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CP -violating observables of four-body B(s) → (ππ)(KK̄) decays in perturbative QCD
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In this work, we investigate six helicity amplitudes of the four-body B(s) → (ππ)(KK̄) decays via an

angular analysis in the perturbative QCD (PQCD) approach. The ππ invariant mass spectrum is dominated by

the vector resonance ρ(770) together with scalar resonance f0(980), while the vector resonance φ(1020) and

scalar resonance f0(980) are expected to contribute in the KK̄ invariant mass range. We extract the two-body

branching ratios B(B(s) → ρφ) from the corresponding four-body decays B(s) → ρφ → (ππ)(KK̄) based

on the narrow width approximation. The predicted B(B0
s → ρφ) agrees well with the current experimental

data within errors. The longitudinal polarization fractions of the B(s) → ρφ decays are found to be as large

as 90%, basically consistent with the previous two-body predictions within uncertainties. In addition to the

directCP asymmetries, the triple-product asymmetries (TPAs) originating from the interference among various

helicity amplitudes are also presented for the first time. Since the B0
s → ρ0φ → (π+π−)(K+K−) decay is

induced by both tree and penguin operators, the values of the ACP
dir and A

1
T-true are calculated to be (21.8+2.7

−3.3)%

and (−10.23+1.73
−1.56)% respectively. While for pure penguin decays B0

→ ρ0φ → (π+π−)(K+K−) and

B+
→ ρ+φ → (π+π0)(K+K−), both the direct CP asymmetries and “true” TPAs are naturally expected

to be zero in the standard model (SM) due to the absence of the weak phase difference. The “fake” TPAs

requiring no weak phase difference are usually none zero for all considered decay channels. The sizable “fake”

A
1
T-fake = (−20.92+6.26

−2.80)% of the B0
→ ρ0φ→ (π+π−)(K+K−) decay is predicted in the PQCD approach,

which provides valuable information on the final-state interactions. The above predictions can be tested by the

future LHCb and Belle-II experiments.

PACS numbers: 13.25.Hw, 12.38.Bx, 14.40.Nd

I. INTRODUCTION

In the past several years, the study of charmless nonleptonic decays of B meson has evoked considerable experimental and

theoretical interest, primarily because of the importance of these processes in understanding the phenomenon of CP violation.

The decay amplitude for “tree-level” b → u transition is much smaller than the one for dominant b → c transition due to

the ratio of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |Vub|2/|Vcb|2 ≈ 10−2. Transitions to s and d quarks are

effective flavor-changing neutral currents proceeding mainly by one-loop “penguin” amplitudes, and are also suppressed. The

flavor-changing neutral current decay modes provide a sensitive probe for the effect of physics beyond the SM, since their

amplitudes are dominant by the penguin diagrams. The understanding of the relative importance of tree and penguin amplitudes

will be crucial in studies of CP asymmetries in B meson decays. A non-vanishing direct CP violation needs the interference

of at least two amplitudes with a weak phase difference ∆φ and a strong phase difference ∆δ. The direct CP violation is

proportional to sin∆φ sin∆δ. The key point is that the direct CP violation can only be produced when there is a nonzero

strong phase difference. Hence, if the strong phases are quite small, the magnitude of the direct CP violation is close to zero.

In this case, there is another class of CP -violating effects which has triggered less attention so far and can reveal the presence

of new physics: triple product asymmetries (TPAs). A scalar triple product takes a generic form ~v1 · (~v2 × ~v3), where each ~vi is

a spin or momentum of the final-state particle. The TPAs are odd under time reversal (T ) and also contribute potential signals

of CP violation by the CPT theorem. These TPAs go as sin∆φ cos∆δ, which provide useful complementary information on

direct CP violation. Even in the absence of CP violation effects, T -odd triple products (also called “fake” TPAs), which are

proportional to cos∆φ sin∆δ, can provide further insight on new physics since most TPAs are expected to be tiny within the

SM [1].

A nontrivial triple product requires at least four particles in the final state. B(s) → V V, V S, SV, SS decays are usually

treated as two-body final states on the theoretical side and have been studied in the two-body framework using various theoretical

approaches such as QCD factorization (QCDF) [2–8], PQCD approaches [9–24], the soft-collinear-effective theory (SCET) [25–

30] and the factorization-assisted topological amplitude approach (FAT) [31]. While they are at least four-body decays on the
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FIG. 1: Graphical definitions of the helicity angles θ1, θ2 and ϕ for the B0
→ φρ0 decay, with each quasi-two-body intermediate resonance

decaying to two pseudoscalars (ρ0 → π+π− and φ → K+K−). θ1,2 is denoted as the angle between the direction of motion of K− or π+

in the φ or ρ0 rest frame and φ or ρ0 in the B0 rest frame, and ϕ is the angle between the plane defined by K+K− and the plane defined by

π+π− in the B0 rest frame.

experimental side shown in Fig. 1, since the meson V = ρ, φ is a vector resonance and S = f0(980) is a scalar resonance with a

sizable branching fraction into two pseudoscalar mesons, respectively 1. The B decays to V V are complicated by the presence

of one amplitude with longitudinal polarizationA0 and two amplitudes with transverse polarizationA‖ andA⊥, which is parallel

or perpendicular to each other, respectively. The first two states A0 and A‖ are CP even, while the last one A⊥ is CP odd.

Interference between the CP -even (A0, A‖) and CP -odd (A⊥) amplitudes can generate TPAs in angular distributions, which

may signal unexpected CP violation due to physics beyond the SM. Recently, TPAs have already been measured by Belle,

BABAR, CDF and LHCb Collaborations [32–41]. Phenomenological investigations on TPAs have been conducted intensively in

the literature [1, 42–50].

In this work, we study the four-body decays B(s) → (ππ)(KK̄) in the PQCD approach based on kT factorization with the

relevant Feynman diagrams illustrated in Fig. 2. For a comparison with the LHCb experiment [51], the invariant mass of the ππ
pair ranges from 400 MeV to 1600 MeV and the invariant mass for KK̄ pair is restricted to be within ±30MeV of the known

mass of the φ meson. The ππ spectrum is dominated by the vector ρ resonance and the scalar resonance f0. In the considered

KK̄ invariant-mass range, the vector resonance φ is expected to contribute, together with the scalar resonance f0. In addition

to the branching fractions, the fraction of a given polarization state is an interesting observable and investigated in this work, as

well as other observables constructed from the helicity amplitudes like TPAs. As is known, the longitudinal polarization should

dominate based on the quark helicity analysis in the factorization assumption [52, 53]. In sharp contrast to these expectations,

large transverse polarization (around 50%) is observed in B → K∗φ, B → K∗ρ and Bs → φφ decays [40, 41, 54–56], which

poses an interesting challenge for the theory.

It should be stressed that four-body decay is still at its early stage from the theoretical point of view since the factorization

formalism that describes a multi-body decay in full phase space is not yet available at present. As a first step, we can only

restrict ourselves to the specific kinematical configurations in which each two particles fly collinearly and two pairs of final

state particles recoil back in the rest frame of the B meson, see Fig. 1. Then the dynamics associated with the pair of final state

mesons can be factorized into a two-meson distribution amplitude (DA) Φh1h2 [57–63]. Thereby, the typical PQCD factorization

formula for the considered four-body decay amplitude can be described,

A = ΦB ⊗H ⊗ ΦKK ⊗ Φππ, (1)

where ΦB is the universal wave function of the B meson and absorbs the non-perturbative dynamics in the process. The ΦKK

(Φππ) is the two-hadron DA, which involves the resonant and nonresonant interactions between the two moving collinearly

mesons. The hard kernel H describes the dynamics of the strong and electroweak interactions in four-body hadronic decays in

a similar way as the one for the corresponding two-body decays. The S and P -wave contributions are parametrized into the

1 For the sake of simplicity, we generally use the abbreviation f0 = f0(980), ρ0 = ρ(770)0 , φ = φ(1020) in the following sections.
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FIG. 2: Typical leading-order Feynman diagrams for the four-body decays B → R1R2 → (ππ)(KK̄) with q = (d, s), where the symbol

• denotes a weak interaction vertex. The diagrams (a)-(d) represent the B → (R1 →)ππ transition, as well as the diagrams (e)-(h) for

annihilation contributions. If we exchange the position ofR1(→ ππ) andR2(→ KK̄), we will find the diagrams (a)-(d) for theB → (R2 →

)KK̄ transition.

corresponding timelike form factors involved in the two-meson DAs, whose normalization form factors are assumed to take the

Flatté model [64] for f0, and relativistic Breit-Wigner (BW) function for φ [65] and the Gounaris-Sakurai (GS) model [66] for

ρ. An important breakthrough in the theory of four-body B meson decays has been achieved based on the quasi-two-body-

decay mechanism. Recently, the localized CP violation and branching fraction of the four-body decay B̄0 → K−π+π+π−

have been calculated by employing a quasi-two-body QCDF approach in Refs. [67, 68]. In our previous works [69–73], the

PQCD factorization formalism based on the quasi-two-body-decay mechanism for four-body B meson decays has been well

established. Within the framework of PQCD approach, the branching ratios and direct CP asymmetries of four-body decays

B0
s → ππππ have also been studied [74].

The layout of the present paper is organized as follows. In Sec. II, we give a brief introduction for the triple product asym-

metries analyzed in our work. The kinematics and the formalism of PQCD on four body decays are presented in Sec. III. The

numerical values and some discussions will be given in Sec. IV. Section V contains our conclusions. The APPENDIX A and B

collect the S-wave decay amplitudes and the two-meson DAs adopted in our calculations respectively.

II. CP VIOLATING OBSERVABLES

A. Angular distribution and Helicity amplitudes

Taking the four-body decay B0 → ρ0φ → (π+π−)(K+K−) depicted in Fig. 1 as an example, the study of the angular

distribution usually employs three helicity angles: θ1, θ2 and ϕ. We denote θ1(θ2) as the polar angle between the π+(K−)

direction in the π+π−(K+K−) rest frame and the π+π−(K+K−) direction in the B0 rest frame. The angle between the planes

defined by π+π− and K+K− pairs in the B0 rest frame will be denoted by ϕ.

