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Abstract

Transformers have supplanted Recurrent Neural Networks as the domi-
nant architecture for both natural language processing tasks and, despite
criticisms of cognitive implausibility, for modelling the effect of predictabil-
ity on online human language comprehension. However, two recently
developed recurrent neural network architectures, RWKV and Mamba,
appear to perform natural language tasks comparably to or better than
transformers of equivalent scale. In this paper, we show that contemporary
recurrent models are now also able to match—and in some cases, exceed—
performance of comparably sized transformers at modeling online human
language comprehension. This suggests that transformer language models
are not uniquely suited to this task, and opens up new directions for de-
bates about the extent to which architectural features of language models
make them better or worse models of human language comprehension.

1 Introduction

The origins of recurrent neural networks lie in attempts to model human cognition, and
specifically the human language system (Jordan, 1986; Elman, 1990). Following improve-
ments such as long short-term memory (LSTM; Hochreiter & Schmidhuber, 1997; Gers
et al., 2000), recurrent neural networks were for a while the dominant architecture not
only for modeling human language comprehension (e.g. Frank et al., 2015), but for natural
language systems in general (see, e.g. Goldberg, 2016). In recent years, they have in turn
been superseded by transformer language models, which empirically show generally better
performance at both a range of natural language tasks (see, e.g., Radford et al., 2019; Dai
et al., 2019) and at predicting metrics of human language comprehension (e.g. Wilcox et al.,
2020; Merkx & Frank, 2021; Michaelov et al., 2022). Nonetheless, the question of how recur-
rent and transformer language models compare as cognitive models of the human language
system is still an open one. One the one hand, recurrent neural networks inherently model
the process of maintaining a specific informational state and integrating this with new
information as it occurs incrementally; a principle widely believed to underlie language
comprehension and other real-time processing (Merkx & Frank, 2021; Michaelov et al., 2021).
On the other hand, transformers have direct access to previous words, which may better
capture human-like priming effects (see, e.g., Misra et al., 2020). In addition, transformers’
superior performance at predicting metrics of human language comprehension in itself
serves as evidence that, at the very least, the statistical patterns learned by transformer
language models capture something also learned by humans.

As they have increased in scale (number of parameters, number of training tokens, or
both), transformers have been found to improve at natural language tasks (Brown et al.,
2020; Kaplan et al., 2020; Rae et al., 2022; Hoffmann et al., 2022; Chowdhery et al., 2022;
Touvron et al., 2023), as well as at predicting both behavioral (Wilcox et al., 2020; Merkx
& Frank, 2021) and neural (Merkx & Frank, 2021; Michaelov et al., 2022) metrics of online
language comprehension. But in recent years, two wrinkles have emerged. The first is
evidence that larger models and those trained on more data may actually predict some
behavioral metrics of language comprehension (such as reading time) worse than smaller
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models do (Kuribayashi et al., 2021; Oh et al., 2022; Oh & Schuler, 2023a;b; Oh et al., 2024;
Shain et al., 2024). Second, two recently developed recurrent language model architectures
appear to perform natural language tasks at least as well as transformers of equivalent size
and training: RWKV (Peng et al., 2023) and Mamba (Gu & Dao, 2023). Transformers are
therefore no longer the definitively best-performing language model architecture, and it is
no longer the case that we should expect further advances in transformers to necessarily
lead to improved fit to metrics of human language comprehension. Thus the time is ripe to
revisit the question of which language model architecture best predicts human language
comprehension.

To this end, we compare the performance of the Pythia (Biderman et al., 2023), RWKV (Peng
et al., 2023), and Mamba (Gu & Dao, 2023) suites of autoregressive language models on 9
human language comprehension datasets (Federmeier et al., 2007; Wlotko & Federmeier,
2012; Luke & Christianson, 2018; Hubbard et al., 2019; Brothers & Kuperberg, 2021; Szewczyk
& Federmeier, 2022; Szewczyk et al., 2022; Boyce & Levy, 2023; Michaelov et al., 2024)
covering 4 different metrics. Since all models were trained on the same dataset and have a
range of models with a comparable number of parameters, we are able to measure the effect
of architecture on the extent to which a language model’s predictions correlate with metrics
of human language comprehension.

2 Modeling prediction in human language comprehension

Over the years, a wide range of language models have been used to model data from
experiments on human language comprehension, including n-gram models (e.g. McDonald
& Shillcock, 2003; Smith & Levy, 2013), recurrent neural networks (RNNs) (e.g. Frank
& Bod, 2011; Frank et al., 2015), and most recently, transformers (e.g. Wilcox et al., 2020;
Merkx & Frank, 2021; Szewczyk & Federmeier, 2022). Each such approach can be evaluated
either in terms of how well it performs either as a computational-level model (in the vein
of Marr, 1982) or as a cognitive model. Language models can serve as computational-level
models since they calculate the probability of a word in a given context; and thus, their
predictions can be compared with analogous measures in humans. Humans may also be able
to predict the probability of words based on the statistics of language, given evidence that
they are sensitive to statistical properties of language such as word frequency (Van Petten
& Kutas, 1990; Van Petten, 1993; Dambacher et al., 2006; Rugg, 1990; Fischer-Baum et al.,
2014; Shain, 2024). This opens a door for thinking of language models as plausible cognitive
models, something further supported by recent work arguing that language models display
linguistic competence (Piantadosi, 2023; Mahowald et al., 2024) and that they structurally
resemble the human language system (Schrimpf et al., 2021; Hosseini et al., 2024).

