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Abstract—In recent years, Transformer networks have shown
remarkable performance in speech recognition tasks. However,
their deployment poses challenges due to high computational and
storage resource requirements. To address this issue, a lightweight
model called EfficientASR is proposed in this paper, aiming
to enhance the versatility of Transformer models. EfficientASR
employs two primary modules: Shared Residual Multi-Head
Attention (SRMHA) and Chunk-Level Feedforward Networks
(CFFN). The SRMHA module effectively reduces redundant
computations in the network, while the CFFN module captures
spatial knowledge and reduces the number of parameters. The
effectiveness of the EfficientASR model is validated on two public
datasets, namely Aishell-1 and HKUST. Experimental results
demonstrate a 36% reduction in parameters compared to the
baseline Transformer network, along with improvements of 0.3%
and 0.2% in Character Error Rate (CER) on the Aishell-1 and
HKUST datasets, respectively.

Index Terms—speech recognition, attention redundancy, feed-
forward network, lightweight

I. INTRODUCTION

In recent years, Transformers [1] have shown better perfor-
mance than traditional sequence models [2], [3] in the ASR
domain, capturing long-range dependencies through attention
mechanisms. Attention mechanisms play a crucial role in
Transformers by establishing connections between different
positions through identity mapping. However, attention com-
putation in Transformers is computationally expensive and
contains a significant amount of redundancy. On the other
hand, feedforward networks capture high-level representations
through high-dimensional feature mappings, but this also leads
to an increase in network parameters. These issues result
in high-performing Transformer models requiring substantial
storage and computational resources, making it challenging to
apply them on limited computing devices.

The importance of attention mechanisms in Transformer
networks has been extensively studied. For instance, He et al.
[4] introduced the residual attention mechanism to improve
model performance by enabling interaction and fusion of
attention across different layers. Research by [5] revealed
that as attention propagates from lower to higher layers,
the attention distribution becomes more diagonalized, with
higher-layer attention contributing less to model performance.
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Additionally, the study by [6] demonstrated that randomly
removing some attention heads does not significantly affect
model performance, suggesting redundancy in attention com-
putations. Shim et al. [7] found that lower-layer attention
focuses more on semantic features of speech, while higher-
layer attention is more concerned with language positioning.
Moreover, the investigation by [8] discovered that attention
distributions between adjacent layers tend to be more similar,
reducing network redundancy by sharing certain attention
heads. HybridFormer [9] proposed HyperMixer to replace
multi-head self-attention, which can model local interaction
and global interaction information respectively. Benefit from
HyperMixer’s linear time and memory complexity, signifi-
cantly reducing computational and memory costs.

In the domain of model lightweighting, effective methods
like quantization-aware training [10] and knowledge distil-
lation [11] [12] exist but can be complex to implement. In
contrast, weight sharing [13] [14] offers a more straightfor-
ward model compression approach. However, when only the
learnable parameters are shared, it doesn’t reduce the forward
propagation computation of the network. By analyzing the
parameter and computational costs of the attention mechanism
and feed-forward networks in Transformer, we introduce an
innovative approach to address attention redundancy, sharing
attention scores across layers through residual connections for
interactive fusion between higher and lower layers. At the
same time, in order to reduce the computational redundancy
introduced by cross-layer shared attention scores and enhance
the ability of attention to extract local features, we apply the
sliding window with deformability (SWD) method [15] to
shared attention scores, reducing redundancy in single-layer
attention maps. When lightweighting attention-based speech
recognition models, we often focus on the point: Reduce
attention redundancy and parameter count effectively.

To tackle these challenges, in this paper, we introduce an ef-
ficient ASR network, called EfficientASR, which 1) leverages
sharing residual attention to reduce attention redundancy and
2) employs the Chunk-level FFN structure to reduce parameter
count effectively. Specifically, the method shares attention
scores among multiple layers and integrates old attention
scores into new ones through residual connections, achieving
interactive fusion of attention scores between higher and lower
layers. Chunk-level Feed-forward Neural Network (CFFN)
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divides the feed-forward networks into multiple chunks based
on embedding dimensions, using smaller FFNs in each chunk,
substantially reducing the number of learnable parameters
without compromising model performance. Additionally, the
paper applies the previously proposed sliding window with
deformability (SWD) [15] method to the shared attention
scores, addressing the slow change of diagonalization degree
in higher layers after shared attention and further reducing
redundancy in single-layer attention maps.

