertainty estimates are independent of the pilot
measurements. These models prioritise clustered sets of oblique angles which maximise the
length of quanta trajectories in the image. They perform similar to or worse than random.
This negative result is due to the lengthscale hyperparameter overfitting to the small amount
of data from the pilot scan and taking very large values. This makes the predictive variance
insensitive to previous acquisitions, as shown in Figure 7.21. For contrast, we display the
g-prior DIP’s acquisitions in Figure 7.22.

184 The linearised deep image prior for computed tomography

Matérn-1/2 model, first 8 acquisitions

Fig. 7.21 Variance assigned to each candidate angle during the first 8 design steps by our
Matérn-1/2 model.

Linearised DIP with g-prior, first 8 acquisitions

Fig. 7.22 Variance assigned to each candidate angle during the first 8 design steps by our
linearised DIP model with the g-prior.

ESE outperforms EIG across models. For the linearised DIP, this gap is smaller when
using the g-prior. This is surprising, given that EIG takes covariances into account, but ESE
doesn’t. We hypothesise that model misspecification and hyperparameter overfitting may
result in poor measurement covariance estimates, in turn degrading the EIG estimates.

Remark On the dangers of combining model evidence maximisation with data
acquisition
Figure 7.21 shows the Matérn-1/2 model concentrates its selection on oblique angles,
and this does not change as more data is acquired. This results in a very non-diverse
angle set which achieves very poor performance. To understand why this happens

7.7 Discussion 185

we first remark that the Matérn-1/2 model generalises the isotropic model and the two
are equal when the lengthscale is set to ψ = 0. We investigate the hyperparameters
chosen by the model evidence for the Matérn-1/2 model and find that for all images
the lengthscale is in the range [40-70]. This value is very large relative to the size of
the image (128× 128) and represents an assumption that the reconstructed image has
only 2 or 3 regions with different pixel intensity values. Under this assumption, only
taking measurements at 3 different angles is justified. Each new angle introduced into
the operator reduces the predictive variance of every unseen angle almost equally. As a
result, the relative assignment of predictive variance in angle space remains roughly
constant throughout design steps.
Although it is well known that experimental design is very sensitive to the choice of
prior (Feng, 2015; Foster, 2021), the ease with which the relatively simple Matérn-1/2
model can overfit was unexpected to us.

7.7 Discussion

Having laid the groundwork for scalable uncertainty estimation and hyperparameter selection
for linearised neural networks in Chapter 4, Chapter 5 and Chapter 6, this chapter has
applied these advances to tomographic reconstruction. In particular, we have introduced a
probabilistic formulation of the deep image prior (DIP) that utilises a linearisation of the
network around the parameters that output the candidate reconstruction. The approach yields
far better uncertainty estimates on 2d image reconstructions from real-measured µCT data
than MC dropout-based approaches standard in the field of CT. Furthermore, our method is
the first to have been applied to 3d volume reconstructions.

Motivated by standard practise in the field of CT, we developed a bespoke TV-based prior
for our linearised NN. However, we found it to be dominated, in terms of both computational
efficiency and calibration of uncertainty estimates, by the more general diagonal g-prior,
introduced in Section 5.3.2.

Finally, we applied linearised DIP inference to adaptively select scanning angles for
CT. Our results suggest that dependence on the measurement data, i.e. adaptivity, is key to
outperforming equidistant angle selection, a notoriously strong baseline in CT reconstruction
(Helin et al., 2022b; Shen et al., 2022). Distinctly from previous work, our methods only
necessitate a pilot scan instead of being fully online, increasing applicability. We observe the
largest gains in the 10 to 20 angle regime, where our designs reduce the angle requirement

186 The linearised deep image prior for computed tomography

by roughly 30% without loss of reconstruction quality. This is true for both traditional
TV-regularised and DIP-based reconstructions.

With this, we conclude the technical content of this thesis. The following chapter reviews
the main contributions of the work and discusses exciting avenues for future work.

Chapter 8

Conclusions and future work

This thesis has studied the problem of large scale Bayesian inference in linear models
and neural networks. We made contributions of both fundamental nature, furthering our
understanding of linearised neural networks, and also of practical nature by introducing a
number of learning algorithms that scale well in both the number of observations and model
parameters. We have strived for these methods to be fully compatible with existing (and
hopefully future) progress in the field of deep learning. I hope that this work will contribute
towards the development and real-world deployment of uncertainty-aware data-driven decision
making systems.

We go on to provide a recap of our contributions in Section 8.1, while giving a critical
overview of their strengths and weaknesses. In Section 8.2 we discuss avenues for future
work.

8.1 Recap of contributions

Chapter 4 proposed using SGD, the workhorse algorithm of deep learning, to perform
posterior inference in Gaussian processes. Traditionally, lack of scalability has been a major
impediment to the use of these models; the cost of exact inference is cubic in the number
of observations, i.e. O(n3). SGD has not been considered for this task in the past, in part
because it provides worse formal convergence guarantees than alternatives like CG (Boyd
and Vandenberghe, 2014). At a high level, our key insight is that full convergence of SGD
is not necessary to obtain good performance. SGD converges very fast in the directions
of parameter space that matter for prediction, and very slowly in others. Additionally, this

188 Conclusions and future work

convergence is monotonic in the number of steps, making SGD an anytime method amenable
to early stopping. These two features, combined with SGD’s linear cost, i.e. O(n), per
step allows it to handily outperform other inference schemes when dealing with datasets
of more than n ≈ 100k observations. The weakness of SGD is its lack of convergence in
most low-eigenvalue directions of parameter space. These make little, but some, difference
for prediction, resulting in SGD always providing an approximate solution. Thus, below
n ≈ 100k, conjugate gradients is likely to converge faster while providing an effectively exact
solution.

Chapter 5 studied the applicability of the linearised Laplace model evidence to modern
neural networks. Motivated by the heavy dependence on this parameter of the calibration
of the linearised Laplace errorbars, we focused on learning the prior precision with the
evidence. We first interrogated the validity of the Laplace approximation’s assumption that
we Taylor expand about a mode of the posterior. In fact, satisfying this assumption is not
practical in modern deep learning. Nevertheless, we showed that every expansion point
implies an associated basis function linear model. As we use this model to provide errobars,
we propose to choose hyper- parameters using the evidence of this model. This requires
only the solving of a convex optimisation problem, one much simpler than NN optimisation.
We then showed that, for neural networks with normalisation layers—that is, practically
all modern architectures—the predictive posterior covariance can only be identified up to
a scalar constant, or a constant per normalised group of weights. We introduce two prior
classes which produce a predictive posterior invariant to this scaling constant. The first is
a diagonal Gaussian prior with layerwise precision parameters fit to maximise the model
evidence. The second is the diagonal g-prior, which only has an isotropic scaling parameter
that can be set to any value.

Chapter 6 combines the efficient SGD posterior sampling from Chapter 4 with the
developments in linearised model hyperparameter learning of Chapter 5 into a scalable
sample-based EM algorithm. The key component is our M step, which builds upon MacKay
(1992a)’s update for the prior precision. Our update makes much more progress per step
than traditional gradient based optimisation with the model evidence and can be estimated
with only posterior samples. We combine these methods with a number of matrix-free linear
algebra techniques and SGD warm starting to scale linearised inference to ResNet-50 (25M
parameters) and Imagenet (1.2M observations and 1000 output dimensions). To the best of
our knowledge, this is the first time Bayesian inference has been performed in this setting
without assuming some degree of independence across weights in the model. Linearised
inference performs particularly well in terms of joint predictions, which are key to sequential
decision making. However, despite our methods being more accurate and scalable than other

8.2 Future Work 189

Bayesian approximations, they still introduce very significant overhead compared to training
a single neural network. Furthermore, we used the diagonal g-prior in our experiments.
Since this prior only has a single free parameter, it may be cheaper to set its value with cross
validation than to use our EM iteration.

Chapter 7 applies the methods developed in chapters 4 to 6 to uncertainty estimation in
CT reconstructions from the deep image prior. On 2d images, we obtain more calibrated
uncertainty estimates than previous probabilistic approaches to DIP reconstruction. The
scalability of our inference methods allows us to apply them to uncertainty estimation in 3d
volumetric reconstructions from the deep image prior. To the best of our knowledge, this
is the first time neural network uncertainty has been estimated on this large scale task. We
concluded by leveraging the errorbars from the linearised deep image prior to guide scanning
angle selection in CT. This allows us to reduce the number of scans needed to obtain a
constant reconstruction quality. We also constructed a bespoke total-variation based prior for
the linearised DIP, but we found its performance dominated by the more-scalable diagonal
g-prior. This was true for both uncertainty estimation and experimental design. Perhaps we
should have payed more attention to the Richard Sutton quote that preceded Chapter 6.

8.2 Future Work

Scalable hyperparameter learning for GPs and linearised neural networks A clear
avenue for future work is leveraging SGD posterior sampling to learn GP hyperparameters.
One way to do this is to use these posterior samples in the existing Hutchinson estimator of the
evidence log-determinant gradient. However, I am not optimistic about this direction because
gradient-based optimisation of the evidence requires many steps. This makes updating our
samples for each new step is very expensive. It would be more interesting to generalise the
MacKay update, used in Chapter 6, beyond marginal prior precisions.

Online Laplace for normalised networks The developments of Chapter 5 are focused
on the post-hoc setting, where we have access to a pre-trained neural network. An exciting
line of research is online Laplace, where the hyperparameters are learnt simultaneously with
the network weights. However, these methods are incompatible with normalisation layers,
ostensibly for the same reasons described in Chapter 5. In Lin et al. (2023a), a paper not
included in this thesis, we did some work relating online Laplace methods to the tangent
linear model. It would be good to further leverage this connection, and the results of Chapter
5, to make online Laplace amenable to normalisation layers.