Existing studies vary in where their use falls along the computational-to-cognitive model
continuum. One example of this is in work on the N400, a neural index of online language
comprehension that is often considered to index the extent to which a word has been
predicted based on its preceding context (DeLong et al., 2005; Van Petten & Luka, 2012;
DeLong et al., 2014; Kuperberg et al., 2020). Frank & Willems (2017), for example, explicitly
choose to use a model with a modified n-gram architecture to investigate the role that pure
word-level surface-level statistics may have on language comprehension. Frank et al. (2015),
on the other hand, compare how well a traditional recurrent neural network predicts N400
amplitude compared to a model implementing a probabilistic phrase-structure grammar,
and find that the former out-performs the latter, which they argue suggests that prediction
during language comprehension may rely more on statistical properties of language than
explicit hierarchical grammatical structure. More recently, Michaelov et al. (2024) used
GPT-3 to investigate the extent to which prediction based on language statistics alone could
account for the fact that more plausible sentences are processed more easily.

Selecting and comparing the performance of certain language model architectures at pre-
dicting metrics of online language comprehension is a way to test specific hypotheses about
the language comprehension system. Given the fact that their original design was as a
cognitive model (Jordan, 1986; Elman, 1990), it is perhaps unsurprising that recurrent neural
networks were for several years the dominant architecture when modeling online human
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language comprehension. At a high level, both can be described as systems that involve
internal representations with a limited working memory that update after encountering
each word in a sequence, and that engage in prediction (Merkx & Frank, 2021).

Transformers, even autoregressive ones, are intuitively less cognitively plausible architec-
tures (Merkx & Frank, 2021; Michaelov et al., 2021), perhaps most notably due to their
finite context window. This imposes a limit not present in humans and recurrent neural
networks because transformers can make predictions based only on a limited preceding
context. By the same token, this fixed context window is also cognitively implausible in
that it leaves transformers with perfect access to all words within it. This is a problem if,
as a number of researchers have argued, our working memory limitations (something also
inherently present in recurrent neural networks) play a crucial role in how we learn and
process language (see, e.g., Elman, 1993; Christiansen & Chater, 2016; Merkx & Frank, 2021).
Nonetheless, this latter feature of lossless access within a certain context window may in
fact be more human-like than it first appears. As Michaelov et al. (2021) note, humans do
maintain specific past words in working memory, and indeed, there is evidence that reading
a given word can lead to that word being easier to process for up to 45 minutes in some
specific contexts (Besson et al., 1992; for discussion see Rommers & Federmeier, 2018).

Beyond a priori cognitive plausibility, however, are the empirical results. In general, research
on the N400 has almost universally shown that transformers out-perform recurrent neural
networks, and larger transformers trained on more data (and with lower perplexities)
generally perform best at predicting N400 amplitude (Merkx & Frank, 2021; Michaelov et al.,
2022; Michaelov & Bergen, 2023).

Language models have also been used to model reading time, which has also been hy-
pothesized to reflect prediction in language comprehension. However, in this area, the
results have been less straightforward. While the same pattern of larger language mod-
els trained on more data and with lower perplexities performing better holds for smaller
models (Goodkind & Bicknell, 2018; Merkx & Frank, 2021; Wilcox et al., 2020; Hao et al.,
2020), past a certain size their performance appears to deteriorate (Kuribayashi et al., 2021;
Oh et al., 2022; Oh & Schuler, 2023a;b; Shain et al., 2022; Oh et al., 2024). The finding
that transformers generally perform better at next-word prediction than recurrent neural
networks when controlling for number of parameters and training data (Merkx & Frank,
2021) may therefore at least partly explain the mixed results as to whether recurrent neural
networks or transformers best predict reading time (Wilcox et al., 2020; Eisape et al., 2020;
Kuribayashi et al., 2021). However, it is also worth noting that research has also shown
that patterns in the relative performance of recurrent neural networks and transformers can
differ depending on which metric of reading time is used (Merkx & Frank, 2021).

The advent of new recurrent architectures that are increasingly feasible to train at a large scale
and that can perform as well as or better than transformers—namely, RWKV and Mamba—
is thus important in two ways. First, it allows us to test whether the patterns previously
observed in transformers—that larger and better models predict N400 amplitude better
but past a certain point predict reading time worse—also holds for other architectures with
comparable natural language processing performance. Second, and perhaps more crucially,
it allows us to again evaluate whether, when matched on scale or performance, recurrent or
transformer architectures are better models of online human language comprehension.

3 Method

3.1 Language Model Architectures

The aim of this study is to investigate how well metrics of online human language com-
prehension can be predicted using three types of language model: the Pythia suite of
autoregressive transformers (Biderman et al., 2023); and the recurrent RWKV (Peng et al.,
2023) and Mamba models (Gu & Dao, 2023). All models are trained on the Pile, a 300B token
English-language dataset (Gao et al., 2020). For each architecture, we selected models of
comparable size (i.e., weight class) as shown in Table 1. We discuss each architecture below.
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RWKV-4 Pythia Mamba

Name Parameters Name Parameters Name Parameters

169M 169,342,464 160M 162,322,944 130M 129,135,360
430M 430,397,440 410M 405,334,016 370M 371,516,416
- - 1B 1,011,781,632 790M 793,204,224
1.5B 1,515,106,304 1.4B 1,414,647,808 1.4B 1,372,178,432
3B 2,984,627,200 2.8B 2,775,208,960 2.8B 2,768,345,600

Table 1: All the models used in our analysis, displaying the model’s named size and the size
as calculated using PyTorch. Models of comparable size are displayed next to each other.

Pythia Pythia (Biderman et al., 2023) is a set of autoregressive transformer models trained
to be comparable across different model sizes, ranging from 70M to 12B parameters. The
architecture and hyperparameters are based on GPT-3 (Brown et al., 2020), with the addition
of some changes based on recent advancements (Dao et al., 2022; Su et al., 2024; Wang &
Komatsuzaki, 2021; Belrose et al., 2023).