In the four-body decays B(s) → (ππ)(KK̄), the final state meson pairs ππ and KK̄ can be produced in both S and P -wave

configurations in the selected invariant mass regions. The total decay amplitudes shall involve six helicity components Ah with

h = V V (3), V S, SV , and SS, where V and S denote the vector and scalar resonances respectively. The first three, commonly

referred to as the P -wave amplitudes, are associated with the final states where both ππ and KK̄ pairs come from intermediate

vector mesons. Following the definitions given in Refs. [69, 70], the P -wave decay amplitudes can be decomposed into three

components in the transversity basis, including longitudinalA0, parallelA‖, and perpendicularA⊥. As the S-wave ππ andKK̄
pair can arise from the intermediate resonancesR1 and R2 labelled in Fig. 2(a), the related two single S-wave decay amplitudes

are described as ASV and AV S respectively, which are physical different. The double S-wave amplitudeASS is associated with

the final states, where both ππ andKK̄ meson pairs are generated in the S wave. All of the above mentioned helicity amplitudes
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of the four-body decays B(s) → (ππ)(KK̄) are summarized as follows:

AV V : B(s) → ρ(→ ππ)φ(→ KK̄),

AV S : B(s) → ρ(→ ππ)f0(→ KK̄),

ASV : B(s) → f0(→ ππ)φ(→ KK̄),

ASS : B(s) → f0(→ ππ)f0(→ KK̄). (2)

B. Triple-product asymmetries in four-body B(s) → (ππ)(KK̄) decays

As stressed in the Introduction, TPAs and direct CP violation can complement each other. TPA is another class of CP -

violating effect, which has received considerably less attention and can also reveal the presence of new physics. In this section,

we will briefly introduce the TPAs in the present work.

In the four-body decays B(s) → (ππ)(KK̄), one can usually measure the four final state particles’ momenta in the B(s)

meson rest frame. We define three unit vectors: n̂R1(n̂R2) perpendicular to the R1(R2) decay plane and ẑ in the direction of R1

in the B(s) rest frame. Thus we have

n̂R1 · n̂R2 = cosϕ, n̂R1 × n̂R2 = sinϕẑ, (3)

implying the T -odd scalar triple products

(n̂R1 × n̂R2) · ẑ = sinϕ, (4)

2(n̂R1 · n̂R2)(n̂R1 × n̂R2) · ẑ = sin 2ϕ. (5)

A T -odd asymmetry in the B decay can usually be defined by an asymmetry between the number of events with positive and

negative values of sinϕ or sin 2ϕ,

A1
T =

Γ(cos θ1 cos θ2 sinϕ > 0)− Γ(cos θ1 cos θ2 sinϕ < 0)

Γ(cos θ1 cos θ2 sinϕ > 0) + Γ(cos θ1 cos θ2 sinϕ < 0)
, (6)

A2
T =

Γ(sin 2ϕ > 0)− Γ(sin 2ϕ < 0)

Γ(sin 2ϕ > 0) + Γ(sin 2ϕ < 0)
. (7)

In our calculations, we will focus on the TPAs originating from the interference between the CP -odd amplitude A⊥ and the

other two CP -even amplitudes A0 and A‖ in the B(s) → ρφ → (ππ)(KK̄) decays, which can be derived from the partially

integrated differential decay rates as [38, 45],

A1
T =

Γ(cos θ1 cos θ2 sinϕ > 0)− Γ(cos θ1 cos θ2 sinϕ < 0)

Γ(cos θ1 cos θ2 sinϕ > 0) + Γ(cos θ1 cos θ2 sinϕ < 0)

= −2
√
2

πD

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[A⊥A
∗
0], (8)

A2
T =

Γ(sin 2ϕ > 0)− Γ(sin 2ϕ < 0)

Γ(sin 2ϕ > 0) + Γ(sin 2ϕ < 0)

= − 4

πD

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[A⊥A
∗
‖], (9)

with the denominator

D =

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)(|A0|2 + |A‖|2 + |A⊥|2), (10)

and the invariant mass of the final state meson pair ω1(2). The factor k(ω1, ω2) represents the magnitude of the three-momentum

of the meson pair in the B(s) meson rest frame,

k(ω1, ω2) =

√

[m2
B(s)

− (ω1 + ω2)2][m2
B(s)

− (ω1 − ω2)2]

2mB(s)

, (11)
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where mB(s)
is the mass of the B(s) meson. The kinematic variable k(ω) =

√

λ(ω2,m2
h1
,m2

h2
)/(2ω) is defined in the h1h2

center-of-mass frame, with the Källén function λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc) and mh1,h2 being the final state

mass.

It should be noted that although the two TPAs given in Eqs. (8) and (9) in terms of transversity amplitudes are odd under

time reversal, they are not genuine CP violation. For example, the integrands Im(A⊥A∗
i ) (i = 0, ‖) in the above TPAs can be

expended in the form of |A⊥||A∗
i | sin(∆φ+∆δ), with ∆φ and ∆δ representing the weak and strong phase differences between

the two corresponding transversity amplitudesA⊥ andA∗
i . The term |A⊥||A∗

i | sin(∆φ+∆δ) can be nonzero even in the absence

of any weak phases, as long as the strong phase difference ∆δ is nonzero. Thus the two TPAs A1
T and A2

T can not reflect a true

signal of CP violation. However, one can still obtain a true CP -violating asymmetry by comparing AT with ĀT , where ĀT

is the T -odd asymmetry measured in the B̄(s) decay process. We denote the helicity amplitudes for the CP -conjugate decay

process by Ā0, Ā‖ and Ā⊥, which can be obtained by applying the following transformations:

A0 → Ā0, A‖ → Ā‖, A⊥ → −Ā⊥. (12)

The TPAs of the B̄(s) decays can be defined similarly, but with a multiplicative minus sign. We then have the TPAs for the

charge-averaged decay rates

A1,ave
T-true ≡ [Γ(S1 > 0) + Γ̄(S̄1 > 0)]− [Γ(S1 < 0) + Γ̄(S̄1 < 0)]

[Γ(S1 > 0) + Γ̄(S̄1 > 0)] + [Γ(S1 < 0) + Γ̄(S̄1 < 0)]

= − 2
√
2

π(D + D̄)

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[A⊥A
∗
0 − Ā⊥Ā

∗
0], (13)

A2,ave
T-true ≡ [Γ(S2 > 0) + Γ̄(S̄2 > 0)]− [Γ(S2 < 0) + Γ̄(S̄2 < 0)]

[Γ(S2 > 0) + Γ̄(S̄2 > 0)] + [Γ(S2 < 0) + Γ̄(S̄2 < 0)]

= − 4

π(D + D̄)

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[A⊥A
∗
‖ − Ā⊥Ā

∗
‖], (14)

A1,ave
T-fake ≡ [Γ(S1 > 0)− Γ̄(S̄1 > 0)]− [Γ(S1 < 0)− Γ̄(S̄1 < 0)]

[Γ(S1 > 0) + Γ̄(S̄1 > 0)] + [Γ(S1 < 0) + Γ̄(S̄1 < 0)]

= − 2
√
2

π(D + D̄)

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[A⊥A
∗
0 + Ā⊥Ā

∗
0], (15)

A2,ave
T-fake ≡ [Γ(S2 > 0)− Γ̄(S̄2 > 0)]− [Γ(S2 < 0)− Γ̄(S̄2 < 0)]

[Γ(S2 > 0) + Γ̄(S̄2 > 0)] + [Γ(S2 < 0) + Γ̄(S̄2 < 0)]

= − 4

π(D + D̄)

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[A⊥A
∗
‖ + Ā⊥Ā

∗
‖], (16)

with Γ̄ being the CP -conjugate decay rate, the denominator

D̄ =

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)(|Ā0|2 + |Ā‖|2 + |Ā⊥|2), (17)

and the variables

S1 = cos θ1 cos θ2 sinϕ, S2 = cos θ1 cos θ2 sin 2ϕ

S̄1 = cos θ̄1 cos θ̄2 sin ϕ̄, S̄2 = cos θ̄1 cos θ̄2 sin 2ϕ̄. (18)

It is shown that A1(2),ave

T-true in terms of Im[A⊥A∗
0(‖) − Ā⊥Ā∗

0(‖)] is proportional to sin∆φ cos∆δ. They can be nonzero only in

the presence of the weak phase difference ∆φ. Therefore, the “true” averaged TPAs can provide extra measurements of CP

violation. What’s more, compared with the direct CP asymmetries , A1(2),ave

T-true does not suffer the suppression from the strong

phase difference, which reaches the maximal value when the strong phase difference vanishes. On the contrary, A1(2),ave

T-fake ∝
cos∆φ sin∆δ are not a CP -violating signal as it is nonzero even in the absence of CP -violating phases. Such a quantity will

be referred as a “fake” asymmetry (CP conserving), and simply reflects the effect of strong phases [1, 45], instead of CP
violation.

In order to make a direct comparison with the future measurements, we also calculate the so-called “true” and “fake” TPAs as
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follows,

A1
T-true =

1

2
(A1

T + Ā1
T) = −

√
2

π

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[
A⊥A∗

0

D − Ā⊥Ā∗
0

D̄ ], (19)

A2
T-true =

1

2
(A2

T + Ā2
T) = − 2

π

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[
A⊥A∗

||
D −

Ā⊥Ā∗
||

D̄ ], (20)

A1
T-fake =

1

2
(A1

T − Ā1
T) = −

√
2

π

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[
A⊥A∗

0

D +
Ā⊥Ā∗

0

D̄ ], (21)

A2
T-fake =

1

2
(A2

T − Ā2
T) = − 2

π

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)Im[
A⊥A∗

||
D +

Ā⊥Ā∗
||

D̄ ], (22)

The subscripts “true” and “fake” refer to whether the asymmetry is due to a real CP asymmetry or effects from final-state

interactions that are CP symmetric. The two asymmetries defined in Eqs. (15) and (19) are usually different from each other

in the most B(s) meson decays, as well as the two asymmetries in Eqs. (16) and (20). They become equal when no direct CP

asymmetry occurs in the total decay rate, namely D = D̄.

