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Abstract

Given copies of a quantum state ρ, a shadow tomography protocol aims to learn all
expectation values from a fixed set of observables, to within a given precision ϵ. We say
that a shadow tomography protocol is triply efficient if it is sample- and time-efficient,
and only employs measurements that entangle a constant number of copies of ρ at a time.
The classical shadows protocol based on random single-copy measurements is triply
efficient for the set of local Pauli observables. This and other protocols based on random
single-copy Clifford measurements can be understood as arising from fractional colorings
of a graph G that encodes the commutation structure of the set of observables. Here we
describe a framework for two-copy shadow tomography that uses an initial round of Bell
measurements to reduce to a fractional coloring problem in an induced subgraph of G
with bounded clique number. This coloring problem can be addressed using techniques
from graph theory known as chi-boundedness. Using this framework we give the first
triply efficient shadow tomography scheme for the set of local fermionic observables,
which arise in a broad class of interacting fermionic systems in physics and chemistry.
We also give a triply efficient scheme for the set of all n-qubit Pauli observables. Our
protocols for these tasks use two-copy measurements, which is necessary: sample-efficient
schemes are provably impossible using only single-copy measurements. Finally, we
give a shadow tomography protocol that compresses an n-qubit quantum state into a
poly(n)-sized classical representation, from which one can extract the expected value of
any of the 4n Pauli observables in poly(n) time, up to a small constant error.

1 Introduction

In this paper we discuss protocols for shadow tomography, as introduced by Aaronson [Aar18],
specialized to the case of Pauli observables. Let

P(n) = {1, X, Y, Z}⊗n (1)

be the set of n-qubit Pauli operators and consider a subset S ⊆ P(n). Let ρ be an unknown
n-qubit quantum state. Given copies of ρ, we would like to learn the expectation values
Tr(Pρ) to precision ϵ for every P ∈ S.
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Definition 1 (Pauli shadow tomography). The shadow tomography task for a set S ⊆ P(n)

is as follows. We are given copies of an unknown n-qubit state ρ, and our goal is to output
estimates yP such that, with high probability1 we have |yP − Tr(Pρ)| ≤ ϵ for all P ∈ S.

One can use a very naive tomography protocol to perform this task. For a given Pauli
P ∈ S, if we measure its valueO((log |S|)/ϵ2) times (using one copy of ρ for each measurement),
then we can ensure that the sample mean is within ϵ of Tr(ρP ) with probability at least
1 − 0.01/|S|. If we follow this procedure for each of the |S| Paulis in S, the union bound
guarantees that, with high probability they will all be ϵ-close to their true values. This
algorithm uses O((|S| log |S|)/ϵ2) copies of the unknown state ρ and is computationally
efficient.

Remarkably, Aaronson described a protocol for shadow tomography of any set of bounded
observables (such as Pauli observables) that uses exponentially fewer copies of the unknown
state than the naive algorithm [Aar18, AR19, BKL+19]. The best known scaling of the number
of samples for learning m general observables is O(n(log2m)/ϵ4) [BO21]. However, the general
shadow tomography schemes suffer from two major caveats: they are explicitly exponential in
computational runtime (even when the number of observables m scales polynomially with n),
and they require entangled measurements on many copies of the unknown state ρ at a time.

These caveats can be avoided for certain restricted sets of observables such as low-weight
Pauli operators. For k-local Paulis with k = O(1), there are simple and computationally
efficient protocols to learn m observables with O((logm)/ϵ2) single-copy measurements
[CW20, EHF19, BMBO20, JKMN20, HKP20]. The classical shadows framework [HKP20]
provides a broader family of learning protocols that can also handle other sets of non-Pauli
observables with single-copy measurements, notably including rank-1 observables which are
relevant to fidelity estimation. However, classical shadows and other single-copy learning
strategies become inefficient for higher weight Pauli operators.

To go beyond low-weight Paulis one can use a shadow tomography protocol developed in
[HKP21] which learns any subset S of Pauli operators using O((log |S|)/ϵ4) copies of ρ, and
poly(|S|, n, 1/ϵ) runtime. The protocol proceeds in two stages. In the first stage—learning
magnitudes—one computes estimates of the magnitudes |Tr(ρP )| to within ϵ/4 error (say),
for all Paulis P ∈ S. Remarkably, this can be achieved efficiently using only O((log |S|)/ϵ4)
two-copy measurements using the well-known Bell sampling procedure [Mon17]. It is based
on measuring copies of ρ⊗ ρ in the basis which simultaneously diagonalizes the operators
P ⊗ P for all P ∈ P(n). In the second stage—learning signs—one computes the signs of all
Paulis P ∈ S that were estimated to have nonnegligible magnitude in the first stage. The
learning signs protocol from Ref. [HKP21] proceeds by a sequence of “gentle measurements”
on O((log |S|)/ϵ2) copies of ρ.

The requirement to perform joint entangled measurements on many copies of ρ is a
significant drawback. If the state ρ is prepared by a real-world quantum computer, it may be
prohibitive to require a quantum memory whose size is many times larger than the quantum
system of interest. It is natural to ask if we can achieve sample- and computational efficiency
while using measurements on only a few copies of ρ at a time. We call a shadow tomography
protocol with these features triply efficient.

1Throughout this paper, we use “with high probability” to mean with probability at least 99%, say.
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Triply efficient shadow tomography

1. Sample efficiency : The number of samples scales as poly(log |S|, 1/ϵ).

2. Computational efficiency : The classical and quantum computation is poly(|S|, n, 1/ϵ).

3. Few-copy measurements : The algorithm uses joint measurements on a constant number
of copies of ρ (ideally 1 or 2).

In addition to the above, it would be reasonable to ask that the total quantum memory
used by the shadow tomography algorithm is O(n); all of the protocols we propose in this
work satisfy this stronger requirement.

Is there a triply efficient shadow tomography protocol? While this question is well-posed
for arbitrary subsets of observables S ⊆ P(n), we restrict our attention to three subsets that
are practically motivated and representative of the complexity of the problem:

1. P(n)
k : The set of k-local Pauli operators on n qubits, where k = O(1).

2. F (n)
k : The set of k-body fermionic operators on n fermionic modes, where k = O(1).

3. P(n): The set of all Pauli operators on n qubits.

Note that a triply efficient shadow tomography protocol for the set of all Paulis does not
directly give one for the set of k-local Paulis or k-body fermionic operators, even though they
are subsets of the set of all Paulis. This is because the complexity requirements are functions
of |S|. Thus a triply efficient protocol for the set of all Paulis can use more samples and time
than we allow for smaller subsets of Paulis.

As we describe below, k-local Pauli operators and k-body fermionic operators arise in
a variety of applications in many-body physics and quantum chemistry and are one of the
most common algorithmic applications of shadow tomography. The set of all Pauli operators
is of exponential size in n, and perhaps not as practically relevant, but seems important to
study nonetheless since it represents a general Pauli learning task. Surprising tomography
algorithms are possible in this case, including an algorithm we describe that, for any constant
error ϵ, compresses the output (of size 4n) into a polynomial-sized description from which an
ϵ-estimate of the expected value of any Pauli observable can be extracted efficiently.

This brings us to the main question that guided this work:

Do there exist triply efficient shadow tomography protocols for these observables?

In fact, the schemes based on random single-copy measurements described in Refs. [HKP20,
CW20, BMBO20, JKMN20, EHF19] already achieve triply efficient shadow tomography for

the set P(n)
k of k-local Pauli operators with k = O(1). In this paper we present triply efficient

shadow tomography algorithms for the set F (n)
k of k-body fermionic operators for k = O(1),

and the set P(n) of all n-qubit Pauli operators. Furthermore, our algorithms only use Clifford
measurements on 2 copies of ρ at a time.

We will see that it is impossible to perform sample-efficient shadow tomography using
only single-copy measurements for the set of k-body fermionic operators (Theorem 3), as
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Observables Triply efficient shadow tomography?

k-local Pauli operators Yes [HKP20, CW20, BMBO20, JKMN20, EHF19]
k-body fermionic operators Yes (Theorem 10)
All Pauli operators Yes (Theorem 7)

Table 1: A qualitative summary of triply efficient shadow tomography. Cells in blue are new
results in this paper.

well as for the set of all Paulis [CCHL22]. Taken together, our protocols and the single-copy
lower bounds demonstrate that two-copy measurements are necessary and sufficient for Pauli
and fermionic shadow tomography. Further, we see a striking difference between local Paulis,
for which single-copy measurements suffice, and local fermionic operators where entangled
measurements are necessary.

1.1 Local observables

In order to describe our results, let us now define the sets of local observables that are relevant
to qubit and fermionic systems. Let |P | denote the Pauli-weight of an operator P ∈ P(n), i.e.,
the number of qubits on which it acts nontrivially. For example, |X ⊗ 1⊗ Y ⊗ 1⊗ Z| = 3.

A broad class of quantum many-body systems that arise in condensed matter physics are
described by systems of spins with k = O(1) particle interactions. Such systems are described
by a Hamiltonian operator which can be expressed as a sum of operators from the set

P(n)
k = {P ∈ P(n) : |P | = k} (k-local Pauli operators) (2)

of all weight-k Pauli observables. Note that |P(n)
k | = 3k

(
n
k

)
and log |P(n)

k | = O(k log n).

Learning all Paulis in the set P(n)
k is quite useful—it allows one to reconstruct all the k-qubit

reduced density matrices of the state ρ and compute for example the expected value of
any k-local Hamiltonian operator. So shadow tomography with the set P(n)

k is particularly
relevant for characterizing ground states of quantum spin systems with few-body interactions.

A different subset of Pauli operators describes few-body interactions between fermionic
particles, such as the electronic structure of molecules. Just as before, there is a fermionic
locality parameter k but it is fundamentally different from the one defined by Pauli weight.
To describe it, one fixes any subset of 2n anticommuting n-qubit Pauli operators:

c1, c2, . . . , c2n ∈ P(n) ∀a, b : cacb + cbca = 2δab1, (3)

where δab is 1 if a = b and 0 otherwise. Note that since ca ∈ P(n) we also have c†a = ca for
each 1 ≤ i ≤ 2n. These are known as the Majorana fermion operators associated with a
fermionic system with n modes (a fermionic mode is a state that can either be occupied or
unoccupied by a fermionic particle). Note that there is a freedom here—a particular choice
of operators in Eq. (3) is a “fermion-to-qubit mapping” that describes how we associate
the degrees of freedom of the n-mode fermionic system with those of the n-qubit Hilbert
space. Such mappings have a long history and there are several choices that are used
in practice to design algorithms for fermionic systems on a quantum computer (see, e.g.,
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Refs [JW28, BK02, SRL12, JKMN20, DKBC21], and Section 4). However, our discussion
and the results described below apply to any choice of fermion-to-qubit mapping.

With our Majoranas (Eq. (3)) in hand, let us now define the Majorana monomials as

Γ(x) = i|x|·(|x|−1)/2cx1
1 cx2

2 . . . cx2n
2n ∀x ∈ {0, 1}2n. (4)

The overall phase factor i|x|·(|x|−1)/2 ensures that Γ(x) is Hermitian for all x ∈ {0, 1}2n. In
fact, the 4n operators

{Γ(x) : x ∈ {0, 1}2n} (5)

coincide with the 4n n-qubit Pauli operators in P(n), up to (efficiently computable) signs.
Now let us define the k-body fermionic operators

F (n)
k = {Γ(x) : |x| = 2k}, (k-body fermionic operators) (6)

which should be compared with Eq. (2). Note that |F (n)
k | =

(
2n
2k

)
and log |F (n)

k | = O(k log n).
A system of n fermionic modes with k-particle interactions is described by a Hamiltonian
operator that is a sum of terms from F (n)

k . Note that F (n)
k consists of the Majorana monomials

in Eq. (5) of degree 2k; typically only these even-degree monomials are relevant to physics
and chemistry due to conservation of fermionic parity.

The notion of k-locality for fermions is fundamentally more expressive that of k-locality
for spin systems; the former subsumes the latter in the sense that compact “qubit-to-fermion
mappings” exist which embed the k-local n-qubit Pauli operators within a subset of the
k-body fermionic operators on O(n) fermionic modes (see for example Ref. [BGKT19]),
whereas fermion-to-qubit mappings necessarily represent the Majorana fermion operators
Eq. (3) using Pauli operators of average weight at least Ω(log(n)) [JKMN20].

