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The interaction between an atom and an electromagnetic mode of a resonator is of both fundamental inter-
est and is ubiquitous in quantum technologies. Most prior work studies a linear light-matter coupling of the
form gσ̂x(â + â†), where g measured relative to photonic (ωa) and atomic (ωb) mode frequencies can reach
the ultrastrong regime (g/ωa > 10−1). In contrast, a nonlinear light-matter coupling of the form χ

2
σ̂z â

†â has
the advantage of commuting with the atomic σ̂z and photonic â†â Hamiltonian, allowing for fundamental op-
erations such as quantum-non-demolition measurement. However, due to the perturbative nature of nonlinear
coupling, the state-of-the-art χ/max(ωa, ωb) is limited to < 10−2. Here, we use a superconducting circuit
architecture featuring a quarton coupler to experimentally demonstrate, for the first time, a near-ultrastrong
χ/max(ωa, ωb) = (4.852±0.006)×10−2 nonlinear coupling of a superconducting artificial atom and a nearly-
linear resonator. We also show signatures of light-light nonlinear coupling (χâ†âb̂†b̂), and χ/2π = 580.3±0.4
MHz matter-matter nonlinear coupling (χ

4
σ̂z,aσ̂z,b) which represents the largest reported ZZ interaction be-

tween two coherent qubits. Such advances in the nonlinear coupling strength of light, matter modes enable new
physical regimes and could lead to applications such as orders of magnitude faster qubit readout and gates.

I. INTRODUCTION

Linear light-matter coupling can be modeled by the quan-
tum Rabi Hamiltonian [1] (ℏ = 1 hereafter),

Ĥlinear = ωaâ
†â+

ωb

2
σ̂z + g(â† + â)σ̂x, (1)

where â is the annihilation operator of a resonator serving
as the photonic or light-like mode and σ̂x,z are Pauli opera-
tors of a two-level system or qubit serving as the atomic or
matter-like mode. Eq. (1) describes linear light-matter cou-
pling in the language of nonlinear optics [2] because the in-
teraction g(â† + â)σ̂x is linear in (â† + â) and σ̂x, which
represent the electric field of the light and matter dipole, re-
spectively. In general, the coupling strength is important both
for demonstrating fundamental physics and practical quan-
tum technologies where stronger coupling fundamentally en-
ables faster entanglement operations [3] that are less limited
by qubit or photon decoherence times. Across physical plat-
forms such as atoms, molecules, and superconducting circuits,
the magnitude of g can exceed the decay rates of the system
in a regime known as strong coupling [4, 5]. Furthermore,
relative to the frequency of the photonic mode ωa (assumed
to be near-resonant with the atomic mode ωa ≈ ωb), the nor-
malized coupling η := g/ωa [4, 5] has reached the ultrastrong
(η>10−1) [6] and the deep-strong regime (η>1) [7].

However, large g significantly alters the photonic and
atomic eigenstates because the linear coupling gσ̂x(â + â†)
does not commute with the atomic σ̂z and photonic â†â
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Hamiltonian. This fundamentally precludes quantum-non-
demolition (QND) measurements of either photon number or
qubit state, and leads to effects such as unwanted Purcell de-
cay [8] or errors in quantum operations when g cannot be pre-
cisely switched off [9]. As such, in important applications
such as QND qubit readout [10, 11], QND single photon de-
tection [12, 13], and certain single [14] or two-qubit gates
[15, 16], the cross-Kerr interaction is used instead. This is
a type of nonlinear light-matter coupling:

Ĥnonlinear = ωaâ
†â+

ωb

2
σ̂z +

χ

2
â†âσ̂z, (2)

where (unlike Eq. (1)) the coupling is nonlinear in the electric
field since â†â and σ̂z represent the electromagnetic energy
(∼ field squared) of the light and matter mode, respectively.
Since most nonlinear effects in nature tend to be a higher or-
der process [2], the nonlinear χ is usually perturbatively small
compared to the linear g. In fact, the state-of-the-art approach
for realizing Eq. (2), is to simply use the linear coupling of
Eq. (1) in the dispersive regime [17] (g ≪ ∆ = |ωa − ωb|)
which produces an effective cross-Kerr χ = g2/∆ ≪ g.
Analogous to strong linear coupling, the strong nonlinear cou-
pling regime is defined as χ greater than decay rates, and
has been demonstrated in physical platforms such as atoms
[18] and superconducting circuits [12], leading to observation
of phenomenon such as photon-number splitting of the qubit
transition [12]. The largest reported cross-Kerr uses dispersive
coupling with a superconducting flux qubit for χ/2π = 80
MHz [19]. To better characterize the strength of the nonlinear
coupling beyond strong coupling, we hereby define the nor-
malized nonlinear coupling η̃ := χ/max(ωa, ωb), analogous
to the normalized linear coupling η := g/ωa [4, 5]. Note
that η̃ uses a more representative definition because χ mea-
surements do not require ωa ≈ ωb, in contrast to avoided-
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FIG. 1. Quarton coupler physics and experimental device. (A) Parameter landscape of light-matter nonlinear coupling (4-wave-mixing
Kerr effect). The presented quartonic scheme reaches near-ultrastrong nonlinear coupling with normalized nonlinear coupling (cross-Kerr
normalized by frequency) of η̃ = (4.852± 0.006)× 10−2, which is achieved without a trade-off of larger self-Kerr (|χ|/

√
|KaKb| = 83.2).

