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Abstract—Singing voice beautifying is a novel task that has
application value in people’s daily life, aiming to correct the
pitch of the singing voice and improve the expressiveness without
changing the original timbre and content. Existing methods rely
on paired data or only concentrate on the correction of pitch.
However, professional songs and amateur songs from the same
person are hard to obtain, and singing voice beautifying doesn’t
only contain pitch correction but other aspects like emotion
and rhythm. Since we propose a fast and high-fidelity singing
voice beautifying system called CONTUNER, a diffusion model
combined with the modified condition to generate the beautified
Mel-spectrogram, where the modified condition is composed of
optimized pitch and expressiveness. For pitch correction, we es-
tablish a mapping relationship from MIDI, spectrum envelope to
pitch. To make amateur singing more expressive, we propose the
expressiveness enhancer in the latent space to convert amateur
vocal tone to professional. CONTUNER achieves a satisfactory
beautification effect on both Mandarin and English songs. Ab-
lation study demonstrates that the expressiveness enhancer and
generator-based accelerate method in CONTUNER are effective.

Index Terms—singing voice beautifying, speech representation
learning

I. INTRODUCTION

Singing voice beautifying (SVB) is a novel task in the
field of speech and music. SVB models aim to calibrate
the pitch of the amateur singing voice while retaining the
timbre and content of the original singing voice and then
improve the singing skills and expressiveness of the singing
voice. In the entertainment industry, SVB is often completed
by vocal tuners using professional tools like Auto-Tune [1],
which requires expensive labour costs. Since many people
enjoy singing but face difficulties to obtain satisfactory songs,
automatic singing beautification has great application value in
our daily lives.

There are currently two types of tasks associated with SVB,
singing voice conversion (SVC) and automatic pitch correction
(APC). SVC changes the singer of the source singing voice
and maintains the content. But in SVB, we need to keep the
content and the vocal timbre. APC directly corrects the pitch
of amateur singing voices, but this is insufficient to perform
beautification. Current SVB work [2] relies on paired data,
but it is difficult to obtain amateur and professional songs
from the same person. The data we can easily obtain are
amateur singing voices and original professional recordings of
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the same song. Lots of improvements in previous works are
made only on pitch correction, but few researchers focus on the
expressiveness of a song like singing skill, emotion, rhythm,
etc. How to generate a new song with a newly generated pitch
and beautified features is also a critical problem. One way is to
use a vocoder such as WORLD [3], but this kind of generation
work is difficult to establish the control of expressiveness and
other features of the song.

To address the mentioned problems, we propose a diffusion-
based SVB model, CONTUNER, which integrates the pre-
dicted pitch information as well as the modified expressiveness
into the original amateur singing voice to achieve singing voice
beautification. As far as we know, we are the first to model
the expressiveness in singing voices in the SVB area, and we
hope to bring inspiration to future works. Furthermore, as an
outstanding SVB model is expected to be fast, we choose the
high-performance generative model Diffusion [4] as the back-
bone of CONTUNER. And inspired by some recent works, we
speed up the diffusion model through using generator-based
methods [5], [6]. During the whole training and reasoning
process of the model, CONTUNER only needs to extract target
information from amateur singing voice constraints, thereby
avoiding the problem of paired data. In addition, CONTUNER
beautifies the amateur singing voice from the perspective of
pitch and expressiveness. Moreover, CONTUNER chooses to
establish control of the condition during the generation of the
beautified Mel-spectrogram instead of establishing control of
the condition in the vocoder stage. To sum up, our contribu-
tions can be summarized as follows:

o We propose a novel model called CONTUNER to solve the
task of beautification without professional-amateur paired
data from the same singer. We provide a new perspective
that obtains conditions from pitch and expressiveness and
establishes the control of the condition in the process of
Mel-spectrogram generation.

o We predict pitch instead of fitting pitch in terms of pitch
correction. We establish a mapping relationship from
MIDI, spectral envelope to pitch curve to get the corrected
pitch curve. We derive an expressiveness representation
from Mel-spectrogram and obtain the beautified expres-
siveness via the designed expressiveness enhancer.
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Fig. 1. Architecture of CONTUNER. The pitch predictor conducts mapping from MIDI and envelope to pitch, while the expressiveness enhancer disentangles
the expressiveness representation from the singing voice. The outputs from them are combined as the condition that takes part in the denoising process.