RWKV RWKV is a language model architecture described by its creators as a ‘Rein-
vent[ion of the] RNN for the Transformer Era’ (Peng et al., 2023). RWKV models combine
the parallelizable training of transformers with unlimited context lengths, as well as sev-
eraladditional features that make them RNN-like. First, their time-mixing block—which
can mathematically formulated in a similar way to the recurrent states of an RNN (Peng
et al., 2023)—allows the representations of past states to be combined with those of new
words. In addition, RWKV models explicitly have a decay parameter such that tokens earlier
in the context will be weighted less than later tokens during inference, thereby explicitly
introducing something analogous to working memory limitations (Merkx & Frank, 2021).

Mamba Mamba is another recent recurrent model architecture (Gu & Dao, 2023). One
of the key goals of the Mamba architecture is to allow models to optimally compress their
contexts, and especially very long contexts, into a state of fixed size such that they are still
able to predict effectively. Like RWKV, Mamba computational complexity scales linearly
with sequence length while avoiding the quadratic complexity of transformers (Gu & Dao,
2023). This is achieved by using a novel ‘selective scan’ mechanism that filters the input to
select the most important information. Thus, Mamba models intuitively function like the
more recent recurrent neural network variants—crucially, they include a latent state that is
updated with each new input (like recurrent layers), and their selective scan method filters
input (much like gating mechanisms in gated recurrent units or long short-term memory).

3.2 Datasets

In this study, we use language models of each of the three architectures discussed in §3.1 to
model 4 metrics of human language processing from 9 datasets. Details are given in Table 2.

These datasets comprise 6 N400 datasets (Federmeier et al., 2007; Hubbard et al., 2019;
Michaelov et al., 2024; Szewczyk & Federmeier, 2022; Szewczyk et al., 2022; Wlotko &
Federmeier, 2012) and 3 reading time datasets, each of which uses a different metric of
reading time. These latter metrics are the time taken to respond to each word on the Maze
task (Maze Response Time; Boyce & Levy, 2023), the time taken to click to move onto
the next word in a self-paced reading task (Self-Paced Reading Response Time; Brothers
& Kuperberg, 2021), and the amount of between when a word is first fixated by a reader
and when they first move onto the next word, as calculated using eye-tracking (Go-Past
Duration; Luke & Christianson, 2018). Further details of each metric and dataset are
provided in Appendix A.
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Dataset Metric Stimuli N Trials

Federmeier et al. (2007) N400 564 32 7,856
Hubbard et al. (2019) N400 192 32 5,705
Michaelov et al. (2024) N400 500 50 5,526
Szewczyk & Federmeier (2022) N400 600 26 4,822
Szewczyk et al. (2022) N400 672 32 4,939
Wlotko & Federmeier (2012) N400 300 16 4,440
Boyce & Levy (2023) Maze Response Time 10,245 63 56,447
Brothers & Kuperberg (2021) SPR Response Time 648 240 46,092
Luke & Christianson (2018) Go-Past Duration 2,689 84 106,712

Table 2: A description of each of the datasets, including the metric, the number of stimuli,
the number of experimental participants (N), and the number of trials.

3.3 Evaluation Procedure

We used the language models discussed in §3.1 to calculate the surprisal of all critical
words in all datasets given their context. For the N400 and the Brothers & Kuperberg (2021)
datasets, this context was made up of the preceding words in the same sentence. In the
remaining datasets (Luke & Christianson, 2018; Boyce & Levy, 2023), we included the whole
preceding passage, comprising multiple sentences. For critical words made up of multiple
tokens, surprisal was calculated as the sum of all the sequential tokens comprising them.

We ran regression analyses for each dataset using linear mixed-effects regression models,
predicting each human language comprehension metric using the surprisal calculated
using each language model, as well as baseline covariates and random effects structures as
described in Appendix A. For each regression, we calculate AIC (Akaike, 1973), a measure
of how well a regression fits the data, with a lower AIC indicating a better fit. All language
models were run using the transformers (Wolf et al., 2020) Python (Van Rossum & Drake,
2009) library with PyTorch (Paszke et al., 2019), and analyses were carried out in R (R Core
Team, 2022) using Rstudio (RStudio Team, 2020) with the tidyverse Wickham et al. (2019) and
lme4 (Bates et al., 2015) packages. All code and data will be made available upon acceptance.

4 Results

4.1 N400

Models of different scales exhibit different performance at a range of tasks, so we consider
the differences between models while accounting for scale. Following previous work (e.g.
Oh & Schuler, 2023a), we consider differences between models when accounting for model
size and for model perplexity. This is because, while the two are generally correlated—
bigger models are generally better at predicting the next word in a sequence—perplexity
can help explain the effect of model size. Better models might align better with metrics of
human language comprehension given our own powerful predictive capabilities (Michaelov
et al., 2022; Michaelov & Bergen, 2022), but by the same token, language models may learn
to predict words too well to model human language comprehension (Oh et al., 2024).

We first consider the results arranged by model size (Figure 1A). Overall, we find that in
most cases, Mamba and RWKV performance is better than that of Pythia, and Mamba is
also better than RWKV. On the Federmeier et al. (2007) data, Mamba outperforms Pythia at
all model sizes. On the Michaelov et al. (2024), Szewczyk & Federmeier (2022), and Wlotko
& Federmeier (2012) datasets, Mamba is better at all but one scale. Lastly, on the Szewczyk
et al. (2022) and Hubbard et al. (2019) datasets, Mamba is better for all but two model
sizes (and roughly equal at an additional one for the latter dataset). On the Federmeier
et al. (2007), Hubbard et al. (2019), and Szewczyk & Federmeier (2022) datasets, RWKV
outperforms Pythia at all but one size. For the other studies, RWKV outperforms Pythia at
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(A) Model performance on N400 data by model size
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(B) Model performance on N400 data by perplexity
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Figure 1: Language model performance at predicting N400 amplitude.

all but 2 sizes. It is also worth noting that for all studies, the best model fit across all model
sizes is a recurrent model; either Mamba or RWKV.