III. PERTURBATIVE CALCULATION

For simplicity, we will work in the rest frame of the B meson. In the light-cone coordinates, the B meson momentum pB
can be parametrized as pB = mB√

2
(1, 1, 0T). Considering the four-body decay B0 → ρ0φ → (π+π−)(K+K−) shown in

Fig. 1, we define the intermediate resonance ρ(φ) with the momentum p(q), and the four final state mesons with the momentum

pi(i = 1, 4), satisfying the momentum conservation relations pB = p+ q, p = p1 + p2, q = p3 + p4. The momentum of the ρ
and φ can be written as

p =
mB√
2
(g+, g−, 0T), q =

mB√
2
(f−, f+, 0T), (23)

in which the factors f±, g± are related to the invariant masses of the meson pairs via p2 = ω2
1 and q2 = ω2

2 ,

g± =
1

2

[

1 + η1 − η2 ±
√

(1 + η1 − η2)2 − 4η1

]

,

f± =
1

2

[

1− η1 + η2 ±
√

(1 + η1 − η2)2 − 4η1

]

, (24)

with the mass ratio η1(2) = ω2
1(2)/m

2
B. The corresponding longitudinal polarization vectors of the P -wave ππ and KK̄ pairs

can be defined as

ǫp =
1√
2η1

(g+,−g−, 0T ), ǫq =
1√
2η2

(−f−, f+, 0T ), (25)

which obey the normalization ǫ2p = ǫ2q = −1 and the orthogonality ǫp · p = ǫq · q = 0.

The explicit expressions of the individual momenta pi can be derived from the relations p = p1+ p2 and q = p3+ p4 together

with the on-shell conditions p2i = m2
i for the final state mesons,

p1 =

(

mB√
2
(ζ1 +

r1 − r2
2η1

)g+,
mB√
2
(1− ζ1 +

r1 − r2
2η1

)g−, pT

)

,

p2 =

(

mB√
2
(1− ζ1 −

r1 − r2
2η1

)g+,
mB√
2
(ζ1 −

r1 − r2
2η1

)g−,−pT

)

,

p3 =

(

mB√
2
(1− ζ2 +

r3 − r4
2η2

)f−,
mB√
2
(ζ2 +

r3 − r4
2η2

)f+, qT

)

,

p4 =

(

mB√
2
(ζ2 −

r3 − r4
2η2

)f−,
mB√
2
(1− ζ2 −

r3 − r4
2η2

)f+,−qT

)

,

p2
T = ζ1(1− ζ1)ω

2
1 −

r1 + r2
2η1

+
(r1 − r2)

2

4η21
,

q2
T = ζ2(1− ζ2)ω

2
2 −

r3 + r4
2η2

+
(r3 − r4)

2

4η22
, (26)
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with the mass ratios ri = m2
i /m

2
B, mi being the masses of the final state mesons, and the term ζ1 + r1−r2

2η1
= p+1 /p

+ (ζ2 +
r3−r4
2η2

= p−3 /q
−) characterizing the momentum fraction for one of pion-pion (kaon-kaon) pair.

It is easy to obtain the relation between the meson momentum fractions ζ1,2 and the polar angle θ1,2 in the dimeson rest frame

in Fig. 1,

2ζ1 − 1 =
√
1 + 4α1 cos θ1, 2ζ2 − 1 =

√
1 + 4α2 cos θ2, (27)

with the two factors

α1 = −r1 + r2
2η1

+
(r1 − r2)

2

4η21
, α2 = −r3 + r4

2η2
+

(r3 − r4)
2

4η22
, (28)

and the bound

ζ1max,min =
1

2

[

1±
√
1 + 4α1

]

, ζ2max,min =
1

2

[

1±
√
1 + 4α2

]

. (29)

As illustrated in Fig. 2, there are eight types of Feynman diagrams contributing to the hard kernels H of the four-body decays

B(s) → R1R2 → (ππ)(KK) at leading order in the PQCD approach, which can be classified into three types: the factorizable

emission diagrams (Figs. 2(a) and 2(b)); the nonfactorizable emission diagrams (Figs. 2(c) and 2(d)); and the annihilation

diagrams (Figs. 2(e)-2(h)). For the evaluation of the H , we also need to define three valence quark momenta labelled by ki
(i = B, p, q) in each meson as

kB =
(

0, xBp
+
B, kBT

)

, kp =
(

x1p
+, 0, k1T

)

, kq =
(

0, x2q
−, k2T

)

, (30)

with the parton momentum fraction xi, and the parton transverse momentum kiT. The small components k−p and k+q in Eq. (30)

have been dropped in our calculation because kp and kq are aligned with the meson pairs in the plus and minus direction. We

also neglect the contribution from the k+B component since it does not appear in the hard kernels for dominant factorizable

contributions.

In order to calculate the different helicity amplitudes, we first give the weak effective Hamiltonian Heff of the considered

four-body decays induced by the b→ q (q = s, d) transition,

Heff =
GF√
2

{

VubV
∗
uq

[

C1(µ)O
u
1 (µ) + C2(µ)O

u
2 (µ)

]

− VtbV
∗
tq

[

10
∑

i=3

Ci(µ)Oi(µ)
]

}

+ H.c., (31)

with the Fermi constant GF = 1.16639 × 10−5 GeV−2, Wilson coefficients Ci(µ) at the renormalization scale µ, the local

four-quark operators Oi (i = 1, ..., 10) [75] and the CKM matrix elements Vij .

According to the above Eq. (31), each considered decay channel may receive contributions from one or more terms propor-

tional to different Wilson coefficients Ci. The total decay amplitudes of the B(s) → ρφ → (ππ)(KK̄) at LO in the PQCD

approach can then be written as

Ah(B
+ → ρ+φ→ (π+π−)(K+K−) = −GF√

2
V ∗
tbVtd

[

(

C3 +
C4

3
+ C5 +

C6

3
− C7

2
− C8

6
− C9

2
− C10

6

)

FLL,h
eρ

+

(

C4 −
C10

2

)

MLL,h
eρ +

(

C6 −
C8

2

)

MSP,h
eρ

]}

, (32)

Ah(B
0 → ρ0φ→ (π+π−)(K+K−) = −GF

2
V ∗
tbVtd

[

(

−C3 −
C4

3
− C5 −

C6

3
+
C7

2
+
C8

6
+
C9

2
+
C10

6

)

FLL,h
eρ

−
(

C4 −
C10

2

)

MLL,h
eρ −

(

C6 −
C8

2

)

MSP,h
eρ

]}

, (33)

Ah(B
0
s → ρ0φ→ (π+π−)(K+K−)) =

GF

2

{

V ∗
ubVus

[

(

C1 +
C2

3

)

FLL,h
eφ + C2M

LL,h
eφ

]

− V ∗
tbVts

[3

2

(

C7 +
C8

3
+ C9 +

C10

3

)

FLL,h
eφ +

3C10

2
MLL,h

eφ +
3C8

2
MSP,h

eφ

]}

,

(34)
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with h = 0, ‖,⊥. The individual decay amplitude appeared in the above equations, such as FLL,h
eρ and MLL,h

eρ , MSP,h
eρ , is

obtained by evaluating the Feynman diagrams in Fig. 2 analytically. The term FLL,h
eρ ( MSP,h

eρ ), for example, represents the

contribution from the factorizable (nonfactorizable) emission diagrams with (V −A)⊗ (V −A) ((S − P )⊗ (S + P )) current.

The explicit expressions of FLL,h
eρ and other decay amplitudes can be found easily in Ref. [69]. The helicity amplitudes of the

S-wave decays have been collected in APPENDIX A.

As shown in Eq. (1), the DAs of the initial B meson and the final state meson pairs are the most important nonperturbative

inputs in the PQCD approach. For the B meson, we adopt the form widely used in the literature [76, 77], and more alternative

models of theB meson DA and the subleading contributions can be found in Refs. [78–85]. The S- and P -wave two-pion (kaon)

DAs, as well as the related time-like form factors are summarized in APPENDIX B.

IV. NUMERICAL ANALYSIS

In this section, we work out a number of physical observables for the B(s) → (ππ)(KK̄) decays, such as the branching

ratios, polarization fractions, direct CP asymmetries, together with TPAs. We firstly show the input parameters adopted in our

numerical analysis in Table I, including the decay constants [15, 86], the meson masses, the decay widths, the lifetimes and

Wolfenstein parameters [87].

The differential branching fraction of the B(s) → (ππ)(KK̄) in the B(s) meson rest frame can be expressed as:

d5B
dθ1dθ2dϕdω1dω2

=
τB(s)

k(ω1)k(ω2)k(ω1, ω2)

16(2π)6m2
B(s)

|A|2, (35)

with the B(s) meson lifetime τB(s)
. It has been confirmed that Eq. (35) is equivalent to those in Refs. [88, 89] by appropriate

variable changes. Replacing the helicity angle θ1(2) by the meson momentum fraction ζ1(2) via Eq. (27), the Eq. (35) is turned

into

d5B
dζ1dζ2dω1dω2dϕ

=
τB(s)

k(ω1)k(ω2)k(ω1, ω2)

4(2π)6m2
B(s)

√
1 + 4α1

√
1 + 4α2

|A|2, (36)

where the total decay amplitude A can be written as a coherent sum of the P -, S-, and double S-wave components with ζ1(2)
and ϕ dependencies

A = A0
2ζ1 − 1√
1 + 4α1

2ζ2 − 1√
1 + 4α2

+A‖2
√
2

√

ζ1(1− ζ1) + α1

1 + 4α1

√

ζ2(1− ζ2) + α2

1 + 4α2
cosϕ

+iA⊥2
√
2

√

ζ1(1− ζ1) + α1

1 + 4α1

√

ζ2(1− ζ2) + α2

1 + 4α2
sinϕ

+AV S
2ζ1 − 1√
1 + 4α1

+ASV
2ζ2 − 1√
1 + 4α2

+ASS . (37)

We can obtain the branching ratio form according to the Eq. (36),

Bh =
τB(s)

4(2π)6m2
B(s)

2π

9
Ch

∫

dω1dω2k(ω1)k(ω2)k(ω1, ω2)|Ah|2. (38)

The coefficients Ch are the results of the integrations over ζ1, ζ2, ϕ in terms of Eq. (38) and listed as follows,

Ch =











(1 + 4α1)(1 + 4α2), h = 0, ‖,⊥,
3(1 + 4α1,2), h = V S, SV,

9, h = SS.