The expectation values of the fermionic operators F (n)
k comprise the matrix elements of

what physicists and chemists refer to as the k-body reduced density matrix, or k-RDM. One
can efficiently compute most physically relevant local observables of a fermionic system (e.g.,
dipole moment, charge density, and importantly—energy) from just the 1- and 2-RDMs as
a consequence of fermions being identical particles that interact pairwise. A large body of
literature exists on methods for computing the fermionic 2-RDM matrix elements as a means
of estimating the energy of chemical systems during the course of a quantum variational
algorithm (see e.g., [VYI20, PZC23, BMBO20, ZRM21]).

A number of important methods for post-processing the output of quantum simula-
tions actually require measuring k-RDMs. For example, subspace expansion techniques for
approximating excited states from ground states via linear response typically require the
4-RDM [MKCdJ17, YHM+22]. Perturbation theory [GWH+16, SKGA17] and multi-reference
configuration interaction methods [TRJ+20] for relaxing ground state calculations in small
basis sets towards their continuum (large basis) limit often require the 4-RDM but converge
even faster given access to higher order RDMs. Finally, there are popular impurity model
schemes for extrapolating finite simulations of condensed phase fermionic systems towards
their thermodynamic limits (e.g., density matrix embedding theory [WJHSC16]) and hybrid
quantum-classical schemes for quantum Monte Carlo [HOR+22], that require the full 1-RDM.
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1.2 Results

Single-copy measurements. It would be very practical if we could achieve triply efficient
Pauli shadow tomography using only measurements on one copy of ρ at a time—and for
k-local Paulis, it can be done. The shadow tomography task for P(n)

k can be performed, using

a time-efficient algorithm, using only single-copy measurements on O(3k(log |P(n)
k |)/ϵ2) =

O(3k(k log n)/ϵ2) copies of ρ [HKP20, CW20, BMBO20, JKMN20, EHF19].
One might hope that we can similarly achieve triply efficient Pauli shadow tomography

for F (n)
k and P(n) as well. Unfortunately, this is not possible in either case, even if we

only care about sample efficiency and allow unbounded computation time. It was shown in
Ref [CCHL22] that sample-efficient shadow tomography with single-copy measurements is
impossible for the set of all Paulis.

Theorem 2 ([CCHL22]). There is no sample-efficient shadow tomography protocol with
single-copy measurements for the set S = P(n) of all Paulis. In particular, any protocol based
on single-copy measurements must consume Ω(2n/ϵ2) copies of ρ.

For k-body fermionic operators, one can also establish a lower bound, see Section 4.1.2

Theorem 3. There is no sample-efficient single-copy shadow tomography protocol for the
set F (n)

k of k-body fermionic operators. In particular, for k = O(1), any protocol based on
single-copy measurements must consume Ω(nk/ϵ2) copies of ρ.

Several efficient shadow tomography algorithms based on single-copy measurements are
known which achieve the Ω(nk/ϵ2) lower bound, up to a log factor [BMBO20, JKMN20,
WHLB23, HWM+22].

The lower bound in Theorem 3 demonstrates a significant difference between learning local
fermionic observables and local Pauli observables; for local Paulis there are sample-efficient
single-copy protocols, whereas this is impossible for local fermionic observables.

In order to achieve triply efficient shadow tomography for F (n)
k and P(n), we will need

to measure 2 or more copies of ρ at a time. Before jumping into 2-copy measurements, we
review the 1-copy algorithm for k-local Pauli operators and offer a new interpretation in
terms of fractional graph colorings that will be used in our algorithms.

The classical shadows single-copy protocol for k-local Paulis is very simple: it is based on
measuring each qubit of ρ (in each copy of ρ) in a random single-qubit Pauli basis X, Y or
Z uniformly at random [HKP20]. The postprocessing of the measurement data to compute
expected values is equally simple.

The high-level format of this protocol is as follows: one selects a Clifford basis at random
according to some probability distribution p, and then measures in that basis. The distribution
has the property that each of the Paulis P in the set S of observables of interest (in the

above, S = P(n)
k ) has a high chance (at least 3−k) of being diagonal in a basis sampled from

p. Every time we pick a basis in which a Pauli is diagonal, we learn some information about
its expected value and hence the sample complexity of the protocol is inversely related to the
probability of being diagonal in a randomly sampled basis.

2Theorem 1 of [BMBO20] contains a lower bound for single-copy non-adaptive Clifford measurements; on
the other hand, Theorem 3 applies to arbitrary and even adaptive single-copy measurements.
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We reinterpret this measurement strategy, and other protocols based on random single-
copy Clifford measurements, as arising from fractional colorings of the commutation graph of
the observables S, defined as follows:

Definition 4. The commutation graph G(S) of a set S ⊆ P(n) of Pauli operators is the graph
with vertex set S and an edge between every pair of anticommuting operators.

An independent set in G(S) corresponds to a set of commuting observables that can be
measured simultaneously via a Clifford measurement. Similarly, a coloring of this graph with
χ colors describes a learning strategy with deterministic single-copy Clifford measurements,
based on measuring χ disjoint sets of commuting Pauli observables. Such deterministic
graph coloring strategies for learning Pauli observables have been explored previously, see
for example Ref. [JGM19, VYI20]. But the protocol for local Pauli observables described
above is not based on a coloring of the commutation graph G(S): the measurement bases are
associated with overlapping sets of commuting Pauli observables, and are chosen randomly
rather than deterministically. As we will see, a probabilistic Clifford measurement strategy
can be viewed as defining a fractional coloring of G(S). A fractional coloring is a well-studied
relaxation of the notion of graph coloring, see Section 2.2 for details. We show that the
sample complexity of single-copy learning with Clifford measurements is upper bounded by
the fractional chromatic number of G(S), which is the size of the smallest fractional coloring
of G(S). In Section 2.2, we prove the following theorem.

Theorem 5. Let S ⊆ P(n). Suppose the commutation graph G(S) admits a fractional coloring
of size χ that can be sampled by a classical randomized algorithm with runtime T . Then there
is an algorithm using only single-copy Clifford measurements of ρ which can estimate Tr(Pρ)
within error ϵ for all P ∈ S with high probability using

O(χ(log |S|)/ϵ2) (7)

copies of ρ. The runtime of the algorithm is O((T + n3) · χ(log |S|)/ϵ2).

The single-copy measurement strategies based on fractional colorings from Theorem 5 have
the special feature that they only use Clifford measurements, which have efficient classical
descriptions. Such protocols learn a compressed classical representation of ρ that can be used
to compute Pauli observables, see Section 2.2 for details.

The power of two copies. In light of Theorems 2 and 3 we see that there exist sets of
Pauli observables for which sample-efficient shadow tomography cannot be achieved with
one-copy measurements. Are two-copy measurements enough?

Our starting point here is a new algorithm that shows that sample-efficient shadow
tomography is indeed possible in the general case with two-copy measurements. The protocol
has three steps.

The first step is the learning magnitudes subroutine from Ref. [HKP21], which we now
review. In this step we perform Bell sampling to measure copies of ρ ⊗ ρ in the Clifford
basis that diagonalizes the commuting Pauli observables P ⊗ P for all P ∈ P(n). Since
these operators commute, we can learn the all observables Tr((P ⊗ P )(ρ⊗ ρ)) = Tr(ρP )2 for

7



P ∈ S to error δ using O((log |S|)/δ2) measurements. By choosing δ = Θ(ϵ2), we see that
O((log |S|)/ϵ4) two-copy measurements suffices to compute estimates {uP}P∈S such that

|uP − |Tr(ρP )|| ≤ ϵ/4 for all P ∈ S, (8)

with high probability. After we have learned the magnitudes in this way, we may find that
some of our estimates are negligible; if our estimate uP from the first stage is less than 3ϵ/4
then 0 is an ϵ-approximation to the expected value Tr(ρP ) and we can forget about this
Pauli P going forward. So in the second stage of the algorithm we are only concerned with
observables in the set

Sϵ = {P ∈ S : |uP | ≥ 3ϵ/4}. (9)

This set Sϵ is a random variable determined by the output of Bell sampling, but the condition
in Eq. (8) implies that with high probability we have

|Tr(ρP )| ≥ ϵ/2 for all P ∈ Sϵ. (10)

To complete the learning task it suffices to then compute the sign of Tr(ρP ) for all Paulis
P ∈ Sϵ. To this end, in the second step of the protocol we compute a classical description of
a mimicking state σ such that

|Tr(σP )| ≥ ϵ/4 for all P ∈ Sϵ. (11)

A key observation is that, if Eq. (10) holds (which occurs with high probability), then (A)
there always exists at least one mimicking state σ (for instance σ = ρ is a valid mimicking
state), and (B) given the set Sϵ, a mimicking state can be found without using any additional
copies of ρ, by brute-force search. So this second step of the protocol, while computationally
inefficient, can be performed without using any additional copies of ρ. In the final, third step
of the protocol, we now perform Bell sampling on the tensor product ρ⊗ σ. This will require
us to repeatedly prepare the mimicking state σ on our quantum computer.

The resulting samples are used to estimate mean values

Tr(P ⊗ P (ρ⊗ σ)) = Tr(Pρ)Tr(Pσ) P ∈ Sϵ. (12)

Since σ is a mimicking state and satisfies Eq. (11), each of these mean values has magnitude
at least ϵ2/8 and we can compute all of them up to ϵ2/16 error using only O((log |S|)/ϵ4)
Bell samples. Since σ is known to us, we can compute Tr(σP ) exactly (including the sign),
and using this knowledge and our estimates of the mean values in Eq. (12) we can infer the
sign of each mean value Tr(ρP ) for P ∈ Sϵ.

In summary, we have described a sample-efficient shadow tomography protocol for any
subset of n-qubit Pauli observables, that only uses two-copy Clifford measurements.

Theorem 6. There exists a shadow tomography protocol for any subset S ⊆ P(n) of Pauli
observables, that uses only O((log |S|)/ϵ4) two-copy Clifford measurements.

Note that this matches the sample complexity of the protocol from Ref. [HKP21], while
only using two-copy measurements. Although the above protocol is sample efficient, it is
extremely inefficient in terms of runtime as it seems to require a brute-force search over the
set of all n-qubit quantum states. Here we show that the outrageous runtime can be tamed –
the protocol can be modified so that its runtime is upper bounded as poly(2n). In this way
we obtain a sample- and time-efficient two-copy protocol for the set of all Paulis.
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Theorem 7. There exists a triply efficient shadow tomography protocol for the set S = P(n)

of all n-qubit Paulis that uses only two-copy Clifford measurements. In particular, it has
sample complexity O(n log(n/ϵ)/ϵ4) and time complexity poly(2n, 1/ϵ).

In Section 3.1 we complete the proof of Theorem 7 by showing that a suitable mimicking
state σ satisfying Eq. (11) can be computed using O(poly(2n)) time and O(n log(n/ϵ)/ϵ4)
additional single-copy measurements of ρ. The algorithm uses the matrix multiplicative
weights technique [AK07, ACH+18]. Once a classical description of a mimicking state has
been computed, we can create the corresponding quantum state using O(4n) gates [SBM06].

Our idea to use a mimicking state computed via the matrix multiplicative weights
algorithm has already found an application: Ref. [KWM24] applies this to perform shadow
tomography on bosonic displacement operators.

Improved algorithms using graph theory. The remainder of our results employ a
general framework for two-copy shadow tomography which is based on fractional graph
coloring. Our framework can be viewed as an extension of a heuristic learning algorithm
proposed in Appendix E.2.d of Ref. [HKP21]; in this work we use it to obtain algorithms
with rigorous performance guarantees.

We have already seen that single-copy tomography for any set of observables S reduces
to fractional graph coloring for the commutation graph G(S). Likewise, via Bell sampling,
two-copy tomography reduces to fractional graph coloring for the commutation graph G(Sϵ).
That is, we propose to use the single-copy algorithm to learn all observables in Sϵ, once we
have already determined Sϵ using an initial stage of Bell sampling. But how do the two-copy
measurements help us?