II. RELATED WORKS
A. Neural Singing Voice Processing

Utilizing neural networks for singing voice processing is
an area that has begun to attract attention in recent years [7],
[8]. Different from speech voice processing (like speech voice
conversion [9], [10], text-to-speech [11], [12], efc), singing
voice contains richer and more varied pitch and rhythmic
information, which requires more accurate control and op-
timization of these information. Existing works on neural
singing voice processing contain automatic pitch correction
[13]-[15], singing voice conversion [16], [17], and singing
voice beautifying [2]. APC attempts to modify the unsatisfac-
tory pitch of singing voices from amateur singers but APC
doesn’t further consider the beautification of the processed
singing voice, such as singing skills, emotion, expressiveness,
etc. SVC is a downstream task of voice conversion, which aims
to change the singer of a given singing voice. SVC methods
usually first disentangle the timbre and the content from the
target song and source song respectively, and then combine
the timbre information from the target singer with the content
information from the source song [18]-[20]. SVC is quite
different from SVB, as SVC will erase all the uniqueness of
the singing voice while SVB tries to keep the content and the
vocal timbre unchanged. Simply leveraging the SVC method
for the SVB task will greatly destroy the original singers’
unique characteristics.

B. Diffusion Model

Denoising diffusion probabilistic model (DDPM) [4], [21]
gradually transforms simple distributions into complex data
distributions with Markov chains. It has gained satisfactory
performance in diverse tasks like image generation [22],
speech synthesis [23], and even object detection [24]. The

forward diffusion process and reverse generation process are
built in DDPM to learn the transformation. In the forward
process, Gaussian noise is gradually incorporated into the data,
this helps the model to explore the various data distributions,
while the model tries to denoise to restore the origin data
through the reverse process. The reverse process makes the
model gain the capability to generate real samples. Compared
to the classic generated model, generative adversarial network
(GAN), DDPM is more stable but relatively slow. How to
improve the inference speed of DDPM also becomes an issue
worth exploring [25]-[27].

III. METHODOLOGY
A. Generator- and Condition-based Diffusion

The overall architecture of CONTUNER is shown in Fig. 1.
Diffusion model is adapted as the backbone of CONTUNER,
combining with modified condition (i.e. the output of the pitch
predictor and expressiveness enhancer). Through the diffusion
process and reserve process, we can get the Mel-spectrogram
of the beautified singing voice. The diffusion process is non-
parametric. We input the Mel-spectrogram x of amateur song,
and after ¢ steps of sampling, we get the Mel-spectrogram
x; with noise. With the pre-defined noise schedule 5 and
diffusion step ¢, we compute the corresponding constants in
Eq. 1 respectively.

t
a=][Vi-8 o=y1-a e
=1

In conventional gradient-based training, the noise ¢ loss
is calculated through optimizing a random term of ¢ with
stochastic gradient descent as shown in Eq. 2.

LS =|| eg(arro +1/1 —a2e) — e |3, e ~ N(0,1)  (2)
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Fig. 2. Details of the pitch predictor and expressiveness enhancer.

It is well known that in DDPMs, x; has different degrees
of perturbation, thus using a single gradient-based parame-
terization network directly in different ¢ predictions for x;_1
is difficult. Inspired by the recent works [5], [28], [29] in
the field of text-to-speech, which point out that the generator-
based diffusion model does not need to estimate the gradient
of the data density. So we predict clean professional Mel-
spectrogram z{, by undisturbed x{, and then add the anti-
perturbation through the posterior distribution g(z:—1|z+, ()

Therefore, in the reverse sampling process of the diffusion
model, z;_; is sampled with the posterior distribution given
x4 and the predicted ().

zi—1 ~ po(ze—1|me) = q(ze—1|me, 20) 3)

In this way, CONTUNER can greatly reduce the quantity of
sampling steps t. We put the beautifying condition C'on into
the denoiser to guide the direction of generation as shown in
Eq. 4.

xy = fo(z¢|t, Con) “4)

Finally, we constrain the loss of the denoiser which is
defined as a mean squared error (MSE) in the data space
z. Efficient training is to optimize a random term of ¢ with
stochastic gradient descent.