(39)

The CP -averaged branching ratio, the direct CP asymmetries in each component and the overall asymmetry can then be

defined as below,

Bavg
h =

1

2
(Bh + B̄h), Adir

h =
B̄h − Bh

B̄h + Bh
, Adir

CP =

∑

h B̄h −∑

h Bh
∑

h B̄h +
∑

h Bh
, (40)

where B̄h is the branching ratio of the correspondingCP -conjugate channel.
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TABLE I: The decay constants are taken from Refs. [15, 86]. Other parameters are from PDG 2022 [87].

Wolfenstein parameters λ = 0.22650 A = 0.790 ρ̄ = 0.141 η̄ = 0.357

Mass (GeV) mB = 5.28 mBs
= 5.37 mπ± = 0.140 mK± = 0.494

mπ0 = 0.135 mK0 = 0.498

Decay constants (GeV) fB = 0.21 fBs
= 0.23 fφ = 0.215 fT

φ = 0.186

fρ = 0.216 fT
ρ = 0.184

Decay width (MeV) Γφ = 4.25 Γρ = 149.1

Lifetime (ps) τB0 = 1.519 τB± = 1.638 τBs
= 1.51

For the B → V V decays, the additional polarization fractions fλ with λ = 0, ‖, and ⊥, are described as

fλ =
|Aλ|2

|A0|2 + |A‖|2 + |A⊥|2
, (41)

with the normalisation relation f0 + f‖ + f⊥ = 1.

A. S-wave contributions

TABLE II: PQCD predictions for the branching ratios of the B(s) → [V S, SV, SS] → (ππ)(KK̄) decays, with S = f0 and V = ρ, φ. The

theoretical uncertainties are attributed to the variations of the shape parameter ωB(s)
in the B(s) meson DA, of the Gegenbauer moments in

various twist DAs of KK̄ and ππ pairs, and of the hard scale t and the QCD scale ΛQCD.

decay modes PQCD predictions

B+
→ ρ+f0 → (π+π0)(K+K−) (1.25+0.59+0.22+0.15

−0.45−0.20−0.25)× 10−7

B0
→ ρ0f0 → (π+π−)(K+K−) (3.01+0.50+1.34+0.49

−0.39−0.95−0.18)× 10−9

B0
s → ρ0f0 → (π+π−)(K+K−) (4.01+1.08+0.38+0.35

−0.76−0.35−0.34)× 10−9

B0
→ f0φ → (π+π−)(K+K−) (0.47+0.19+0.20+0.12

−0.13−0.24−0.06)× 10−9

B0
s → f0φ → (π+π−)(K+K−) (4.09+2.24+1.15+1.08

−1.58−1.02−1.67)× 10−7

B0
→ f0f0 → (π+π−)(K+K−) (1.93+1.05+0.66+0.44

−0.67−0.33−0.23)× 10−10

B0
s → f0f0 → (π+π−)(K+K−) (7.19+4.32+0.71+3.98

−2.28−0.60−2.63)× 10−8

The PQCD predictions for the CP -averaged branching ratios of the S-wave decays are summarized in Table II, in which the

theoretical uncertainties are derived from three different sources. The first error results from the parameter of the wave function

of the initial stateB(s) meson, ωB = 0.40±0.04 and ωBs
= 0.48±0.048 [90–92]. The second one comes from the Gegenbauer

moments in the two-meson DAs given in Eq. (B21), and the last one is caused by the variation of the hard scale t from 0.75t
to 1.25t (without changing 1/bi) and the QCD scale ΛQCD = 0.25 ± 0.05 GeV, which characterizes the effect of the next-

to-leading-order QCD contributions. The three uncertainties are comparable, and their combined impacts could exceed 50%,

implying that the nonperturbative parameters in the DAs of the initial and final states need to be constrained more precisely, and

the higher-order corrections to four-bodyB meson decays are critical.

Although the quark model has achieved great successes, the identification of scalar mesons is a long-standing puzzle, and the

underlying structure of scalar mesons is not well established on the theoretical side (for a review, see Ref. [87]). At present,

two main scenarios have been proposed to classify the light scalar resonances [93]. The Scenario-I (S-I) is based on the naive

two-quark model, and the light scalar mesons below or near 1 GeV like f0(980) are regarded as the lowest lying states. While

in Scenario-II (S-II), the f0(980) is identified as the predominant four-quark state q2q̄2, and the scalars above 1 GeV are treated

as the ground qq̄ states. Since it is difficult for us to study these S-wave decays based on the four-quark picture, we shall

consider the conventional qq̄ assignment for the light scalar f0(980) to give several quantitative predictions. In Scenario-I,

f0(980) is mainly treated as an ss̄ state, which has been supported by D+
s → f0π, φ → f0γ decays [87]. However, there

also exists some experimental evidences indicating that f0(980) is not purely an ss̄ state. For example, the observation of

Γ(J/ψ → f0ω) ≃ 1
2Γ(J/ψ → f0φ) [87] clearly shows the existence of the non-strange and strange quark content. Therefore,
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f0(980) should be a mixture of nn̄ = 1√
2
(uū+ dd̄) and ss̄,

|f0〉 = |nn̄〉sinθ + |ss̄〉cosθ. (42)

The value of the mixing angle θ in the above equation has not been determined precisely so far, which is suggested to be in the

wide ranges of 25◦ < θ < 40◦ and 140◦ < θ < 165◦ [94–96]. For simplicity, we will adopt the value θ = 145◦ [20, 97] in our

calculation. In our previous works [69–72], the scalar meson f0(980) is usually considered as the pure ss̄ state. Furthermore,

there also exist some theoretical studies on the B(s) meson decays involving f0(980) in the final states based on the assumption

that f0(980) is a pure ss̄ density operator [98–100]. In Ref. [73], on the other hand, we found that the contribution from the

f0 = (uū+ dd̄)/
√
2 component is significant in the decays like B0 → ρ0f0 governed by B → fn transition form factor. Thus,

the mixing effect shown in Eq. (42) should also be taken into account in this work.

The two-body branching ratio B(B(s) → R1R2) can usually be extracted from the corresponding four-body decay modes in

Table II under the narrow width approximation:

B(B(s) → R1R2 → (ππ)(KK̄)) ≈ B(B(s) → R1R2)× B(R1 → ππ) × B(R2 → KK̄). (43)

The B of the three-body decay B0 → ρ0(f0 →)π+π− can then be calculated as follows:

B(B0 → ρ0(f0 →)π+π−) =
B(B0 → ρ0f0 → (π+π−)(K+K−))

B(ρ0 → π+π−)
· Rπ/K = (0.09+0.05

−0.03)× 10−7, (44)

with the ratio Rπ/K = B(f0→π+π−)
B(f0→K+K−) . Recent years, BABAR [101] and BES [102, 103] Collaborations have performed

systematically measurements on the ratio of the partial decay width of f0 → K+K− to f0 → π+π−,

Rexp
K/π =

{

0.69± 0.32 BABAR,

0.25+0.17
−0.11 BES,

(45)

and we have adopted their average value Rexp
K/π = 0.35 ± 0.11 [104] in Eq. (44). The B0 → ρ0f0 decay mode has also been

studied in the two-body framework within the PQCD [18] and QCDF [7] approaches. In the narrow-width limit, one can get the

following branching fractions

B(B0 → ρ0(f0 →)π+π−) =

{

(0.10+0.15
−0.00)× 10−7 QCDF,

(1.65+1.00
−0.84)× 10−7 PQCD,

(46)

where B(f0 → π+π−) = 0.5 [7] is used. Our calculation B = (0.09+0.05
−0.03) × 10−7 is consistent well with the QCDF pre-

diction [7], but far from the previous PQCD value [18]. Nonetheless, all these theoretical predictions are much smaller than

the current experimental data Bexp = (7.8 ± 2.5) × 10−7 [87], which may be clarified in the following form. First, the

B0 → ρ0(f0 →)π+π− decay is ascribed to the involved color suppressed tree contributions. Since only leading order diagrams

have been concerned in the current work, it indicates that this decay might receive substantial next-to-leading-order (NLO)

corrections. Besides, as shown in Ref. [73], the calculated B of the decay B0 → f0ρ
0 is sensitive to the Gegenbauer moment

aS and the mixing angel θ. It is expected that maybe we can fit the related non-perturbative parameters with abundant data to

match the experiment when NLO corrections to four-body decays in the PQCD framework are considered, which goes beyond

the scope of the present work and should be left for the future studies.

We remark that the KK̄ invariant mass of the S-wave decays has been limited in a narrow window of ±30 MeV around

the known φ mass in this study. As claimed in Refs. [71, 72], the contribution of scalar resonance f0(980) relies on the final-

state invariant mass range strongly, since it has a wide decay width. We have recalculated the B of the decay B0 → ρ0f0 →
(π+π−)(K+K−) by enlarging the S-waveKK̄ invariant mass range from [mφ− 30MeV,mφ+30MeV] to [2mK ,mB −mρ]:
B = 2.95× 10−8. The corresponding branching fraction of the three-body decayB0 → ρ0(f0 →)π+π− is then estimated to be

0.84 × 10−7, which is larger than the value in Eq. (44) by almost one order. It should also be noted that, strictly speaking, the

narrow width approximation has not been fully justified since such approximation has its scope of application. As claimed in

Refs. [105, 106], for the broad scalar intermediate states like f0(980), the narrow-width approximation should be corrected by

including the finite-width effects. The result B = (0.09+0.05
−0.03)× 10−7 evaluated from the B(B0 → ρ0f0 → (π+π−)(K+K−))

may suffer from a large uncertainty due to the finite-width effects of the scalar resonance. Therefore, we hope that the future

experiments can perform a direct measurement on the four-body decay B0 → ρ0f0 → (π+π−)(K+K−).
Relying on the fraction B(φ → K+K−) = 49.2% [87], we can extract the B(B0

s → φ(f0 →)π+π−) from the four-body

decay B0
s → f0φ→ (π+π−)(K+K−) in Table II under the narrow width limit:

B(B0
s → φ(f0 →)π+π−) =

B(B0
s → f0φ→ (π+π−)(K+K−))

B(φ→ K+K−)
= (0.83+0.54

−0.51)× 10−6. (47)
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Although the above theoretical cental value is a bit smaller than the experimental data Bexp = (1.12 ± 0.21)× 10−6 [87], our

result can still accommodate the current measurement with large uncertainties, and also comparable with the previous three-

body PQCD result [107]. In Ref. [20], the authors have studied the branching fraction of the two-body decay B0
s → φf0 in

PQCD approach, and one can obtain B(B0
s → φ(f0 →)π+π−) = (0.24+0.21

−0.14) × 10−6 according to Eq. (43). It is shown that

our calculation B = (0.83+0.54
−0.51) × 10−6 presented in Eq. (47) is a bit larger than the converted value (0.24+0.21

−0.14) × 10−6 [20]

from the previous two-body PQCD result by a factor of ∼ 3 , but more close to the experimental data. As already stressed

previously that in fact the narrow width approximation is not exactly valid for the broad intermediate states like f0(980). For

these resonances, the finite-width effects is significant and should be considered. Thus, the above comparisons is just a rough

estimate for a cross-checking. Overall, since the property of the scalar resonance f0(980) is not well understood, and both the

theoretical and experimental uncertainties are relatively large, all the above issues need to be further clarified in the future.