A key insight is that the Paulis in Sϵ cannot be very anticommuting. Intuition from the
Heisenberg uncertainty principle tells us that anticommuting (traceless) observables cannot
simultaneously be large on a quantum state, since the quantum state cannot simultaneously
be an eigenvector of anticommuting observables. But the high probability event in Eq. (10)
implies that the Paulis in Sϵ are simultaneously large on the state ρ, and thus cannot
anticommute with each other too often. This can be formalized as an upper bound on the
clique number of their commutation graph. In Section 2.3 we show the following:

Lemma 8. The largest clique in the commutation graph G(Sϵ) has size at most 4/ϵ2 with
high probability.

Going forward, our aim is to exploit this upper bound on the clique number to compute
good (fractional) colorings.

Unfortunately, it is well known that the chromatic (or fractional chromatic) number is
not upper bounded by any function of the clique number in general 3. However, such upper
bounds can be established for certain families of graphs, a research direction pioneered by
Gyárfás [Gyá87]. A family of graphs for which this is possible is called chi-bounded and the
upper bound on chromatic number is said to be expressed in terms of a chi-binding function
(see Refs. [SR19, SS20] for recent surveys). Our shadow tomography learning task for a set

3For example, there exists a family of triangle-free graphs with chromatic number Ω(
√

m/ logm) where
m is the number of vertices [Kim95]
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of observables S thus reduces to establishing a suitable chi-binding function for the family of
induced subgraphs of the commutation graph G(S), see Section 2.3 for details.

We show that the family of induced subgraphs of the commutation graph of k-body
fermionic observables admits a polynomial chi-binding function (that does not depend on n).

Lemma 9. Let k ≥ 1, and let G′ be any induced subgraph of the commutation graph G(F (n)
k )

of k-body fermionic observables, and let ω be the size of the largest clique in G′. Then the
fractional chromatic number of G′ satisfies

χf (G
′) ≤ pk(ω). (13)

where pk is a polynomial. Moreover, for any k = O(1) we can sample from a fractional coloring
of G′ with size pk(ω) using a classical algorithm with runtime poly(n). The polynomials for
k = 1, 2 are p1(ω) = ω + 1 and p2(ω) = O(ω8).

The proof of Lemma 9 is provided in Section 4.3. As discussed above, the commutation
graph G(Sϵ) is an induced subgraph of G(S) with clique number at most O(1/ϵ2). For k-body

fermionic observables S = F (n)
k , Lemma 9 tells us there is an efficiently computable fractional

coloring of G(Sϵ) with at most poly(1/ϵ2) colors. We can then use the single-copy learning
protocol from Theorem 5 to learn all observables in Sϵ. This reduction, which describes how
to convert Lemma 9 into a two-copy learning protocol, is formalized in Lemma 20. Putting it
all together gives the following theorem.

Theorem 10. Let k = O(1). There exists a triply efficient shadow tomography protocol for the

set S = F (n)
k of k-body fermionic observables that uses only two-copy Clifford measurements.

This triply efficient protocol has sample complexity

O

(
log |F (n)

k |
ϵ4

+
pk(4/ϵ

2) log |F (n)
k |

ϵ2

)
= O((k log n)pk(4/ϵ

2)/ϵ2), (14)

where pk is the polynomial from Lemma 9 that depends on the locality k, and we also used the
fact that pk(ω) = Ω(ω) for all k ≥ 1. For each k ≥ 1 we obtain an exponential improvement
over single-copy learning protocols in terms of the sample complexity as a function of system
size n. For k = 1 our learning algorithm has sample complexity O((log n)/ϵ4), and the
measurements and postprocesssing are simple to implement. We anticipate that this learning
algorithm could find applications in quantum simulations of chemistry and fermionic physics.
With our current analysis, the degree of the polynomial pk increases very rapidly as a function
of k rendering the scheme less practical for k ≥ 2. We hope this could be improved in future
work. An upper bound on the ϵ-dependence of the sample complexity is ∼ ϵ−O((2k)k+1). For
k = 2, 3 the sample complexity is ∼ ϵ−18 and ∼ ϵ−110 respectively.

It is natural to ask how far we can push this two-copy framework based on Bell sampling
and fractional coloring. Below, we show that it provides a nontrivial shadow tomography
protocol for any subset of Pauli observables S ⊆ P(n). This gives hope that our framework
could lead to triply efficient shadow tomography in the general case.

We shall exploit the fact that the longest induced path in the commutation graph G(P(n))
contains at most 2n+ 1 vertices, see Section 3.2 for details. The following upper bound on
chromatic number then follows from a seminal result in chi-boundedness due to Gyárfás
[Gyá87]; see Section 3.2.
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Lemma 11. Let G′ be any induced subgraph of the commutation graph G(P(n)), and let ω be
the size of the largest clique in G′. The chromatic number of G′ is upper bounded as

χ(G′) ≤ (2n+ 1)ω−1. (15)

Moreover, a coloring with this many colors can be computed by a classical algorithm with
runtime poly(|G′|, nω).

To get a shadow tomography algorithm for any set of Pauli observables S ⊆ P (n), we follow
the strategy outlined above and formalized in Lemma 20. That is, we apply Lemma 11 to
the subgraph G′ = G(Sϵ) induced by the set Sϵ computed via Bell sampling. From Lemma 8
we have that with high probability the largest clique in G′ has size ω = O(1/ϵ2). So we
get an coloring of G(Sϵ) with at most nO(1/ϵ2) colors, that can be computed with runtime
poly(|S|, n1/ϵ2). When ϵ = Ω(1) is a small constant, this protocol is time-efficient, has sample
complexity poly(n), and only uses two-copy measurements, for any subset of Pauli observables
S. This gives a sample-efficient protocol only when |S| is exponentially large as a function of
n. At a technical level this is a consequence of the factor of n appearing in Eq. (15), and we
do not know if this can be avoided.

This leaves open the question of triply efficient shadow tomography for arbitrary subsets
of Pauli observables. However, we will see that it provides insight into a related question
concerning compressed classical representations of quantum states.

Rapid-retrieval Pauli compression. Can we compress an n-qubit quantum state into a
small amount of classical information, so that the compressed classical description is sufficient
to extract the expectation values of any bounded observable to within a small constant error?
This question has been studied using tools from communication complexity and it is known
that an exponential classical description size is necessary if one wishes to recover bounded
observables in the general case; a representation size Θ̃(

√
2n) is necessary and sufficient for

n-qubit pure states [Raz99, GKK+07, GS19].
On the other hand, if we restrict our attention to the set of n-qubit Pauli observables

(or other sets of observables with only singly exponential size), a classical description of
size poly(n) exists and can be computed using the matrix multiplicative weights algorithm
[Aar04, ACH+18]. However, a significant drawback of known methods for this task is that
they require exponential classical runtime to extract the expected value of a given Pauli
observable from the compressed classical representation.

A consequence of Lemma 11 is that this exponential cost can be avoided, at least for
any small constant precision ϵ = Ω(1). That is, one can compress an n-qubit state ρ into
poly(n) classical bits. Given this classical data and an n-qubit Pauli P , there is an efficient
classical algorithm to estimate Tr(ρP ) to within ϵ-error. Moreover, such a representation can
be learned from poly(n) samples of ρ.

Corollary 12 (Rapid-retrieval Pauli compression). Let ρ be an n-qubit quantum state. Let
ϵ ∈ (0, 1) be a constant independent of n. Using two-copy Clifford measurements on poly(n)
copies of ρ, along with 2O(n) runtime, we can (with high probability) learn a compressed
classical representation of ρ, call it D(ρ, ϵ), that consists of poly(n) bits. An ϵ-approximation
to the expected value Tr(ρP ) of any Pauli observable P ∈ P(n) can be extracted from D(ρ, ϵ)
using a classical algorithm with poly(n) runtime.
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The classical description D(ρ, ϵ) consists of a list of all the Clifford measurement bases
and measurement outcomes used in the two-copy learning algorithm discussed above, see
Section 2 for details. In particular, Corollary 12 is obtained by combining Lemma 11 and
Lemma 21.

1.3 Discussion and open questions

In this paper we have provided the first triply efficient shadow tomography protocols for the
set of k-body fermionic observables and the set of all Pauli operators. We have also provided
a route to strengthening and generalizing our results via a connection between two-copy
tomography and graph theory techniques related to chi-boundedness. In Table 2 we provide
a comparison of our results with other known protocols for shadow tomography.

There are many questions left open by our work. Is it possible to improve the upper
bounds from Eq. (13) and Eq. (15)—e.g., can we establish better chi-binding functions for
the (families of) commutation graphs of interest? Is rapid-retrieval compression possible
for smaller error parameters, e.g., ϵ = 1/poly(n)? Can we devise triply efficient learning
algorithms for any subset of Pauli observables?

One route towards resolving these questions would be via improved algorithms for coloring
the commutation graph G(Sϵ). The following conjecture asserts an efficient fractional coloring
of the commutation graph of any subset of Paulis that has simultaneously large expected
values in a quantum state.

Conjecture 13. Let ρ be an n-qubit state, δ ∈ (0, 1), and let B ⊆ P(n) be the set of all
Paulis P such that |Tr(ρP )| ≥ δ. There is a fractional coloring of the commutation graph
G(B) of size O(1/δ2).

If this conjecture holds, and in addition the fractional coloring is suitably efficient,4 then
we would obtain a triply efficient Pauli shadow tomography algorithm for any subset S of
Pauli observables. Moreover, the learning algorithm would also output a rapid-retrieval Pauli
compression of all observables in S, of size O(n2(log |S|)/ϵ4), see Section 2.3.

To address Conjecture 13, it is natural to ask if Lemma 8 can be strengthened by showing
that O(1/ϵ2) is in fact an upper bound on the fractional clique number—a well-known linear
programming relaxation of the clique number [SU11]. The existence of a suitable fractional
coloring stated in Conjecture 13 would then follow from linear programming duality, which
asserts that the fractional clique number of any graph equals its fractional chromatic number.

The remainder of the paper is organized as follows. In Section 2 we describe the commuta-
tion graph and its properties, as well as our frameworks for one- and two-copy Clifford learning.
In Section 3 we describe techniques that go into our algorithms for learning all Paulis: in
Section 3.1 we describe the algorithm to compute a mimicking state, which completes the
proof of Theorem 7, and in Section 3.2 we give the proof of Lemma 11. Finally in Section 4
we establish our results concerning shadow tomography for k-body fermionic operators. In
Section 4.1 we establish the lower bound Theorem 3 for single-copy learning. In Section 4.2
we describe the simple triply efficient learning algorithm for the special case k = 1, and then
in Section 4.3 we consider the case k ≥ 2 and prove Lemma 9.

4In particular, we require that a fractional coloring of size O(1/δ2) for any subset R ⊆ B can be sampled
in time poly(|R|, n, 1/δ)
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Observables
Copies per

measurement
Algorithm or
lower bound

Sample
complexity

Time
efficient?

k-local
Pauli

operators

1

Naive O(3k
(
n
k

)
k(log n)/ϵ2) ✓

Various methods
[CW20, EHF19, BMBO20]

[JKMN20, HKP20]
O(3kk(log n)/ϵ2) ✓

Lower bound (Theorem 26)
for k ≤ log3(2n+ 1).

Ω(3k/ϵ2) —

2 Theorem 6 O(k(log n)/ϵ4) X

unrestricted
Bell sampling and gentle
measurements [HKP21]

O(k(log n)/ϵ4) ✓

k-body
fermionic
operators

1

Naive O
((

2n
2k

)
k(log n)/ϵ2

)
✓

Various methods
[BMBO20, JKMN20, WHLB23]

Ok(n
k(log n)/ϵ2)* ✓

Lower bound (Theorem 27) Ωk(n
k/ϵ2)* —

2

Theorem 6 O(k(log n)/ϵ4) X

Theorem 10 for k = 1 O((log n)/ϵ4) ✓

Theorem 10 log n · polyk(1/ϵ)† ✓

unrestricted
Bell sampling and gentle
measurements [HKP21]

O(k(log n)/ϵ4) ✓

All Pauli
operators

1

Naive O(4nn/ϵ2) ✓

Random Clifford‡ O(2nn/ϵ2) ✓

Lower bound [CCHL22] Ω(2n/ϵ2) —

2
Theorem 7 O(n log(n/ϵ)/ϵ4) ✓

Corollary 12 nO(1/ϵ2) ✓

unrestricted
Bell sampling and gentle
measurements [HKP21]

O(n/ϵ4) ✓

Table 2: A summary of Pauli shadow tomography algorithms for the sets of observables we
study. Cells in blue are new results in this paper.
*The constant depends on k.
†The degree of the polynomial depends on k.
‡Based on single-copy measurements in uniformly random Clifford bases.
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Independent work. While writing this paper, we learned of related, independent work by
Chen, Gong, and Ye [CGY24] that studies the sample complexity of Pauli shadow tomography
with limited quantum memory. We have coordinated our arXiv submissions so that both
papers appear on the same day.