(B) Spring-mass analogue of the quarton coupler device circuit, colored equations show the potential energies up to ϕ4. (C) Effective circuit
of the quarton-coupled two transmon device. (D) False-colored micrograph of transmon A (red), B (blue) coupled by a gradiometric quarton
coupler (green). (E) False-colored micrograph of entire chip, including a flux-bias line for transmon B (yellow), drive lines for transmon A
(red), B (blue), and Purcell-protected readout resonators A (orange), B (purple).

crossing measurements for g. Natural definitions of ultra-
strong (η̃ > 10−1) and deep-strong (η̃ > 1) nonlinear cou-
pling then follow. To the best of our knowledge, the largest
reported η̃ is only 6 × 10−3 [19], which is close to two or-
ders of magnitude away from the ultrastrong nonlinear cou-
pling regime (10−1). This motivates us to introduce an inter-
mediate regime, near-ultrastrong nonlinear coupling, to cover
the range of 10−2 < η̃ < 10−1 that bridges existing capabil-
ities and the ultrastrong regime. More than two decades af-
ter the first demonstration of strong nonlinear coupling [18],
it is of fundamental interest to now explore the subsequent
regimes of near-ultrastrong, ultrastrong, and deep-strong non-
linear coupling. Furthermore, it is also of great practical inter-
est since cross-Kerr-based applications have operation times
∝1/χ [14, 20] or even ∝1/χ2 [21], therefore realizing orders
of magnitude stronger χ can lead to proportionally significant
improvements including ultrafast qubit readout [22], photon
detection [23], and qubit gates [14, 15].

Here, we show the first experimental demonstration of the
near-ultrastrong nonlinear light-matter coupling regime in any
physical platform. We demonstrate, in superconducting cir-
cuits, a normalized nonlinear coupling of η̃ = (4.852 ±
0.006) × 10−2. Using a gradiometric quarton coupler, at one
flux-bias point, we measure cross-Kerr coupling of χ/2π =
366.0 ± 0.5 MHz between two transmons, with one serving
as a nonlinear artificial atom and the other as a nearly-linear
resonator with self-Kerr anharmonicity of only 0.76 ± 0.08
MHz. Crucially, the large nonlinear coupling χ is not a result
of large self-nonlinearity (self-Kerrs Ka,Kb), as our system
exhibits χ/

√
KaKb > 80, whereas to the best of our knowl-

edge, all previous light-matter nonlinear couplings have been
restricted to χ/

√
KaKb ∼ O(1) (see Fig. 1A). This allows us

to simulate the regime of light-light nonlinear coupling [24]
at the same χ, observing photon-number splitting [12] of the
transitions of both transmons. We then flux-bias the quarton
coupler for maximal nonlinear coupling between two nonlin-
ear qubit modes, where we measure a matter-matter nonlinear
coupling of χ/2π = 580.3±0.4 MHz, which is (to the best of
our knowledge) the largest reported cross-Kerr (ZZ) coupling
between two coherent qubits.

In the following sections, we begin by presenting the de-
vice and the key operating principles based on our previ-
ous theory proposal [25], then we present spectroscopy re-
sults showing transmon self-Kerr tuning with quarton coupler
flux bias which enables linearization (self-Kerr near zero) of
one transmon at a flux-bias point. At said point, we mea-
sure cross-Kerr coupling strength with spectroscopy, show-
ing near-ultrastrong nonlinear light-matter coupling. Finally,
we modify the spectroscopy to simulate light-light nonlinear
coupling, and demonstrate matter-matter nonlinear coupling
at another quarton coupler flux-bias point.

II. RESULTS

A. Quarton coupler circuit

Superconducting circuits is a leading platform for the study
and control of light-matter interaction [26, 27]. By exploit-
ing the nonlinear kinetic inductance of the Josephson junction
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(JJ) to make quantum oscillators with nonlinear energy levels,
high coherence artificial atoms or qubits can be realized. We
use here a common type of superconducting qubit, known as
the transmon [28], which can be understood as a microwave
resonator with added self-Kerr nonlinearity (K < 0) from the
JJ:

Ĥtransmon = ωbb̂
†b̂+

K

2
b̂†2b̂2 + · · · ≈ ωb

2
σ̂z, (3)

The key insight is that since adding a self-Kerr of K turns a
linear resonator (photonic) mode into a qubit (atomic) mode,
then removing K linearizes a transmon qubit into a res-
onator. This is achieved using the quarton coupler we pro-
posed in [25], which can induce an opposite-signed (pos-
itive) self-Kerr to transmons while facilitating large cross-
Kerr between them. This “quartonic” approach allows us
to achieve large cross-Kerr χ without causing a large self-
Kerr K that would otherwise compromise the linearity of the
photon mode. We contrast our approach with the state-of-
the-art in Fig. 1A which shows the parameter landscape of
light-matter nonlinear coupling (including 1 additional case
of light-light nonlinear coupling [24]) with 4-wave-mixing
Kerr effect, wherein we use calculated Ka when not provided
[19, 29]. To the best of our knowledge, all previous exper-
imental cross-Kerr demonstrations [19, 24, 29, 30] are lim-
ited to |χ|/max(ωa, ωb) < O(10−2) and a trade-off appears
where larger nonlinear coupling is accompanied by dispropor-
tionately larger self-nonlinearity (decreasing |χ|/

√
|KaKb|).

Existing demonstrations are also limited to |χ|/
√
|KaKb| ∼

O(1), as expected when cross-Kerr interactions are dominated
by first-order effects which satisfy |χ|/

√
|KaKb| = 2 [31].