B. Branching ratios and polarization fractions of two-body B(s) → ρφ decays

On basis of the narrow width approximation Eq.(43), the branching ratios of the two-body decays B(s) → ρφ have been

extracted in Table III. The polarization fractions fi (i = 0, ‖,⊥) of the two-bodyB(s) → ρφ decays calculated in this work have

also been listed in Table III. For a comparison, the updated predictions in the QCDF [5], the previous predictions in the PQCD

approach [23], SCET [30] and FAT [31] are also displayed in Table III, and the experimental results for branching ratios are

taken from PDG 2022 [87].

TABLE III: Branching ratios and polarization fractions of the two-body B(s) → ρφ decays. For a comparison, we also list the results from

the previous PQCD [23], QCDF [5], SCET [30], and FAT [31]. The world averages of experimental data are taken from PDG 2022 [87]. The

sources of the theoretical errors are the same as in Table II.

Modes B(10−6) f0(%) f‖(%) f⊥(%)

B0
s → ρ0φ 0.28+0.11+0.02+0.03

−0.07−0.01−0.02 86.58+0.25+0.56+0.46
−0.13−0.52−0.19 6.45+0.05+0.27+0.09

−0.11−0.26−0.17 6.98+0.07+0.30+0.11
−0.14−0.30−0.24

PQCD [23] 0.23+0.15
−0.05 86± 1 · · · 8.89+0.80

−1.06

QCDF [5] 0.18+0.09
−0.04 88+2

−18 · · · · · ·

SCET [30] 0.36 ± 0.05 100 · · · · · ·

FAT [31] 0.07 ± 0.03 · · · · · · · · ·

Data [87] 0.27 ± 0.08 · · · · · · · · ·

B0
→ ρ0φ 0.006+0.001+0.002+0.001

−0.001−0.002−0.001 85.47+0.00+3.95+4.26
−0.46−6.52−6.46 7.73+0.25+3.46+4.36

−0.06−2.10−3.08 6.80+0.21+3.04+2.06
−0.00−1.86−1.19

PQCD [23] 0.013+0.007
−0.006 95± 1 · · · 2.36+1.08

−0.76

SCET [30] ≈ 0.002 100 · · · · · ·

FAT [31] 0.03 ± 0.01 · · · · · · · · ·

Data [87] < 0.33 · · · · · · · · ·

B+
→ ρ+φ 0.013+0.002+0.004+0.002

−0.002−0.004−0.002 85.47+0.00+3.95+4.26
−0.46−6.52−6.46 7.73+0.25+3.46+4.36

−0.06−2.10−3.08 6.80+0.21+3.04+2.06
−0.00−1.86−1.19

PQCD [23] 0.028+0.015
−0.013 95+1

−2 · · · 2.36+1.08
−0.76

SCET [30] 0.005 ± 0.001 100 · · · · · ·

FAT [31] 0.06 ± 0.02 · · · · · · · · ·

Data [87] < 3.0 · · · · · · · · ·

TABLE IV: Branching ratios of the four-body decay B0
s → ρ0φ → (π+π−)(K+K−) from different topology diagrams. FE and NFE

represent the contributions from factorizable emission and nonfactorizable emission diagrams, respectively.

channel
Tree B(10−6) Penguin B(10−6)

FE NFE Total FE NFE Total

B0
s → ρ0φ→ (π+π−)(K+K−) 0.013 0.018 0.031 0.214 0.001 0.215

Most of the theoretical predictions of B(B0
s → ρ0φ) agree well with the current data within errors. The calculated branching

ratio (0.28+0.12
−0.07) × 10−6 of the decay B0

s → ρ0φ is much smaller than those of other b → s transition processes, such as

B0
s → K∗K∗ decays. To see clearly the contributions from different topology diagrams, we show the explicit numerical results

of the B0
s → ρ0φ decay in Table. IV, in which we just quote the central values. We know that |V ∗

tbVts| and |V ∗
ubVus| are O(λ2)
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and O(λ4) respectively, with λ ∼ 0.22. This implies that the tree operators of the b → s transition decays like B0
s → ρ0φ

are highly suppressed by the CKM matrix elements |V ∗
ubVus|. Furthermore, the tree amplitudes of the B0

s → ρ0φ channel from

the factorizable emission diagrams Fig. 2(a) and 2(b) are also suppressed by the small Wilson coefficients C1 + C2/3. The

dominant contributions are then from the penguin operators. However as show in Eq. (34), the B0
s → ρ0φ decay has no gluonic

penguin amplitudes because of the cancellations between the uū and dd̄ component in the ρ0 meson. The only left parts are all

electroweak penguin suppressed. As a result, the total branching ratio of the B0
s → ρ0φ is estimated to be small, at the order of

10−7.

For other two B0 → ρ0φ and B+ → ρ+φ decay channels controlled by b → d transitions, the predicted branching ratios are

much smaller than that of B0
s → ρ0φ decay due to the CKM-suppressed factor |Vtd/Vts|2 ∼ 0.05. The calculated B(B+ →

ρ+φ) = (0.013± 0.005)× 10−6 and B(B0 → ρ0φ) = (0.006± 0.002)× 10−6 in this work are about half of the previous two-

body results B(B+ → ρ+φ) = (0.028+0.015
−0.013)× 10−6 [23] and B(B0 → ρ0φ) = (0.013+0.007

−0.006)× 10−6 [23]. The main reason is

that the additional higher power corrections related to the momenta fraction xB have been taken into account in the current work,

which has been ignored in Ref. [23]. Taking the B0 → ρ0φ decay as an example, we have reexamined the branching fraction

without the contributions from xB: B(B0 → ρ0φ) = 0.01 × 10−6, which becomes similar to the previous two-body analysis.

The current experiments give the upper limits: B(B+ → ρ+φ) < 3.0 × 10−6 [87] and B(B0 → ρ0φ) < 3.3 × 10−7 [87] at

90% C.L, so more precise measurements are expected to differentiate these theoretical predictions. Besides, under the isospin

limit the following relation among the B0 → ρ0φ and B+ → ρ+φ decays is naively expected

R =
B(B0 → ρ0φ)

B(B+ → ρ+φ)
≈ 1

2
· τB0

τB+

. (48)

Our calculations basically agree with the relation given above and can be tested by the future experiments.

In the naive factorization approach, the longitudinal polarizations are expected to dominate the branching ratios of charmless

B → V V decays according to the naive counting rules [9]

f0 ∼ 1−O(m2
V /m

2
B), f‖ ∼ f⊥ ∼ O(m2

V /m
2
B), (49)

with mV being the vector meson mass. In sharp contrast to these expectations, large transverse polarization of order 50%
is observed in the penguin dominated decays B → K∗ρ, B → K∗φ, and B0

s → φφ [34, 35, 39, 54–56], which reflects

that the counting rules given in Eq. (49) is violated and poses an interesting challenge for the theory. In order to interpret

this large transverse polarization, a number of strategies have been proposed within or beyond the SM [2, 25, 108–129]. In

the PQCD approach, the unexpected large transverse components are led by the penguin annihilation diagrams, especially the

(S − P )(S + P ) penguin annihilation, introduced by the QCD penguin operator O6 [108], which is originally introduced in

Ref. [130].

For the B0 → ρ0φ, B+ → ρ+φ and B0
s → ρ0φ decays, the longitudinal polarization fractions are predicted to be as large as

90%, which agree well with the previous PQCD calculations [15, 23] and those from QCDF [5], SCET [30] and FAT [31] within

uncertainties. The B(s) → ρφ are pure emission-type decays, and the contributions from the chirally enhanced (S−P )(S +P )

penguin annihilation operator vanishes. Besides taking the B0
s → ρ0φ decay as an example, the dominant contributions are

from the 3/2[C7 + C8/3 + C9 + C10/3]F
LL,h
eφ (h = 0, ‖,⊥) induced by the electroweak penguin operators in the factorizable

emission diagrams. Compared with the longitudinal component FLL,0
eφ , the transverse amplitudes F

LL,‖
eφ and FLL,⊥

eφ are always

highly suppressed by the factor ωππ/mBs
≈ mρ/mBs

≈ 0.02, which leads to f0 ∼ 90%.

C. CP -violating observables

The directCP asymmetries with each helicity state (ACP
0,‖,⊥) of the four-bodyB0

s → ρ0φ→ (π+π−)(K+K−) decay together

with those summed over all helicity states (ACP
dir ) are listed in Table V. For comparison, we also present the updated results of the

QCDF [5], SCET [30], FAT [31], and the PQCD [23] predictions in two-body framework. Meanwhile, the directCP asymmetry

ACP of the S-wave decaysB(s) → [V S, SV, SS] → (ππ)(KK̄) are also displayed in Table VI. The kinematics of the two-body

decays is fixed, while the amplitudes of the quasi-two-body decays depend on the invariant mass of the final-state pairs, resulting

in the differential distribution of direct CP asymmetries. The CP asymmetry in the four-body framework is moderated by

the finite width of the intermediate resonance appearing in the time-like form factor F (ω2). Hence, it is reasonable to see the

differences of direct CP asymmetries between the two-body and four-body frameworks in the PQCD approach as shown in

Table V.