Acknowledgments

We thank Bill Huggins for valuable comments on this manuscript. DG thanks Jim Geelen
for a helpful discussion about chi-boundedness, and Sophie Spirkl for explaining how the
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2 Commutation, learning, and coloring

In this section we describe properties of the commutation graph G(S) of a set of Pauli
observables S ⊆ P(n), and the connection between these properties and shadow tomography
algorithms. In Section 2.1 we describe the tension between learning and anticommutativity
of a set of observables. This is quantified by a commutation index which was shown
in Ref. [CCHL22] to lower bound the sample complexity of single-copy learning. Then
in Sections 2.2 and 2.3 we describe our frameworks for one- and two-copy learning with
probabilistic Clifford measurement strategies.

2.1 Commutation index

The following result represents a kind of uncertainty principle, generalizing the familiar Bloch
sphere constraint ⟨X⟩2 + ⟨Y ⟩2 + ⟨Z⟩2 ≤ 1.

Lemma 14. If Pauli operators P1, . . . , Pm pairwise anticommute, then for any state ρ∑
j

Tr (Pjρ)
2 ≤ 1. (16)

Versions of Lemma 14 appear in various papers, for example [AEHK16, Theorem 1]. Since
the proof is simple, we reproduce it here.

Proof. Given ρ, let aj = Tr (Pjρ). We aim to show
∑

j a
2
j ≤ 1. Consider the observable

Q =
∑
j

ajPj. (17)

We will use the inequality Tr(Q2ρ)− Tr(Qρ)2 = Varρ(Q) ≥ 0. Formally, this holds since ρ is
positive semi-definite so Tr(Oρ) ≥ 0 for any positive semi-definite operator O and

Tr
((

Q− Tr (Qρ)1
)2
ρ
)
≥ 0 =⇒ Tr (Qρ)2 ≤ Tr

(
Q2ρ

)
. (18)
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Due to anticommutativity of P1, . . . , Pm, we have

Q2 =
∑
j

a2jP
2
j +

∑
j ̸=l

ajalPjPl =
∑
j

a2j · 1+
1

2

∑
j ̸=l

ajal{Pj, Pl} =
∑
j

a2j · 1. (19)

Note P 2
j = 1 since they are Hermitian unitaries. Thus Tr(Q2ρ) =

∑
j a

2
j . On the other hand

Tr(Qρ) =
∑

j a
2
j , thus

Tr (Qρ)2 ≤ Tr
(
Q2ρ

)
=⇒

(∑
j

a2j

)2
≤
∑
j

a2j =⇒
∑
j

a2j ≤ 1. (20)

In Lemma 14, we saw that pairwise anticommuting Pauli operators cannot all have large
expected values in a quantum state, as the sum of their squared expected values cannot
exceed 1. More generally, the average of squares of expected values of Paulis in a set S is
defined to be its commutation index.

Definition 15. For a set S of Pauli operators, define their commutation index by

∆(S) =
1

|S|
max

ρ

∑
P∈S

Tr (Pρ)2 . (21)

For example, Lemma 14 shows that if all the Paulis in S anticommute, then ∆(S) ≤ 1/|S|.
Ref. [CCHL22] shows that the inverse of the commutation index is a lower bound on

the sample complexity of single-copy shadow tomography for S. It can be interpreted as
describing a tension between anticommutation and learnability. (Maximization over states as
stated in [CCHL22, Equation 79] can be replaced by maximization over density matrices via
convexity.)

Theorem 16 (Theorem 5.5, [CCHL22]). Shadow tomography to precision ϵ for a set S of
Pauli observables with single-copy measurements requires at least

Ω

(
1

ϵ2∆(S)

)
(22)

copies of ρ. This holds even for adaptive measurement strategies.5

The commutation index ∆(S) can be upper bounded in terms of the Lovasz ϑ-function
[dGHG23, XSW23, HO22].

Definition 17. Let G be a graph on m vertices. The Lovasz ϑ-function ϑ(G) is defined by
the following semidefinite program of dimension m:

max {Tr (JX) , X ∈ Rm×m s.t. X ⪰ 0, TrX = 1, Xjl = 0 ∀(j, l) ∈ E}, (23)

where E denotes the edge set of the graph G and J the all-ones matrix. It has dual

min {λ ∈ R s.t. ∃ A ∈ Rm×m, Ajj = 1 ∀j, Ajl = 0 ∀(j, l) /∈ E, λA ⪰ J}. (24)

The following result is a generalization of Lemma 14, with proof in Appendix A.

Lemma 18. ([dGHG23, XSW23, HO22]) Let S be a set of Pauli operators. Then

∆(S) ≤ ϑ(G(S))

|S|
. (25)

5The lower bound holds even if the shadow tomography scheme is only able to output the absolute values
of the expectation values to precision ϵ.
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2.2 Fractional coloring and single-copy Clifford learning

Here we describe the connection between shadow tomography algorithms that learn Pauli
observables S ⊆ P(n) using probabilistic Clifford measurements, and fractional colorings of
the commutation graph G(S). A fractional coloring is a relaxation of the usual notion of
graph coloring [SU11].

Definition 19. Let G = (V,E) be a graph. A fractional coloring of G of size χ is a probability
distribution q over independent sets I ⊆ V with the property that

∀v ∈ V : PrI∼q(v ∈ I) ≥ 1/χ. (26)

The fractional chromatic number χf (G) of G is the size of the smallest fractional coloring of
G.

Note that the size χ of a fractional coloring need not be an integer. Also note that
a (standard, non-fractional) coloring of G with χ colors can be regarded as a fractional
coloring of size χ, corresponding to a uniform distribution over color classes. So the fractional
chromatic number of a graph is upper bounded by its chromatic number.

Theorem 5, restated below, asserts that if we have a fractional coloring of the commutation
graph G(S) of small size, then we can learn the expectation values of all observables in S
with few single-copy Clifford measurements. In particular, the sample complexity of the
algorithm scales linearly with the size of the fractional coloring.

In the following, samples from the fractional coloring are represented as binary vectors
of length |S| whose support is an independent set in G(S). In this setting, the runtime to
produce a single sample from a fractional coloring always satisfies T ≥ |S|.

Theorem 5. Let S ⊆ P(n). Suppose the commutation graph G(S) admits a fractional coloring
of size χ that can be sampled by a classical randomized algorithm with runtime T . Then there
is an algorithm using only single-copy Clifford measurements of ρ which can estimate Tr(Pρ)
within error ϵ for all P ∈ S with high probability using

O(χ(log |S|)/ϵ2) (7)

copies of ρ. The runtime of the algorithm is O((T + n3) · χ(log |S|)/ϵ2).

Proof. An independent set I in the commutation graph G(S) consists of a set of mutually
commuting Pauli operators, which can be simultaneously measured by applying a Clifford
circuit and measuring in the computational basis. Such a Clifford circuit can be computed
using a classical algorithm with O(n3) runtime, via standard techniques in the stabilizer
formalism [AG04].

If we draw an independent set I from a fractional coloring q with size χ and then measure
ρ in the corresponding Clifford basis, the result gives us a measurement of Pauli P ∈ S
whenever P ∈ I. Note that it is also possible that we get more useful measurements than
this—the Clifford unitary may diagonalize some Paulis P that are not in I.

Suppose we repeat this process independently N times, sampling independent sets
I1, I2, . . . , IN and measuring N independent identical copies of ρ in the corresponding Clifford
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bases C1, C2, . . . , CN . For each P ∈ S, let xj
P ∈ {−1, 0, 1} be the random variable that is

equal to the measured outcome of P if it is diagonalized by Cj, and zero otherwise.
We have

Pr[xj
P ∈ {−1, 1}] ≥ Pr[P ∈ Ij] ≥

1

χ
j ∈ [N ] P ∈ S, (27)

where we used the fact that q is a fractional coloring of size χ.
For each Pauli P ∈ S, let

RP = {j : xj
P ∈ {−1, 1}} and NP = |RP |. (28)

Consider the sample mean

P̃ =
1

NP

∑
j∈RP

xj
P . (29)

Conditioned on a fixed value NP ≥ 1, this sample mean P̃ is an average of NP independent
±1-valued random variables. It satisfies

E(P̃ ) = Tr(ρP ) and Var(P̃ ) ≤ 1

NP

. (30)

By Chebyshev’s inequality we have

Pr
[
|P̃ − Tr(ρP )| ≥ ϵ

∣∣ NP ≥ 100/ϵ2
]
≤ 0.01. (31)

From Eq. (27) we see that by taking N = O(χ/ϵ2) we can ensure that, for a given Pauli P ,
we have NP ≥ 100/ϵ2 with probability at least 0.99 (say). Therefore,

Pr
[
|P̃ − Tr(ρP )| ≤ ϵ

]
≥ Pr

[
NP ≥ 100/ϵ2

]
· Pr

[
|P̃ − Tr(ρP )| ≤ ϵ

∣∣ NP ≥ 100/ϵ2
]

(32)

≥ 0.992 (33)

for each Pauli P ∈ S.
Now repeat the above process L times, generating sample means P̃1, . . . , P̃L for each

P ∈ S, and consider the median-of-means estimator

λP = median(P̃1, P̃2, . . . , P̃L). (34)

By choosing L = O(log |S|) we can ensure that, for each P ∈ S we have |λP − Tr(ρP )| ≤ ϵ
with probability at least 0.01/|S|. By a union bound we get all the expected values in S
to within ϵ with probability at least 0.99. The total number of samples of ρ and the total
number of samples from the fractional coloring q used in the algorithm, are both at most
LN = O(χ(log |S|)/ϵ2).

Now consider the runtime of the protocol. The independent sets I in the fractional coloring
are specified explicitly as subsets of S, so the median-of-means estimator λP can be computed
for all P ∈ S with a runtime O(LN |S|) once we have already obtained all the measurement
data {xj

P}. The total runtime is therefore upper bounded as O((T + n3 + |S|)LN), where
the first term is the cost of sampling the fractional colorings, the second term is the cost
of computing a Clifford circuit for each sample (and applying this circuit to measure the
state), and the third term is the cost of postprocessing. Since T ≥ |S| the runtime simplifies
to O((T + n3)LN).
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Finally, let us show that single-copy measurement strategies from Theorem 5 learn
a compressed classical representation of ρ that encodes the expected values of all Pauli
observables from S (to within error ϵ). Indeed, each Clifford measurement basis has an
efficient classical description consisting of O(n2) bits. We can imagine a version of the learning
algorithm described in Theorem 5 where, after the measurements are performed using Eq. (7)
copies of ρ, the resulting measurement outcomes and measurement bases are packaged up
into a classical description D(ρ, S, ϵ) of size

O(n2χ(log |S|)/ϵ2). (35)

Here there is a factor of n2 for each measurement basis (each measurement outcome only
requires n bits to describe and so describing the outcomes requires asymptotically fewer
bits than describing the bases). The efficient protocol for extracting expected values Tr(ρP )
with P ∈ S (up to ϵ error) can be performed using only the compressed classical description
D(ρ, S, ϵ).

2.3 Cliques and two-copy Clifford learning

As discussed in the Introduction, we propose a framework for two-copy learning that uses an
initial stage of Bell sampling (as in Ref. [HKP21]) to determine a set Sϵ ⊆ S that with high
probability satisfies Eq. (10), which we restate:

|Tr(ρP )| ≥ ϵ/2 for all P ∈ Sϵ. (36)

This step uses O((log |S|)/ϵ4) Clifford measurements on copies of ρ ⊗ ρ. Then we aim to
learn all observables in Sϵ using the fractional coloring approach described in the previous
section. In particular, we aim to find an (efficiently sampleable) fractional coloring of the
commutation graph G(Sϵ).