190 Conclusions and future work

Sequential decision making with neural networks It seems plausible that given large
enough datasets, modern large-scale neural models will rarely encounter out of distribution
scenarios. Thus, the utility of model uncertainty as a tool for rejecting spurious model
behaviour may decrease. However, I do not think that the more general problem of sequential
decision making can be solved in the same way. Thus, I am particularly optimistic about this
application of of Bayesian inference with neural networks. In particular, I am excited about
the use of the linearised DIP to design CT scanning strategies for the real-world. Furthermore,
the experimental design methods of Chapter 7 may be applied to magnetic resonance imaging,
where the forward operator is a Fourier transform, almost out of the box.

References

Adam, V., Chang, P. E., Khan, M. E., and Solin, A. (2021). Dual parameterization of sparse
variational Gaussian processes. In Advances in Neural Information Processing Systems 34,
NeurIPS.

Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical
Mathematics.

Allingham, J. U., Antorán, J., Padhy, S., Nalisnick, E., and Hernández-Lobato, J. M. (2022).
Learning generative models with invariance to symmetries. In NeurIPS 2022 Workshop on
Symmetry and Geometry in Neural Representations.

Amari, S., Park, H., and Fukumizu, K. (2000). Adaptive method of realizing natural gradient
learning for multilayer perceptrons. Neural Comput.

Andrei, N. (2009). Accelerated conjugate gradient algorithm with finite difference hes-
sian/vector product approximation for unconstrained optimization. Journal of Computa-
tional and Applied Mathematics.

Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. I. (2003). An introduction to mcmc
for machine learning. Machine Learning.

Antorán, J. (2019). Understanding Uncertainty in Bayesian Neural Networks. PhD thesis,
University of Cambridge.

Antorán, J., Allingham, J., and Hernández-Lobato, J. M. (2020). Depth uncertainty in neural
networks. Advances in Neural Information Processing Systems 33, NeurIPS.

Antorán, J., Allingham, J., Janz, D., Daxberger, E., Nalisnick, E., and Hernández-Lobato,
J. M. (2022). Linearised Laplace inference in networks with normalisation layers and the
neural g-prior.

Antorán, J., Allingham, J. U., and Hernández-Lobato, J. M. (2020). Depth uncertainty in
neural networks. In Advances in Neural Information Processing Systems 33, NeurIPS.

Antoran, J., Barbano, R., Leuschner, J., Hernández-Lobato, J. M., and Jin, B. (2023).
Uncertainty estimation for computed tomography with a linearised deep image prior.
Transactions on Machine Learning Research, TMLR.

Antorán, J., Bhatt, U., Adel, T., Weller, A., and Hernández-Lobato, J. M. (2021). Getting a
CLUE: A method for explaining uncertainty estimates. In 9th International Conference on
Learning Representations, ICLR.

192 REFERENCES

Antorán, J., Janz, D., Allingham, J. U., Daxberger, E. A., Barbano, R., Nalisnick, E. T.,
and Hernández-Lobato, J. M. (2022). Adapting the linearised laplace model evidence
for modern deep learning. Proceedings of the 39th International Conference on Machine
Learning, ICML.

Antorán, J. and Miguel, A. (2019). Disentangling and learning robust representations with
natural clustering. In 18th IEEE International Conference On Machine Learning And
Applications, ICMLA.

Antorán, J., Padhy, S., Barbano, R., Nalisnick, E., Janz, D., and Hernández-Lobato, J. M.
(2023). Sampling-based inference for large linear models, with application to linearised
laplace. In 11th International Conference on Learning Representations, ICLR.

Antorán, J., Allingham, J. U., and Hernández-Lobato, J. M. (2020). Variational depth search
in resnets.

Antun, V., Renna, F., Poon, C., Adcock, B., and Hansen, A. C. (2020). On instabilities of
deep learning in image reconstruction and the potential costs of AI. Proc. Nat. Acad. Sci.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American
Mathematical Society.

Arridge, S., Maaß, P., Öktem, O., and Schönlieb, C.-B. (2019). Solving inverse problems
using data-driven models. Acta Numer.

Artemev, A., Burt, D. R., and van der Wilk, M. (2021). Tighter bounds on the log marginal
likelihood of gaussian process regression using conjugate gradients. In Proceedings of the
37th International Conference on Machine Learning, ICML.

Ashukha, A., Lyzhov, A., Molchanov, D., and Vetrov, D. (2020). Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning.

Attias, H. (1999). Inferring parameters and structure of latent variable models by variational
bayes. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, UAI.

Ba, L. J., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint:
1607.06450.

Bach, F. R. (2014). Adaptivity of averaged stochastic gradient descent to local strong convexity
for logistic regression. Journal of Machine Learning Research, JMLR.

Baguer, D. O., Leuschner, J., and Schmidt, M. (2020). Computed tomography reconstruction
using deep image prior and learned reconstruction methods. Inverse Problems.

Baragatti, M. and Pommeret, D. (2012). A study of variable selection using g-prior distribution
with ridge parameter. Computational Statistics & Data Analysis.

Barbano, R., Antorán, J., Hernández-Lobato, J. M., and Jin, B. (2022a). A probabilistic deep
image prior over image space. In 4th Symposium on Advances in Approximate Bayesian
Inference, AABI.

REFERENCES 193

Barbano, R., Antorán, J., Leuschner, J., Hernández-Lobato, J. M., Jin, B., and Kereta, Z.
(2023). Image reconstruction via deep image prior subspaces. Transactions on Machine
Learning Research, TMLR.

Barbano, R., Leuschner, J., Antorán, J., Hernández-Lobato, J. M., and Jin, B. (2022b).
Bayesian experimental design for computed tomography with the linearised deep image
prior. ICML Workshop on Workshop on Adaptive Experimental Design and Active Learning
in the Real World.

Barbano, R., Leuschner, J., Schmidt, M., Denker, A., Hauptmann, A., Maass, P., and Jin,
B. (2022c). An educated warm start for deep image prior-based micro ct reconstruction.
IEEE Transactions on Computational Imaging.

Barutcu, S., Gürsoy, D., and Katsaggelos, A. K. (2022). Compressive ptychography using
deep image and generative priors.

Becker, S. and LeCun, Y. (1989). Improving the convergence of back-propagation learning
with second-order methods.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-learning
practice and the classical bias-variance trade-off. Proceedings of the National Academy of
Sciences.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. (2002). The explicit linear
quadratic regulator for constrained systems. Automatica.

Bernstein, S. (1946). The Theory of Probabilities. Gostechizdat.

Bhatt, U., Antorán, J., Zhang, Y., Liao, Q. V., Sattigeri, P., Fogliato, R., Melancon, G. G.,
Krishnan, R., Stanley, J., Tickoo, O., Nachman, L., Chunara, R., Srikumar, M., Weller, A.,
and Xiang, A. (2021). Uncertainty as a form of transparency: Measuring, communicating,
and using uncertainty. In AIES ’21: AAAI/ACM Conference on AI, Ethics, and Society,
Virtual Event, USA, May 19-21, 2021.

Bishop, C. and Tipping, M. (2003). Bayesian Regression and Classification.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Blanchard, G. and Krämer, N. (2010). Optimal learning rates for kernel conjugate gradient
regression. In Advances in Neural Information Processing Systems 23, NeurIPS.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty
in neural networks. In Proceedings of the 31st International Conference on Machine
Learning, ICML.

Bora, A., Jalal, A., Price, E., and Dimakis, A. G. (2017). Compressed sensing using generative
models. In Proceedings of the 33rd International Conference on Machine Learning, ICML.

Bové, D. S. and Held, L. (2011). Hyper-g priors for generalized linear models. Bayesian
Analysis.

Boyd, S. P. and Vandenberghe, L. (2014). Convex Optimization. Cambridge University Press.

194 REFERENCES

Brock, A., De, S., and Smith, S. L. (2021a). Characterizing signal propagation to close the
performance gap in unnormalized resnets. In 9th International Conference on Learning
Representations, ICLR.

Brock, A., De, S., Smith, S. L., and Simonyan, K. (2021b). High-performance large-
scale image recognition without normalization. In Proceedings of the 37th International
Conference on Machine Learning, ICML.

Burger, M., Hauptmann, A., Helin, T., Hyvönen, N., and Puska, J.-P. (2021). Sequentially
optimized projections in x-ray imaging. Inverse Problems.

Cai, Y., Li, Q., and Shen, Z. (2019). A quantitative analysis of the effect of batch normalization
on gradient descent. In Proceedings of the 35th International Conference on Machine
Learning, ICML.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2009). Handling sparsity via the horseshoe.
In The 12th International Conference on Artificial Intelligence and Statistics, AISTATS.

Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. Statistical
Science.

Chambolle, A., Caselles, V., Cremers, D., Novaga, M., and Pock, T. (2010). An introduction
to total variation for image analysis.

Chen, H., Zheng, L., Al Kontar, R., and Raskutti, G. (2020). Stochastic gradient descent
in correlated settings: A study on gaussian processes. Advances in Neural Information
Processing Systems 33, NeurIPS.

Chen, H., Zheng, L., Al Kontar, R., and Raskutti, G. (2022). Gaussian process parameter
estimation using mini-batch stochastic gradient descent: Convergence guarantees and
empirical benefits. Journal of Machine Learning Research, JMLR.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J., Edwards, H.,
Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H.,
Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser, L.,
Bavarian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D., Plappert, M., Chantzis,
F., Barnes, E., Herbert-Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang, J.,
Babuschkin, I., Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer,
K., Welinder, P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., and Zaremba, W.
(2021). Evaluating large language models trained on code. arXiv preprint: 2107.03374.