The direct CP asymmetries of the two b̄ → d̄s̄s transition decays B0 → ρ0φ → (π+π−)(K+K−) and B+ → ρ+φ →
(π+π0)(K+K−) are naturally expected to be zero since only penguin operators work on these decays. However, the B0

s →
ρ0φ → (π+π−)(K+K−) mode receives the additional tree contributions, and the interference between the tree and penguin

amplitudes leads to the direct CP asymmetry: ACP
dir = (21.8+2.7

−3.3)%. For the S-wave decays shown in Table VI, it is interesting
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TABLE V: Direct CP asymmetries (in units of %) for the B0
s → ρ0φ → (π+π−)(K+K−) decay compared with the previous predictions

in the PQCD approach [23], the updated predictions in the QCDF [5], SCET [30] and FAT [31]. The sources of the theoretical errors are the

same as in Table II.

Modes A
CP
0 A

CP
‖ A

CP
⊥ A

CP
dir

B0
s → ρ0φ→ (π+π−)(K+K−) 29.4+0.4+0.9+2.9

−0.1−1.0−3.8 −27.7+0.8+0.5+5.2
−1.1−0.4−5.6 −26.6+0.7+0.6+4.7

−1.0−0.5−4.9 21.8+0.6+1.1+2.4
−0.1−1.1−3.1

PQCD [23] 3.27+1.07
−1.19 −32.8+7.4

−5.8 −4.3+1.5
−1.2

QCDF [5] · · · · · · · · · 83+10
−36

SCET [30] · · · · · · · · · 0

FAT [31] · · · · · · · · · 0

to see that the predicted ACP of the two double S-wave decays B0 → f0f0 → (π+π−)(K+K−) and B0
s → f0f0 →

(π+π−)(K+K−) are indeed quiet different. As can be seen from the related numerical results in Table VII, the fact is that

for the B0
s → f0f0 → (π+π−)(K+K−) decay, the tree operators are highly suppressed by the CKM matrix elements |VusV ∗

ub|,
in comparison with |VtsV ∗

tb| related to the penguin operators. For B0 → f0f0 → (π+π−)(K+K−) decay, both of |VudV ∗
ub| and

|VtdV ∗
tb| are in the same order (10−3), which can strengthen the interference between the tree and penguin amplitudes. Therefore,

the predicted ACP of the B0
s → f0f0 → (π+π−)(K+K−) is much smaller than that of the B0 → f0f0 → (π+π−)(K+K−)

decay.

As it is known that the direct CP asymmetry depends on both the strong phase and the weak CKM phase. In the SCET,

the large strong phase is only from the long-distance charming penguin at leading power and leading order. In the QCDF and

PQCD approaches, the strong phase comes from the hard spectator scattering and annihilation diagrams respectively. So, the

origins of strong phase are actually different in these three approaches, which leads to different predictions of ACP
dir (B

0
s → ρ0φ).

The forthcoming LHCb and Belle-II measurements for the direct CP asymmetries can help us to examine these factorization

approaches.

TABLE VI: PQCD predictions for the direct CP asymmetries ACP (in units of %) of the B(s) → [V S, SV, SS] → (ππ)(KK̄) decays, with

S = f0(980) and V = ρ, φ. The sources of the theoretical errors are the same as in Table II.

decay modes PQCD predictions

B+
→ ρ+f0 → (π+π0)(K+K−) −8.8+0.8+1.2+0.9

−0.9−0.8−0.9

B0
→ ρ0f0 → (π+π−)(K+K−) −17.6+0.0+13.7+26.2

−6.2−14.9−23.4

B0
s → ρ0f0 → (π+π−)(K+K−) 21.3+1.4+3.3+2.9

−0.6−3.9−3.8

B0
→ f0φ → (π+π−)(K+K−) 0.0

B0
s → f0φ → (π+π−)(K+K−) 5.4+2.9+3.9+1.6

−0.0−2.0−4.8

B0
→ f0f0 → (π+π−)(K+K−) −79.4+7.7+25.3+4.4

−2.2−1.1−2.3

B0
s → f0f0 → (π+π−)(K+K−) −0.06+0.00+0.00+0.00

−3.41−5.50−3.22

TABLE VII: Branching ratios of the double S-wave four-body decays B0
→ f0f0 → (π+π−)(K+K−) and B0

s → f0f0 →

(π+π−)(K+K−) from different topology diagrams.

Decay modes Tree contributions Penguin contributions

B0
→ f0f0 → (π+π−)(K+K−) 0.78 × 10−10 1.12× 10−10

B0
s → f0f0 → (π+π−)(K+K−) 2.22 × 10−11 7.12× 10−8

The PQCD predictions for the “true” and “fake” TPAs of the B(s) → ρφ → (ππ)(KK̄) decays are collected in Table VIII.

As mentioned previously, the averaged asymmetries A1(2),ave

T-true (A1(2),ave

T-fake ) are usually not equal to the so-called “true” (“fake”)

asymmetries A1(2)
T-true(A

1(2)
T-fake). They become equal only in the absence of direct CP violation in the total rates, namely D = D̄,

such as the B0 → ρ0φ→ (π+π−)(K+K−) and B+ → ρ+φ→ (π+π0)(K+K−) decays.

For the two pure penguin decays B0 → ρ0φ → (π+π−)(K+K−) and B+ → ρ+φ → (π+π0)(K+K−), each helicity

amplitude involves the same single weak phase in the SM, resulting in Ai
T = −Āi

T due to the vanishing weak phase difference.

The “true” TPAs for these two decay channels are thus expected to be zero. If such asymmetries are observed experimentally, it is

probably a signal of new physics. However, since theB0
s → ρ0φ→ (π+π−)(K+K−) decay can receive extra tree contributions,
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TABLE VIII: PQCD predictions for the TPAs (%) of the four-body B(s) → ρφ → (ππ)(KK̄) decays. The sources of theoretical errors are

the same as in Table II but added in quadrature.

TPAs-1

Modes A
1
T Ā

1
T A

1
T-true A

1
T-fake A

(1)ave

T-True A
(1)ave

T-fake

B+
→ ρ+φ→ (π+π0)(K+K−) −20.92+6.26

−2.80 20.92+2.80
−6.26 0 −20.92+6.26

−2.80 0 −20.92+6.26
−2.80

B0
→ ρ0φ→ (π+π−)(K+K−) −20.92+6.26

−2.80 20.92+2.80
−6.26 0 −20.92+6.26

−2.80 0 −20.92+6.26
−2.80

B0
s → ρ0φ→ (π+π−)(K+K−) −23.53+1.05

−0.62 3.06+3.22
−3.11 −10.23+1.73

−1.56 −13.29+1.79
−1.45 −11.42+1.82

−1.58 −14.20+1.51
−1.25

TPAs-2

Modes A
2
T Ā

2
T A

2
T-true A

2
T-fake A

(2)ave

T-True A
(2)ave

T-fake

B+
→ ρ+φ→ (π+π0)(K+K−) 1.02+1.12

−0.54 −1.02−1.12
+0.54 0 1.02+1.12

−0.54 0 1.02+1.12
−0.54

B0
→ ρ0φ→ (π+π−)(K+K−) 1.02+1.12

−0.54 −1.02−1.12
+0.54 0 1.02+1.12

−0.54 0 1.02+1.12
−0.54

B0
s → ρ0φ→ (π+π−)(K+K−) −4.91+0.30

−0.24 −0.08+0.73
−0.76 −2.50+0.43

−0.37 −2.42+0.25
−0.32 −2.72+0.44

−0.35 −2.64+0.36
−0.27

the magnitude of the calculated “true” TPA can exceed ten percent, which is expected to be tested by the future experiments.

As “fake” TPAs are due to strong phases and require no weak phase difference, the predicted A1(2)
T-fake and A1(2),ave

T-fake are usually

nonzero for all considered decays. The predicted large “fake” asymmetry A1
T-fake = (−20.92+6.26

−2.80)% of the B0 → ρ0φ →
(π+π−)(K+K−) decay simply reflect the final-state strong phases.

As usual, the decay amplitude associated with transverse polarizationA‖ is smaller than that for longitudinal polarization A0

in the SM within factorization. This indicates that A2
T is power suppressed relative to A1

T. Meanwhile, the smallness of A2
T is also

attributed to the suppression from the strong phase difference between the perpendicular and parallel polarization amplitudes,

which is supported by the previous PQCD calculations [23]. An observation of A2
T with large values can signify physics beyond

the SM. All these PQCD predictions can be tested in the near future.

V. CONCLUSION

By employing the perturbative QCD factorization approach, we have systematically investigated the four-body decaysB(s) →
(ππ)(KK̄) under the quasi-two-body approximation, in which the ππ and KK̄ invariant-mass spectrum are dominated by the

vector resonances ρ0 and φ, respectively. The scalar resonance f0(980) is also contributed in the selected ππ andKK̄ invariant-

mass ranges. The strong dynamics associated with the hadronization of the final state meson pairs is parametrized into the

non-perturbative two-meson DAs, which include both resonant and nonresonant contributions and have been established in

three-bodyB meson decays. With the two-meson DAs, the branching ratios, polarization fractions, direct CP asymmetries, and

the triple product asymmetries of the four-body decays B(s) → [ρφ, ρf0, f0φ, f0f0] → (ππ)(KK̄) have been examined.

Under the narrow width approximation equation, the two-body B(s) → ρφ branching ratios have been extracted from the

results for the four-body decays B(s) → ρφ → (ππ)(KK̄). We also presented the polarization fractions of the related four-

body decays. The obtained two-body branching ratio B(B0
s → ρ0φ) is consistent well with the previous two-body PQCD

prediction and the current experimental data within errors. The calculated large longitudinal polarization fractions f0 ∼ 90% of

the B(s) → ρφ decay modes also agree well with the theoretical predictions from the previous PQCD, QCDF, SCET and FAT

approaches.