Eg)enoiser :H Ie(atxo + MG) — l'g H% 5)

B. Pitch Predictor and Expressiveness Enhancer

1) Pitch Predictor: The structure of the pitch predictor
(PP) is shown in Fig. 2(a). As we hope to build the beau-
tified pitch curve and maintain the pitch characteristics of
the amateur singer at the same time, so we combine the
spectral envelope and MIDI from professional singers and
amateur singers respectively. We establish a mapping pitch <—
(envelope, MIDI). The spectral envelope feature implicitly
contains the pitch curve [30], as previous work predicts the
pitch curve from the spectral envelope with high accuracy.

We feed spectral envelope into the designed PP. Besides,
MIDI can be seen as the standard pitch representation of a
song. We perform HMM smoothing to extract standard MIDI
note sequences from vocals via pyin [31]. With the help of
the WORLD vocoder [3], we extract the spectral envelope
and pitch curve (set as the pitch label p). The MIDI vector
goes through 4 linear layers, each layer is followed by a
mish activation function, then spliced and flipped with the
spectral envelope dimension. The main body of PP contains
four Convld layers with ReLU activation function and batch
normalization followed, finally the predicted pitch curve p’ can
be obtained from the MLP layer.

During the training process of the model, we input the MIDI
and the spectral envelope of amateur singers, while the labels
are also extracted from amateur singing voices. It is worth
noting that PP does not require any information of professional
songs during the training stage. In the inference stage, we input
the spectral envelope from professional singers and the MIDI
from amateur singers to obtain the beautified pitch curves.

2) Expressiveness Enhancer: The structure of expressive-
ness enhancer (EE) is shown in Fig. 2(b). We define the
singing skills, rhythm, and emotion of a singing voice as
the expressiveness characteristics. We first obtain expressive-
ness representation through disentanglement similar to voice
conversion. Defining a pair of expressiveness representations
(Wa, Wp), which represent the amateur expressiveness W,
and professional expressiveness W, of the same song re-
spectively. We disentangle expressiveness representation with
a pre-trained encoder. A feed-forward Transformer block is
adapted as the main body of the expressiveness enhancer,
which is a stack of self-attention layers [32]. The latent expres-
siveness representation W, represents the expressiveness after
being modified by EE. What we need to do is to strengthen
the similarity between W, and W),

3) Condition Loss: Condition loss consists of pitch loss
and expressiveness loss as shown in Eq. 6, A\; and Ay are
weight coefficients of the two losses. The pitch loss is the L2
distance between the predicted pitch p’ and the pitch label p,
while the expressiveness loss is retrieved from the professional
and modified amateur expressiveness representation.

£con = )\1 || p/ -p ||2 +/\2 H Wl;, - WP H2 (6)

C. Denoiser

Following the previous work [29], we adopt a non-causal
WaveNet [33] architecture as our spectrogram denoiser as
shown in Fig. 3. The denoiser comprises a 1 x 1 convolution
layer and N convolution blocks with residual connections to
project the input hidden sequence with 256 channels. For any
step t, we use a cosine schedule with 3; = cos(0.57t). The
condition first passes through the length regulator to get the
same dimension to x; through padding. Finally, the output part
of the denoiser consists of a 2-layer 1D-convolutional network
with ReLU activation.
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Fig. 3. Structure of the spectrogram denoiser.

D. Training and Inference

1) Training: The final loss term in training CONTUNER
consists of the following parts:

¢ The reconstruction loss [,g) enoiser jp Eq. 5, which is the
MSE between the generated and target Mel-spectrograms.

e The condition loss L.,,, which is the distance between
the predicted pitch and the target pitch, as well as the
modified expressiveness and the professional expressive-
ness, as shown in Eq. 6.

It is worth noting that the pitch predictor, expressiveness
enhancer and denoiser perform gradient back-propagation at
the same time during training.