Cheng, Z., Gadelha, M., Maji, S., and Sheldon, D. (2019). A Bayesian perspective on the deep
image prior. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and Ha, D. (2018).
Deep learning for classical japanese literature.

Collaboration, T. E. H. T., Akiyama, K., Algaba, J. C., Alberdi, A., Alef, W., Anantua, R.,
Asada, K., Azulay, R., Baczko, A.-K., Ball, D., Baloković, M., Barrett, J., Benson, B. A.,
Bintley, D., Blackburn, L., Blundell, R., Boland, W., Bouman, K. L., Bower, G. C., Boyce,

REFERENCES 195

H., Bremer, M., Brinkerink, C. D., Brissenden, R., Britzen, S., Broderick, A. E., Broguiere,
D., Bronzwaer, T., Byun, D.-Y., Carlstrom, J. E., Chael, A., kwan Chan, C., Chatterjee,
S., Chatterjee, K., Chen, M.-T., Chen, Y., Chesler, P. M., Cho, I., Christian, P., Conway,
J. E., Cordes, J. M., Crawford, T. M., Crew, G. B., Cruz-Osorio, A., Cui, Y., Davelaar,
J., Laurentis, M. D., Deane, R., Dempsey, J., Desvignes, G., Dexter, J., Doeleman, S. S.,
Eatough, R. P., Falcke, H., Farah, J., Fish, V. L., Fomalont, E., Ford, H. A., Fraga-Encinas,
R., Freeman, W. T., Friberg, P., Fromm, C. M., Fuentes, A., Galison, P., Gammie, C. F.,
García, R., Gentaz, O., Georgiev, B., Goddi, C., Gold, R., Gómez, J. L., Gómez-Ruiz,
A. I., Gu, M., Gurwell, M., Hada, K., Haggard, D., Hecht, M. H., Hesper, R., Ho, L. C.,
Ho, P., Honma, M., Huang, C.-W. L., Huang, L., Hughes, D. H., Ikeda, S., Inoue, M.,
Issaoun, S., James, D. J., Jannuzi, B. T., Janssen, M., Jeter, B., Jiang, W., Jimenez-Rosales,
A., Johnson, M. D., Jorstad, S., Jung, T., Karami, M., Karuppusamy, R., Kawashima, T.,
Keating, G. K., Kettenis, M., Kim, D.-J., Kim, J.-Y., Kim, J., Kim, J., Kino, M., Koay, J. Y.,
Kofuji, Y., Koch, P. M., Koyama, S., Kramer, M., Kramer, C., Krichbaum, T. P., Kuo, C.-Y.,
Lauer, T. R., Lee, S.-S., Levis, A., Li, Y.-R., Li, Z., Lindqvist, M., Lico, R., Lindahl, G.,
Liu, J., Liu, K., Liuzzo, E., Lo, W.-P., Lobanov, A. P., Loinard, L., Lonsdale, C., Lu, R.-S.,
MacDonald, N. R., Mao, J., Marchili, N., Markoff, S., Marrone, D. P., Marscher, A. P.,
Martí-Vidal, I., Matsushita, S., Matthews, L. D., Medeiros, L., Menten, K. M., Mizuno,
I., Mizuno, Y., Moran, J. M., Moriyama, K., Moscibrodzka, M., Müller, C., Musoke,
G., Mejías, A. M., Michalik, D., Nadolski, A., Nagai, H., Nagar, N. M., Nakamura, M.,
Narayan, R., Narayanan, G., Natarajan, I., Nathanail, A., Neilsen, J., Neri, R., Ni, C.,
Noutsos, A., Nowak, M. A., Okino, H., Olivares, H., Ortiz-León, G. N., Oyama, T., Özel,
F., Palumbo, D. C. M., Park, J., Patel, N., Pen, U.-L., Pesce, D. W., Piétu, V., Plambeck, R.,
PopStefanĳa, A., Porth, O., Pötzl, F. M., Prather, B., Preciado-López, J. A., Psaltis, D.,
Pu, H.-Y., Ramakrishnan, V., Rao, R., Rawlings, M. G., Raymond, A. W., Rezzolla, L.,
Ricarte, A., Ripperda, B., Roelofs, F., Rogers, A., Ros, E., Rose, M., Roshanineshat, A.,
Rottmann, H., Roy, A. L., Ruszczyk, C., Rygl, K. L. J., Sánchez, S., Sánchez-Arguelles,
D., Sasada, M., Savolainen, T., Schloerb, F. P., Schuster, K.-F., Shao, L., Shen, Z., Small,
D., Sohn, B. W., SooHoo, J., Sun, H., Tazaki, F., Tetarenko, A. J., Tiede, P., Tilanus,
R. P. J., Titus, M., Toma, K., Torne, P., Trent, T., Traianou, E., Trippe, S., van Bemmel,
I., van Langevelde, H. J., van Rossum, D. R., Wagner, J., Ward-Thompson, D., Wardle,
J., Weintroub, J., Wex, N., Wharton, R., Wielgus, M., Wong, G. N., Wu, Q., Yoon, D.,
Young, A., Young, K., Younsi, Z., Yuan, F., Yuan, Y.-F., Zensus, J. A., Zhao, G.-Y., Zhao,
S.-S., and Collaboration, T. E. H. T. (2021). First m87 event horizon telescope results. vii.
polarization of the ring. The Astrophysical Journal Letters.

Collins, M. and Duffy, N. (2001). Convolution kernels for natural language. In Advances in
Neural Information Processing Systems 14, NeurIPS.

Cox, R. T. (1946). Probability, Frequency and Reasonable Expectation. American Journal of
Physics.

Cui, J., Gong, K., Guo, N., Wu, C., Kim, K., Liu, H., and Li, Q. (2021). Populational
and individual information based PET image denoising using conditional unsupervised
learning. Phys. Med. & Biol.

Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-F. F., and Song, L. (2014). Scalable
kernel methods via doubly stochastic gradients. Advances in Neural Information Processing
Systems 27, NeurIPS.

196 REFERENCES

Darestani, M. Z. and Heckel, R. (2021). Accelerated MRI with un-trained neural networks.
IEEE Trans. Comput. Imag.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., and Hennig, P. (2021a).
Laplace redux–effortless Bayesian deep learning. In Advances in Neural Information
Processing Systems 34, NeurIPS.

Daxberger, E., Nalisnick, E., Allingham, J. U., Antorán, J., and Hernández-Lobato, J. M.
(2020). Expressive yet tractable bayesian deep learning via subnetwork inference. In 2nd
Symposium on Advances in Approximate Bayesian Inference, AABI.

Daxberger, E., Nalisnick, E., Allingham, J. U., Antorán, J., and Hernandez-Lobato, J. M.
(2021b). Bayesian deep learning via subnetwork inference. In Proceedings of the 37th
International Conference on Machine Learning, ICML.

Daxberger, E. A., Nalisnick, E. T., Allingham, J. U., Antorán, J., and Hernández-Lobato,
J. M. (2021c). Bayesian deep learning via subnetwork inference. In Proceedings of the
37th International Conference on Machine Learning, ICML.

de G. Matthews, A. G., Hron, J., Rowland, M., Turner, R. E., and Ghahramani, Z. (2018).
Gaussian process behaviour in wide deep neural networks. In 6th International Conference
on Learning Representations, ICLR.

de G. Matthews, A. G., Hron, J., Turner, R. E., and Ghahramani, Z. (2017). Sample-then-
optimize posterior sampling for bayesian linear models. In 1st Symposium on Advances in
Approximate Bayesian Inference, AABI.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B
(Methodological).

Deng, Z., Zhou, F., and Zhu, J. (2022). Accelerated linearized laplace approximation
for bayesian deep learning. In Advances in Neural Information Processing Systems 35,
NeurIPS.

Der Sarkissian, H., Lucka, F., van Eĳnatten, M., Colacicco, G., Coban, S. B., and Batenburg,
K. J. (2019). Cone-Beam X-Ray CT Data Collection Designed for Machine Learning:
Samples 1-8.

Dieuleveut, A., Flammarion, N., and Bach, F. R. (2017). Harder, better, faster, stronger
convergence rates for least-squares regression. Journal of Machine Learning Research,
JMLR.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021).
An image is worth 16x16 words: Transformers for image recognition at scale. In 9th
International Conference on Learning Representations, ICLR.

Draper, D. and Krnjajic, M. (2010). Calibration results for bayesian model specification.
Bayesian Analysis.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

REFERENCES 197

Dusenberry, M. W., Jerfel, G., Wen, Y., Ma, Y.-a., Snoek, J., Heller, K., Lakshminarayanan,
B., and Tran, D. (2020). Efficient and scalable bayesian neural nets with rank-1 factors.
Proceedings of the 36th International Conference on Machine Learning, ICML.

Elahi, M., Ricci, F., and Rubens, N. (2016). A survey of active learning in collaborative
filtering recommender systems. Computer Science Review.

Elbakri, I. A. and Fessler, J. A. (2003). Efficient and accurate likelihood for iterative
image reconstruction in x-ray computed tomography. In Medical Imaging 2003: Image
Processing.

Eschenhagen, R., Daxberger, E., Hennig, P., and Kristiadi, A. (2021). Mixtures of laplace
approximations for improved post-hoc uncertainty in deep learning. arXiv preprint:
2111.03577.

Feng, C. (2015). Optimal Bayesian experimental design in the presence of model error. PhD
thesis, Massachusetts Institute of Technology.