One additional additional pattern is that of scaling. In contrast to recent work on reading
time (e.g. Oh & Schuler, 2023b) but in line with previous work on the N400 (Merkx & Frank,
2021; Michaelov et al., 2022; Michaelov & Bergen, 2023), we see that 4 of the 6 datasets
(Federmeier et al., 2007; Hubbard et al., 2019; Szewczyk & Federmeier, 2022; Wlotko &
Federmeier, 2012) show positive scaling effects—larger models tend to fit the data better.

In order to test how robust these patterns are, we run ordinary least-squares linear models
for each dataset, predicting the AIC of the linear mixed-effects regressions based on language
model scale and model architecture (Pythia, Mamba, or RWKV). After correction for multiple
comparisons (Benjamini & Yekutieli, 2001), we see that model scale is a significant predictor
of AIC, with surprisals calculated from larger models fitting the N400 data from Federmeier
et al. (2007), Hubbard et al. (2019), and Wlotko & Federmeier (2012) significantly better than
smaller models. Given the low power of our analysis (only 14 observations per dataset), it
is also worth noting that before correction, this is also true for the Szewczyk & Federmeier
(2022) dataset. More relevantly to our research question, Mamba models produce surprisals
that fit the N400 data significantly better than Pythia models on the Federmeier et al. (2007)
and Wlotko & Federmeier (2012) datasets. While these latter results are suggestive rather
than conclusive, they do point in the same direction as those that retain significance after
correction and provide further support to the patterns visible in Figure 1A. The full results
of our statistical analyses are provided in Table 3.

Next, we consider the results arranged by model perplexity (Figure 1B). Within each archi-
tecture, there is no difference in pattern depending on whether we order language models
by size or perplexity. However, we do see a difference across architectures. In the four
datasets that show positive scaling as a function of model size (larger models predict N400
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amplitude better), when arranged by perplexity, Mamba models appear to perform worse
relative to the other model architectures than they do when arranged by model size, while
RWKV models appear to perform better. Conversely, on the dataset where two recurrent
models show inverse scaling (Szewczyk et al., 2022), we see the opposite pattern—Mamba
appears to perform better, and RWKV appears to perform worse.

When we run ordinary least-squares linear models predicting AIC based on model perplexity
and architecture, we see a similar effect to that seen for size. After correction for multiple
comparisons, better language models (i.e., those with a lower perplexity) produce surprisals
that better fit the N400 data on the Federmeier et al. (2007) and Wlotko & Federmeier (2012)
datasets. As before, the Szewczyk & Federmeier (2022) dataset also shows this pattern
before correction. The full results of our statistical analyses are provided in Table 4.

4.2 Behavioral Reading Data

For the behavioral reading data, we again first look at the data arranged by model size
(Figure 2A). Generally, we do not see the same patterns as with the N400 data. The Brothers
& Kuperberg (2021) dataset is the exception—Mamba and RWKV outperform Pythia on it at
all but one size. On Boyce et al. (2023), Mamba and Pythia each perform best at 2 sizes, while
RWKV performs best at one size. For this dataset, the models appear to perform similarly
overall. The results for Luke & Christianson (2018), by contrast, show a clear pattern, where
Pythia outperforms both Mamba and RWKV at all sizes, and RWKV generally outperforms
Mamba (better at 3 sizes). It is also worth noting that the AIC differences are much larger
for the reading time studies than the N400 studies. We also see different scaling patterns.
As in the majority of N400 datasets, larger (higher number of parameters) and better (lower
perplexity) models produce surprisals that better fit the Brothers & Kuperberg (2021) data.
The reverse is true for the Boyce & Levy (2023) and Luke & Christianson (2018) datasets—as
has been identified in some previous work (e.g., Oh et al., 2022; Oh & Schuler, 2023b), larger
and better models perform produce less well-fitting surprisals.

An ordinary least-squares linear model predicting AIC based on number of parameters
and architecture also shows this difference. Even after correction for multiple comparisons,
model size has a significant effect on the Boyce & Levy (2023) and Luke & Christianson
(2018) datasets, with the surprisal calculated from larger models showing a worse fit to
the data. Intriguingly, in line with the aforementioned observations based on Figure 2A,
before correction, the Brothers & Kuperberg (2021) dataset shows the opposite effect—the
same positive scaling we see on some of the N400 datasets. Returning to the differences

(A) Model performance on reading time data by model size
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(B) Model performance on reading time data by perplexity
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Figure 2: Language model performance at predicting metrics of reading time.
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between architectures, after correction, surprisals calculated using Mamba fit the Luke &
Christianson (2018) data significantly worse than Pythia, with this also being true of RWKV
before correction. Further details are provided in Table 3.

For the perplexity-ordered data (Figure 2B), the same pattern emerges as for the N400
data—for datasets where positive scaling is found, Mamba models perform relatively worse
and RWKV models relatively better, and for datasets where inverse scaling is found, Mamba
models perform relatively better and RWKV models relatively worse.

Further confirmation of the different scaling patterns comes from ordinary least-squares
linear models predicting AIC based on perplexity and architecture. After correction for
multiple comparisons, models with a lower perplexity produce surprisals that are signifi-
cantly better at predicting the Brothers & Kuperberg (2021) data, but significantly worse at
predicting the Boyce & Levy (2023) and Luke & Christianson (2018) data. In this analysis,
surprisal values calculated from the RWKV models also show a significantly worse fit to
the Luke & Christianson (2018) data, with those from the Mamba models also showing this
before correction The details of all statistical analyses are provided in Table 4.

5 Discussion

To the best of our knowledge, the present study is the first to compare the extent to which
transformers, Mamba, and RWKV language models can be used to model online human
language comprehension. Previous work has overwhelmingly found that transformers
are better predictors of the N400 than recurrent neural networks (Merkx & Frank, 2021;
Michaelov et al., 2021; 2022). We show, by contrast, that when comparing models of the same
size and trained on the same data, contemporary recurrent language model architectures
generally out-perform transformers on 6 datasets, with surprisal values calculated using
Mamba models tending to provide the best fit to the N400 data. When accounting for model
perplexity, the comparison across architectures is less clear-cut; however, the contemporary
recurrent architectures at least match transformer performance.