We calculated the direct CP asymmetries and TPAs of the four-body B(s) → (ππ)(KK̄) decays. For the two pure penguin

B0 → ρ0φ → (π+π−)(K+K−) and B+ → ρ+φ → (π+π0)(K+K−) decays, both the direct CP asymmetries and “true”

TPAs are naturally expected to be zero in the SM due to the vanishing weak phase difference. While for B0
s → ρ0φ →

(π+π−)(K+K−) channel, the magnitude of the ACP
dir and A1

T-true can exceed 20% and 10% respectively, which are expected

to be confronted with the future experiments. The “fake” TPAs requiring no weak phase difference are usually nonzero for all

decay channels. The predicted sizable A1
T-fake = (−20.92+6.26

−2.80)% of the B0 → ρ0φ→ (π+π−)(K+K−) decay simply reflects

the importance of the strong final-state interactions.
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Appendix A: S-wave Decay amplitudes

According to Eq. (42), the total decay amplitudes of the S-wave channels can be divided into the nn̄ = 1√
2
(uū+ dd̄) and ss̄

components,

• B(s) → [ρf0, f0φ] → (ππ)(KK̄) decay modes

A(B+ → ρ+fn → (π+π0)(K+K−)) =
GF

2
V ∗
ubVud

[

(

C2 +
C1

3

)

(FLL
efn + FLL

afn + FLL
aρ )

+ C1

(

MLL
efn +MLL

afn +MLL
aρ

)

+ C2M
LL
eρ

]

− GF

2
V ∗
tbVtd

[

(

C4 +
C3

3
+ C10 +

C9

3

)

(FLL
efn + FLL

afn + FLL
aρ )

+

(

C6 +
C5

3
+ C8 +

C7

3

)

(FSP
afn + FSP

aρ ) +

(

2C6 +
C8

2

)

MSP
eρ

+

(

C6 +
C5

3
− C8

2
− C7

6

)

FSP
eρ +

(

C5 −
C7

2

)

MLR
eρ

+ (C3 + C9) (M
LL
efn +MLL

afn +MLL
aρ )

+ (C5 + C7) (M
LR
efn +MLR

afn +MLR
aρ )

+

(

C3 + 2C4 −
C9

2
+
C10

2

)

MLL
eρ

]

, (A1)

A(B+ → ρ+fs → (π+π0)(K+K−)) = −GF√
2
V ∗
tbVtd

[

(

C4 −
C10

2

)

MLL
eρ +

(

C6 −
C8

2

)

MSP
eρ

]

, (A2)

2A(B0 → ρ0fn → (π+π−)(K+K−)) =
GF√
2
V ∗
ubVud

[

(

C1 +
C2

3

)

(FLL
efn + FLL

afn + FLL
aρ )

+ C2

(

MLL
efn +MLL

afn +MLL
eρ +MLL

aρ

)

]

− GF√
2
V ∗
tbVtd

[

(

−C4 −
C3

3
+

3C7

2
+
C8

2
+

3C9

2
+
C10

2
+
C10

2
+
C9

6

)

×
(

FLL
efn + FLL

afn + FLL
aρ

)

+

(

−C6 −
C5

3
+
C8

2
+
C7

6

)

(FSP
eρ + FSP

afn + FSP
aρ )

−
(

C3 −
C9

2
− 3C10

2

)

(MLL
efn +MLL

afn +MLL
aρ )−

(

2C6 +
C8

2

)

MSP
eρ

−
(

C3 + 2C4 −
C9

2
+
C10

2

)

MLL
eρ +

3C8

2
(MSP

efn +MSP
afn +MSP

aρ )

−
(

C5 −
C7

2

)

(MLR
efn +MLR

afn +MLR
eρ +MLR

aρ )
]

, (A3)

A(B0 → ρ0fs → (π+π−)(K+K−)) = −GF

2
V ∗
tbVtd

[

(

−C4 +
C10

2

)

MLL
eρ +

(

−C6 +
C8

2

)

MSP
eρ

]

, (A4)
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2A(B0
s → ρ0fn → (π+π−)(K+K−)) =

GF√
2
V ∗
ubVus

[

(

C1 +
C2

3

)

(FLL
afn + FLL

aρ ) + C2(M
LL
afn +MLL

aρ )
]

− GF√
2
V ∗
tbVts

[

(

3C7

2
+
C8

2
+

3C9

2
+
C10

2

)

(FLL
afn + FLL

aρ )

+
3C10

2
(MLL

afn +MLL
aρ ) +

3C8

2
(MSP

afn +MSP
aρ )

]

, (A5)

A(B0
s → ρ0fs → (π+π−)(K+K−)) =

GF

2

{

V ∗
ubVus

[

(

C1 +
C2

3

)

FLL
efs + C2M

LL
efs

]

− V ∗
tbVts

[3

2

(

C7 +
C8

3
+ C9 +

C10

3

)

FLL
efs

+
3C10

2
MLL

efs +
3C8

2
MSP

efs

]}

, (A6)

A(B0 → fnφ→ (π+π−)(K+K−)) = −GF

2
V ∗
tbVtd

[

(

C3 +
C4

3
+ C5 +

C6

3
− C7

2
− C8

6
− C9

2
− C10

6

)

FLL,h
efn

+

(

2C4 +
C10

2

)

MLL
efn +

(

2C6 +
C8

2

)

MSP
efn

]

, (A7)

A(B0 → fsφ→ (π+π−)(K+K−)) = −GF√
2
V ∗
tbVtd

[

(

C3 +
C4

3
+ C5 +

C6

3
− C7

2
− C8

6
− C9

2
− C10

6

)

× (FLL,h
afs

+ FLL,h
aφ ) +

(

2C4 +
C10

2

)

(MLL
afs +MLL

aφ )

+

(

2C6 +
C8

2

)

(MSP
afs +MSP

aφ )
]

, (A8)

A(B0
s → fnφ→ (π+π−)(K+K−)) =

GF

2
V ∗
ubVus

[

C2M
LL
eφ

]

− GF

2
V ∗
tbVts

[

(

2C4 +
C10

2

)

MLL
eφ +

(

2C6 +
C8

2

)

MSP
eφ

]

, (A9)

A(B0
s → fsφ→ (π+π−)(K+K−)) = −GF√

2
V ∗
tbVts

[

(

C5 −
C7

2

)

(

MLR
eφ +MLR

aφ +MLR
efs +MLR

afs

)

+
4

3

(

C3 + C4 −
C9

2
− C10

2

)

(

FLL
efs + FLL

aφ + FLL
afs

)

+

(

C6 −
C8

2

)

(

MSP
efs +MSP

afs +MSP
eφ +MSP

aφ

)

+

(

C3 + C4 −
C9

2
− C10

2

)

(

MLL
eφ +MLL

aφ +MLL
efs +MLL

afs

)

+

(

C5 +
C6

3
− C7

2
− C8

6

)

(

FLR
efs + FLR

aφ + FLR
afs

)

+

(

C6 +
C5

3
− C8

2
− C7

6

)

(

FSP
eφ + FSP

aφ + FSP
afs

)

]

. (A10)

The decay amplitudes for the physical states are then

A(B(s) → [ρf0, f0φ] → (ππ)(KK̄)) = A(B(s) → [ρfn, fnφ] → (ππ)(KK̄)) sin θ

+ A(B(s) → [ρfs, fsφ] → (ππ)(KK̄)) cos θ. (A11)
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• B → f0f0 → (ππ)(KK̄) decay modes

2A(B0 → fnfn → (π+π−)(K+K−)) =
GF√
2
V ∗
ubVud

[

(

C1 +
C2

3

)

(FLL
afn) + C2

(

MLL
efn +MLL

afn

)

]

− GF√
2
V ∗
tbVtd

[(

2C3 +
2C4

3
+ C4 +

C3

3
+ 2C5 +

2C6

3
+
C7

2
+
C8

6

+
C9

2
+
C10

6
− C10

2
− C9

6

)

FLL
afn +

(

C6 +
C5

3
− C8

2
− C7

6

)

(

FSP
efn + FSP

afn

)

+

(

C3 + 2C4 −
C9

2
+
C10

2

)

(

MLL
efn +MLL

afn

)

+

(

C5 −
C7

2

)

(

MLR
efn +MLR

afn

)

+

(

2C6 +
C8

2

)

(

MSP
efn +MSP

afn

)

]

+ [(fn → K+K−) ↔ (fn → π+π−)], (A12)

A(B0 → fnfs → (π+π−)(K+K−)) = −GF

2
V ∗
tbVtd

[

(

C4 −
C10

2

)

MLL
efn +

(

C6 −
C8

2

)

MSP
efn

]

, (A13)

A(B0 → fsfs → (π+π−)(K+K−)) = −GF√
2
V ∗
tbVtd

[(

C3 +
C4

3
+ C5 +

C6

3
− C7

2
− C8

6
− C9

2
− C10

6

)

FLL
afs

+

(

C4 −
C10

2

)

MLL
afs +

(

C6 −
C8

2

)

MSP
afs

]

+ [(fs → K+K−) ↔ (fs → π+π−)],

(A14)

2A(B0
s → fnfn → (π+π−)(K+K−)) =

GF√
2
V ∗
ubVus

[

(

C1 +
C2

3

)

FLL
afn + C2M

LL
afn

]

− GF√
2
V ∗
tbVts

[

(

2C3 +
2C4

3
+ 2C5 +

2C6

3
+
C7

2
+
C8

6
+
C9

2
+
C10

6

)

FLL
afn

+

(

2C4 +
C10

2

)

MLL
afn +

(

2C6 +
C8

2

)

MSP
afn

]

+ [(fn → K+K−) ↔ (fn → π+π−)], (A15)

A(B0
s → fnfs → (π+π−)(K+K−)) =

GF

2
V ∗
ubVus

[

C2M
LL
efs

]

− GF

2
V ∗
tbVts

[

(

2C4 +
C10

2

)

MLL
efs +

(

2C6 +
C8

2

)

MSP
efs

]

, (A16)

A(B0
s → fsfs → (π+π−)(K+K−)) = −GF√

2
V ∗
tbVts

[(

C3 +
C4

3
+ C4 +

C3

3
− C9

2
− C10

6
− C10

2
− C9

6

)