The circuit realized in this work, shown in Fig. 1C, consists
of two transmons (red, blue) galvanically coupled by a gra-
diometric quarton coupler (green). The gradiometric circuit
topology is inspired by other works [32, 33]. The circuit’s po-
tential energy can be written in terms of Josephson energies
EJ and the node superconducting phases ϕa, ϕb:

U = −EJa cos (
ϕ̃s

2
) cos(ϕa)− EJb cos(ϕb)

− 3EJ cos(
ϕa − ϕb

3
)

− αEJ cos(ϕ̃qΣ) cos(ϕa − ϕb),

(4)

where we have assumed that the two nominally identical loops
of the gradiometric quarton are identically flux-biased. The
gradiometric quarton then behaves as a quarton with ϕ̃qΣ flux
tunable α, which varies its ratio of linear coupling, (ϕa−ϕb)

2,
to nonlinear coupling, (ϕa − ϕb)

4 [25]. At α cos (ϕ̃qΣ) =

−1/3, the quarton coupling potential EQ

24 (ϕa−ϕb)
4+. . . is to

leading order quartic with effective Josephson energy EQ =
8
27EJ .

The behavior of this circuit can be understood with a spring-
mass analogue as shown in Fig. 1B, where we treat the two
node phases ϕa, ϕb as position coordinates, and the transmon
JJs act as slightly nonlinear springs with spring constant EJ .
Keeping terms up to O(ϕ4), the quarton acts as a purely non-
linear coupling spring with potential energy EQ

24 (ϕa − ϕb)
4.

This allows cancellation of the −EJa

24 ϕ4
a self-nonlinearity of

the ϕa mode (if EQ ≈ EJa) while creating a strong ϕ2
aϕ

2
b

nonlinear coupling between the two modes. Writing the ϕ op-
erators in the Fock basis, one can see that this ϕ2

aϕ
2
b coupling

leads to a non-perturbative cross-Kerr term ∝ â†âb̂†b̂.
A false-colored micrograph of our device is shown in

Fig. 1E, with a close-up of the two transmons in Fig. 1D.
Transmon A, on the left, will be linearized into a light-like
mode with near zero self-Kerr anharmonicity, while transmon
B, on the right, will remain a nonlinear qubit or matter-like
mode. Both transmons have drive lines and Purcell-protected
[34] readout resonators labeled A and B, which are capaci-
tively coupled to transmons A and B, respectively. The chip
also includes a local flux-bias line to tune the SQUID in trans-
mon B, and the chip package has a global coil to bias the gra-
diometric quarton coupler. See Appendix A for more details
about the experimental setup.

In addition to the quarton and SQUID loops, the upper
and lower ground plane around the circuit form two loops
with the JJs of the circuit (see Fig. 1D). Symmetric flux in
these loops produces an unimportant screening current in the
ground plane, while asymmetric flux in these loops (ϕ̃g∆) will
bias the junctions. We calibrate the local and global flux bias
such that ϕ̃g∆ ≈ 0, so that only the SQUID (ϕ̃s) and quarton
(ϕ̃qΣ) are biased (see Appendix B for the calibration proce-
dure).

Note that when the transmons are strongly cross-Kerr cou-
pled, i.e. χâ†âb̂†b̂ with |χ| ≫ 0, the device exhibits an un-
usual phenomenon where both resonators can be used to read-
out either transmon. This is because the capacitive coupling
g of transmon A(B) to its ∆ frequency-detuned resonator
A(B) hybridizes their modes, this can be approximated as
â(b̂) → â(b̂)+ g

∆ âro(b̂ro) where âro(b̂ro) are annihilation op-
erators of readout resonator A(B). The hybridization imparts
the usual dispersive shifts, χd,aâ

†ââ†roâro and χd,bb̂
†b̂b̂†rob̂ro,

but also an additional non-dispersive cross-Kerr χn with ap-
proximately:

χâ†âb̂†b̂

→χ(â† +
g

∆
â†ro)(â+

g

∆
âro)(b̂

† +
g

∆
b̂†ro)(b̂+

g

∆
b̂ro)

=χâ†âb̂†b̂+ χnâ
†âb̂†rob̂ro + χnb̂

†b̂â†roâro + . . .

(5)

Unlike the usual dispersive shift which for a transmon is pro-
portional to its self-Kerr [28] (χd,a(b) ∝ Ka(b)) and thus van-
ishes to first-order when the transmon is linearized (K ≈ 0),
the non-dispersive χn is independent of transmon self-Kerrs
and can thus be leveraged to readout linearized transmons.

B. Spectroscopy

We obtain the circuit’s eigenenergy spectrum as a function
of quarton flux bias (Fig. 2A) by performing standard two-
tone spectroscopy [35] while sweeping Ibias (a proxy for quar-
ton flux bias ϕ̃qΣ, see Appendix B for details). Since transmon
B is designed to have a higher frequency, we apply the drive
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FIG. 2. Transmon self-Kerr tuning via quarton coupler flux bias. (A) Two-tone spectroscopy of the device with theory fit (grey dashed)
overlaid. (B) Self- and cross-Kerr of transmons A and B at different quarton flux bias, extracted from the theory fit. Transmon A reaches
zero self-Kerr at approximately Ibias = 1.285 mA. (C-E) Pulse sequences for two-tone spectroscopy, labeled by colored shapes. (F-I) High
power two-tone spectroscopy near zero self-Kerr (Ibias = 1.285 mA) with pulse sequences E (for F-G) and D (for H-I). Clear signature of
linearization can be observed, with peaks converging in both spectroscopies and the dispersive shift changing signs in panel F. Panels G, I
display respective line-cuts of F, H (at Ibias labeled by colored triangles), where single photon f0→1 and multi-photon f0→2/2 transitions are
visible. The phase of successive line-cuts are plotted with a constant offset for visual clarity.

through transmon B’s drive line (Fig. 2C) when performing
spectroscopy at high frequency. For lower frequency spec-
troscopy, we instead drive transmon A, which is designed with
a lower frequency (Fig. 2D). In both cases we use resonator B
for readout because resonator A (at 6.837 GHz) is acciden-
tally near-resonant with transitions at certain Ibias. Fig. 2A re-
veals several transition frequencies (labeled fnAnB

on the plot
by the excitation number in transmon A(B) denoted nA(B))
of our system. By numerically solving for the eigenenergies
of the circuit and fitting the Josephson energies of each JJ as
free parameters (see Appendix C for details), we obtain good
agreement with the spectroscopy results (gray dashed lines).