II. RELATED WORK

A. Automatic speech recognition

With the application of transformer in the field of natu-
ral language processing (NLP) and its significant effect on
modeling contextual information, transformer is also suitable
for the field of speech [16]–[18]. Existing automatic speech
recognition (ASR) works are mainly divided into three struc-
tures: CNN, RNN, and transformer. Previously, transformer
and CNN were used as networks to achieve good results in
ASR, but both have their limitations: transformer is not good at
extracting fine-grained partial feature, while the CNN network
can capture local features such as edge lines and shapes,
but more convolutional layers are needed to capture global
information.

In subsequent work on the ASR task, there are improve-
ments in recognition efficiency by using depth-wise separable
convolutions [19]. The model is composed of several inter-
connected modules, featuring residual links that facilitate the
flow of information between them. Within each module, there
is an implementation of one or multiple 1D temporal channel
separable convolutional filters. There is also a combination
of squeeze and excitation modules to capture longer con-
textual semantic information [20]. Compared with CNN, the
significant benefit of transformer is that it can learn global
dependencies based on self-attention, which is key for speech
processing tasks. Gulati et al. [21] proposed the Conformer,
since the Transformer model is good at capturing global
interactions based on content and CNN effectively utilizes
local features, Conformer integrates the capabilities of both the
Transformer and CNN to effectively capture and process both
local and global interdependencies present within the audio
sequence.

However, in the previous Conformer structure, the feature
representations derived from consecutive speech frames con-
tained considerable repetition, resulting in unnecessary com-
putational consumption. In this regard, Squeezeformer [22]
introduces a sequential U-Net structure. The down-sampling
layer halves the sampling rate of the input speech signal.
At the end of the network, a lightweight up-sampling layer
restores the speech signal from a low sampling rate to the
original high sampling rate, which ensures that model training
is stable. Branchformer [23] adopts a parallel dual-branch
structure. A particular branch within the model leverages a
multi-headed self-attention system to capture expansive char-
acteristics across the input sequence, and the other branch
introduces the MLP with convolutional gating structure, which

is intended to capture local features in the audio sequence.
[24] proposed E-Branchformer, an advancement over the
Branchformer, which applys efficient model fusion methods
and stacking additional point-adding modules. As a result, E-
Branchformer established a new benchmark for WER, notably
without leveraging any external training data. Zipformer [25]
has similar ideas to previous work on downsampling the
temporal dimension. However, compared to the fixed down-
sampling ratio in the Squeezeformer [22], the Squeezeformer
works with different downsampling ratios in different encoder
stacks, and uses a larger downsampling ratio in the interme-
diate encoder stack.

B. Efficient attention mechanism

The self-attention mechanism is a critical component in
many ASR models. It allows the model to dynamically focus
on different parts of the input sequence, which is essential for
understanding the context and structure of the speech data.
However, the computational complexity of this mechanism is
a significant concern due to its quadratic scaling with respect
to the length of the input sequence. There are many ways
to improve the efficiency of the transformer. Sparse attention
mechanisms [26], [27], [27]–[32] offer a promising approach
to address the challenges associated with the complexity of
self-attention. Through the self-attention process, the mech-
anism transcends limitations inherent in RNNs’ sequential
framework, allowing individual tokens in a given sequence
to engage with the entire set of tokens without dependence on
their order.

However, numerous applications limit context to a very
short sequence length due to current hardware and model size
constraints. These constraints typically restrict input sequences
to approximately 512 tokens in length, significantly diminish-
ing direct applicability to tasks requiring broader context. To
tackle this issue, [27] propose a sparse attention mechanism
capable of processing sequences up to 8 times longer than
previously achievable with comparable hardware. This ad-
vancement significantly enhances the performance of various
Natural Language Processing (NLP) tasks, including question
answering and summarization, by effectively managing longer
in-context information. Longformer [28] uses sliding window
attention to focus on local in-context information, and uses
global attention on some preselected input positions to capture
global in-context information. To mitigate potential declines
in performance, [27] focuses on randomly selected pairs of
tokens, but it might necessitate utilizing a substantial quan-
tity of tokens to reduce performance degradation on longer
sequences, which often limits computational speed-up.