FLL
afs

+

(

C6 +
C5

3
− C8

2
− C7

6

)

(

FSP
efs + FSP

afs

)

+

(

C3 + C4 −
C9

2
− C10

2

)

(

MLL
efs +MLL

afs

)

+

(

C5 −
C7

2

)

(

MLR
efs +MLR

afs

)

+

(

C6 −
C8

2

)

(

MSP
efs +MSP

afs

)

]

+ [(fs → K+K−) ↔ (fs → π+π−)]. (A17)

The decay amplitudes for the physical states are then

A(B(s) → f0f0 → (ππ)(KK̄)) = A(B(s) → fnfn → (ππ)(KK̄))(sin θ)2

+ A(B(s) → fnfs → (ππ)(KK̄)) sin 2θ

+ A(B(s) → fsfs → (ππ)(KK̄))(cos θ)2. (A18)
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Appendix B: Two-meson distribution amlitudes

The S-wave two-meson DAs can be written as [131] (h1h2 = ππ,KK̄),

Φ(h1h2)S (z, ω) =
1√
2Nc

[p/φ0(h1h2)S
(z, ω2) + ωφs(h1h2)S

(z, ω2) + ω(n/v/− 1)φt(h1h2)S
(z, ω2)], (B1)

in which Nc is the number of colors, and the asymptotic forms of the various twists DAs are parametrized as [57–60]

φ0(h1h2)S
(z, ω2) =

9FS(ω
2)√

2Nc

ah1h2z(1− z)(1− 2z), (B2)

φs(h1h2)S
(z, ω2) =

FS(ω
2)

2
√
2Nc

, (B3)

φt(h1h2)S
(z, ω2) =

FS(ω
2)

2
√
2Nc

(1− 2z), (B4)

with the time-like scalar form factor FS(ω
2). The Gegenbauer moments ah1h2 in Eq. (B2) are adopted the same values as those

determined in Refs. [132, 133]: aππ = 0.20± 0.20 [132], aKK = 0.80± 0.16 [133].

The elastic rescattering effects in the final-state meson pair can usually be absorbed into the time-like form factor F (ω2)
according to the Watson theorem [134]. For the scalar resonance f0(980), its pole mass is very close to the KK̄ threshold,

which can have strong influence on the resonance shape. In the present work, we follow Refs. [135, 136] to employ the widely

used Flatté model suggested by D.V. Bugg [137],

FS(ω
2) =

m2
f0(980)

m2
f0(980)

− ω2 − imf0(980)(gππρππ + gKKρKKF 2
KK)

, (B5)

with the two phase space factors ρππ and ρKK [64, 135, 138]

ρππ =
2

3

√

1− 4m2
π±

ω2
+

1

3

√

1− 4m2
π0

ω2
, ρKK =

1

2

√

1− 4m2
K±

ω2
+

1

2

√

1− 4m2
K0

ω2
. (B6)

The gππ = 0.167 GeV and gKK = 3.47gππ [135, 136] are coupling constants, describing the f0 decay into the final states

π+π− and K+K−, respectively. The exponential factor FKK = e−αq2
K is introduced above the KK̄ threshold to reduce the

ρKK factor as invariant mass increases, where qk is the momentum of the kaon in the KK̄ rest frame and α = 2.0 ± 0.25
GeV−2 [135, 137].

The corresponding P -wave two-meson DAs related to both longitudinal and transverse polarizations are decomposed, up to

the twist 3, into [139]:

ΦL
(h1h2)P

(z, ζ, ω) =
1√
2Nc

[

ωǫ/pφ
0
(h1h2)P

(z, ω2) + ωφs(h1h2)P
(z, ω2) +

p/1p/2 − p/2p/1
ω(2ζ − 1)

φt(h1h2)P
(z, ω2)

]

(2ζ − 1) , (B7)

ΦT
(h1h2)P

(z, ζ, ω) =
1√
2Nc

[

γ5ǫ/T p/φ
T
(h1h2)P

(z, ω2) + ωγ5ǫ/Tφ
a
(h1h2)P

(z, ω2) + iω
ǫµνρσγµǫTνpρn−σ

p · n−
φv(h1h2)P

(z, ω2)
]

·
√

ζ(1 − ζ) + α1 . (B8)
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The various twist DAs φi(h1h2)P
in the above equations can be expanded in terms of the Gegenbauer polynomials:

φ0ππ(z, ω
2) =

3F
‖
ππ(ω2)√
2Nc

z(1− z)

[

1 + a02ρ
3

2
(5(1− 2z)2 − 1)

]

, (B9)

φsππ(z, ω
2) =

3F⊥
ππ(ω

2)

2
√
2Nc

(1− 2z)
[

1 + as2ρ(10z
2 − 10z + 1)

]

, (B10)

φtππ(z, ω
2) =

3F⊥
ππ(ω

2)

2
√
2Nc

(1− 2z)2
[

1 + at2ρ
3

2
(5(1− 2z)2 − 1)

]

, (B11)

φTππ(z, ω
2) =

3F⊥
ππ(ω

2)√
2Nc

z(1− z)[1 + aT2ρ
3

2
(5(1− 2z)2 − 1)] , (B12)

φaππ(z, ω
2) =

3F
‖
ππ(ω2)

4
√
2Nc

(1− 2z)[1 + aa2ρ(10z
2 − 10z + 1)] , (B13)

φvππ(z, ω
2) =

3F
‖
ππ(ω2)

8
√
2Nc

{

[1 + (1 − 2z)2] + av2ρ[3(2z − 1)2 − 1]

}

, (B14)

φ0KK(z, ω2) =
3F

‖
KK(ω2)√
2Nc

z(1− z)

[

1 + a02φ
3

2
(5(1− 2z)2 − 1)

]

, (B15)

φsKK(z, ω2) =
3F⊥

KK(ω2)

2
√
2Nc

(1− 2z) , (B16)

φtKK(z, ω2) =
3F⊥

KK(ω2)

2
√
2Nc

(1− 2z)2 , (B17)

φTKK(z, ω2) =
3F⊥

KK(ω2)√
2Nc

z(1− z)[1 + aT2φ
3

2
(5(1− 2z)2 − 1)] , (B18)

φaKK(z, ω2) =
3F

‖
KK(ω2)

4
√
2Nc

(1− 2z) , (B19)

φvKK(z, ω2) =
3F

‖
KK(ω2)

8
√
2Nc

[1 + (1− 2z)2] , (B20)

with the P -wave form factors F
‖(⊥)
ππ (ω2) and F

‖(⊥)
KK (ω2). The values of the Gegenbauer moments associated with longitudinal

and transverse polarization components are adopted the same as those in Refs. [72, 73, 86, 139]:

a02φ = 0.40± 0.06, aT2φ = 1.48± 0.07,

a02ρ = 0.39± 0.11, as2ρ = −0.34± 0.26, at2ρ = −0.13± 0.04,

aT2ρ = 0.50± 0.50, aa2ρ = 0.40± 0.40, av2ρ = −0.50± 0.50. (B21)

Because the amounts of the current experimental data are not yet enough for fixing the Gegenbauer moments in the twist-3 DAs

φs,tKK and φv,aKK , they have been set to the asymptotic forms in our work.

In the experimental analysis of the multi-body hadronicB meson decays, the contribution from the wide ρ resonant is usually

parameterized as the Gounaris-Sakurai (GS) model [66] based on the BW function [65]. By taking the ρ − ω interference and

the excited states into account, the form factor F
‖
ππ(ω2) can be written in the form of [140]

F ‖
ππ(ω

2) =

[

GSρ(s,mρ,Γρ)
1 + cωBWω(s,mω,Γω)

1 + cω
+
∑

i

ciGSi(s,mi,Γi)

] [

1 +
∑

i

ci

]−1

, (B22)

where s = ω2 is the two-pion invariant mass squared, i = (ρ′(1450), ρ′′(1700), ρ′′′(2254)), Γρ,ω,i is the decay width for the

relevant resonance, mρ,ω,i are the masses of the corresponding mesons, respectively. The explicit expressions of the function

GSρ(s,mρ,Γρ) can be written as [65]

GSρ(s,mρ,Γρ) =
m2

ρ[1 + d(mρ)Γρ/mρ]

m2
ρ − s+ f(s,mρ,Γρ)− imρΓ(s,mρ,Γρ)

, (B23)
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with the factors

d(m) =
3

π

m2
π

k2(m2)
ln

(

m+ 2k(m2)

2mπ

)

+
m

2πk(m2)
− m2

πm

πk3(m2)
,

f(s,m,Γ) =
Γm2

k3(m2)

[

k2(s)[h(s)− h(m2)] + (m2 − s)k2(m2)h′(m2)
]

,

Γ(s,mρ,Γρ) = Γρ
s

m2
ρ

(

βπ(s)

βπ(m2
ρ)

)3

. (B24)

The functions k(s), h(s) and βπ(s) can be expressed as

k(s) =
1

2

√
sβπ(s) , h(s) =

2

π

k(s)√
s

ln

(√
s+ 2k(s)

2mπ

)

, βπ(s) =
√

1− 4m2
π/s. (B25)

For the vector form factor of the KK̄ system, the dominant resonance is φ(1020) in the concerned mass window. We then

employ the relativistic BW line shape to parameterize the F
‖
KK(ω2) [141],

F
‖
KK(ω2) =

m2
φ

m2
φ − ω2 − imφΓφ(ω2)

, (B26)

with the mass-dependent width Γφ(ω
2)

Γφ(ω
2) = Γφ

(mφ

ω

)

(

k(ω)

k(mφ)

)(2LR+1)

. (B27)

The mφ = 1.0195 GeV [87] and Γφ = 4.25 MeV [87] represent the mass and natural width of the φ meson, respectively. The

orbital angular momentum LR in the two-meson system is set to LR = 1 for a P -wave state. The k(ω) is the momentum vector

of the resonance decay product measured in the resonance rest frame, while k(mφ) is the value of k(ω) when ω = mφ. Due

to the limited studies on the form factor F⊥(ω2), we usually assume the approximation F⊥(ω2)/F ‖(ω2) ≈ fT
V /fV in our

calculation, with f
(T )
V being the vector (tensor) decay constants of the intermediate vector resonance.
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