2) Inference: CONTUNER iteratively predicts unperturbed
xf) and then adds back perturbation via the posterior distribu-
tion. Specifically, the denoising model fp(x:|t,con) predicts
xy, firstly, and then xz;_; is sampled using the posterior
distribution q(x_1|xs, x() that given z; and the predicted
xp. In addition to the amateur singing voice, we only need
a professional MIDI in the inference stage.

IV. EXPERIMENT
A. Experimental Setup

Since SVB is a novel task, with few public unaccompanied
datasets so far. NSVB [2] comes up with PopButFy, an SVB
dataset composed of paired data (i.e. amateur and professional
vocals from the same person). However, we aim to reduce
the SVB model’s dependency on paired data, so we collect
professionally recorded songs and songs from amateur singers
to produce an SVB dataset called Professional and Amateur
Singing Voice dataset PASV. PASV consists of about 400
Mandarin and English pop songs (=42 hours) in total. In order
to get closer to the scene of SVB, the amateur songs in PASV
contain out-of-tune samples and extremely amateur samples.
For each amateur sample, there is a one-to-one correspondence

with the original professional song. For the recorded song,
we use Spleeter [34] to separate the singing voice from the
accompaniment to extract the pure human singing voice.

We utilize the Griffin-Lim algorithm [35] as the vocoder to
obtain waveform from the generated Mel-spectrogram in all
our experiments. CONTUNER is trained on a 12G NVIDIA
3080Ti GPU with 400k steps. The warm-up learning rate
is set to 10~* and an Adam optimizer [36] with £ =
0.9, 82 = 0.99, ¢ = 10~ is built for training. Audio samples
are available at https://largeaudiomodel.com/contuner/.

B. Metrics and Measurement

We use subjective metric mean opinion score (MOS, and
comparison MOS, CMOS for ablation study) and the objective
metric Mel-ceptral distortion (MCD) to evaluate the perfor-
mance of our proposed model on the test set. In addition,
following NSVB [2], we also leverage pitch alignment accu-
racy (PAA) as an objective metric to measure pitch correction.
For the beautified singing voices, we analyzed the MOS from
two aspects: audio quality (such as naturalness, singing voice
quality, etc., denoted as MOS-Q) and expressiveness (such as
singing skills, emotion, thythm, etc., denoted as MOS-E).

C. Experimental Results

1) Pitch Correction: Fig. 4 shows the results of the com-
parison between our proposed method and other methods on
PAA. Dynamic Time Warping (DTW) [37] and Canonical
Time Warping (CTW) [13] are two classic algorithms for
pitch correction [14], while KaraTuner [15] is a Transformer-
based method that performs pitch correction. CONTUNER(P)
represents the pitch predictor in our proposed model. Results
show that PP in CONTUNER outperforms other time-aligned
methods. This is mainly because previous time-warping algo-
rithms only focus on the forced alignment in time but ignore
the direction of the pitch curve.

90
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Fig. 4. The pitch alignment accuracy of different algorithms on Mandarin
and English songs.

2) Quality and Expressiveness: In order to analyze the
beautification capability of our proposed model, we further
compare the quality MOS-Q, expressive quality MOS-E and
objective metric MCD with other baseline methods. The
following models and ground-truths are compared,
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TABLE I
COMPARISON OF DIFFERENT METHODS
(WITH 95% CONFIDENCE INTERVALS).

Lang. Method MOS-Q 1T MOS-E 1 MCD |
£ GT MelA 431+£0.21  3.1610.28 -
3 GT MelP 4.42+0.18  4.3940.14 -
El KaraTuner [15] 4.15£0.15 4.02+0.13  7.214+0.09
= CONTUNER 421+£0.13  4.2440.12 6.97+0.14
o GT MelA 4.18+£0.25  3.03%0.13 -
é] GT MelP 4.2440.11  4.2540.11 -
5 KaraTuner [15] 4.01+0.07 3.86+0.13  8.8140.11
CONTUNER 4.06+0.15 4.03+0.12  7.20£0.10

o Ground-truth Mel includes amateur (GT MelA) and pro-
fessional (GT MelP) versions. We first convert ground-
truth audio into Mel-spectrogram, and then convert the
Mel-spectrogram back to waveform via the vocoder to
eliminate the effect of vocoder on evaluation.

o KaraTuner [15], a neural pitch correlation model.

o CONTUNER, the propoesd SVB model.