However, even if these new methods surpass the state-of-
the-art, their use in the real world often comes with significant
resource costs. Hence, there is a crucial need to investigate
efficient and lightweight model networks that hold increased
commercial value.



Fig. 1. (a) is a traditional Transformer structure. (b) is an EfficientASR structure, where the dashed line portion is only used in shared attention mode.
The small circles represent the embedding dimension of the input features, and the small squares represent learnable parameters. SWD represents the sliding
window with deformability

III. PROPOSED METHOD

A. Review Transformer

The encoder-decoder Transformer model has achieved ex-
cellent performance in ASR, a success largely attributable
to its integration of an attention mechanism with a feed-
forward neural network. The specific calculation process of
the attention mechanism is as follows:

Attn = Softmax(
QKT

√
dk

)V, (1)

The number of learnable parameters for each attention
module is 4d2model+4dmodel. In addition, when the input X ∈
RB×T×dmodel passes through the attention module, the number
of floating point calculations is 4T 2Bdmodel + 8BTd2model.

For the feed-forward network, it consists of two linear
layers, where high-dimensional feature mapping is usually
applied:

FFN(X) = ReLU(XW1 + b1)W2 + b2, (2)

Where ReLU serves as the activator, the matrices W1, W2 are
belonging to the space Rdmodel×dff and Rdff×dmodel , and dff
is the hidden dimension of FFN. b1 ∈ Rdff and b2 ∈ Rdmodel

are bias vectors. It is worth noting that dff is often several
times greater than dmodel, for example, in the ESPnet [33]
toolkit, the default value of dff is 8dmodel. Therefore, the
parameter count of the FFN is 16d2model + 9dmodel, and the
number of floating point calculations is 32BTd2model.

Based on the above analysis, it can be found that when
dff = 8dmodel, the number of learnable parameters in FFN
is much larger than that of MHA, which is caused by the
large weight matrices in FFN due to high-dimensional feature
mapping. Even though MHA possesses a lesser count of
adjustable parameters compared to FFN, our research indicates
that as the size of the input feature set, represented by length
T , increases the computational demand for MHA escalates
significantly, surpassing that reguired by FFN. This is because

the computational complexity of QKT and SV in the calcu-
lation process is proportional to the square of T . Therefore,
this also inspires us to improve both MHA and FFN to reduce
the overall computational complexity and number of learnable
parameters of the model.

B. EfficientASR

Following the preceding discussion, we introduce an in-
novative lightweight network structure called EfficientASR.
Illustrated on the right side of Fig 1, each encoder layer is
comprised of an SRMHA component, an SWD component,
and a CFFN component, while the decoder layers also include
a cross multi-head attention module. Residual links and layer-
wise normalization are integrated within each module, as ref-
erenced in [34], [35]. EfficientASR reduces the computational
complexity and number of learnable parameters by reducing
redundant information in the attention mechanism.

Previous studies have shown that there is a significant
amount of redundancy in the repeated calculation of attention
scores in Transformer networks [6] [8]. However, simply
sharing attention heads to other layers is not the optimal
choice. Inspired by the concept of [5] as the depth of the
network increases, the diagonalization of attention becomes
more prominent. Sharing attention heads directly to other lay-
ers slows down the formation of this diagonalization. In place
of the conventional Transformer’s multi-head self-attention
component, we have introduced a substitute module with a
shared residual multi-head attention (SRMHA) module, while
retaining the cross self-attention in the decoder. The SRMHA
module has two modes of operation across different sub-layers:
shared attention and updated attention, as depicted on the right
side of Figure 1. For any layer of SRMHA, its expression is:

S = WqZq · (WkZk)
T (3)

V = WvZv (4)

SRMHA = Softmax(S)V. (5)



Here, S represents attention scores, and V represents the linear
mapping of inputs.

C. Updated Attention Mode

In the speech recognition task, neighboring tokens have
stronger correlations. Therefore, the SWD module restricts the
interaction range between tokens by only retaining the data
within the w-range of the attention matrix diagonal. Under
the updated attention mode, the attention matrix S is updated
as follows:

S = SWD(S′, w), (6)

S′ =
QKT

√
dk

+ S′′, (7)

here, S′ represents the updated attention matrix, S′′ represents
the previous updated attention matrix, and dk denotes the size
of either the word vector dimensions or the dimensions within
the hidden layer. By using residual connections for attention,
similar to [4], high-level and low-level feature distributions
can be fused. Specifically, by connecting the attention matrix
QKT

√
dk

generated from the input features of the current layer
with the old attention matrix S′′ through residual connections,
we obtain a new attention matrix S′. The SWD module and
attention matrix residual connections are only used in sub-
layers under the updated attention mode.