Flamich, G. (2019). Compression without Quantization. PhD thesis, University of Cambridge.

Foong, A. Y., Li, Y., Hernández-Lobato, J. M., and Turner, R. E. (2019a). In-between
uncertainty in bayesian neural networks. ICML Workshop on Uncertainty and Robustness
in Deep Learning.

Foong, A. Y. K., Burt, D. R., Li, Y., and Turner, R. E. (2020). On the expressiveness of
approximate inference in Bayesian neural networks. In Advances in Neural Information
Processing Systems 33, NeurIPS.

Foong, A. Y. K., Li, Y., Hernández-Lobato, J. M., and Turner, R. E. (2019b). ‘In-between’
uncertainty in Bayesian neural networks. arXiv preprint: 1906.11537.

Foresee, F. D. and Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning.
In International Conference on Neural Networks.

Fortuin, V., Garriga-Alonso, A., Wenzel, F., Ratsch, G., Turner, R. E., van der Wilk, M.,
and Aitchison, L. (2021). Bayesian neural network priors revisited. In 3rd Symposium on
Advances in Approximate Bayesian Inference, AABI.

Foster, A. E. (2021). Variational, Monte Carlo and Policy-Based Approaches to Bayesian
Experimental Design. PhD thesis, University of Oxford.

Fridman, L., Ding, L., Jenik, B., and Reimer, B. (2019). Arguing machines: Human
supervision of black box ai systems that make life-critical decisions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops.

Friston, K. J., Mattout, J., Trujillo-Barreto, N. J., Ashburner, J., and Penny, W. D. (2007).
Variational free energy and the Laplace approximation. NeuroImage.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In Proceedings of the 32nd International Conference
on Machine Learning, ICML.

198 REFERENCES

García-Ortegón, M., Simm, G. N. C., Tripp, A. J., Hernández-Lobato, J. M., Bender, A., and
Bacallado, S. (2022). Dockstring: Easy molecular docking yields better benchmarks for
ligand design. Journal of Chemical Information and Modeling.

Gardner, J. R., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G. (2018). Gpytorch:
Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances in
Neural Information Processing Systems 31, NeurIPS.

Garriga-Alonso, A., Aitchison, L., and Rasmussen, C. E. (2019). Deep convolutional
networks as shallow Gaussian processes. In 7th International Conference on Learning
Representations, ICLR.

Geffner, T., Antorán, J., Foster, A., Gong, W., Ma, C., Kiciman, E., Sharma, A., Lamb, A.,
Kukla, M., Pawlowski, N., Allamanis, M., and Zhang, C. (2022). Deep end-to-end causal
inference.

Germain, P., Bach, F. R., Lacoste, A., and Lacoste-Julien, S. (2016). Pac-bayesian theory
meets bayesian inference. In Advances in Neural Information Processing Systems 29,
NeurIPS.

Ghosal, S. and van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian Inference.
Cambridge University Press.

Gibbs, M. N. and MacKay, D. J. C. (1996). Efficient implementation of Gaussian processes
for interpolation.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural message
passing for quantum chemistry. In Proceedings of the 33rd International Conference on
Machine Learning, ICML.

Goddard, J. (2023). Hallucinations in ChatGPT: A cautionary tale for biomedical researchers.
Am J Med.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-
Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., and
Aspuru-Guzik, A. (2018). Automatic chemical design using a data-driven continuous
representation of molecules. ACS Central Science.

Gong, K., Catana, C., Qi, J., and Li, Q. (2019). PET image reconstruction using deep image
prior. IEEE Trans. Med. Imag.

Graczykowski, L. K., Jakubowska, M., Deja, K. R., and Kabus, M. (2022). Using Machine
Learning for Particle Identification in ALICE. Jinst.

Graves, A. (2011). Practical variational inference for neural networks.

Grünwald, P. (2004). A tutorial introduction to the minimum description length principle.
arXiv preprint: 0406077.

Gull, S. F. (1988). Bayesian Inductive Inference and Maximum Entropy. Springer Netherlands.

Gull, S. F. (1989). Bayesian Data Analysis: Straight-line fitting.

REFERENCES 199

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-
Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., and
Aspuru-Guzik, A. (2018). Automatic chemical design using a data-driven continuous
representation of molecules. American Chemical Society Central Science.

Halko, N., Martinsson, P., and Tropp, J. A. (2011). Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev.

Hansson, S. O. (2011). Decision Theory: An Overview.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual
networks. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV.

Heckel, R. and Hand, P. (2019). Deep decoder: Concise image representations from untrained
non-convolutional networks. In 7th International Conference on Learning Representations,
ICLR.

Heeger, D. (2000). Poisson model of spike generation.

Helin, T., Hyvönen, N., and Puska, J. (2022a). Edge-promoting adaptive Bayesian experi-
mental design for x-ray imaging. SIAM J. Sci. Comput.

Helin, T., Hyvönen, N., and Puska, J.-P. (2022b). Edge-promoting adaptive Bayesian
experimental design for X-ray imaging. SIAM J. Sci. Comput.

Hendrycks, D. and Gimpel, K. (2017). A Baseline for Detecting Misclassified and Out-of-
Distribution Examples in Neural Networks. In 5th International Conference on Learning
Representations, ICLR.

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C., Jackson, J., Jun, H., Brown,
T. B., Dhariwal, P., Gray, S., Hallacy, C., Mann, B., Radford, A., Ramesh, A., Ryder, N.,
Ziegler, D. M., Schulman, J., Amodei, D., and McCandlish, S. (2020). Scaling laws for
autoregressive generative modeling. arXiv preprint: 2010.14701.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In
Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, UAI.

Hernández-Lobato, J. M. and Adams, R. P. (2015). Probabilistic backpropagation for scalable
learning of Bayesian neural networks. In Proceedings of the 31st International Conference
on Machine Learning, ICML.

Hernández-Lobato, J. M., Li, Y., Rowland, M., Bui, T. D., Hernández-Lobato, D., and Turner,
R. E. (2016). Black-box alpha divergence minimization. In Proceedings of the 32nd
International Conference on Machine Learning, ICML.

Hernández-Lobato, J. M., Hoffman, M. W., and Ghahramani, Z. (2014). Predictive entropy
search for efficient global optimization of black-box functions. In Advances in Neural
Information Processing Systems 27, NeurIPS.

200 REFERENCES

Hernández-Lobato, J. M., Requeima, J., Pyzer-Knapp, E. O., and Aspuru-Guzik, A. (2017).
Parallel and distributed thompson sampling for large-scale accelerated exploration of
chemical space. In Proceedings of the 33rd International Conference on Machine Learning,
ICML.

Hinton, G. E. and van Camp, D. (1993). Keeping the neural networks simple by minimizing
the description length of the weights. In Proceedings of the Sixth Annual ACM Conference
on Computational Learning Theory, COLT 1993, Santa Cruz, CA, USA, July 26-28, 1993.

Hoffer, E., Banner, R., Golan, I., and Soudry, D. (2018). Norm matters: efficient and accurate
normalization schemes in deep networks. In Advances in Neural Information Processing
Systems 31, NeurIPS.

Hoffman, Y. (2009). Gaussian Fields and Constrained Simulations of the Large-Scale
Structure.

Hoffman, Y. and Ribak, E. (1991). Constrained realizations of Gaussian fields: a simple
algorithm. Astrophys. J. Lett.

Hofmann, T., Schölkopf, B., and Smola, A. (2006). A tutorial review of rkhs methods in
machine learning.

Hron, J., Matthews, A., and Ghahramani, Z. (2018). Variational Bayesian dropout: pitfalls
and fixes. In Proceedings of the 34th International Conference on Machine Learning,
ICML.

Hu, A., Corrado, G., Griffiths, N., Murez, Z., Gurau, C., Yeo, H., Kendall, A., Cipolla, R.,
and Shotton, J. (2022). Model-based imitation learning for urban driving. In Advances in
Neural Information Processing Systems 35, NeurIPS.

Hutchinson, M. (1990). A stochastic estimator of the trace of the influence matrix for
Laplacian smoothing splines. Commun. Stat. Simul. Comput.

Immer, A., Bauer, M., Fortuin, V., Rätsch, G., and Khan, M. E. (2021a). Scalable marginal
likelihood estimation for model selection in deep learning. In Proceedings of the 37th
International Conference on Machine Learning, ICML.

Immer, A., Korzepa, M., and Bauer, M. (2021b). Improving predictions of bayesian neural
nets via local linearization. In The 24th International Conference on Artificial Intelligence
and Statistics, AISTATS.

Immer, A., Palumbo, E., Marx, A., and Vogt, J. E. (2023a). Effective bayesian heteroscedastic
regression with deep neural networks. In Advances in Neural Information Processing
Systems 36, NeurIPS.

Immer, A., van der Ouderaa, T. F., Ratsch, G., Fortuin, V., and van der Wilk, M. (2022).
Invariance learning in deep neural networks with differentiable laplace approximations. In
Advances in Neural Information Processing Systems 35, NeurIPS.

Immer, A., Van Der Ouderaa, T. F. A., Van Der Wilk, M., Ratsch, G., and Schölkopf,
B. (2023b). Stochastic marginal likelihood gradients using neural tangent kernels. In
Proceedings of the 39th International Conference on Machine Learning, ICML.

REFERENCES 201

Ioffe, S. (2010). Improved consistent sampling, weighted minhash and l1 sketching. In
International Conference on Data Dining.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 31st International Conference
on Machine Learning, ICML.

Ito, K. and Jin, B. (2014). Inverse problems: Tikhonov theory and algorithms. World
Scientific.

Jacot, A., Hongler, C., and Gabriel, F. (2018). Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems
31, NeurIPS.