From the theory fit, we compute expected self- and cross-
Kerrs as shown in Fig. 2B. Around the bias point Ibias = 1.285
mA, the model predicts the desired nonlinear light-matter cou-
pling properties with near-zero self-Kerr for transmon A, non-
zero self-Kerr for transmon B, and a large cross-Kerr between
them. We also identify bias points such as Ibias = 1.224
mA where both transmons behave like large self-Kerr qubits,
whose extremely large cross-Kerr coupling is ideal for matter-
matter nonlinear coupling (also known as ZZ [9] or Ising [36]
or longitudinal interaction [37]: χ

4 σ̂z,aσ̂z,b).

In Fig. 2F-I, we zoom in and more closely examine the flux
bias near Ibias = 1.285 mA where transmon A is linearized.
We perform standard high-power two-tone spectroscopy so
the multi-photon transitions that reveal transmon anharmonic-

ity can be excited [35]. In Fig. 2F, we drive transmon A and
resonantly probe the dispersively-coupled resonator A (see
Fig. 2E). We observe a clear sign change in readout phase
indicating a corresponding sign change in the underying dis-
persive shift between resonator A and transmon A. This is ex-
pected as a resonator’s dispersive shift with a transmon (when
∆ ≫ K) is directly proportional to the transmon’s self-Kerr
[28] (χd ∝ K), and we also observe a concurrent change
in self-Kerr anharmonicity, most clearly-observed in Fig. 2G
where we plot the line-cuts of Fig. 2F with constant phase off-
sets. Here, we see higher-order transition peaks (most visibly,
f0→2/2) move from above to below the f0→1 peak and con-
verge in the middle, near the theory-predicted zero-Kerr point
Ibias = 1.285 mA. At this point, the transmon A peak is al-
most invisible to its dispersively-coupled readout resonator A,
consistent with the prediction that the dispersive shift goes to
zero at linearization.

We verify that the disappearance of transmon A (in Fig. 2F)
is due to its linearization by repeating high-power two-tone
spectroscopy with resonator B instead (see Fig. 2D). As de-
rived previously (see Eq. (5)), there exists a non-dispersive
cross-Kerr χn between transmon A and resonator B which
does not depend on transmon A’s anharmonicity Ka. As pre-
dicted, the resulting spectroscopy (Fig. 2H-I) shows the same
convergence of higher-order transitions at the linearization
point but has a strong transmon A signal even when it is lin-
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TABLE I. Summary of frequencies (MHz) and coherence times (µs) of both transmons at operating point Ibias = 1.285 mA where transmon
A has near-zero anharmonicity.

χ/2π (MHz) f0→1 (MHz) f1→2 − f0→1 (MHz) f2→3 − f0→1 (MHz) T1 (µs) TE
2 (µs)

Transmon A 366.25 ± 0.84 5105.02 ± 0.04 0.76 ± 0.08 -60.46 ± 0.41 10.61 ± 0.27 -
Transmon B 365.69 ± 0.36 7542.42 ± 0.02 25.44 ± 0.11 259.10 ± 0.35 8.55 ± 0.14 2.23 ± 0.04

FIG. 3. Near-ultrastrong nonlinear coupling between linearized transmon A (light) and transmon qubit B (matter). (A) Pulse diagram:
resonant pulse of length τA driving linearized transmon A followed by pulse of frequency fB driving transmon B and readout with resonator B.
(B) Readout resonator B response as a function of τA and fB . (C) Vertical line-cuts of panel B showing Rabi-like oscillation. (D) Horizontal
line-cuts of panel B showing photon-number splitting of transmon B transition by transmon A’s excitation number {|0⟩ , |1⟩ , |2⟩}A. (E) Pulse
diagram: resonant pulse of length τB driving transmon qubit B followed by pulse of frequency fA driving linearized transmon A and readout
with resonator A. (F) Readout resonator A response as a function of τB and fA. (G) Vertical line-cuts of panel F showing Rabi oscillation.
(H) Horizontal line-cuts of panel F showing splitting of transmon A transition by transmon B’s qubit states {|0⟩ , |1⟩}B .

earized. In fact, among the Fig. 2I line-cuts, the transmon A
peak is the strongest at the linearization point (green) because
more energy levels can be excited (higher ⟨â†â⟩) for an over-
all larger readout shift (χn⟨â†â⟩) on resonator B. We also see
that the phase shifts in Fig. 2H-I are all positive, in agree-
ment with the prediction of Eq. (5) that χn ∝ χ and the quar-
tonic χ between transmon A and B is positive (see Fig. 2B).
We note that this new non-local, non-dispersive cross-Kerr in-
teraction between a transmon and a spatially-separated and
geometrically-uncoupled resonator may have further applica-
tions in novel readout or remote-entanglement schemes.