Table I shows the results of CONTUNER and other models on
both Mandarin and English singing voice data. Results show
that

o CONTUNER significantly achieves promising results in
both MOS-Q and MOS-E, with audio quality degradation
with 0.12, as well as MOS-E being more than those
for ground-truth amateur recordings by 1.08 and 1.00
on Mandarin and English data respectively. This result
proves the strong performance of the CONTUNER in
singing voice beautification.

o As for MOS-E, CONTUNER is less than those for ground-
truth professional recordings by only 0.15 and 0.21 in
Mandarin and English singing voice data respectively,
which proves that the CONTUNER has strong language
generalization performance.

Comparing to other methods, CONTUNER achieves satisfac-
tory results. It shows that under the control of the condition,
the Mel-spectrogram will be optimized with a more accurate
pitch and better expressiveness.

D. Ablation Study

The number of sampling steps is the key parameter of the
diffusion model. As the number of sampling steps increases,
the quality of the audio generated will also improve but
results in more time-consuming. Therefore, how to balance
sampling steps and audio quality is an important problem.
In order to explore the influence of different sampling steps
on the performance of CONTUNER, an ablation experiment is
conducted. We also compare the gradient-based diffusion and
our generator-based diffusion. The comparison of the effect of
sampling steps is shown in Table II.

As Table II shows, with several sample steps and a large
distribution of noise schedule, gradient-based or generator-
based diffusion models could produce high-fidelity speech
samples with similar results. When the amount of sampling

TABLE II
COMPARISON OF THE EFFECT OF SAMPLING STEPS ON MOS-Q 1 OF
GRADIENT- AND GENERATOR-BASED DIFFUSION MODEL
(WITH 95% CONFIDENCE INTERVAL).

Sampling Steps  Gradient-Based  Generator-Based

200 4.23+0.11 4.24+0.09
100 4.11£0.06 4.2240.07

50 4.02+0.10 4.22+0.06

10 3.65+0.08 4.21+£0.13
GT MelA 4.31+0.21 4.31£0.21
GT MelP 4.4240.18 4.4240.18

steps gradually decreases to 10, the audio quality of generator-
based diffusion does not decrease significantly. This indicates
that CONTUNER can weaken the inherent trade-off problem of
the diffusion model to a certain extent. We hold the view that
the generator-based diffusion model is free from estimating
the gradient for data density, which only needs to predict
unperturbed zo and then add back perturbation using the
posterior distribution. So our generator-based diffusion model
can achieve a nice beautification effect without hundreds of
sample steps.

Furthermore, in order to verify the specific effects of the
designed EE in the singing beautification task, we compare
the performance of CONTUNER with CONTUNER(E) which
lacks the expresseive enhancer. Comparison mean opinion
score (CMOS-E and CMOS-Q) is obtained for the comparison.
It can be seen from Table III that the EE mainly improves
MOS-E and has no significant impact on audio quality, which
indicates that the EE can improve the expressiveness of singing
voices, achieving the purpose of singing voice beautifying.

TABLE III
COMPARISON OF CONTUNER(E) AND CONTUNER.

Language Method CMOS-Q CMOS-E
Mandarin CONTUNER(E) -0.003 -0.140
CONTUNER 0.000 0.000
Enelish CONTUNER(E) -0.000 -0.230
e CONTUNER 0.000 0.000

E. Discussion

Sing voice beautifying is currently in its early stages. In this
section, We analyze some limitations in our work as well as
something that can be done in the future. We hope that there
will be more works to promote the development of SVB.

In this paper, we only consider the beautification of singing
voices in a single scene. In the future, new beautification
scenarios will bring new problems. We decouple expressive-
ness features via a pre-trained encoder for expressiveness
enhancement, this introduces some limitations to CONTUNER.
On the other hand, The establishment of the control of the
condition makes the consideration of more factors like singing
skills and emotions for SVB possible. This could be useful for
the quest for SVB in the future works.