Janz, D., Hron, J., Mazur, P., Hofmann, K., Hernández-Lobato, J. M., and Tschiatschek,
S. (2019). Successor uncertainties: Exploration and uncertainty in temporal difference
learning. In Advances in Neural Information Processing Systems 32, NeurIPS.

Jaynes, E. and Justice, J. H. (1986). Bayesian Methods: General Background.

Jeffreys, H. (1939). Theory of Probability. Clarendon Press.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot, D. S.,
de las Casas, D., Hanna, E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G., Lavaud,
L. R., Saulnier, L., Lachaux, M.-A., Stock, P., Subramanian, S., Yang, S., Antoniak, S.,
Scao, T. L., Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed, W. E. (2024). Mixtral
of experts.

Journel, A. G. and Huĳbregts, C. J. (1978). Mining geostatistics / [by] A. G. Journel and Ch.
J. Huĳbregts. Academic Press London ; New York.

Kaipio, J. and Somersalo, E. (2005). Statistical and computational inverse problems.
Springer-Verlag, New York.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical
Association.

Khan, M. E., Immer, A., Abedi, E., and Korzepa, M. (2019a). Approximate inference turns
deep networks into Gaussian processes. In Advances in Neural Information Processing
Systems 32, NeurIPS.

Khan, M. E., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., and Srivastava, A. (2018). Fast
and scalable Bayesian deep learning by weight-perturbation in Adam. In Proceedings of
the 34th International Conference on Machine Learning, ICML.

Khan, M. E. and Rue, H. (2023). The bayesian learning rule. Journal of Machine Learning
Research, JMLR.

Khan, M. E. E. (2014). Decoupled variational gaussian inference. In Advances in Neural
Information Processing Systems 27, NeurIPS.

202 REFERENCES

Khan, M. E. E., Immer, A., Abedi, E., and Korzepa, M. (2019b). Approximate inference
turns deep networks into gaussian processes. Advances in Neural Information Processing
Systems 32, NeurIPS.

Knopp, T. and Grosser, M. (2021). Warmstart approach for accelerating deep image prior
reconstruction in dynamic tomography.

Kompa, B., Snoek, J., and Beam, A. L. (2021). Second opinion needed: communicating
uncertainty in medical machine learning. NPJ Digital Medicine.

Kristiadi, A., Hein, M., and Hennig, P. (2020). Being bayesian, even just a bit, fixes
overconfidence in relu networks. In Proceedings of the 36th International Conference on
Machine Learning, ICML.

Kunstner, F., Hennig, P., and Balles, L. (2019). Limitations of the empirical fisher approxima-
tion for natural gradient descent. In Advances in Neural Information Processing Systems
32, NeurIPS.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems 30, NeurIPS.

Laves, M.-H., Tölle, M., and Ortmaier, T. (2020). Uncertainty estimation in medical image
denoising with bayesian deep image prior.

Lawrence, N. D. (2000). Variational inference in probabilistic models. PhD thesis, University
of Cambridge.

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1996). Effiicient backprop. In Neural
Networks: Tricks of the Trade.

LeCun, Y., Simard, P., and Pearlmutter, B. (1992). Automatic learning rate maximization
by on-line estimation of the hessian's eigenvectors. In Advances in Neural Information
Processing Systems 5, NeurIPS.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington,
J. (2019). Wide neural networks of any depth evolve as linear models under gradient
descent. In Advances in Neural Information Processing Systems 32, NeurIPS.

Li, R., John, S. T., and Solin, A. (2023). Improving hyperparameter learning under approximate
inference in gaussian process models. In Proceedings of the 39th International Conference
on Machine Learning, ICML.

Li, Y. (2018). Approximate Inference: New Visions. PhD thesis, University of Cambridge.

Li, Z., Lyu, K., and Arora, S. (2020). Reconciling modern deep learning with traditional
optimization analyses: The intrinsic learning rate. In Advances in Neural Information
Processing Systems 33, NeurIPS.

Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008). Mixtures of g priors
for bayesian variable selection. Journal of the American Statistical Association.

REFERENCES 203

Lin, J. A., Antoran, J., and Hernández-Lobato, J. M. (2023a). Online laplace model selection
revisited. In 5th Symposium on Advances in Approximate Bayesian Inference, AABI.

Lin, J. A., Antoran, J., Padhy, S., Janz, D., Hernández-Lobato, J. M., and Terenin, A. (2023b).
Sampling from gaussian process posteriors using stochastic gradient descent. In Advances
in Neural Information Processing Systems 36, NeurIPS.

Lin, J. A., Padhy, S., Antorán, J., Tripp, A., Terenin, A., Szepesvári, C., Hernández-Lobato,
J. M., and Janz, D. (2024). Stochastic gradient descent for gaussian processes done right.
In 12th International Conference on Learning Representations, ICLR.

Liu, J., Sun, Y., Xu, X., and Kamilov, U. S. (2019). Image restoration using total variation
regularized deep image prior. In Icassp 2019.

Lobacheva, E., Kodryan, M., Chirkova, N., Malinin, A., and Vetrov, D. P. (2021). On the
periodic behavior of neural network training with batch normalization and weight decay.
In Advances in Neural Information Processing Systems 34, NeurIPS.

Louizos, C. and Welling, M. (2017). Multiplicative Normalizing Flows for Variational
Bayesian Neural Networks. In Proceedings of the 33rd International Conference on
Machine Learning, ICML.

MacKay, D. J. (1992a). A practical bayesian framework for backpropagation networks.
Neural computation.

MacKay, D. J. C. (1992b). Bayesian Interpolation. Neural Computation.

Mackay, D. J. C. (1992a). Bayesian Methods for Adaptive Models. PhD thesis.

Mackay, D. J. C. (1992b). Information-based objective functions for active data selection.
Neural Computation.

Mackay, D. J. C. (1996). Bayesian non-linear modeling for prediction competition. In
Maximum Entropy and Bayesian Methods.

MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge
University Press.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint: 1611.00712.

Maddox, W., Tang, S., Moreno, P. G., Wilson, A. G., and Damianou, A. C. (2021). Fast
adaptation with linearized neural networks. In The 24th International Conference on
Artificial Intelligence and Statistics, AISTATS.

Maddox, W. J., Benton, G. W., and Wilson, A. G. (2020). Rethinking parameter counting in
deep models: Effective dimensionality revisited. arXiv preprint: 2003.02139.

Mandt, S., Hoffman, M. D., and Blei, D. M. (2017). Stochastic gradient descent as approximate
bayesian inference. Journal of Machine Learning Research, JMLR.

Martens, J. (2014). New insights and perspectives on the natural gradient method. arXiv
preprint: 1412.1193.

204 REFERENCES

Martens, J. and Grosse, R. B. (2015). Optimizing neural networks with kronecker-factored
approximate curvature. In Proceedings of the 31st International Conference on Machine
Learning, ICML.

Martinsson, P.-G. and Tropp, J. A. (2020). Randomized numerical linear algebra: Foundations
and algorithms. Acta Numer.

Masegosa, A. R. (2020). Learning under model misspecification: Applications to variational
and ensemble methods. In Advances in Neural Information Processing Systems 33, NeurIPS.

Matthews, A. G. d. G. (2017). Scalable Gaussian process inference using variational methods.
PhD thesis, University of Cambridge.

Matthews, A. G. d. G., Hensman, J., Turner, R., and Ghahramani, Z. (2016). On sparse
variational methods and the kullback-leibler divergence between stochastic processes.
Journal of Machine Learning Research, JMLR.

Midgley, L. I., Stimper, V., Antorán, J., Mathieu, E., Schölkopf, B., and Hernández-Lobato,
J. M. (2023). SE(3) equivariant augmented coupling flows. In Advances in Neural
Information Processing Systems 36, NeurIPS.

Minka, T. (2000). Bayesian linear regression.

Minka, T. (2004). Power ep. Technical report.

Minka, T. (2007). The ep energy function and minimization schemes.

Minka, T. P. (2001). Expectation propagation for approximate bayesian inference. In UAI ’01:
Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, University of
Washington, Seattle, Washington, USA, August 2-5, 2001.

Murray, C., Allingham, J. U., Antorán, J., and Hernández-Lobato, J. M. (2022a). Addressing
bias in active learning with depth uncertainty networks... or not. In Proceedings on "I
(Still) Can’t Believe It’s Not Better!" at NeurIPS 2021 Workshops.

Murray, C., Allingham, J. U., Antorán, J., and Hernández-Lobato, J. M. (2022b). Depth
uncertainty networks for active learning.

Nalisnick, E., Gordon, J., and Miguel Hernandez-Lobato, J. (2021). Predictive complexity
priors. In The 24th International Conference on Artificial Intelligence and Statistics,
AISTATS.

Neal, R. M. (1992). Bayesian training of backpropagation networks by the hybrid monte
carlo method. Technical report, Citeseer.

Neal, R. M. and Hinton, G. E. (1998). A View of the Em Algorithm that Justifies Incremental,
Sparse, and other Variants.

Neath, A. A. and Cavanaugh, J. E. (2012). The bayesian information criterion: background,
derivation, and applications. Wiley Interdisciplinary Reviews: Computational Statistics.

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate
of convergence o(1/k2). In Doklady Akademii Nauk SSSR.

REFERENCES 205

Nielsen, S. F. (2000). The stochastic EM algorithm: estimation and asymptotic results.
Bernoulli.

Novak, R., Sohl-Dickstein, J., and Schoenholz, S. S. (2022). Fast finite width neural tangent
kernel. In Proceedings of the 38th International Conference on Machine Learning, ICML.