Lemma 20 (Template for two-copy Clifford shadow tomography). Suppose that G(Sϵ) admits
a fractional coloring of size χ that can be sampled by a randomized algorithm with runtime T .
Then there is an algorithm which performs shadow tomography for S using

O((log |S|)/ϵ4 + χ(log |S|)/ϵ2) (37)

two-copy Clifford measurements and runtime O(|S|(log |S|)/ϵ4 + (T + n3)χ(log |S|)/ϵ2).

Proof. The first step uses O((log |S|)/ϵ4) two-copy Bell measurements and classical runtime
O(|S|(log |S|)/ϵ4) to compute the set Sϵ. We output zero as our estimate for the expected
value of any Pauli in S \ Sϵ. Then we use the single-copy learning protocol from Theorem 5
to compute estimates of Tr(ρP ) for all P ∈ Sϵ. This second step uses runtime O((T +
n3)χ(log |S|)/ϵ2).

The protocol from Lemma 20 is based on Clifford measurements, which have an efficient
classical description. Because of this, and the fact that the classical postprocessing is simple,
we obtain the following classical compressed representation of ρ.
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Lemma 21 (Rapid-retrieval compression). The shadow tomography protocol described in
Lemma 20 learns a compressed classical representation of ρ consisting of B bits, where

B = O(n(log |S|)/ϵ4 + n2χ(log |S|)/ϵ2). (38)

With high probability, this compressed representation has the following rapid-retrieval property.
There is a classical algorithm which, given this classical data and any Pauli P ∈ S, outputs
an estimate of Tr(ρP ) to within ϵ error. The runtime of the algorithm is O(B).

Proof. The compressed representation consists of the O((log |S|)/ϵ4) Bell samples (each one is
2n bits) as well as a classical description of each Clifford measurement basis and measurement
outcome used in the second stage of the learning protocol. That is, N = O(χ(log |S|)/ϵ2)
Clifford measurement bases C1, C2, . . . , CN (each described by a circuit with O(n2) one- and
two-qubit Clifford gates) and corresponding measurement outcomes z1, z2, . . . , zN ∈ {0, 1}n.
Given a Pauli P ∈ S and this classical data, we can compute an ϵ-error estimate of Tr(ρP ) in
the following way. First, using the Bell samples, we determine if P ∈ Sϵ. This step requires us
to compute a sample mean over the Bell samples, using runtime O(n(log |S|)/ϵ4). If P /∈ Sϵ,
we output 0 as our estimate. If P ∈ Sϵ then we compute the median-of-means estimator from
Eq. (34). To do this we have to compute indicator functions xj

P ∈ {1, 0,−1} that describe
the measured outcome of Pauli P for each Clifford measurement basis j, which is given by

xj
P = ⟨zj|C†

jPCj|zj⟩. (39)

The RHS is computed using the stabilizer formalism: we update the Pauli P by conjugating
each gate in the circuit Cj one-by-one, and this process takes a total runtime O(n2) since
there are O(n2) one- and two-qubit Clifford gates in the circuit. The total runtime to extract
the estimate of Tr(ρP ) is therefore

O(n(log |S|)/ϵ4 + n2χ(log |S|)/ϵ2). (40)

Lemma 20 forms the basis of several of the two-copy protocols that we present in this
work. To use this framework one needs to find an efficiently sampleable fractional coloring of
G(Sϵ).

A challenge here is that the set Sϵ and its commutation graph depend in a potentially
complicated way on the unknown state ρ. Ideally, we would like to understand any structural
properties of this graph that can be leveraged to compute good fractional colorings. In
this paper we we will only exploit two simple properties: (A) G(Sϵ) is an induced subgraph
of G(S) and (B) with high probability, G(Sϵ) does not have large cliques, as described in
Lemma 8, which we restate and prove below.

Lemma 8. The largest clique in the commutation graph G(Sϵ) has size at most 4/ϵ2 with
high probability.

Proof. Recall that Sϵ satisfies Eq. (36) with high probability. We show that in this case the
largest clique in G(Sϵ) has size at most 4/ϵ2.

Suppose there is a clique in G(Sϵ) of size ω. The vertices of the clique are a set of pairwise
anticommuting Pauli operators P1, P2, . . . , Pω. Applying Lemma 14 with these operators and
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the state ρ gives
ω∑

j=1

Tr(Pjρ)
2 ≤ 1. (41)

On the other hand from Eq. (36) we have Tr(Pjρ)
2 ≥ ϵ2/4 for each 1 ≤ j ≤ ω. Plugging into

the above gives ωϵ2/4 ≤ 1, and therefore the size of the maximal clique is upper bounded as
ω ≤ 4/ϵ2.

To use our framework to learn Pauli observables S ⊆ P(n), it suffices to establish a
so-called chi-binding function for the family of induced subgraphs of G(S). That is, we seek
a function g(ω) such that:

For any induced subgraph G′ of G(S) with largest clique of size ω, there is a fractional
coloring of G′ with size χ ≤ g(ω).

A statement of this form implies—via Lemma 20 and Lemma 8—a shadow tomography
algorithm that uses two-copy Clifford measurements and has sample complexity

O((log |S|)/ϵ4 + g(4/ϵ2)(log |S|)/ϵ2). (42)

Lemma 20 also gives an upper bound on the runtime of the protocol in terms of the time
required to sample from the fractional coloring.

3 Learning all Pauli observables

In Section 3.1 we provide further details of the shadow tomography algorithm for all Paulis
stated in Theorem 7. Then, in Section 3.2, we give the proof of Lemma 11 which is used to
establish the rapid retrieval Pauli compression stated in Corollary 12.

3.1 Computing a mimicking state

Here we complete the proof of Theorem 7 by showing that a mimicking state can be computed
using O(n log(n/ϵ)/ϵ4) samples of ρ and runtime poly(2n, 1/ϵ).
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Algorithm 1 Compute a mimicking state

Input: A precision parameter ϵ ∈ (0, 1), O(n log(n/ϵ)/ϵ4) copies of an unknown n-qubit
state ρ, and estimates {uP}P∈P(n) , such that

uP ≥ 0 and |uP − |Tr(Pρ)|| ≤ ϵ/4 P ∈ P(n). (43)

Output: A classical description of a density matrix σ satisfying the following mimicking
state condition with high probability:

|Tr(Pσ)| ≥ ϵ/4 for all P ∈ P(n) with uP ≥ 3ϵ/4. (44)

Algorithm:

1. Set T = ⌈64n/ϵ2⌉+1 and β =
√

n/T .

2. Initialize ω(0) = 1/2n, the maximally mixed state.

3. For t = 0, . . . , T − 1,

(a) Search for Pauli P ∈ P(n) such that uP ≥ 3ϵ/4 and |Tr(Pω(t))− uP | > ϵ/2 and
|Tr(Pω(t)) + uP | > ϵ/2.

(b) If there is no such Pauli P then we are done, since we are guaranteed |Tr(Pω(t))| ≥
ϵ/4 whenever uP ≥ 3ϵ/4. Output σ = ω(t).

(c) Else, do:

i. Use O((log T )/ϵ2) copies of ρ to compute an estimate rP ∈ {+1,−1} such
that rP = sign(Tr(ρP )) with probability at least 1− 0.01/|T |.

ii. Set
M (t) = sign{Tr(Pω(t))− rPuP} · P. (45)

iii. Set

ω(t+1) =
exp

(
−β
∑t

τ=1 M
(τ)
)

Tr
(
exp

(
−β
∑t

τ=1 M
(τ)
)) . (46)

4. Output σ = ω(T ).

Before showing correctness of the algorithm, let us discuss its runtime and sample
complexity. During the course of the algorithm we store a classical representation of the
state ω(t) as a matrix of size 2n × 2n, and in each of the T = O(n/ϵ2) steps we need to
exhaustively search over the set of Paulis P(n), compute Pauli expected values in the state
ω(t), and compute matrix exponentials Eq. (46). The runtime of the algorithm is polynomial
in the Hilbert space dimension 2n and 1/ϵ. The sample complexity is O(T (log T )/ϵ2).

Algorithm 1 is a variant of the matrix multiplicative weights algorithm, which has been
used previously in the context of quantum learning [BKL+19, ACH+18]. To show correctness
we follow the standard analysis, with some modifications.
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Lemma 22. ([AK07] Theorem 3.1) Suppose Algorithm 1 reaches step 4. Then the states
Eq. (46) satisfy

T∑
t=1

Tr(M (t)ω(t))− λmin

(
T∑
t=1

M (t)

)
≤ 2
√
nT . (47)

Here λmin(·) denotes the smallest eigenvalue.

Lemma 23. With high probability the output of Algorithm 1 satisfies Eq. (44).

Proof. Let P (t) be the Pauli found at step t, and define

y(t) = Tr(P (t)ω(t)) , r(t) = rP (t) , u(t) = uP (t) . (48)

By a union bound, with probability at least 0.99, all estimates r(t) computed during the
course of the algorithm satisfy r(t) = sign(Tr(ρP (t))). In the following we show that in this
case the output of the algorithm is guaranteed to satisfy Eq. (44).

Note that if the algorithm outputs a state σ = ω(t) for some t < T then the algorithm is
correct, as guaranteed by the output condition. To complete the proof, below we show that
this is the case—the algorithm never reaches step 4.

Toward a contradiction, suppose the algorithm does reach step 4. By Lemma 22, we have

T∑
t=1

sign{y(t) − r(t)u(t)} · y(t) ≤ λmin

(
T∑
t=1

sign{y(t) − r(t)u(t)} · P (t)

)
+ 2
√
nT (49)

≤
T∑
t=1

sign{y(t) − r(t)u(t)} · Tr(P (t)ρ) + 2
√
nT . (50)

In the last equation, we substituted our state ρ. Equivalently, we have

T∑
t=1

sign{y(t) − r(t)u(t)} ·
(
y(t) − Tr(P (t)ρ)

)
≤ 2
√
nT . (51)

For each t we have |y(t) − r(t)u(t)| > ϵ/2. But also |r(t)u(t) − Tr(P (t)ρ)| ≤ ϵ/4. Together
these conditions imply

sign{y(t) − r(t)u(t)} = sign{y(t) − Tr(P (t)ρ)} (52)

and ∣∣y(t) − Tr(P (t)ρ)
∣∣ > ϵ

4
. (53)

From Eq. (52) we get

sign{y(t) − r(t)u(t)} ·
(
y(t) − Tr(P (t)ρ)

)
=
∣∣∣y(t) − Tr(P (t)ρ)

∣∣∣ (54)

and combining this with Eq. (51) we get

T∑
t=1

∣∣y(t) − Tr(P (t)ρ)
∣∣ ≤ 2

√
nT . (55)
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Plugging in Eq. (53) gives

T · ϵ
4
≤ 2
√
nT , (56)

and therefore T ≤ 64n/ϵ2. This is a contradiction, since T = ⌈64n/ϵ2⌉+ 1 is larger than this.
So the algorithm never reaches step 4, as claimed.

3.2 Coloring commutation graphs with bounded clique number

In this section we prove Lemma 11, restated below.

Lemma 11. Let G′ be any induced subgraph of the commutation graph G(P(n)), and let ω be
the size of the largest clique in G′. The chromatic number of G′ is upper bounded as

χ(G′) ≤ (2n+ 1)ω−1. (15)

Moreover, a coloring with this many colors can be computed by a classical algorithm with
runtime poly(|G′|, nω).

We shall use the following algorithmic version of a result of Gyárfás, which we prove
below.

Lemma 24 (Algorithmic version of Thm. 2.4 of [Gyá87]). Suppose G is a graph on m vertices
whose longest induced path has ℓ vertices, with ℓ ≥ 1, and clique number ω. Then there is a
classical algorithm which colors G using ℓω−1 colors and runtime O(m2ω).

Proof of Lemma 11. Let G′ be an induced subgraph of G(P(n)). Below we show that G(P(n)),
and therefore also G′, does not contain any induced paths with more than 2n+ 1 vertices.
The claim then follows by applying Lemma 24.