C. Near-ultrastrong light-matter nonlinear coupling

We now demonstrate near-ultrastrong nonlinear coupling
between transmon B and the linearized transmon A by op-
erating at the linearization point (Ibias = 1.285 mA) found
previously. Table I shows the transition frequencies and co-
herence times of both transmons at this operating point (see
Appendix D for details). We note that transmon A has a near-
zero measured self-Kerr anharmonicity of 0.76 ± 0.08 MHz,
on par with or lower than other experimental self-Kerr anhar-

monicities of light-like resonator modes reported in literature
[24, 29], which allows its non-qubit (|i⟩, i > 1) states to be ex-
cited under resonant drive pulses. Transmon A’s linearization
is limited by its higher-order six-wave-mixing (â†3â3) anhar-
monicity of −60.46 ± 0.41 MHz, so for resonant drives with
low amplitudes (Rabi frequency ΩR/2π ≪ 60 MHz), this six-
wave-mixing anharmonicity suppresses excitation beyond the
first 3 levels ({|0⟩ , |1⟩ , |2⟩}).

To confirm this, we apply the pulse sequence shown in
Fig. 3A: we first resonantly drive the linearized transmon A
with a low ΩR pulse of varying duration τA, then apply a
pulse of varying frequency fB to transmon B, and finally
end by probing resonator B. We plot in Fig. 3B the resulting
phase of resonator B as a function of the two swept variables
τA and fB . We note again that resonator B is dispersively-
coupled with χd to transmon B and non-dispersively cross-
Kerr coupled with χn to transmon A, so resonator B’s phase
conveniently encodes both transmons’ population. Examining
Fig. 3B and its line-cuts in Fig. 3C-D, we observe Rabi-like
oscillation along time τA and varying splitting of transmon
B transition that indicates the Rabi-like oscillation is between
states {|0⟩ , |1⟩ , |2⟩} of transmon A as expected. We empha-
size that the drive-dependent photon-number splitting spec-
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FIG. 4. Matter-matter and simulated light-light nonlinear coupling. (A) Pulse diagrams for simulated light-light nonlinear coupling
experiments at Ibias = 1.285 mA. The initial transmon A(B) drive pulse is frequency detuned from (f0→1) resonance by ∆A(B) = −10(+5)
MHz to better excite higher energy level transitions. (B) Spectroscopies showing photon-number splitting of both transmons’ transition, a key
signature of cross-Kerr between two photon modes. First 4 levels of transmon A and 3 levels of transmon B are visible with {|0⟩ , |1⟩} splitting
of χ/2π = 365.6(4) ± 0.5(3) MHz for transmon A(B). Left, right panels of number splitting results are obtained from respective left, right
pulse diagrams (panel A). (C) Pulse diagrams for matter-matter nonlinear coupling experiments at Ibias = 1.224 mA. The initial transmon
A(B) drive is a resonant π/2 pulse. (D) Spectroscopies showing qubit state splitting of both transmons’ transition, as expected for cross-Kerr
between two qubit modes. Measured {|0⟩ , |1⟩} splittings of χ/2π = 580.5(2) ± 0.6(4) MHz for transmon A(B). Left, right panels of qubit
state splitting results are obtained from respective left, right pulse diagrams (panel C).

trum in Fig. 3D is a defining signature of strong light-matter
nonlinear coupling [12]. Here the |0⟩A and |1⟩A transitions
are split by a cross-Kerr χ/2π = 366.25±0.84 MHz (see Ap-
pendix E for details), which is more than four times larger than
the state of the art [19]. The higher photon-number |2⟩A tran-
sition exhibits lower cross-Kerr, which results from parasitic
â†â(â†b̂ + b̂†â) interactions originating from ϕ3

aϕb terms in
the quarton coupling potential (ϕa − ϕb)

4. These interactions
increase the effective linear coupling rate for higher photon-
number states, thereby lowering cross-Kerr in agreement with
theoretical predictions (see Appendix C for details).

As a complementary experiment, we probe the system re-
sponse when the nonlinear transmon B is excited first, fol-
lowed by spectroscopy on linear transmon A and readout
through resonator A, as described in Fig. 3E. Similar to be-
fore, we plot the phase of resonator A in Fig. 3F, and show
corresponding vertical and horizontal line-cuts in Fig. 3G and
Fig. 3H, respectively. Since transmon B has much larger self-
Kerr anharmonicity of 25.44± 0.11 MHz (Table I) compared
to the drive amplitude, we see a Rabi oscillation expected of
driven qubits in Fig. 3G. We also observe in Fig. 3H a split-
ting of transmon A’s transition by transmon B’s qubit states
{|0⟩ , |1⟩}B , with the relative strength of each peak varying
in accordance with expected qubit population oscillation dur-
ing the Rabi cycle. We again extract the cross-Kerr from the
{|0⟩ , |1⟩}B splitting to be χ = 365.69 ± 0.36 MHz (see Ap-
pendix E for details). The two cross-Kerr values show excel-
lent agreement within measurement uncertainty and average
to χ = 366.0 ± 0.5 MHz, leading to η̃ = (4.852 ± 0.006) ×
10−2 in the near-ultrastrong nonlinear light-matter coupling
regime.