Novak, R., Xiao, L., Bahri, Y., Lee, J., Yang, G., Hron, J., Abolafia, D. A., Pennington, J., and
Sohl-Dickstein, J. (2019). Bayesian deep convolutional networks with many channels are
Gaussian processes. In 7th International Conference on Learning Representations, ICLR.

Ober, S. W. and Aitchison, L. (2021). Global inducing point variational posteriors for bayesian
neural networks and deep gaussian processes. In Proceedings of the 37th International
Conference on Machine Learning, ICML.

Ober, S. W. and Rasmussen, C. E. (2019). Benchmarking the neural linear model for
regression. arXiv preprint: 1912.08416.

Ober, S. W., Rasmussen, C. E., and van der Wilk, M. (2021). The promises and pitfalls of
deep kernel learning. In Proceedings of the 37th Conference on Uncertainty in Artificial
Intelligence, UAI.

Ongie, G., Jalal, A., Baraniuk, R. G., Metzler, C. A., Dimakis, A. G., and Willett, R. (2020).
Deep learning techniques for inverse problems in imaging. IEEE J. Sel. Areas Inform.
Theory.

Opper, M. and Winther, O. (2005). Expectation consistent approximate inference. Journal of
Machine Learning Research, JMLR.

Osawa, K., Swaroop, S., Jain, A., Eschenhagen, R., Turner, R. E., Yokota, R., and Khan, M. E.
(2019). Practical deep learning with bayesian principles. arXiv preprint: 1906.02506.

Osband, I., Aslanides, J., and Cassirer, A. (2018). Randomized prior functions for deep
reinforcement learning. In Advances in Neural Information Processing Systems 31, NeurIPS.

Osband, I., Wen, Z., Asghari, S. M., Dwaracherla, V., Ibrahimi, M., Lu, X., and Roy, B. V.
(2023). Epistemic neural networks. In Advances in Neural Information Processing Systems
36, NeurIPS.

Osband, I., Wen, Z., Asghari, S. M., Dwaracherla, V., Lu, X., and Roy, B. V. (2022).
Evaluating high-order predictive distributions in deep learning. In Proceedings of the 38th
Conference on Uncertainty in Artificial Intelligence, UAI.

Papandreou, G. and Yuille, A. L. (2010). Gaussian sampling by local perturbations. In
Advances in Neural Information Processing Systems 23, NeurIPS.

Paulsen, V. I. and Raghupathi, M. (2016). An introduction to the theory of reproducing kernel
Hilbert spaces. Cambridge University Press.

Pearce, T., Leibfried, F., and Brintrup, A. (2020). Uncertainty in neural networks: Ap-
proximately bayesian ensembling. In The 23rd International Conference on Artificial
Intelligence and Statistics, AISTATS.

206 REFERENCES

Pearl, J. (1982). Reverend bayes on inference engines: A distributed hierarchical approach.
In Proceedings of the Second AAAI Conference on Artificial Intelligence.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc.

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith, N. A., and Kong, L. (2021).
Random feature attention. In 9th International Conference on Learning Representations,
ICLR.

Pinder, T. and Dodd, D. (2022). Gpjax: A gaussian process framework in jax. Journal of
Open Source Software.

Pinzi, L. and Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery.
International Journal of Molecular Sciences.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics.

Polyak, B. T. (1990). New stochastic approximation type procedures. Avtomatika i Tele-
mekhanika.

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation by
averaging. SIAM Journal on Control and Optimization.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical
Recipes: the Art of Scientific Computing. Cambridge University Press.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems 20, NeurIPS.

Rasmussen, C. and Ghahramani, Z. (2000). Occam's razor. In Advances in Neural Information
Processing Systems 13, NeurIPS.

Reid, I., Choromanski, K., Berger, E., and Weller, A. (2024). Universal graph random features.
In 12th International Conference on Learning Representations, ICLR.

Reid, I., Choromanski, K. M., Likhosherstov, V., and Weller, A. (2023). Simplex random
features. In Proceedings of the 39th International Conference on Machine Learning, ICML.

Rényi, A. (1961). On measures of entropy and information. In Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions
to the Theory of Statistics.

Ritter, H., Botev, A., and Barber, D. (2018). A scalable laplace approximation for neural
networks. In 6th International Conference on Learning Representations, ICLR.

Rogers, D. and Hahn, M. (2010). Extended-connectivity fingerprints. Journal of Chemical
Information and Modeling.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention.

REFERENCES 207

Rubens, N., Elahi, M., Sugiyama, M., and Kaplan, D. (2015). Active learning in recommender
systems. Recommender Systems Handbook.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv:1609.04747.

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal
algorithms. Physica D.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate bayesian inference for latent
gaussian models by using integrated nested laplace approximations. Journal of the Royal
Statistical Society: Series B (Statistical Methodology).

Ruppert, D. (1988). Efficient estimations from a slowly convergent robbins-monro process.
Technical report, Cornell University.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (ĲCV).

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E. L., Ghasemipour, K.,
Gontĳo Lopes, R., Karagol Ayan, B., Salimans, T., et al. (2022). Photorealistic text-to-
image diffusion models with deep language understanding. Advances in Neural Information
Processing Systems 35, NeurIPS.

Salakhutdinov, R. and Hinton, G. (2009). Deep boltzmann machines. In The 12th International
Conference on Artificial Intelligence and Statistics, AISTATS.

Saul, L. and Jordan, M. (1998). A Mean Field Learning Algorithm for Unsupervised Neural
Networks.

Scholkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press.

Schraudolph, N. N. (2002). Fast curvature matrix-vector products for second-order gradient
descent. Neural Comput.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer theorem. In
Computational Learning Theory.

Seeger, M. W. (2009). On the submodularity of linear experimental design.

Seeger, M. W. and Nickisch, H. (2011). Large scale bayesian inference and experimental
design for sparse linear models. SIAM J. Imaging Sci.

Shalev-Shwartz, S. and Zhang, T. (2013). Stochastic dual coordinate ascent methods for
regularized loss minimization. Journal of Machine Learning Research, JMLR.

Shen, Y., Daheim, N., Cong, B., Nickl, P., Marconi, G. M., Bazan, C., Yokota, R., Gurevych,
I., Cremers, D., Khan, M. E., and Möllenhoff, T. (2024). Variational learning is effective
for large deep networks.

208 REFERENCES

Shen, Z., Wang, Y., Wu, D., Yang, X., and Dong, B. (2022). Learning to scan: A deep
reinforcement learning approach for personalized scanning in ct imaging. Inverse Problems
and Imaging.

Sinharay, S. and Stern, H. S. (2002). On the sensitivity of bayes factors to the prior
distributions. The American Statistician.

Skilling, J. (1989). Classic Maximum Entropy.

Smola, A. J. and Schölkopf, B. (1998). Learning with Kernels. MIT Press.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems 25,
NeurIPS.

Snoek, J., Ovadia, Y., Fertig, E., Lakshminarayanan, B., Nowozin, S., Sculley, D., Dillon,
J., Ren, J., and Nado, Z. (2019a). Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. In Advances in Neural Information Processing
Systems 32, NeurIPS.

Snoek, J., Ovadia, Y., Fertig, E., Lakshminarayanan, B., Nowozin, S., Sculley, D., Dillon,
J. V., Ren, J., and Nado, Z. (2019b). Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. In Advances in Neural Information Processing
Systems 32, NeurIPS.

Stigler, S. M. (1986). Laplace’s 1774 memoir on inverse probability. Statistical Science.

Stuart, A. M. (2010). Inverse problems: a Bayesian perspective. Acta Numer.

Sutherland, D. J. and Schneider, J. G. (2015). On the error of random fourier features. In
Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, UAI.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization
and momentum in deep learning. In Proceedings of the 29th International Conference on
Machine Learning, ICML.

Terenin, A. (2022). Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces. PhD thesis, Imperial College London.

Terenin, A., Burt, D. R., Artemev, A., Flaxman, S., van der Wilk, M., Rasmussen, C. E.,
and Ge, H. (2023). Numerically stable sparse gaussian processes via minimum separation
using cover trees. Journal of Machine Learning Research, JMLR.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika.

Tian, Y., Zhang, Y., and Zhang, H. (2023). Recent advances in stochastic gradient descent in
deep learning. Mathematics.

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of ill-posed problems. V. H. Winston &
Sons.

REFERENCES 209

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal
of Machine Learning Research, JMLR.

Titsias, M. K. (2009a). Variational learning of inducing variables in sparse gaussian processes.
In The 12th International Conference on Artificial Intelligence and Statistics, AISTATS.

Titsias, M. K. (2009b). Variational model selection for sparse gaussian process regression.
Technical report, University of Manchester.

Titsias, M. K. and Ruiz, F. J. R. (2019). Unbiased implicit variational inference. In The 22nd
International Conference on Artificial Intelligence and Statistics, AISTATS.

Tölle, M., Laves, M., and Schlaefer, A. (2021). A mean-field variational inference approach
to deep image prior for inverse problems in medical imaging. In Medical Imaging with
Deep Learning, 7-9 July 2021, Lübeck, Germany.

Tripp, A., Bacallado, S., Singh, S., and Hernández-Lobato, J. M. (2023). Tanimoto random
features for scalable molecular machine learning. In Advances in Neural Information
Processing Systems 36, NeurIPS.

Trott, O. and Olson, A. J. (2010). Autodock vina: Improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and multithreading. Journal
of Computational Chemistry.

Turner, R. E. and Sahani, M. (2011). Two problems with variational expectation maximisation
for time-series models.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2018a). Deep image prior. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. (2018b). Deep image prior. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. (2020). Deep image prior. Int. J. Comput. Vis.