Suppose P1, P2, . . . , Ps is an induced path in G(P(n)), i.e.,

PiPi+1 = −Pi+1Pi for 1 ≤ i ≤ s− 1 and [Pi, Pj] = 0 |i− j| ≥ 2. (57)

Define Pauli operators
Qr = P1P2 . . . Pr 1 ≤ r ≤ s. (58)

We now use Eq. (57) to show that these operators are pairwise anticommuting. To see this
note that

Qr+a = (P1P2 . . . Pr) (Pr+1Pr+2 . . . Pr+a) = − (Pr+1Pr+2 . . . Pr+a) (P1P2 . . . Pr) , (59)

where we used PrPr+1 = −Pr+1Pr and the fact that [Pi, Pj] = 0 whenever i ≤ r − 1 and
j ≥ r + 1. Therefore

QrQr+a = −Qr (Pr+1Pr+2 . . . Pr+a) (P1P2 . . . Pr) = −Qr+aQr, (60)

which shows that {Qj}j∈[s] are pairwise anticommuting Pauli operators.
It is a well known fact that the n qubit Hilbert space does not contain any set of pairwise

anticommuting Pauli operators with size greater than 2n+ 1 (see for example Appendix G of
Ref. [BMBO20]). Thus s ≤ 2n+ 1.
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Figure 1: An example showing the spanning trees generated by breadth-first search (BFS),
depth-first search (DFS), and our algorithm neighbour-first search (NFS) for the cycle on 5
vertices.

The algorithm of Lemma 24 relies on a non-standard graph traversal algorithm, which
can be interpreted as a combination of depth-first-search and breadth-first-search. The graph
search algorithm begins with an arbitrary seed vertex v in G, and generates a spanning tree
of G with root v. We call it neighbour-first search.

Algorithm 2 Neighbour-first search (NFS)

Input: Connected graph G, seed vertex v.

Output: Spanning tree T of G with root v.

NFS(G, v):

1. If T is empty, initialize T = {v}.

2. For each neighbour w of v which is not yet in T , add w to T as a child of v.

3. For each child w of v:

(a) Do NFS(G, w).

The spanning tree T output by Algorithm 2 is associated with a partition of the vertex set
of G into levels, which are the vertices at a fixed distance from the root of T . (The number
of levels is the depth of the T plus one.)

Lemma 25. Let graph G = (V,E) have m vertices, clique number ω, and longest induced
path with ℓ vertices. Algorithm 2 has runtime O(|V |+ |E|) = O(m2) and outputs a spanning
tree T of G with the following properties:

• The depth of T is no larger than ℓ− 1.

• The vertices in any level of T induce a subgraph of G with clique number at most ω − 1.
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Proof. No vertex can share an edge with any ancestors in T other than its parent, since if it
shared an edge with an ancestor higher than its parent then it would have appeared at a
higher level as a neighbour of the ancestor. This means a path from the root down T forms
an induced path, and the depth of T cannot be longer than the longest induced path in G.

Consider two vertices w1 and w2 in the same level t of the spanning tree T . Then the
children of w1 cannot share any edges in G with the children of w2. This is because the
children of w1 constitute a connected component of the subgraph of G induced by all vertices
that are not in the first t levels of T . Armed with this observation, consider a clique of size ω
within a level of T . When combined with the common parent, this would form a clique of
size ω + 1 in G, a contradiction. Thus the clique number of any level of T is at most ω − 1.

Finally, similar to breadth-first search or depth-first search, since each edge is examined
at most twice, the time complexity is O(|V |+ |E|) = O(m2).

Proof of Lemma 24. We can prove the theorem by induction on ω. Let Aω denote the coloring
algorithm which applies to graphs of clique number ω. When ω = 1, there are no edges and
there is an algorithm A1 which can color the graph using a single color in O(m2) time. For
the inductive step, assume there is a coloring algorithm Aω−1 using ℓω−2 colors and runtime
O(m2ω) for any graph of clique number ω − 1 and longest induced path ℓ.

The coloring algorithm Aω for graphs of clique number ω is as follows. First apply the
neighbour-first search algorithm to find spanning tree T of G. Then for each level of T , apply
Aω−1. For each level, we use a disjoint set of colors. Since there are at most ℓ levels in the T ,
the number of colors used by Aω is at most ℓω−1 by the induction hypothesis.

It remains to analyze the runtime of Aω. Say the neighbour-first search step has runtime
at most Cm2 in the worst case for some constant C. We will show that the runtime of Aω is
at most Cm2ω. From the induction hypothesis, the applications of Aω−1 have total runtime∑

i Cm2
i (ω − 1) ≤ Cm2(ω − 1), where mi is the number of vertices in the ith layer. Here we

used
∑

i m
2
i ≤

(∑
i mi

)2
= m2. Thus the runtime of Aω is Cm2 +Cm2(ω− 1) ≤ Cm2ω.

4 Learning fermionic obervables

In this section we consider shadow tomography for local fermionic observables.
A system of n fermionic modes is associated with a set of 2n Majorana fermion operators,

which are mutually anticommuting Hermitian observables {ca}a∈[2n] that act on a Hilbert
space of dimension 2n. We can represent them by a set of Pauli operators satisfying

c1, c2, . . . , c2n ∈ P(n) cacb + cbca = 2δab1. (61)

There are a variety of specific choices (fermion-to-qubit mappings) that satisfy the above,
including the Jordan-Wigner mapping [JW28], the Bravyi-Kitaev mapping [BK02], and
the ternary tree mapping [Vla19, JKMN20]. The latter two mappings have the desirable
property that each Majorana fermion operator is represented by a Pauli operator of low
weight O(log n).

For concreteness, we now review the ternary tree mapping, which is simple enough that
it can be understood by looking at Figure 2. We place a qubit at each non-leaf vertex of
a complete rooted ternary tree. The total number of qubits is n = (3ℓ − 1)/2 where ℓ is
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the depth of the tree. The three edges that connect the vertex for a given qubit q to its
children are associated with the three single-qubit Pauli operators X, Y, Z acting on qubit
q. Each path from the root to a leaf defines an operator which is the tensor product of the
Pauli operators which appear on all the edges along the path. One can easily check that
these operators are pairwise anticommuting. Moreover, each operator defined in this way has
weight exactly ℓ = log3(2n+ 1), and there are exactly 3ℓ = 2n+ 1 of them. We can take all
but one of them to be the Majorana fermion operators {cj}j∈[2n].

Below we are interested in k-body fermionic observables as defined in Section 1.1. We
write

Γ(x) = i|x|·(|x|−1)/2cx1
1 cx2

2 . . . cx2n
2n x ∈ {0, 1}2n (62)

for the Majorana monomials, and

F (n)
k = {Γ(x) : |x| = 2k} (63)

for the set of k-body Majorana operators on n fermionic modes.

$! $$ $# $% $& $' $( $)
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Figure 2: The ternary tree fermion-to-qubit mapping of Refs. [Vla19, JKMN20] for n = 4
and ℓ = 2. For example, c1 = X1X2 = X ⊗X ⊗ 1⊗ 1.

4.1 Single-copy lower bounds

Theorem 26. Suppose 1 ≤ k ≤ log3(2n+ 1). Any (possibly adaptive) single-copy protocol

which learns Tr (Pρ) to precision ϵ for all k-local n-qubit Paulis P ∈ P(n)
k with constant

probability requires Ω(3k/ϵ2) copies of ρ.

Proof. The ternary tree mapping [Vla19, JKMN20] which we reviewed in the previous section

shows that, for each 1 ≤ k ≤ log3(2n + 1) there is a subset S ⊆ P(n)
k of 3k pairwise

anticommuting operators within the set of k-local Paulis P(n)
k . See Figure 2. On the other

hand, Lemma 14 shows that the commutation index of any set of m pairwise anticommuting
observables is at most 1/m. Applying Theorem 16, we conclude that Ω(3kϵ−2) copies of ρ are
needed to learn the expected values of all observables from the set S. Therefore at least this
many samples are needed to learn all expected values of observables in P(n)

k .

The lower bound in Theorem 26 matches the sample complexity of known single-copy
protocols such as classical shadows, up to a factor of k log n [HKP20], see Table 2.
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For local fermionic observables, one can obtain a much stronger single-copy sample
complexity lower bound which scales polynomially in the system size n. This is telling us
that local fermionic observables are much harder to learn than local Pauli observables. The
following Theorem implies that there is no sample efficient single-copy protocol for k-body
fermionic observables, as stated in Theorem 3.

Theorem 27. Any (possibly adaptive) single-copy protocol which learns Tr (Γρ) to precision
ϵ for all k-body Majorana operators Γ on n fermionic modes with constant probability requires
number of copies scaling as Ω(nk/ϵ2), for any fixed k ≥ 1.

Establishing Theorem 27 requires a short detour into Johnson association schemes. For a
subset L ⊆ {0, . . . , q − 1}, define the generalized Johnson graph G(m, q, L) to have vertices
corresponding to the subsets of x ⊆ {1, . . . ,m} of size |x| = q, and an edge between any x
and y such that |x ∩ y| /∈ L. Notice that the commutation graph of the k-body Majorana
observables on n fermionic modes is precisely the generalized Johnson graph with L consisting
of the even integers: G(F (n)

k ) = G(2n, 2k, {0, 2, . . . , 2k − 2}).
In Ref. [Lin24], they show that the Lovasz ϑ-function of the generalized Johnson graph

scales like ϑ(G(m, q, L)) = Θ(m|L|) as m grows for fixed q. Seting L equal to the even
integers gives the following conclusion for the Lovasz ϑ-function of the commutation graph of
degree-2k Majoranas.

Theorem 28. ([Lin24, Theorem 1.2]) For any fixed k, ϑ(G(F (n)
k )) = Θ(nk) as n becomes

large.

This resolves Conjecture 4.13 of [HO22], up to the k-dependence of the constant factor in

ϑ(G(F (n)
k )).

Proof of Theorem 27. Theorem 28 and Lemma 18 give

∆(F (n)
k ) = O(nk)/

(
2n
2k

)
= O(n−k), (64)

since |F (n)
k | =

(
2n
2k

)
. Theorem 16 then implies the sample complexity lower bound Ω(nk/ϵ2).

The Ω(nk/ϵ2) single-copy sample complexity lower bound in Theorem 27 matches what
is achieved by the single-copy protocols in [BMBO20, JKMN20, WHLB23, HWM+22], up
to a factor of k log(n), see Table 2. It should also be noted that a matching lower bound

of ∆(F (n)
k ) = Ω(n−k) can be shown by finding a large set of mutually commuting k-body

fermionic observables.

4.2 Learning 1-body fermionic observables

In the case of 1-body observables there is a simple and practical algorithm for coloring induced
subgraphs of G(F (n)

1 ) with bounded clique number.

Lemma 29. Let G′ be any induced subgraph of the commutation graph G(F (n)
1 ) of 1-body

fermionic observables, and let ω be the size of the largest clique in G′. There is a classical
algorithm with runtime O(n2ω) that computes a coloring of G′ with at most ω + 1 colors.
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Proof. Let G′ = G(S) be the subgraph of G(F (n)
1 ) induced by some subset S ⊆ F (n)

1 of
1-body fermionic observables. Let ω be the maximum size of a clique in G′.

Consider an auxiliary graph H(S) defined as follows. This graph H(S) has 2n vertices
labeled by the Majorana fermion operators {c1, c2, . . . , c2n}. For each observable icacb ∈ S,
we include an edge {ca, cb} in H(S). Two elements of S commute if and only if they do
not share any Majorana fermion operators. For example, ic1c2 anticommutes with ic2c3 but
commutes with ic3c4. Thus a commuting set of 1-body fermionic observables corresponds to
a matching in H(S), and partitioning S into commuting sets corresponds to an edge coloring
of H(S).

Now observe that our graph of interest G′ is the line graph of H(S). An edge coloring of
H(S) gives a vertex coloring of G′. The edge coloring algorithm of Misra and Gries [MG92]
computes an edge-coloring of a graph H using no more than deg(H)+ 1 colors, where deg(H)
is the maximum degree of any vertex in H. But the edges connecting to a single vertex in
our graph H(S) form a clique in G′, so the degree of H(S) is at most ω. The runtime of the
edge coloring algorithm is asymptotically upper bounded by the number of vertices times the
number of edges, which in our case is O(n · nω).