The results are more mixed for reading time metrics. On the Luke & Christianson (2018)
dataset, for example, the Pythia models predict go-past duration best at any scale or per-
plexity; while on the other hand, the recurrent models predict self-paced reading time on
the Brothers & Kuperberg (2021) dataset best except at the 1.4-1.5B scale. Such mixed results
for behavioral data should perhaps be unsurprising given the conflicting results in previous
work (Goodkind & Bicknell, 2018; Merkx & Frank, 2021; Wilcox et al., 2020; Hao et al., 2020;
Kuribayashi et al., 2021; Oh & Schuler, 2023a;b; Shain et al., 2022; Oh et al., 2024).

These results also show several interesting results with respect to scaling. The first is that,
on the whole, scaling patterns are consistent across architectures. For datasets where larger
models and those with a lower perplexity perform tend to predict the human metric better
(Federmeier et al., 2007; Hubbard et al., 2019; Szewczyk & Federmeier, 2022; Wlotko &
Federmeier, 2012; Brothers & Kuperberg, 2021), this is true for all model architectures. The
same is true for datasets where smaller models and those with a higher perplexity tend to
predict the human metric better (Boyce & Levy, 2023; Luke & Christianson, 2018). The one
possible exception to this is the Szewczyk et al. (2022) dataset, where the recurrent models
appear to show inverse scaling and the Pythia models show positive scaling—however,
without more models of each architecture, it is impossible to be certain.

Another surprising result is that contrary to previous work that finds the same scaling
patterns across reading time datasets (including both self-paced reading and eye-tracking
metrics; Oh & Schuler, 2023b; Oh et al., 2024), here two of the reading time datasets show
inverse scaling (Boyce & Levy, 2023; Luke & Christianson, 2018) and one (Brothers &
Kuperberg, 2021) shows positive scaling. One possible explanation for this is that unlike the
other two behavioral studies which involved the reading of naturalistic stimuli, the stimuli
in the Brothers & Kuperberg (2021) were carefully constructed to have different degrees of
predictability. All the N400 studies use such stimuli, and this may therefore explain why
the Brothers & Kuperberg (2021) results more closely resemble the positively-scaling N400
results. This finding highlights the point made by Brothers & Kuperberg (2021) that the
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task and stimuli used in such studies should not be overlooked when making wider claims
about the relationship between probability and processing difficulty. It further suggests
that the recent and ostensibly robust findings of inverse scaling with behavioral data (Oh &
Schuler, 2023a;b; Oh et al., 2024) may be limited to a specific type of reading study, and that
further analyses should be carried out.

Finally, we note the finding that when comparing architectures by model perplexity rather
than model size, there was a consistent pattern in terms of which model best predicted
the data. Specifically, compared to when ordered by model size, when the dataset showed
positive scaling, the performance of Mamba appeared worse relative to other architectures,
and the performance of RWKV appeared better; and when the dataset showed negative
scaling, the reverse was true. Given that at each size, Mamba has a lower perplexity than
Pythia and RWKV has a higher perplexity (Gu & Dao, 2023; Appendix B), this suggests
that a language model’s ability to predict the next word in a sequence does impact the
extent to which it can model online human language comprehension above and beyond
model size and architecture. Specifically, this result suggests that there are additional scaling
effects across model architectures related to model quality (i.e., performance at next-word
prediction). Even when controlling for number of parameters and training data, on a dataset
that exhibits positive scaling, models that are better at next-word prediction are better at the
human metric; and the converse is true for datasets that exhibit inverse scaling.

5.1 Theoretical implications

Ultimately, the results highlight a number of complicating facts. First, there is no single
universal pattern accounting for the relationship between language model probability
and all metrics of online human language comprehension. Second, general language
modeling performance has an effect on the extent to which language models can predict
such metrics. And third, there are idiosyncratic differences between datasets, metrics, and
model architectures.

Nonetheless, the present study opens up new lines of research. Crucially, in contrast to all
previous work, the results show that transformers are not uniquely well-suited to modeling
the N400. They also align with previous research showing the same for some measures of
reading time (Eisape et al., 2020; Kuribayashi et al., 2021; Merkx & Frank, 2021; Oh et al.,
2022). Indeed, in our results, the differences in modeling performance between models of
different architectures at a given scale or perplexity tend to be dwarfed by the differences
within architectures across these dimensions.

In the present study, the performance of transformers and recurrent models is comparable,
and thus our results are not able to evaluate whether there are specific architectural features
of transformers or the recurrent models that make them better able to model human lan-
guage comprehension. As discussed in §2, recurrent models have often been considered
more cognitively plausible than transformers due to their inherent memory bottleneck
(Merkx & Frank, 2021); while transformers exhibit priming effects that have not yet been
attested in recurrent models (Michaelov et al., 2021). Thus, future research should target
each of these features of human language comprehension. For example, given their lack
of perfect recall of previous words, recurrent models may be more likely to model human
performance on local interference or attractor phenomena (Arehalli & Linzen, 2020; Zhang
et al., 2023); while transformers may be more likely to model lexical priming or repetition
effects (Misra et al., 2020; Hanna et al., 2023). These are empirical questions that have
implications that are not only methodological, but are likely to help to uncover precisely
which neurocognitive mechanisms are needed to explain the human data.

The new generation of recurrent models is in its infancy. As these models continue to be
developed, optimized, and scaled up, the question of whether they or transformers provide
better models of human language comprehension (or at least, show a stronger degree of
correlation to specific metrics of online human language comprehension) is likely to become
clearer. In the meantime, the results presented here suggest that recurrent models not only
match, but in some cases exceed the performance of contemporary transformers at modeling
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human language comprehension, and may provide a valuable way to test hypotheses about
the neurocognitive mechanisms underlying it.