Uppal, A., Stensbo-Smidt, K., Boomsma, W., and Frellsen, J. (2023). Implicit variational
inference for high-dimensional posteriors. In Advances in Neural Information Processing
Systems 36, NeurIPS.

van der Ouderaa, T. F. A., Immer, A., and van der Wilk, M. (2023). Learning layer-wise
equivariances automatically using gradients. In Advances in Neural Information Processing
Systems 36, NeurIPS.

van der Wilk, M., Rasmussen, C. E., and Hensman, J. (2017). Convolutional gaussian
processes. In Advances in Neural Information Processing Systems 30, NeurIPS.

van Laarhoven, T. (2017). L2 regularization versus batch and weight normalization. arXiv
preprint: 1706.05350.

Vapnik, V. (1995). The Nature of Statistical Learning. Springer.

210 REFERENCES

Varre, A. V., Pillaud-Vivien, L., and Flammarion, N. (2021). Last iterate convergence of sgd
for least-squares in the interpolation regime. Advances in Neural Information Processing
Systems 34, NeurIPS.

Vasconcelos, F., He, B., Singh, N., and Teh, Y. W. (2022). UncertaINR: Uncertainty
quantification of end-to-end implicit neural representations for computed tomography.

Walker, A. M. (1969). On the asymptotic behaviour of posterior distributions. Journal of the
Royal Statistical Society. Series B (Methodological).

Wang, G., Ye, J. C., and De Man, B. (2020). Deep learning for tomographic image
reconstruction. Nature Mach. Intell.

Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., and Sun, J. (2021). Early stopping for deep
image prior.

Wang, K. A., Pleiss, G., Gardner, J. R., Tyree, S., Weinberger, K. Q., and Wilson, A. G. (2019).
Exact gaussian processes on a million data points. In Advances in Neural Information
Processing Systems 32, NeurIPS.

Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., and Wei, F. (2024). Improving text
embeddings with large language models.

Weiser, B. and Schweber, N. (2023). The chatgpt lawyer explains himself. The New York
Times.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin
dynamics. In Proceedings of the 27th International Conference on Machine Learning,
ICML.

Wenzel, F., Roth, K., Veeling, B. S., Swiatkowski, J., Tran, L., Mandt, S., Snoek, J., Salimans,
T., Jenatton, R., and Nowozin, S. (2020). How good is the bayes posterior in deep neural
networks really? In Proceedings of the 36th International Conference on Machine Learning,
ICML.

West, M. (2018). Outlier Models and Prior Distributions in Bayesian Linear Regression.
Journal of the Royal Statistical Society: Series B (Methodological).

Wild, V., Kanagawa, M., and Sejdinovic, D. (2021). Connections and equivalences between
the nystrom method and sparse variational gaussian processes. arXiv preprint: 2106.01121.

Wilkinson", W. J. ("2019"). "Gaussian process modelling for audio signals". PhD thesis,
"Queen Mary University of London".

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning.
MIT press Cambridge, MA.

Wilson, A. G. and Nickisch, H. (2015). Kernel interpolation for scalable structured gaussian
processes (kiss-gp). In Proceedings of the 31st International Conference on Machine
Learning, ICML.

REFERENCES 211

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2020).
Efficiently sampling functions from gaussian process posteriors. In Proceedings of the
36th International Conference on Machine Learning, ICML.

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2021).
Pathwise conditioning of gaussian processes. Journal of Machine Learning Research,
JMLR.

Wipf, D. P. and Nagarajan, S. S. (2007). A new view of automatic relevance determination.
In Advances in Neural Information Processing Systems 20, NeurIPS.

Wu, Y. and He, K. (2020). Group normalization. Int. J. Comput. Vis.

Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li, X., Li, Z., Luo, X., Chen, K., Jiang, H.,
et al. (2019). Pushing the boundaries of molecular representation for drug discovery with
the graph attention mechanism. Journal of Medicinal Chemistry.

Yang, Y., Yao, K., Repasky, M. P., Leswing, K., Abel, R., Shoichet, B. K., and Jerome, S. V.
(2021). Efficient exploration of chemical space with docking and deep learning. Journal
of Chemical Theory and Computation.

Yu, F. X., Suresh, A. T., Choromanski, K. M., Holtmann-Rice, D. N., and Kumar, S. (2016).
Orthogonal random features. In Advances in Neural Information Processing Systems 29,
NeurIPS.

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g
prior distributions.

Zhang, H., Dauphin, Y. N., and Ma, T. (2019). Fixup initialization: Residual learning without
normalization. In 7th International Conference on Learning Representations, ICLR.

Zhu, Y., Yuan, H., Wang, S., Liu, J., Liu, W., Deng, C., Chen, H., Dou, Z., and Wen, J.-R.
(2024). Large language models for information retrieval: A survey.

Zou, D., Wu, J., Braverman, V., Gu, Q., and Kakade, S. M. (2021). Benign overfitting of
constant-stepsize SGD for linear regression. In Conference on Learning Theory.

Appendix A

Experimental setup details for Chapter 5

Here, we provide the details of our experimental setup which were omitted from the main
text.

A.1 Experiments with full Hessian computation

This subsection concerns the experiments which use small architectures for which exact
Hessian computation is tractable. These experiments are described in Section 5.5.1 and
Section 5.5.2 of the main text. We first describe the setup components shared among
architectures and then provide architecture-specific details. We exclude details for the U-net
used in Section 5.5.2. Instead we provide these together with a brief description of the
tomographic reconstruction task it performs in Section A.2.

Unless specified otherwise, NN weights ṽ are learnt using SGD, with an initial learning
rate of 0.1, momentum of 0.9, and weight decay of 1× 10−4. We trained for 90 epochs, using
a multi-step LR scheduler with a decay rate of 0.1 applied at epochs 40 and 70. This is a
standard choice for CNNs and is default in the examples provided by Pytorch.

The linear weights w⋆ are optimised using Adam and with their gradients calculated using
algorithm 2. We use a learning rate of 1× 10−4 and train for 100 epochs. We set the initial
regularisation parameter to be isotropic A = aI with a = 1× 10−4.

https://pytorch.org/vision/stable/models.html

214 Experimental setup details for Chapter 5

A.1.1 CNN

Our CNN is based on the LeNet architecture with a few variations found in more modern
neural networks. The architecture contains 3 convolutional blocks, followed by global average
pooling in the spatial dimensions, a flatten operation, and finally a fully-connected layer.
The convolutional blocks consist of Conv→ ReLU→ BatchNorm. Instead of using max
pooling layers, as in the original LeNet variants, we use convolutions with a stride of 2. The
first convolution is 5× 5, while the next two are 3× 3. As described in the main text, we
consider architectures of 3 different sizes. Table A.1 shows the number of the filters and
number of parameters for each size of this model. The Big model’s values where chosen to
create a model as large as possible while keeping full-covariance Laplace inference tractable
on one A100 GPU.

Conv1 Filters Conv2 Filters Conv3 Filters Params. Hessian Size

Big 42 48 60 46 024 15.68 GB
Med 32 32 64 29 226 6.36 GB
Small 16 32 32 14 634 1.60 GB

Table A.1 Architecture parameters for the CNNs used in experiments.

A.1.2 ResNet, Pre-ResNet, and Biased-ResNet

Our ResNet is based on our CNN architecture. We replace the second and third convolutional
blocks with residual blocks. The main branch of the residual blocks consist of Conv →
BatchNorm→ ReLU→ Conv→ BatchNorm. We apply a final ReLU layer after the
residual is added. All of the convolutions in the residual blocks use the same number of
filters. In order to downsample our features between blocks we use 1× 1 convolutions with a
stride of 2. Table A.2 shows the number of the filters and number of parameters used for each
size of this model.

Our Pre-ResNet architecture is identical to the ResNet except the main branch cosists of
BatchNorm→ ReLU→ Conv→ BatchNorm→ ReLU→ Conv, and we do not apply a
ReLU after adding the residual.

Note that the standard ResNet architecture does not apply biases in the convolution layers.
The only biases in the entire network are placed in the dense output layer. For our experiment
where biases are included in the Jacobian feature expansion in Section 5.5.1, we modify the
ResNet architecture to include biases in all convolutional layers in addition to the already

A.1 Experiments with full Hessian computation 215

Conv1 Filters ResBlock 1 Filters ResBlock 2 Filters Params. Hessian Size

Big 22 42 64 45 576 15.48 GB
Med 16 32 64 26 874 5.38 GB
Small 12 24 32 14 814 1.64 GB

Table A.2 Architecture parameters for the ResNets used in experiments.

present final dense layer bias. These biases account for a small increase in parameters, to 14
898, 26 986, and 45 726, in the small, medium, and big cases, respectively.

A.1.3 FixUp ResNet

Our FixUp-ResNet architecture follows the standard ResNet structure described above, with
the additional FixUP offsets and multipliers described in (Zhang et al., 2019). We also follow
Zhang et al. (2019) in zero initialising the dense layer, and scaling the convolution weight
initialisation as a function of the depth of the network.

When training FixUp-ResNets, we use the Adam optimiser with a fixed learning rate of
0.01.

A.1.4 Transformer

Our Transformer architecture contains two encoder layers with two attention heads each, and
no dropout. Its input is a sequence of tokens, to which we apply a linear embedding. We add
a learnable class embedding for each input. This class token is used to classify the input.
We do not use positional encoding, preserving permutation invariance in the input. The sizes
of the embeddings and the MLP hidden dimensions are provided in Table A.3.

When training Transformers, we use the Adam optimiser with a learning rate of 3× 10−3.
We use an exponential learning rate decay with a gamma of 0.99 applied after every epoch of
training.