It is also possible to directly vertex color the given graph G′ using Brooks’ theorem, which
states that the chromatic number of a graph is at most its maximum degree +1, since a high
degree vertex also yields a large clique. This argument yields a slightly looser bound of 2ω.

4.3 Learning k-body fermionic observables

We now prove Lemma 9, restated below.

Lemma 9. Let k ≥ 1, and let G′ be any induced subgraph of the commutation graph G(F (n)
k )

of k-body fermionic observables, and let ω be the size of the largest clique in G′. Then the
fractional chromatic number of G′ satisfies

χf (G
′) ≤ pk(ω). (13)

where pk is a polynomial. Moreover, for any k = O(1) we can sample from a fractional coloring
of G′ with size pk(ω) using a classical algorithm with runtime poly(n). The polynomials for
k = 1, 2 are p1(ω) = ω + 1 and p2(ω) = O(ω8).

Recall the definition of Majorana monomials from Eq. (62). In the following we shall use
the commutation relations of these operators which we now derive. Using Equation (3) we
get

cjΓ(y) = (−1)|y|+yjΓ(y)cj y ∈ {0, 1}2n j ∈ [2n]. (65)

Applying the above for all indices j in the support of x ∈ {0, 1}2n gives

Γ(x)Γ(y) = (−1)|x||y|+y·xΓ(y)Γ(x) x, y ∈ {0, 1}2n. (66)

Claim 30. Suppose x, y ∈ {0, 1}2n are such that |x|, |y| are either both even, or both odd. If
xj = yj = 0 for some j ∈ [2n] then

[cjΓ(x), cjΓ(y)] = 0 if and only if [Γ(x),Γ(y)] = 0. (67)
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Proof. Follows directly from Eq. (66).

In our proof, it will be helpful to consider Majorana monomials of both odd and even
degree. Write

M(n)
r = {Γ(x) : |x| = r, x ∈ {0, 1}2n} (68)

for the set of degree-r Majorana monomials, so thatM(n)
2k = F (n)

k are the k-body fermionic
observables of interest.

Proof. The proof is by induction in r. Our inductive hypothesis is that, for any induced
subgraph H of the commutation graph G(M(n)

r ) of degree-r Majorana monomials with largest
clique of size at most ω, we can sample from a fractional coloring of H with fr(ω) colors using
a classical algorithm with runtime tr(n) such that tr(n) = poly(n) for any constant r = O(1).
Here fr(ω) is a polynomial that we determine below. Ultimately we are interested in the
even values of r and we have pk(ω) = f2k(ω) where pk is the polynomial in the statement of
Lemma 9.

The base case is r = 2. We saw in Lemma 29 that if S ⊆ M(n)
2 and its commutation

graph G(S) has no cliques larger than ω, then G(S) can be colored with ω + 1 colors using

a classical algorithm with runtime O(n2ω) = O(poly(n)) since ω ≤ |M(n)
2 | = O(n2). Thus

f2(ω) = ω + 1 and we can efficiently sample from the coloring by selecting a color uniformly
at random.

In the following two claims we handle the induction step separately for the odd and even
values of r.

Claim 31. Suppose r ≥ 3 is odd. Then

fr(ω) = rωfr−1(ω). (69)

Proof. Let r ≥ 3 be odd, let G′ be an induced subgraph of G(M(n)
r ), and suppose the

largest clique in G′ has size at most ω. Let V ⊆ M(n)
r be the vertex set of G′. Let

Γ(x1),Γ(x2), . . . ,Γ(xL) ∈ V be a maximal set of pairwise anticommuting operators in V . We
can construct such a set by starting at any vertex of G′ and greedily adding vertices until
this is no longer possible. By definition, this set is a clique in G′ and therefore L ≤ ω.

Let I ⊆ [2n] be the set of all indices of Majoranas that appear in these operators. Since
each has weight r, we have

|I| ≤ rω. (70)

For convenience let us relabel the Majorana fermion operators so that I = {1, 2, . . . , T} where
T ≤ rω. Then define

Si = {Γ(z) ∈ V : zi = 1, and zj = 0 for all 1 ≤ j ≤ i− 1}. (71)

We now show that V can be partitioned as

V = S1 ⊔ S2 ⊔ . . . ⊔ ST . (72)

By definition, the sets on the RHS are disjoint and each contained in V so all we need to
show is that for any Γ(y) ∈ V there is some i ∈ T such that Γ(y) ∈ Si. So let Γ(y) ∈ V be
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given. Since the set Γ(x1),Γ(x2), . . . ,Γ(xL) ∈ V is a maximal set of pairwise anticommuting
operators, we must have

[Γ(y),Γ(xj)] = 0 for some j ∈ [L]. (73)

Since |y| = |x| = r are both odd we see from Eq. (66) that this implies y · xj ̸= 0. Therefore
yi = 1 for some index i ∈ {1, 2, . . . , T}. Let ℓ ∈ [T ] be the smallest index such that yℓ = 1.
Then Γ(y) ∈ Sℓ and we have shown V can be partitioned as in Eq. (72).

Now for each 1 ≤ i ≤ T consider the commutation graph G(Si). Each operator Γ(z) ∈ Si

has zi = 1. From Claim 30, the commutation graph of Si is therefore unchanged if we flip
zi ← 0 for all Γ(z) ∈ Si. Define

S ′
i = {Γ(z ⊕ êi) : Γ(z) ∈ Si}. (74)

We have shown that the commutation graph G(Si) coincides with the commutation graph

G(S ′
i), where the set S

′
i ⊆M

(n)
r−1 only contains degree-(r−1) Majorana monomials. Moreover,

G(V ) does not contain any clique larger than ω, so neither does its induced subgraph G(Si).
Therefore G(S ′

i) does not contain any clique of size greater than ω.
By our inductive hypothesis, for each 1 ≤ i ≤ T , we can sample efficiently from a fractional

coloring of G(S ′
i) = G(Si) with size at most fr−1(ω). Now let us define a fractional coloring of

V in which we choose an index i ∈ [T ] uniformly at random and then sample an independent
set in Si according to the fractional coloring of G(Si). Note that any independent set in
G(Si) is also an independent set in G(V ), so this defines a valid fractional coloring. Moreover,
the probability of any vertex u ∈ G(V ) being sampled is equal to the probability that we
choose i such that u ∈ Si (this probability is 1/T ) times the probability that the sampled
independent set of Si contains u (this is at least 1/fr−1(ω) by our inductive hypothesis). This
procedure samples a fractional coloring of size

T · fr−1(ω) ≤ rω · fr−1(ω) (75)

as claimed. To sample from the fractional coloring, we need to first construct a maximal
set of pairwise anticommuting operators Γ(x1), . . . ,Γ(xL), from which we can define the
set I and the partition Eq. (72). As noted above, this step can be performed by starting
at an arbitrary vertex Γ(x1) of G′ and then growing the set one operator at a time until
this is not longer possible. This step has poly(n) runtime because the graph has at most

|M(n)
r | =

(
2n
r

)
= poly(n) vertices. The next step is to choose an index 1 ≤ i ≤ T at random

and sample an independent set of Si uniformly at random using a fractional coloring of G(Si)
which by our inductive hypothesis can be done in poly(n) time.

Claim 32. Suppose r ≥ 4 is even. Then

fr(ω) = (fr−1(ω))
r . (76)

Proof. Let r ≥ 4 be even, let G′ be an induced subgraph of G(M(n)
r ), and let ω be the size of

the largest clique in G′. Let V ⊆M(n)
r be the vertex set of G′. For each 1 ≤ i ≤ 2n, define

Wi = {Γ(x) ∈ V : xi = 1}. (77)
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Note any clique in G(Wi) has size at most ω. From Claim 30, the commutation graph of Wi

is unchanged if we flip zi ← 0 for all Γ(z) ∈ Wi. Define

W ′
i = {Γ(z ⊕ êi) : Γ(z) ∈ Wi}. (78)

Then G(Wi) = G(W ′
i ) and any clique in G(W ′

i ) has size at most ω. Moreover, W ′
i is a set

of degree-(r − 1) Majorana monomials, and by our inductive hypothesis we can efficiently
sample a coloring of G(W ′

i ) with size at most fr−1(ω). Let qi be the corresponding fractional
coloring of Wi, for each 1 ≤ i ≤ 2n.

Now let us randomly sample a set Ω ⊆ V as follows. First, select independent sets
I1 ∼ q1, I2 ∼ q2, . . . , I2n ∼ q2n according to the fractional colorings described above. Then let

Ω = {Γ(x) ∈ V : Γ(x) ∈ Ij for all j ∈ [2n] such that xj = 1} (79)

Since |x| = r for all Γ(x) ∈ V , we have

Pr(Γ(x) ∈ Ω) ≥
(

1

fr−1(ω)

)r

Γ(x) ∈ V (80)

Now let us show that Ω is an independent set in V ; this implies that the above procedure
samples from a fractional coloring of V with (fr−1(ω))

r colors. So suppose Γ(x),Γ(y) ∈ Ω. We
will show that Γ(x),Γ(y) commute; equivalently, there is no edge between the corresponding
vertices in G′. First suppose x ∩ y = ∅. In this case, since |x| = |y| = r are both even, it
follows directly that [Γ(x),Γ(y)] = 0. If on the other hand xj = yj = 1 for some j ∈ [2n],
Then Γ(x),Γ(y) ∈ Wj ∩Ω. But Wj ∩Ω ⊆ Ij is an independent set in the commutation graph
of Wj, and therefore [Γ(x),Γ(y)] = 0.

The algorithm we have described above only involves identifying the subsets of vertices
Wi for 1 ≤ i ≤ 2n (which can be done in linear time in the number of vertices of G′, which is
upper bounded polynomially in n), and then using O(n) calls to the subroutine for sampling
fractional colorings of commutation graphs of degree-(r− 1) Majorana monomials with clique
number at most ω. Since this subroutine has poly(n) runtime by our inductive hypothesis,
so does the algorithm described above.

Putting together Claims 31, 32, and Lemma 29 we see that the sizes fr(ω) of the fractional
colorings are polynomial functions of ω with degree that depends only on r. For even values
of r the polynomials pk(ω) = f2k(ω) satisfy the recurrence

p1(ω) = ω + 1 and pk(ω) = ((2k − 1)ωpk−1(ω))
2k k ≥ 2. (81)

For the 2-body and 3-body fermionic observables we get

p2(ω) = O(ω8) , p3(ω) = O(ω54) (82)

In general, we have the upper bound

pk(ω) ≤ (2kω)(2k)
k+1

. (83)
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A Proof of Lemma 18

Lemma 18. ([dGHG23, XSW23, HO22]) Let S be a set of Pauli operators. Then

∆(S) ≤ ϑ(G(S))

|S|
. (25)

Proof. Denote S = {P1, . . . , Pm}. Given ρ, let

aj = Tr (Pjρ) . (84)
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We aim to show
∑

j a
2
j ≤ ϑ(G(S)).

Consider the observable
Q =

∑
j

ajPj. (85)

We have

Q2 =
∑
j,l

ajalPjPl =
1

2

∑
j,l

ajal{Pj, Pl}. (86)

Note P 2
j = 1 since they are Hermitian unitaries.

Now take the trace with ρ. We get

Tr
(
Q2ρ

)
=
∑
j,l

ajalBjl ≤ λmax(B)
∑
j

a2j , (87)

where we defined the matrix

Bjl =
1

2
Tr ({Pj, Pl}ρ) . (88)

By positivity of the state ρ, we have Tr
((
Q− Tr (Qρ)1

)2
ρ
)
≥ 0 and therefore

Tr (Qρ)2 ≤ Tr
(
Q2ρ

)
(89)

=⇒
(∑

j

a2j

)2
≤ λmax(B)

∑
j

a2j (90)

=⇒
∑
j

a2j ≤ λmax(B). (91)

B satisfies Bjj = 1 ∀j and Bjl = 0 for all edges (j, l). The latter holds since (j, l) is
an edge precisely when {Pj, Pl} = 0. Positivity of the state ρ implies that B is positive
semidefinite, since for any vector v ∈ Rm

vTBv = Tr

((∑
j

vjPj

)2
ρ

)
≥ 0. (92)

Let’s now take the supremum of the right-hand-side over all such B to get∑
j

a2j ≤ ϑ̃(G(S)), (93)

where

ϑ̃(G) = max {λmax(B), B ∈ Rm×m

s.t., Bjj = 1 ∀j, Bjl = 0 ∀(j, l) ∈ E, B ⪰ 0}. (94)

Lemma 33 completes the proof.