6 Conclusions

We compare how well transformers and two contemporary recurrent language model
architectures—RWKV and Mamba—can predict 4 different metrics of online human lan-
guage comprehension. We find that overall, the recurrent models tend to match the perfor-
mance of transformers at predicting both neural and behavioral human metrics, and that
when specifically comparing across architectures by number of model paramaters, recurrent
models in fact appear to be best at predicting N400 amplitude.
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A Data and Analysis Details

A.1 N400 Amplitude

The N400 is a negative-going component of the event-related brain potential that occurs
roughly 300-500ms after the presentation of a stimulus, peaking at around 400ms (Kutas
& Hillyard, 1980). A well-replicated finding is that the amplitude of the N400 response
to a word is sensitive to the contextual probability of a word, either operationalized as
cloze probability (Kutas & Hillyard, 1984)—the proportion of people to fill in a gap in a
sentence with a given word (Taylor, 1953; 1957)—or when using the predictions of language
models (Frank et al., 2015). Specifically, the amplitude of the N400 response elicited by a
word is large by default, and decreases by the extent to which it is predictable based on the
preceding context.

In this study, we compare how well the Pythia, RWKV, and Mamba models predict N400
amplitude based on the results of 6 experiments (Federmeier et al., 2007; Hubbard et al.,
2019; Michaelov et al., 2024; Szewczyk & Federmeier, 2022; Szewczyk et al., 2022; Wlotko &
Federmeier, 2012). The details of these datasets and how they were analyzed are outlined
below.

Federmeier et al. (2007) measured N400s to low- and high-cloze words in low- and
high-constraint contexts. We use the data from this study as preprocessed by Szewczyk &
Federmeier (2022). In this dataset, N400 amplitude is operationalized as the mean voltage
at four centro-parietal electrodes (MiCe, MiPa, LMCe, RMCe) over the 300-500ms time
window. N400 amplitudes are also not baseline-corrected; instead, the mean amplitude in
the -100-0ms time window is intended to be included as a covariate in analysis. This dataset
contains 7856 trials from 32 participants reading 564 stimuli.

To calculate model fit to the N400 data, we followed as closely as possible the approach used
by Szewczyk & Federmeier (2022), which involved predicting N400 amplitude using a linear
mixed-effects regression with surprisal, baseline amplitude, log-transformed frequency, the
position of the word in the sentence, orthographic neighborhood distance, and concreteness
as fixed effects. We also used the same random effects structure, removing variables until a
structure that would not lead to singular fits for any regression was reached, which included
random slopes of baseline for each subject and experimental item, random slopes of word
position for each subject, and random intercepts of subject and item. We then compared the
fit of regressions using surprisal calculated from each language model.

With the exception of the Michaelov et al. (2024) dataset, our remaining N400 datasets are
the others provided online by Szewczyk & Federmeier (2022), and thus are preprocessed
and analyzed in the same way.

Wlotko & Federmeier (2012) used stimuli from Federmeier et al. (2007) as well as (Wlotko
& Federmeier, 2007), which were selected to cover a wide range of probabilities. This dataset
was made up of 4440 trials (300 stimuli; 16 experimental participants).

Hubbard et al. (2019) used 192 stimuli from Federmeier et al. (2007). The dataset comprises
of 5,705 trials (32 participants).

Szewczyk et al. (2022) also based their stimuli on those in Federmeier et al. (2007), with
adjectives added before critical words, making them more or less predictable. The dataset is
comprised of 4939 trials (672 stimuli; 32 participants).

Szewczyk & Federmeier (2022) also release an additional dataset with data from a
previously-unpublished study using stimuli based on Federmeier et al. (2007) and including
data from 4822 trials (600 stimuli; 26 experimental participants). We refer to this as the
Szewczyk & Federmeier (2022) dataset.
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Michaelov et al. (2024) The stimuli of the Michaelov et al. (2024) dataset differ from the
other datasets in their design. Rather than having two versions of each sentence—the
most likely continuation and an unlikely one—each sentence has four possible endings:
the highest-cloze continuation, a low-cloze but plausible continuation that is semantically
related to this highest-cloze continuation, an equally low-cloze but unrelated continuation,
and an implausible continuation. The two low-cloze completions were matched for cloze
probability and plausibility. There were 125 sentence frames, for a total of 500 sentences.
There were fifty participants, and data from a total of 5,526 trials after cleaning.

The N400 was operationalized as the mean voltage in the 300-500ms time-window at each
of the C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and P4 centro-parietal electrodes. Unlike the
data released by Szewczyk & Federmeier (2022), the voltage at each electrode was treated
as a separate data point and N400 amplitudes were baselined using the mean amplitude
in the 100ms period before stimulus presentation. Thus this dataset comprises of 49,734
data points. We analyzed these data in the same way as in Michaelov et al. (2024), fitting a
regression that predicted N400 amplitude using Surprisal, log-transformed word frequency,
orthographic neighborhood distance as main effects, and included random intercepts of
experimental subject, sentence context, critical word, and electrode.

A.2 Self-Paced Reading Response Time

Self-Paced Reading is an experimental paradigm in which participants read a text one word
at a time, pressing a button or key to proceed to the next word. The reading time of a
word is the time taken between button presses (i.e., between pressing the button to proceed
to that word and pressing the button to proceed to the next word). Self-Paced Reading
Response Time is generally considered to reflect processing difficulty, with longer reading
times indexing a more difficult word. In this study, we analyze data from a study carried
out by Brothers & Kuperberg (2021). The details of the dataset and analysis procedure are
provided below.