D. Simulated light-light nonlinear coupling

Transmon B exhibits qubit-like behavior under a weak, res-
onant drive in Fig. 3, but its small self-Kerr anharmonicity
can be exploited under a strong, off-resonant drive to excite
higher levels and exhibit resonator-like behavior instead. As
shown in Fig. 4A, we repeat the experiment in Fig. 3 but
now apply the first pulse with larger amplitude and a detun-
ing of ∆A(B) = −10(+5) MHz from transmon A(B)’s f0→1

transition (see Appendix F for detailed time domain results).
This allows us to simulate the regime where both transmons
are linearized or light-light nonlinear coupling. The result-
ing spectroscopy in Fig. 4B shows clear signature of photon-
photon cross-Kerr [24], with number splitting for both trans-
mons, by {|0⟩ , |1⟩ , |2⟩ , |3⟩}A and {|0⟩ , |1⟩ , |2⟩}B , respec-
tively. As expected for the same device operating point, the
extracted χ is the same as in Table I. Compared to state-of-the-
art χ/2π = 2.59 MHz [24], our simulated light-light coupling
demonstrates more than two orders of magnitude increase in
χ. We emphasize that with a greater range of flux-tunability
or more precise parameter targeting in fabrication, our quar-
tonic architecture is capable [25] of demonstrating light-light
nonlinear coupling with both transmons linearized to state-of-
the-art levels (≤ 4 MHz [24]).

E. Matter-matter nonlinear coupling

To explore the regime of maximal nonlinear coupling with
our device, we follow theory predictions of Fig. 2B and flux-
bias the gradiometric quarton coupler to Ibias = 1.224 mA.
This coincides with a matter-matter coupling regime where
both transmons have high self-Kerr anharmonicity and thus
behave as qubits or artificial atoms (see Appendix D for de-
tailed qubit properties). We then measure cross-Kerr coupling
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by performing the experiment outlined in Fig. 4C: applying
first a π/2 pulse to one qubit, followed by spectroscopy of the
other qubit and readout. The spectroscopy results in Fig. 4D
shows the expected qubit state splitting, with an extremely
large extracted cross-Kerr of χ/2π = 580.5(2) ± 0.6(4) for
transmon A(B). The averaged χ/2π = 580.3 ± 0.4 MHz is,
to the best of our knowledge, the largest ZZ coupling rate
between two coherent qubits of any physical platform, and is
equivalent to a CZ gate time of 0.86 ns. Here we exclude
comparison with annealer architectures such as [38] that lack
measurable qubit coherence.

III. CONCLUSION

We experimentally demonstrate a quartonic approach to
nonlinear coupling, capable of both large cross-Kerr cou-
pling and self-Kerr cancellation which can linearize transmon
qubits into nearly-linear resonator modes. This allows us to
show the first near-ultrastrong nonlinear light-matter coupling
with η̃ = (4.852 ± 0.006) × 10−2 and χ/2π = 366.0 ± 0.5
MHz. We also show that this large χ persists in a simu-
lated regime of light-light nonlinear coupling [24]. At another
operating point, we measure a matter-matter nonlinear cou-
pling of χ/2π = 580.3 ± 0.4 MHz, which is (to the best of
our knowledge) the largest cross-Kerr (ZZ) coupling between
two coherent qubits. Our work motivates future explorations
in subsequent regimes of ultrastrong and deep-strong nonlin-
ear light-matter coupling, and may lead to orders of magni-
tude improvements in fundamental quantum-information op-
erations such as qubit gates and readout.
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Appendix A: Device and setup

The device was fabricated with thin-film aluminum on
silicon substrate. Superconducting air-bridges were in-
cluded along coplanar waveguide sections to suppress slot-
line modes.

The experimental diagram is shown in Fig. 5. The exper-
iment was conducted in a Bluefors LD400 dilution refriger-
ator with a base temperature of approximately 20 mK at the
mixing chamber (MXC). The packaged device was enclosed
at the MXC by two nested shields: an inner superconducting
aluminum shield, and an outer Cryoperm shield. Continuous-
wave probe tones were applied with a Rohde and Schwarz
SGS100A signal generator. Microwave readout and drive
pulses were applied by a ZCU111 RFSoC FPGA with QICK
[39] programming. Global and local flux bias were applied
through Keithley 6220 DC current sources.

Appendix B: Flux analysis and calibration

To understand the effect of flux bias on all the loops of the
circuit, we analyze the circuit diagram shown in Fig. 6, which
includes the two loops through ground by treating the ground
path as an inductor with energy EL.

Drawing a spanning tree (blue) through the center of the
circuit, we can assign flux biases and write the potential as

U = −EJb1 cos

(
ϕb −

ϕ̃s

2

)
− EJb2 cos

(
ϕb +

ϕ̃s

2

)
− EJs1 cos (ϕb − ϕi)− EJs2 cos (ϕi − ϕj)− EJs3 cos (ϕj − ϕa)

− EJα1
cos
(
ϕa − ϕb − ϕ̃q1

)
− EJα2

cos
(
ϕa − ϕb + ϕ̃q2

)
− EJa cos (ϕa − ϕk) +

1

2
EL

[(
ϕk − ϕ̃g1

)2
+
(
ϕk + ϕ̃g2

)2]
(B1)

Assuming the ground path has a very large EL (low induc-
tance), then ϕk will be localized at the point which minimizes
the EL term. Rewriting this term as

1

4
EL

[(
2ϕk + ϕ̃g2 − ϕ̃g1

)2
+
(
ϕ̃g1 + ϕ̃g2

)2]
=

1

4
EL

[(
2ϕk − ϕ̃g∆

)2
+ ϕ2

gΣ

]
,

(B2)
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FIG. 5. Diagram of experimental setup. The cryogenic setup in-
cludes local and global DC flux-bias lines, two qubit drive lines, and
one shared readout line. Component symbol meanings are enumer-
ated at the top and relevant values are shown next to the components
in the diagram.

where ϕ̃g∆ = ϕ̃g2 − ϕ̃g1 and ϕ̃gΣ = ϕ̃g2 + ϕ̃g1 , we see that
the energy minimum is at ϕk = ϕ̃g∆/2. Plugging this in,
dropping constant terms, and rearranging leads to our final