Lemma 33. ([Knu93]) The function ϑ̃(G) from Equation (94) satisfies ϑ̃(G) ≤ ϑ(G).

37



Proof. We will use the dual description Equation (24). Let (λ,A) achieve the optimal dual
value λ = ϑ(G). Define the m× (m+ 1) matrix

U = (⃗1,
√
λA− J), (95)

where we padded with the all-ones column vector 1⃗ on the left. (Recall J denotes the all-ones
matrix.) Let B be any matrix feasible for ϑ̃(G). Decompose

B = QTDQ = V TV , V =
√
DQ, (96)

where Q is orthogonal and D is diagonal with D11 = λmax(B). (The entries of D are the
eigenvalues of B.) Now consider the collection of m matrices {Y (j)} of size m× (m+1) given
by

Y
(j)
ab = VajUjb. (97)

We have
Tr
(
(Y (j))TY (l)

)
=
(∑

a

VajVal

)(∑
b

UjbUlb

)
= λBjlAjl. (98)

If j ̸= l, this is zero, since if (j, l) is an edge in G then Bjl = 0, and if not then Ajl = 0. If

j = l, we get Tr
(
(Y (j))TY (j)

)
= λ. Thus {Y (j)/

√
λ} are orthonormal when viewed as vectors

of dimension m(m+ 1), and

1 ≥
∑
j

(
Y

(j)
11 /
√
λ
)2

=
D11

λ

∑
j

Q2
1j =

D11

λ
=⇒ D11 ≤ λ. (99)

It is in fact true that ϑ̃(G) = ϑ(G), but we only need ϑ̃(G) ≤ ϑ(G) for our purposes.

B Learning Greens functions

A quantity of fundamental interest in the chemistry and physics of fermionic system is the
Greens function. The k-body Greens function is similar to the k-RDM except that some of
the operators have been evolved forward in time. Accordingly, the Greens function can be
used to characterize the response of a fermionic system to external perturbations.

Definition 34. The 1-body Greens function of a state ρ with respect to Hamiltonian H is
defined as

Gab(t) = Tr (ica(t)cb(0)ρ) , (100)

where
ca(t) = eiHtcae

−iHt. (101)

Examples of dynamical properties one can compute from the 1-body Greens function
but not the 1-RDM include electrical conductivity, magnetic and electric susceptibility, and
dynamic structure factor. The time-dependent part of the Greens function is often essential for
characterizing interesting phases of matter and the presence of certain quasiparticles. Many
impurity model schemes for converging finite quantum simulations of condensed fermionic
systems towards their thermodynamic limit also require the time-dependent part of the
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Greens function. Such methods include dynamical mean-field theory (DMFT) [KSH+06] and
self-energy embedding theory [KGZ15]. Using quantum computers as impurity model solvers
in this context has been explored in papers such as [BWM+16, LMC+23].

In this work we do not give a particularly efficient method for computing Greens functions
at non-zero times (in the limit of zero time, the one-body Greens function is the 1-RDM).
However, we are able to show that one can compute time-derivatives of the Greens function
at t = 0 for sparse Hamiltonians. One can then use these time derivatives to reconstruct the
Greens function using a Taylor expansion. Prior work developing methods for DMFT has
used this same approach to reconstructing and embedding Greens functions [FB18].

The value Gab(0) of the Greens function at time zero is simply the 1-RDM, which was
tackled in Lemma 29. The qth derivative at time zero is given by

G
(q)
ab (0) = Tr (iLq

H(ca)cbρ) , (102)

where LH(X) = i[H,X] = i(HX−XH) denotes the Lie bracket, or commutator. Lq
H denotes

the t-fold commutator; for example L2
H(X) = −[H, [H,X]].

We will require the Hamiltonian H to be sparse, according to the following definition.

Definition 35. A Hamiltonian H is s-sparse if each Majorana mode appears in at most s
terms.

One should view {G(q)
ab (0)}a,b as a n×n matrix for each q, and we would like to learn each

entry to precision ϵ. For a given t, the naive strategy of measuring one-at-a-time requires
O(n2/ϵ2) copies of ρ. Let Hamiltonian H be k-body and s-sparse. In this section, we give
a quantum algorithm which exploits entangled measurements on ρ⊗ ρ to achieve a sample
complexity of Õ(log n/ϵ4), depending only logarithmically on the system size n.

Theorem 36. Suppose ρ is an unknown state on n fermion modes, and H a k-body and
s-sparse Hamiltonian. There is an algorithm using entangled measurements on two copies
ρ⊗ ρ at a time which can estimate all {G(q)

ab (0)}a,b to precision ϵ with high probability using
Õ((2skq)5q log n/ϵ4) total copies of ρ. Moreover, the algorithm runs in time poly n.

Proof of Theorem 36. Let’s examine the operators {iLq
H(ca)cb}a,b more closely by expanding

Lq
H(ca) =

∑
Γ∈S(q)

H,a

h
(q)
a,ΓΓ (103)

iLq
H(ca)cb =

∑
Γ∈S(q)

H,a

ih
(q)
a,ΓΓcb (104)

S
(q)
H,a denotes the Majorana monomials on which Lq

H(ca) has support. Note that all Γ ∈ S
(q)
H,a

have odd degree. Let’s assume the original Hamiltonian H was normalized so that the
coefficients in the Majorana basis have absolute value at most 1; this implies all |h(q)

a,Γ| ≤ 1.
The following lemma makes a crucial observation that the number of terms from H which

survive in the expansion of Lq
H(ca) is bounded independent of the system size n. For example,

the terms which survive in [H, ca] are those which act on the fermion associated to Majorana
mode ca, of which there are at most s.
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Lemma 37. |S(q)
H,a| ≤ sq(2k)q−1(q − 1)!.

Proof of Lemma 37. The proof is a short combinatorial calculation. The degree of the
operators in S

(q)
H,a are upper bounded by (2k− 2)q+1. This is because we increase the degree

by (2k − 2) each time we take the Lie bracket, and initially the degree is 1. Using s-sparsity

of H, we can write a recursion upper bounding |S(q)
H,a|:

|S(q)
H,a| ≤ |S

(q−1)
H,a | · s · ((2k − 2)(q − 1) + 1). (105)

Using |S(0)
H,a| = 1, we get

|S(q)
H,a| ≤ sq((2k − 2)(q − 1) + 1)((2k − 2)(q − 2) + 1) . . . (2k − 1) (106)

≤ sq(2k)q−1(q − 1)! (107)

The goal is to estimate Tr (iLq
H(ca)cbρ) to precision ϵ for all (a, b). By a triangle inequality

on Equation (104), it is sufficient to estimate Tr (Γcbρ) to precision ϵ/|S(q)
H,a| for every Γ ∈ S

(q)
H,a.

Thus we focus on learning the set of Majorana operators

S = {Γcb : Γ ∈ S
(q)
H,a, j = 1, . . . ,m}. (108)

The number of Majorana operators we are required to learn could be as large as |S(q)
H,a|m.

Thus we do not want to measure these one at a time; rather we would like to parallelize the
learning of these operators by using entangled measurements. To this end, we establish the
following chi-binding result.

Lemma 38. Let G′ be any induced subgraph of the commutation graph G(S), and let ω be
the size of the maximal clique in G′. Then we can efficiently find a coloring of G′ with at
most O(sq(2k)q+2q2(q!)ω) colors.

Proof of Lemma 38. We will show that the degree of G′ is bounded by O(sq(2k)q+2q2(q!)ω).
Then a greedy coloring algorithm is sufficient to establish the result.

We begin with an initial lemma.

Lemma 39. Fix Γ ∈ S
(q)
H,a. The number of indices b for which Γcb is a vertex in G′ is upper

bounded by 2ω.

Proof of Lemma 39. This argument follows the same idea as the degree bound in the proof
of Lemma 29. Let B = {b : Γcb ∈ G′}. We seek to bound |B| = O(ω). Let’s split B into two
subsets:

B \ Γ = {b : Γcb ∈ G′, cb /∈ Γ} (109)

B ∩ Γ = {b : Γcb ∈ G′, cb ∈ Γ} (110)

(The notation cb ∈ Γ indicates that cb appears as a factor in Γ.) The operators {Γcb}b∈B\Γ
form a mutually anticommuting set, and likewise for the operators {Γcb}b∈B∩Γ. Using the
bound on clique size ω, we get |B \ Γ| = ω and |B ∩ Γ| = ω completing the proof.
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Now fix a single operator Γ0cb0 in G′. We will upper bound the degree of Γ0cb0 in G′.
Suppose vertex Γcb forms an edge with Γ0cb0 in G′. This means Γcb anticommutes with Γ0cb0 .
In order for Γcb and Γ0cb0 to anticommute, they must overlap on an odd number of Majorana
modes.

Case 1. Γ overlaps with Γ0cb0 on at least one Majorana mode. By a similar combinatorial

argument as the proof of Lemma 37, the number of Γ ∈
⋃

a S
(q)
H,a overlapping with any given

Majorana mode is upper bounded by

sq((2k − 2)q + 2)((2k − 2)(q − 1) + 2) . . . (2k) ≤ sq(2k)qq!. (111)

Multiplying by the number of single Majorana factors in Γ0cb0 , we get that there are at most

sq(2k)qq! · ((2k − 2)q + 2) ≤ sq(2k)q+1q(q!) (112)

Γ ∈ S
(q)
H,a which overlap with Γ0cb0 on at least one mode. With Γ fixed, there are at most 2ω

choices for b such that Γcb ∈ G′ by Lemma 39. Thus there are overall at most

2sq(2k)q+1q(q!)ω (113)

vertices Γcb forming an edge with Γ0cb0 such that Γ overlaps with Γ0cb0 on at least one mode.

Case 2. Γ is disjoint from Γ0cb0 . Since Γcb and Γ0cb0 anticommute, necessarily cb must
appear as a factor in Γ0cb0 ; we can write cb ∈ Γ0cb0 .

Fix b such that cb ∈ Γ0cb0 , and consider a new graph G(b) whose vertices are the Γ such
that Γcb forms an edge with Γ0cb0 and Γ is disjoint from Γ0cb0 . Include an edge between
Γ and Γ′ in G(b) if the Γ and Γ′ anticommute. Note that the operators Γ and Γ′ have odd
degree as products of Majoranas.

The graph G(b) is very dense, and is close to the complete graph. In fact, the co-degree
of G(b) is bounded; that is, the degree of the complement of G(b). This is because disjoint
odd-degree Majoranas anticommute, so in order for Γ and Γ′ not to form an edge, the
operators Γ and Γ′ must overlap. To examine the co-degree of G(b), we can perform a similar
combinatorial calculation as in Case 1 to get an upper bound

codeg(G(b)) ≤ sq(2k)q+1q(q!). (114)

The co-degree bound means that we can partition G(b) into cliques using at most
codeg(G(b)) + 1 cliques; this corresponds to a greedy coloring of the complement of G(b). To
each clique we can apply the assumption on the clique number ω to get a bound on the
overall size of G(b):

|G(b)| ≤ (codeg(G(b)) + 1) · ω ≤ O(sq(2k)q+1q(q!)ω). (115)

With at most (2k − 2)q + 2 choices for b, we conclude that there are at most

O(sq(2k)q+2q2(q!)ω) (116)

vertices Γcb forming an edge with Γ0cb0 such that Γ is disjoint from Γ0cb0 .
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Combining Lemma 38 with Lemma 20 completes the proof of Theorem 36. At last
invoking Lemma 37, we can bound the final sample complexity as follows:

N = Õ(|S(q)
H,a|

4 logm/ϵ4) +O(sq(2k)q+2q2(q!) · |S(q)
H,a|

2/ϵ2) · Õ(|S(q)
H,a|

2 logm/ϵ2) (117)

= Õ(sq(2k)q+2q2(q!) · |S(q)
H,a|

4 · logm/ϵ4) (118)

= Õ(s5q(2k)5q−2q3(q − 1)!5 logm/ϵ4) (119)

= Õ((2skq)5q logm/ϵ4). (120)
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