MLP Dim Embedding Dim Params. Hessian Size

Big 120 50 45 900 15.70 GB
Med 80 40 27 090 5.47 GB
Small 60 30 15 520 1.79 GB

Table A.3 Architecture parameters for the Transformers used in experiments.

216 Experimental setup details for Chapter 5

A.2 U-Net tomographic reconstruction of KMNIST digits

In this section, we provide experimental details for the tomographic reconstruction results in
Section 5.5.2.

Our setup almost exactly replicates that of Barbano et al. (2022a) and Antoran et al.
(2023), which form the basis of Chapter 7. We refer to this chapter for an introduction to
tomographic reconstruction with the deep image prior.

We use 10 test images from the KMNIST dataset, which consists of 28× 28 grey-scale
images of Hiragana characters (Clanuwat et al., 2018), we simulate y with 20 angles taken
uniformly from the range 0◦ to 180◦, and add 5% white noise to the projected inputs T x. We
reconstruct x using the Deep Image Prior (DIP) (Ulyanov et al., 2018b), which parametrises
the reconstruction x as the output of a U-net g(v) (Ronneberger et al., 2015).

We use the U-net like architecture deployed by Barbano et al. (2022c). Group norm is
placed before every 3× 3 convolution operation. The U-net architecture is a encoder-decoder,
fully convolutional deep model constructing multi-level feature maps. We identify 3 distinct
blocks for both the encoder branch and and 2 blocks for the the decoder branch: In, Down0,
Down1, and Up0 and Up1, respectively. The In block consists of a 3× 3 convolution. Down
blocks consist of a 3 × 3 convolution with stride of 2 followed by a 3 × 3 convolution
operation and a bi-linear up-sampling. The Up blocks instead consist of two successive 3× 3

convolutional operations. Given the use of the leaky ReLU non-linearity, the normalised
parameter groups of this network coincide with the described blocks. The number of channels
is set to 32 at every scale. Multi-channel feature maps from the In block and from Down0 are
first transformed via a 1× 1 convolutional operation to 4 channel feature maps and then fed
to Up1, Up0. The reconstructed image is obtained as the output of Up1 further processed via a
1× 1 convolutional layer. The total number of parameters is 78k. This is too many for full
Hessian construction on GPU but we get around this issue by performing inference in the
lower dimensional space of observations, as described in Section 7.2.2 and Section 7.3.1. We
refer to Antoran et al. (2023) for a full list of hyperparameters involved in training the U-net.

The prior covariance A−1 is a filter-wise block-diagonal matrix which applies separate
regularisation to the parameters of each block in the U-net. This matches the prior described
in Section 7.2.3, but without the Matérn covariance structure. For the single regulariser
experiment, we keep the same prior structure but tie the marginal prior variance of all
parameters. That is, we ensure all entries of the diagonal ofA−1 are the same. The parameters
of these regularisers are learnt via model evidence optimisation, as described in the main text.

A.3 Large scale experiments 217

A.3 Large scale experiments

For scaling linearised Laplace to ResNet-50 with 25M parameters, we employ a Kronecker-
factorisation of the Hessian/GGN. This is a common way to scale the Laplace approximation
to large models (Daxberger et al., 2021a) and was originally proposed in Ritter et al. (2018).
We use the recently-released laplace library1 (Daxberger et al., 2021a) for fitting the
KFAC Laplace models. For ResNets with batch norm, we use the reference implementation
from the torchvision package2. For ResNets with fixUp, we use a popular open-source
implementation3. To train the ResNet parameters, which will be used as the linearisation
points ṽ, we use the same hyperparameters as described at the top of Section A.1 for both
batch norm and FixUp ResNets.

1https://github.com/AlexImmer/Laplace
2https://pytorch.org/vision/stable/models.html
3https://github.com/hongyi-zhang/FixUp

https://github.com/AlexImmer/Laplace
https://pytorch.org/vision/stable/models.html
https://github.com/hongyi-zhang/FixUp

	Nomenclature
	1 Introduction
	1.1 Thesis outline and contributions
	1.2 Full list of publications

	2 Linear models and Gaussian processes
	2.1 The weight space view
	2.1.1 Understanding our choice of model
	2.1.2 Posterior inference: from loss functions to distributions

	2.2 The function space view
	2.2.1 Duality
	2.2.2 From features to kernels
	2.2.3 Bayesian reasoning about functions: Gaussian processes
	2.2.4 Sampling from Gaussian processes & random features

	2.3 The Pathwise view
	2.3.1 Efficiently sampling from GP posteriors with random features
	2.3.2 Duality between pathwise conditioning and sample-then-optimise
	2.3.3 Decision making: Bayesian optimisation

	2.4 Model selection
	2.4.1 Comparing two models
	2.4.2 Hyperparameter optimisation
	2.4.3 The evidence of the linear model
	2.4.4 Effective dimension

	2.5 Limitations of conjugate Gaussian-linear Bayesian reasoning

	3 Approximate inference
	3.1 Variational Inference
	3.1.1 VI in the parameter space of the linear model
	3.1.2 VI in function space: inducing points
	3.1.3 Expectation propagation and non-KL divergences
	3.1.4 Variational inference for neural networks and its limitations

	3.2 Conjugate Gradients
	3.2.1 Hyperparameter learning with CG
	3.2.2 Limitations of Conjugate Gradient inference

	3.3 The linearised Laplace approximation
	3.3.1 Linearising our network at prediction time
	3.3.2 A modern view of linearised Laplace
	3.3.3 Learning hyperparameters with the Laplace evidence
	3.3.4 Online Laplace methods
	3.3.5 Limitations of the linearised Laplace approximation

	4 Stochastic Gradient Descent for Gaussian Processes
	4.1 Pathwise conditioning as an optimisation problem
	4.2 Stochastic estimators of the sampling objective
	4.2.1 A first approach: mini batching and unbiased random features
	4.2.2 A lower variance estimator for SGD-based sampling
	4.2.3 Stochastic Dual Descent
	4.2.4 Getting the optimiser right

	4.3 SGD for inference with inducing points
	4.4 Analysing the implicit bias of stochastic gradient descent
	4.5 Experiments and benchmarks
	4.5.1 UCI benchmark datasets
	4.5.2 Large-scale Bayesian optimisation
	4.5.3 Molecule-protein binding affinity prediction

	4.6 Discussion

	5 A modernised Laplace approximation
	5.1 Post-hoc linearised neural net hyperparameter selection
	5.2 On the choice of posterior mode
	5.3 Linearised Laplace with normalised networks
	5.3.1 The layerwise prior
	5.3.2 The diagonal g-prior

	5.4 Additional observations and discussion
	5.4.1 Networks with a dense final layer
	5.4.2 Optimising linearised networks
	5.4.3 Further implications of our results

	5.5 Demonstration: hyperparameter selection with the tangent linear model
	5.5.1 Validation of modelling assumptions
	5.5.2 Validating recommendations across architectures
	5.5.3 Large scale models

	5.6 Discussion

	6 Sample-based linearised Laplace
	6.1 Variational EM for linearised neural networks
	6.1.1 Conjugate Gaussian regression and the EM algorithm
	6.1.2 Laplace-approximating non-conjugate likelihoods
	6.1.3 The issue of limited scalability

	6.2 Sample-based inference for the tangent linear model
	6.2.1 Hyperparameter learning using posterior samples
	6.2.2 Constructing an efficient estimator of the g-prior
	6.2.3 Efficient SGD posterior sampling with warm starts
	6.2.4 Sample-based linearised Laplace predictions
	6.2.5 Putting the pieces into a single algorithm for image classification

	6.3 Demonstration: Image classification
	6.3.1 Comparison with existing approximations on MNIST
	6.3.2 Predictive performance and robustness on CIFAR-100
	6.3.3 Predictive performance on Imagenet

	6.4 Discussion

	7 The linearised deep image prior for computed tomography
	7.1 Preliminaries
	7.1.1 Total variation regularisation
	7.1.2 Bayesian inference for inverse problems
	7.1.3 The Deep Image Prior (DIP)

	7.2 Linearised DIP uncertainty estimation for CT
	7.2.1 From a prior over parameters to a prior over images
	7.2.2 Computing the predictive uncertainty
	7.2.3 Incorporating TV-smoothness into the prior over the weights

	7.3 Approaches to scalable inference and hyperparameter learning
	7.3.1 Conjugate-gradient hyperparameter learning for the PredCP TV prior
	7.3.2 Randomised SVD preconditioning for CG
	7.3.3 Scalable sample-based hyperparameter learning with the g-prior
	7.3.4 SGD sampling EM iteration for very large reconstructions
	7.3.5 Posterior covariance matrix estimation by sampling

	7.4 Demonstration: uncertainty estimation in CT with the linearised DIP
	7.4.1 Uncertainty estimation for image reconstruction
	7.4.2 Volumetric uncertainty estimation

	7.5 Linearised DIP Bayesian experimental design for CT
	7.5.1 Sequential inference with linear(ised) models
	7.5.2 Experimental design with linear(ised) models
	7.5.3 Construction of the prior covariance K

	7.6 Demonstration: designing CT angle selection strategies
	7.7 Discussion

	8 Conclusions and future work
	8.1 Recap of contributions
	8.2 Future Work

	References
	Appendix A Experimental setup details for chap:adaptinglaplace
	A.1 Experiments with full Hessian computation
	A.1.1 CNN
	A.1.2 ResNet, Pre-ResNet, and Biased-ResNet
	A.1.3 FixUp ResNet
	A.1.4 Transformer

	A.2 U-Net tomographic reconstruction of KMNIST digits
	A.3 Large scale experiments