Brothers & Kuperberg (2021) In this self-paced reading study, there were 216 sentence
sets, each in a low-, medium-, or high-cloze condition, for a total of 648 stimulus sentences.
Participants were excluded if they had an average comprehension check score of less
than 75%. After exclusions, data from 216 of the total 240 participants were included in
the analysis with a total of 46,092 data points. Data were cleaned and preprocessed by
Brothers & Kuperberg (2021). We fit regressions following the method in the original study,
predicting reading time using a linear mixed-effects model with a main effect of language
model surprisal, random intercepts for each subject and item, and random slopes of surprisal
for each subject and item.

A.3 Maze Task

Like self-paced reading, in the Maze task, participants read a text one word at a time.
However, in the Maze task, participants see pairs of words and can only proceed to the
next word in the text by choosing the correct next word on the screen. If the participant
chooses the incorrect word, they receive feedback and are prompted to choose again. The
time it takes for participants to choose a word is recorded as the reaction time. We look
at the reaction times from a previous study by Boyce & Levy (2023). Dataset and analysis
details are provided below.

Boyce et al. (2023) In this study, participants completed a Maze task using the stimuli from
the Natural Stories corpus (Futrell et al., 2018), which comprises 10 texts based on publicly
available texts, each approximately 1000 words long. In total, Natural Stories contains 10,245
words. Boyce et al. (2023) recruited 100 participants, but participants were excluded if they
did not self-report as native speakers of English.

Following Boyce et al. (2023) and Shain et al. (2024), we exclude data for all words with a
reading time of less than 100ms or greater than 5000ms, incorrect words, words that were at
the start or end of a sentence, and all data from participants that correctly answered fewer
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than 80% of comprehension questions correctly. This left a dataset of 63 participants and
56,447 data points. We construct linear mixed effects regressions predicting log-transformed
reaction time with surprisal, word length, log-transformed word frequency, and the word’s
position in the sentence. We also included random slopes of surprisal, word length, and
word position for each subject, as well as a random intercept of sentence.

Our analysis is based on the preprocessed version of this dataset provided by Shain et al.
(2022).

A.4 Go-Past Duration

Go-past duration is an eye-tracking-based metric of reading time. In eye-tracking stud-
ies, participants generally read a text naturalistically. Unlike in the other experimental
paradigms, participants can see the whole text at one time and are able to look at previously
read words. The location of each participant’s gaze is recorded using an eye tracker, which
also records how long participants’ gaze is fixated on a given location. There are many
different possible eye-tracking metrics for a given word that can be calculated (see, e.g.,
Shain et al., 2024), but following recent work analyzing how well different language models
predict eye-tracking data (Oh & Schuler, 2023b;a; Oh et al., 2024), we look at log-transformed
go-past duration, which is defined as the amount of time from when the word was first fix-
ated to when the participant first looked to the right of that word (in left-to-right languages
like English; see Luke & Christianson, 2018; Shain et al., 2024). We use data from the Provo
corpus (Luke & Christianson, 2018). The details of this dataset and how it was analyzed are
provided below.

Luke & Christianson (2018) The Provo corpus (Luke & Christianson, 2018) is an eye-
tracking corpus consisting of eye-tracking data for 84 participants reading 55 passages
(news articles, popular science magazines, and fiction). Passages averaged 50 words long.
In total, the texts comprised 2,689 words. Participants’ go-past durations were recorded
while they read each text. As with the N400, we use linear mixed-effects regressions to
calculate the fit of the surprisals calculated by each model to the data. Following recent
work (Oh et al., 2024), we exclude from our analysis all words that were not fixated, that
followed saccades of longer than 4 words, and that were at the start or end of sentences.
This left a total of 106,712 data points.

Also following Oh et al. (2024), we constructed a regression to predict log-transformed
go-past duration based on surprisal as well as the following covariates: saccade length (in
words), word length (in characters), word position in the sentence, log-transformed word
frequency, and whether the previous word was fixated. We also included random slopes of
all predictors for each subject, as well as random intercepts for each subject and sentence.

Our analysis is based on the preprocessed version of this dataset provided by Shain et al.
(2022) and combined this with the full stimuli provided by Luke & Christianson (2018).
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B Comparison of model scale and perplexity

Gu & Dao (2023) report, for the 1.4-1.5B and 2.8-3B model classes, Mamba has a lower
perplexity than Pythia and RWKV has a higher perplexity, indicating that at these scales,
the former is a better predictor of language statistics than Pythia and the latter is a worse
predictor. We further replicate this finding for the other model sizes in B, finding that
with the exception of the smallest models (130-170M) where Pythia and RWKV have the
same perplexity, at every model size, Mamba has the lowest perplexity, followed by Pythia,
followed by RWKV.
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Figure 3: Comparison of WikiText-103 (Merity et al., 2017) perplexity between each architec-
ture at each scale.
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C Statistical Analysis

C.1 Model Scale (Number of Paramaters)

Dataset Predictor Estimate SE t (10) p p (uncor.)

Boyce & Levy (2023) Intercept -0.2065 0.1726 -1.1965 1 0.2591
Mamba 0.2558 0.2443 1.0471 1 0.3197
RWKV 0.4031 0.2588 1.5573 1 0.1505
Scale 0.9279 0.1072 8.6588 0.0005 <0.0001

Brothers & Kuperberg (2021) Intercept 0.3774 0.3298 1.1445 1 0.2791
Mamba -0.7448 0.4668 -1.5956 1 0.1417
RWKV -0.39 0.4945 -0.7887 1 0.4486
Scale -0.7049 0.2047 -3.4425 0.1379 0.0063

Federmeier et al. (2007) Intercept 0.3139 0.1737 1.8068 1 0.1009
Mamba -0.5605 0.2459 -2.2797 0.697 0.0458
RWKV -0.3979 0.2605 -1.5276 1 0.1576
Scale -0.9164 0.1078 -8.4972 0.0005 <0.0001

Hubbard et al. (2019) Intercept 0.3005 0.2758 1.0897 1 0.3014
Mamba -0.7025 0.3904 -1.7997 1 0.1021
RWKV -0.1738 0.4136 -0.4202 1 0.6832
Scale -0.7949 0.1712 -4.6428 0.032 0.0009