V. CONCLUSION

In this paper, we propose CONTUNER, a fast diffusion-
based model for high-fidelity singing voice beautifying with
pitch and expressiveness conditions. The proposed model does
not need paired data for inference, it can establish the control
of the condition in the process of spectrogram generation.
With fewer sampling steps, our model achieves a beneficial
effect on singing voice beautification. Experimental results
show that CONTUNER gets satisfactory performance on PAA
and outperforms the baseline method with higher quality and
better expressiveness in both Mandarin and English singing
voice samples.

VI. ACKNOWLEDGEMENT

Supported by the Key Research and Development Pro-
gram of Guangdong Province (grant No. 2021B0101400003)
and Corresponding author is Xulong Zhang (zhangxu-
long @ieee.org).

[1]

[2]

[3]

[4]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

S. Yong and J. Nam, “Singing expression transfer from one voice
to another for a given song,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, 2018, pp. 151-155.

J. Liu, C. Li, Y. Ren, Z. Zhu, and Z. Zhao, “Learning the beauty in
songs: Neural singing voice beautifier,” in the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2022, pp. 7970-7983.

M. Morise, F. Yokomori, and K. Ozawa, “World: a vocoder-based
high-quality speech synthesis system for real-time applications,” IEICE
Transactions on Information and Systems, vol. 99, no. 7, pp. 1877-1884,
2016.

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Advances in Neural Information Processing Systems, vol. 33, 2020,
pp. 6840-6851.

S. Liu, D. Su, and D. Yu, “Diffgan-tts: High-fidelity and efficient text-to-
speech with denoising diffusion gans,” arXiv preprint arXiv:2201.11972,
2022.

T. Salimans and J. Ho, “Progressive distillation for fast sampling of
diffusion models,” in the 10th International Conference on Learning
Representations, 2022.

Y. Sun, X. Zhang, X. Chen, Y. Yu, and W. Li, “Investigation of singing
voice separation for singing voice detection in polyphonic music,” in
the 9th Conference on Sound and Music Technology, 2023, pp. 79-90.
X. Zhang, J. Wang, N. Cheng, and J. Xiao, “Susing: Su-net for singing
voice synthesis,” in 2022 International Joint Conference on Neural
Networks, 2022, pp. 1-7.

J. Chou and H. Lee, “One-shot voice conversion by separating speaker
and content representations with instance normalization,” in the 20th
Annual Conference of the International Speech Communication Associ-
ation, G. Kubin and Z. Kacic, Eds., 2019, pp. 664—668.

K. Qian, Y. Zhang, S. Chang, X. Yang, and M. Hasegawa-Johnson, “Au-
tove: Zero-shot voice style transfer with only autoencoder loss,” in the
36th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, vol. 97, 2019, pp. 5210-5219.

J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Ryan, R. A. Saurous, Y. Agiomyrgiannakis, and
Y. Wu, “Natural TTS synthesis by conditioning wavenet on MEL spec-
trogram predictions,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, 2018, pp. 4779-4783.

Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T. Liu,
“Fastspeech 2: Fast and high-quality end-to-end text to speech,” in the
9th International Conference on Learning Representations, 2021.

F. Zhou and F. Torre, “Canonical time warping for alignment of human
behavior,” in Advances in Neural Information Processing Systems,
vol. 22, 2009.

Y.-J. Luo, M.-T. Chen, T.-S. Chi, and L. Su, “Singing voice correction
using canonical time warping,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, 2018, pp. 156—-160.

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

[32]

[33]

[34]

[35]

[36]

(371

X. Zhuang, H. Yu, W. Zhao, T. Jiang, P. Hu, S. Lui, and W. Zhou,
“Karatuner: Towards end to end natural pitch correction for singing
voice in karaoke,” in the 23rd Annual Conference of the International
Speech Communication Association, 2022.

T. Kaneko and H. Kameoka, “Cyclegan-vc: Non-parallel voice conver-
sion using cycle-consistent adversarial networks,” in the 26th European
Signal Processing Conference, 2018, pp. 2100-2104.