EJa
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EJα1

φ̃g2

EJα2

φ̃q1

φ̃q2

EJb1

φ̃s/2
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FIG. 6. Full circuit diagram including all loops. Loops through
ground, neglected in main text Fig. 1C, are included. The spanning
tree chosen is shown in blue. Relevant nodal (represented as dot)
phase i is labeled by ϕi (next to each respective dot) and flux bias j
is labeled by ϕ̃j (in each respective loop).

expression for the potential energy,

U = −(EJb1 + EJb2) cos
(
ϕ̃s/2

)
cos (ϕb)

− (EJb2 − EJb1) sin
(
ϕ̃s/2

)
sin (ϕb)

− EJs1 cos (ϕb − ϕi)

− EJs2 cos (ϕi − ϕj)

− EJs3 cos (ϕj − ϕa)

− (EJα1
+ EJα2

) cos(
ϕ̃qΣ

2
) cos

(
ϕa − ϕb −

ϕ̃q∆

2

)

− (EJα2
− EJα1

) sin(
ϕ̃qΣ

2
) sin

(
ϕa − ϕb −

ϕ̃q∆

2

)
− EJa cos

(
ϕa − ϕ̃g∆/2

)

(B3)

where ϕ̃qΣ = ϕ̃q1 + ϕ̃q2 and ϕ̃q∆ = ϕ̃q1 − ϕ̃q2 . This means
our system depends on four external fluxes: ϕ̃s,ϕ̃g∆ ,ϕ̃qΣ , and
ϕ̃q∆ .

We measure the periodicities of these fluxes by probing res-
onator A at a constant frequency near resonance and sweeping
both the local and global flux biases. From the resulting S21

maps (Fig. 7), we can identify periodic features belonging to
each flux bias. To find a line where ϕ̃g∆ = 0, we assume
that EJa1

= EJa2
and ϕ̃q∆ = 0 (both expected from de-

sign symmetry). This means that taking ϕ̃g∆ → −ϕ̃g∆ has
the effect of mirroring potential about each coordinate, so the
eigenenergies of the system should be symmetric in ϕ̃g∆ about
ϕ̃g∆ = 0. Since ϕ̃g∆ varies with applied current much faster
than any other flux in our system, we align to the sharp fea-
tures in Fig. 7A to experimentally find the line with ϕ̃g∆ = 0.
This red line in Fig. 7A has equation in terms of global and
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local bias (Ig , Il):

Ig = 0.254× Il + 1.243. (B4)

Since changing Ig has approximately the effect of changing
only the quarton flux bias ϕ̃qΣ , we define Ibias as the Ig of
points (Ig , Il) along the Eq. (B4) line.

Sweeping the bias currents further (Fig. 7B), we see two
broad horizontal stripes corresponding to ϕ̃qΣ . We find their
period in both directions by assuming that along lines of con-
stant ϕ̃g∆ , there will be symmetry around the point where
ϕ̃qΣ = π. For many lines of constant ϕ̃g∆ , we estimate these
ϕ̃qΣ = π points by reflecting the complex S21 about each
point along the constant ϕ̃g∆ line and computing the dot prod-
uct between the orignal and reflected lines. This yields a se-
ries of points approximating the two lines of ϕ̃s, and we then
use a Huber regression to fit these lines, which determines the
period and phase of ϕ̃qΣ . Because this period is already on
the order of the range of currents we used, and because the
quarton loops are approximately symmetric, we assume that
ϕ̃q∆ = 0 everywhere. Finally, we determine the periodicity
of ϕ̃s by noting that along lines of constant ϕ̃qΣ , and averag-
ing over the fast oscillation caused by ϕ̃g∆ , we should have
symmetry about the ϕ̃s = π points. The oscillations of ϕ̃g∆

prevent us from directly computing a dot product as we did for
ϕ̃qΣ , so instead we identify four lines of constant ϕ̃qΣ which
each pass through a visible feature centered at ϕ̃s = π. We fit

a Gaussian to these features (taking the magnitude, |S21|) and
use the resulting four points (black in Fig. 7C) to compute the
periodicity and phase of ϕ̃s.

We verify these estimates by numerically simulating the
resonator arg(S21) as a function of local and global bias,
assuming our estimated periodicities. To expedite this time-
intensive simulation, we neglect junction asymmetry as well
as the internal modes of the series junctions (see the poten-
tial in Eq. (4)). This introduces a small error in the simulated
eigeneneries which does not affect the flux periodicities we
are primarily interested in. We use the junction energies found
in Table IV, where for any junctions designed to be identical,
we assume the mean value for both of them. We include the
resonator as a mode in the system, numerically diagonalizing
the Hamiltonian to find the resonator frequency at each point.
From the resonator frequency, we can compute [40]

S21(f) = 1−
2 Q
Qc

1 + 2iQ f−f0
f0

(B5)

where f0 is the resonator frequency, Qc is the coupling qual-
ity factor of the resonator to its transmission line, and Q =
( 1
Qc

+ 1
Qi

)−1 where Qi is the internal quality factor of the
resonator. In Fig. 7D, we simulate the region used in Fig. 7A,
noting that indeed the ϕ̃g∆ = 0 lines can be associated with
symmetries in the data. In Fig. 7E, we simulate the region of
Fig. 7B,C and see good qualitative agreement. Finally, to ver-
ify the validity of assuming ϕ̃q∆ = 0, we perform the same
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simulation by assuming the ϕ̃q∆ period is 20 times larger than
the ϕ̃qΣ period, in both the global and local bias currents. The
resulting pattern contains prominent differences near the lines
of ϕ̃qΣ = π which do not appear in the experimental flux
sweep, indicating that the experimental period of ϕ̃q∆ must be
even larger than 20 times the ϕ̃qΣ period.