Luke & Christianson (2018) Intercept -0.4438 0.1345 -3.2997 0.1651 0.008
Mamba 0.8725 0.1904 4.5835 0.032 0.001
RWKV 0.4626 0.2017 2.2939 0.697 0.0447
Scale 0.9035 0.0835 10.8208 0.0001 <0.0001

Michaelov et al. (2024) Intercept -0.0591 0.4811 -0.1229 1 0.9046
Mamba -0.1731 0.6809 -0.2543 1 0.8044
RWKV 0.4234 0.7214 0.5869 1 0.5703
Scale -0.227 0.2987 -0.7599 1 0.4649

Szewczyk & Federmeier (2022) Intercept 0.491 0.2899 1.694 1 0.1211
Mamba -0.8209 0.4103 -2.0008 1 0.0733
RWKV -0.6925 0.4347 -1.5932 1 0.1422
Scale -0.7424 0.18 -4.1257 0.0515 0.0021

Szewczyk et al. (2022) Intercept 0.3879 0.456 0.8506 1 0.4149
Mamba -0.8438 0.6455 -1.3073 1 0.2204
RWKV -0.3029 0.6838 -0.4429 1 0.6673
Scale 0.2281 0.2831 0.8056 1 0.4392

Wlotko & Federmeier (2012) Intercept 0.3373 0.2122 1.5894 1 0.1431
Mamba -0.728 0.3004 -2.4237 0.5972 0.0358
RWKV -0.2705 0.3182 -0.8501 1 0.4152
Scale -0.8666 0.1317 -6.5779 0.0036 <0.0001

Table 3: Results of statistical analyses based on model scale. Because all variables were
z-scored before analysis, the estimate does not directly reflect a difference but is helpful
as an indication of effect direction—a negative estimate indicates a lower AIC, and thus,
a better fit to the data. The estimate for predictors Mamba and RWKV reflects their effect
relative to the Pythia models. Scale is operationalized as the logarithm of the number of
parameters. We bold predictors that are significant after correction for multiple comparisons
(Benjamini & Hochberg, 1995). Given the low power of our study (see §4), we also italicize
variables that are significant before multiple comparisons.
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C.2 Model Perplexity

Dataset Predictor Estimate SE t p p (uncor.)

Boyce & Levy (2023) Intercept -0.1385 0.2406 -0.5754 1 0.5777
Mamba -0.1504 0.3443 -0.4369 1 0.6715
RWKV 0.6726 0.364 1.8479 1 0.0944
Perplexity 0.8996 0.1549 5.8072 0.0075 0.0002

Brothers & Kuperberg (2021) Intercept 0.3219 0.2891 1.1134 1 0.2916
Mamba -0.3969 0.4136 -0.9596 1 0.3599
RWKV -0.6304 0.4373 -1.4416 1 0.18
Perplexity -0.799 0.1861 -4.2932 0.0428 0.0016

Federmeier et al. (2007) Intercept 0.2441 0.1526 1.5991 1 0.1409
Mamba -0.1333 0.2184 -0.6103 1 0.5553
RWKV -0.6877 0.2309 -2.9784 0.255 0.0138
Perplexity -0.9651 0.0983 -9.8209 0.0002 <0.0001

Hubbard et al. (2019) Intercept 0.2389 0.2386 1.0013 1 0.3403
Mamba -0.3204 0.3413 -0.9386 1 0.3701
RWKV -0.4356 0.3609 -1.207 1 0.2552
Perplexity -0.871 0.1536 -5.6713 0.008 0.0002

Luke & Christianson (2018) Intercept -0.3751 0.1152 -3.2569 0.1676 0.0086
Mamba 0.4527 0.1648 2.747 0.3602 0.0206
RWKV 0.7471 0.1742 4.288 0.0428 0.0016
Perplexity 0.9474 0.0741 12.7778 <0.0001 <0.0001

Michaelov et al. (2024) Intercept -0.0739 0.4882 -0.1513 1 0.8828
Mamba -0.0934 0.6985 -0.1336 1 0.8963
RWKV 0.3752 0.7386 0.508 1 0.6225
Perplexity -0.1624 0.3143 -0.5167 1 0.6166

Szewczyk & Federmeier (2022) Intercept 0.4354 0.2995 1.4538 1 0.1766
Mamba -0.4841 0.4285 -1.1298 1 0.2849
RWKV -0.9188 0.453 -2.0281 1 0.07
Perplexity -0.7544 0.1928 -3.9127 0.0677 0.0029

Szewczyk et al. (2022) Intercept 0.4018 0.4657 0.8629 1 0.4084
Mamba -0.9151 0.6663 -1.3735 1 0.1996
RWKV -0.2625 0.7045 -0.3726 1 0.7172
Perplexity 0.1371 0.2998 0.4574 1 0.6572

Wlotko & Federmeier (2012) Intercept 0.2723 0.2288 1.1904 1 0.2614
Mamba -0.3345 0.3273 -1.0221 1 0.3308
RWKV -0.535 0.3461 -1.5459 1 0.1532
Perplexity -0.8816 0.1473 -5.9859 0.0067 0.0001

Table 4: Results of statistical analyses based on model perplexity. Because all variables were
z-scored before analysis, the estimate does not directly reflect a difference but is helpful as an
indication of effect direction—a negative estimate indicates a lower AIC, and thus, a better
fit to the data. The estimate for predictors Mamba and RWKV reflects their effect relative
to the Pythia models. Perplexity is operationalized as negative log-perplexity in order to
preserve the relationship of the other variables (where negative indicates a better fit). We
bold predictors that are significant after correction for multiple comparisons (Benjamini &
Hochberg, 1995). Given the low power of our study (see §4), we also italicize variables that
are significant before multiple comparisons.
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