T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, “Cyclegan-vc2:
Improved cyclegan-based non-parallel voice conversion,” in /[EEE Inter-
national Conference on Acoustics, Speech and Signal Processing, 2019,
pp. 6820-6824.

S. Liu, Y. Cao, D. Su, and H. Meng, “Diffsvc: A diffusion probabilistic
model for singing voice conversion,” in IEEE Automatic Speech Recog-
nition and Understanding Workshop, 2021, pp. 741-748.

S. Liu, Y. Cao, N. Hu, D. Su, and H. Meng, “Fastsvc: Fast cross-
domain singing voice conversion with feature-wise linear modulation,”
in International Conference on Multimedia and Expo. 1EEE, 2021, pp.
1-6.

J. Lu, K. Zhou, B. Sisman, and H. Li, “Vaw-gan for singing voice
conversion with non-parallel training data,” in Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference,
2020, pp. 514-519.

A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilis-
tic models,” in International Conference on Machine Learning, 2021, pp.
8162-8171.

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierar-
chical text-conditional image generation with CLIP latents,” CoRR, vol.
abs/2204.06125, 2022.

Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave: A
versatile diffusion model for audio synthesis,” in the 9th International
Conference on Learning Representations, 2021.

S. Chen, P. Sun, Y. Song, and P. Luo, “Diffusiondet: Diffusion model
for object detection,” in the IEEE/CVF International Conference on
Computer Vision, 2023, pp. 19 830-19 843.

C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10
steps,” in Advances in Neural Information Processing Systems, vol. 35,
2022, pp. 5775-5787.

X. Ma, G. Fang, and X. Wang, “Deepcache: Accelerating diffusion
models for free,” arXiv preprint arXiv:2312.00858, 2023.

C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver++:
Fast solver for guided sampling of diffusion probabilistic models,” arXiv
preprint arXiv:2211.01095, 2022.

M. W. Y. Lam, J. Wang, D. Su, and D. Yu, “Bddm: Bilateral denoising
diffusion models for fast and high-quality speech synthesis,” in the 10th
International Conference on Learning Representations, 2022.

R. Huang, Z. Zhao, H. Liu, J. Liu, C. Cui, and Y. Ren, “Prodiff:
Progressive fast diffusion model for high-quality text-to-speech,” in the
30th ACM International Conference on Multimedia, 2022, pp. 2595-
2605.

T. En-Najjary, O. Rosec, and T. Chonavel, “A new method for pitch
prediction from spectral envelope and its application in voice conver-
sion.” in Annual Conference of the International Speech Communication
Association, 2003.

M. Mauch and S. Dixon, “Pyin: A fundamental frequency estimator
using probabilistic threshold distributions,” in IEEE International Con-

ference on Acoustics, Speech and Signal Processing, 2014, pp. 659-663.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, vol. 30, 2017.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” in the 9th ISCA Speech
Synthesis Workshop, 2016, p. 125.

R. Hennequin, A. Khlif, F. Voituret, and M. Moussallam, “Spleeter: a
fast and efficient music source separation tool with pre-trained models,”
Journal of Open Source Software, vol. 5, no. 50, p. 2154, 2020.

Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa, and N. Harada, “Deep
griffin-lim iteration,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, 2019, pp. 61-65.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in the 3rd International Conference on Learning Representations, 2015.
M. Miiller, “Dynamic time warping,” Information Retrieval for Music
and Motion, pp. 69-84, 2007.



	Introduction
	Related Works
	Neural Singing Voice Processing
	Diffusion Model

	Methodology
	Generator- and Condition-based Diffusion
	Pitch Predictor and Expressiveness Enhancer
	Pitch Predictor
	Expressiveness Enhancer
	Condition Loss

	Denoiser
	Training and Inference
	Training
	Inference


	Experiment
	Experimental Setup
	Metrics and Measurement
	Experimental Results
	Pitch Correction
	Quality and Expressiveness

	Ablation Study
	Discussion

	Conclusion
	Acknowledgement
	References