Appendix C: Device parameter fit

Using the standard circuit quantization method, the device
model is a function of the capacitances and Josephson ener-
gies of the JJs. Table III shows the capacitance properties
from electromagnetic simulations and design guide. To es-
timate the Josephson energies of all the JJs in the device, we
treat the junction areas and junction critical current Jc as fit
parameters to a cost function which takes into account the
transition frequencies of Table II, the self-Kerr of both qubits
at Ibias = 1.285 mA, and the two-tone spectroscopy of Fig. 2
at selected points. To numerically compute the energies of the
system at different flux bias, we use the flux periods measured
in section B. We numerically diagonalize the Hamiltonian in-
cluding internal modes, but neglecting the inductance through
ground (see the potential from Eq. (B3)). We take scanning
electron microscope (SEM) images of each JJ on a nominally
identical device fabricated on the same wafer and use these
measured areas as our initial guess (guessing also a critical
current density Jc = 0.7µA/µm2) to find a local minimum
of the cost function. The JJ properties resulting from the fit
are shown in Table IV. The error with respect to the measured
transition frequencies is shown in Table II.

Appendix D: Transmon transition frequencies and coherence
times

For quarton flux bias of Ibias = 1.285 mA, Fig. 8, Fig. 9
summarizes the measurement results for transition frequen-
cies of transmon A, B, respectively. For the f0→1 transition,
we perform standard pulsed two tone spectroscopy at very low
drive amplitude to obtain a sharp transition peak. Then we ob-

serve Rabi (transmon B) or Rabi-like oscillations (linearized
transmon A) in time by driving at f0→1, which enables cali-
bration of π pulse length (transmon B) or pulse length to ap-
proximately |2⟩ (linearized transmon A). With this calibrated
pulse applied first, a subsequent spectroscopy then reveals the
higher level transitions, f1→2 (and f2→3 for linearized trans-
mon A). We repeat this procedure for the higher level transi-
tions, first calibrating π pulse to |i⟩ by observing Rabi oscil-
lation, then performing spectroscopy for fi→(i+1) after using
previously calibrated pulses to drive the transmon to |i⟩.

We repeat this measurement protocol at the quarton flux
bias of Ibias = 1.224 mA, Fig. 10 summarizes the measure-
ment results for transition frequencies of both transmons.

The coherence times of the transmons were measured with
standard pulse sequences [39]. Fig. 11 and Fig. 12 summa-
rizes the measurement results at Ibias = 1.285 and Ibias =
1.224 mA, respectively.

Table V summarizes the transition frequencies and coher-
ence times of both transmons at Ibias = 1.224 mA.

Appendix E: Light-matter cross-Kerr extraction

Fig. 13 shows the cross-Kerr values extracted from the mea-
surement described in Fig. 3 of main text. Note that compared
to the main text, the data here uses a finer frequency step and
lower probe power for more precise spectroscopy results.

Appendix F: Time response of simulated light-light nonlinear
coupling

Fig. 14 shows the results of simulated light-light nonlin-
ear coupling with the same setup as in main text Fig. 3 but
with stronger and frqeuency detuned first transmon drive. We
observe Rabi-like oscillations but involving more higher en-
ergy states, similar to the response of linearized resonators.
The system also shows more noise in time, which may be
caused by the higher energy states having lower coherence
times. Note also that data shown in Fig. 14 uses coarser fre-
quency step and higher spectroscopy probe power compared
to the finer data shown in row 1 of main text Fig. 4,
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TABLE II. Comparison of measured (from Fig. 4 main text) vs. theory transition frequencies.
Transition Ibias (mA) Measured (MHz) Theory (MHz) Error (%)
f10 − f00 1.285 5121.27 ± 0.25 5064.72 1.10
f11 − f01 1.285 5486.70 ± 0.16 5461.57 0.46
f12 − f02 1.285 5649.56 ± 0.25 5640.7 0.16
f01 − f00 1.285 7554.41 ± 0.38 7512.94 0.55
f11 − f10 1.285 7920.04 ± 0.32 7909.80 0.13
f21 − f20 1.285 8148.99 ± 0.27 8150.86 0.02
f31 − f30 1.285 8296.27 ± 0.40 8304.50 0.10
f10 − f00 1.224 4229.56 ± 0.29 4170.57 1.39
f11 − f01 1.224 4809.72 ± 0.30 4780.09 0.62
f01 − f00 1.224 7043.43 ± 0.43 7017.19 0.37
f11 − f10 1.224 7623.98 ± 0.44 7626.71 0.04

TABLE III. Capacitance properties from electromagnetic simula-
tions and design guide.

Property Value
Transmon A’s capacitance to ground 61.9 fF
Transmon B’s capacitance to ground 52.4 fF

Capacitance between transmon A and B 1.9 fF
Josephson junction capacitance per area 57 fF/µm2

TABLE IV. JJ properties from fit results.
Fit parameter Fit result

Critical current density Jc 0.752 µA/µm2

Transmon A’s JJ area 0.026 µm2

Quarton’s top JJ area 0.077 µm2

Quarton’s center JJ (left) area 0.350 µm2

Quarton’s center JJ (middle) area 0.308 µm2

Quarton’s center JJ (right) area 0.360 µm2

Quarton’s bottom JJ area 0.077 µm2

Transmon B’s top JJ area 0.037 µm2

Transmon B’s bottom JJ area 0.049 µm2
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