D. Shared Attention Mode

To reduce the redundant calculation of attention, we reduce
the need to calculate attention matrices for the same input
features by sharing attention. Under the shared attention mode,
the attention matrix S is equal to the old attention matrix S′′,
and the SRMHA module does not need to generate the Q
and K matrices, thereby reducing the computational burden
of two linear layers and the calculation of QKT . In this
case, S = S′′ , and the SRMHA module does not need to
generate the Q and K matrices, reducing the computational
cost of two linear layers and the calculation of QKT . In this
case, the SRMHA module has 2d2model + 2dmodel learnable
parameters and requires 2T 2Bdmodel + 4BTd2model floating-
point operations in terms of computation. Compared with the
standard self-attention module in Transformers, the learnable
parameters and floating-point operations of the SRMHA mod-
ule are reduced by half.

E. Chunk-level Feed-Forward Network

The mapping of high-dimensional features dominates most
of the learnable parameters in Transformer, but it has been
rarely studied in speech recognition. Based on the inspiration
from [36], we treat the feed-forward network as a key-value
memory and redefine its expression as:

FFN = f(XKT )V. (8)

Here, K and V correspond to the learnable matrices W1 and
W2, respectively, and f is utilized to signify the ReLU. The
key of each layer is used to capture patterns in the input
sequence, while the value generates the distribution of the next

token based on the captured patterns. In order for the feed-
forward network to serve as a key-value memory and learn
different feature representations, covering a broader range of
semantic relationships, we propose a chunk-level feed-forward
network (CFFN). As shown in Fig. 1, CFFN can project
and map the input sequence differently, reducing the burden
of high-dimensional computations and improving scalability.
Specifically, the expression of CFFN is as follows:

CFFN = Concat(chunk1, ..., chunkn), (9)

chunki = FFN(Xi), (10)

X1, ..., Xn = Split(X), (11)

Here, n represents the number of chunks, and each chunk rep-
resents a key-value memory. When dff = 8dmodel, the amount
of parameters in each chunk is 16(dmodel/n)

2 + 9dmodel/n.
By introducing the chunk-level feed-forward network (CFFN),
the model can better utilize the feed-forward network as a
key-value memory to learn different feature representations,
improve the performance of the speech recognition model, and
reduce the burden of high-dimensional computations.

F. The global learning of EfficientASR

We selected 2 loss functions for global learning and the
fitting of EfficientASR. We utilize cross-entropy loss LCE to
calculate the probability distribution difference between the
EfficientASR output and the target sequence. A CTC loss
LCTC [37] is selected to improve the recognition accuracy
of acoustic boundaries and achieve the alignment of acoustic
tokens and semantic tokens.

L = α1LCE + α2LCTC (12)

Notably, α1 and α2 represent weight hyperparameters that
adjust the relative importance of these two loss functions. Once
L is obtained, we compute the gradients of all parameters and
update our model using backward propagation.

IV. EXPERIMENT

A. Experimental Setup

Dataset and Preprocessing: To assess the performance of
the EfficientASR, we have chosen two prominent datasets:
Aishell-1 [38] and HKUST [39]. The preprocessing stage of
the audio input involves a series of transformations, such as
segmentation into frames, application of a window function,
computation via the fast Fourier transform (FFT), and subse-
quent processing with the discrete cosine transform (DCT).
In this process, each window spans 25 ms, with a stagger of
10 ms between successive windows. The resultant feature set
consists of 80 dimensions, represented by log Mel-filterbank
coefficients. In the context of speech enhancement [40], the
time mask window is 30 and the frequency mask window
is 40. In the convolutional downsampling, the size of the
convolutional kernel is 31.

Hyperparameter: The ESPNet toolkit [33] serves as the
platform for executing all our experiments. Specifically, we



have implemented the label smoothing technique and a dropout
rate of p=0.1 to mitigate the risk of overfitting in our model.
For optimization, we have chosen the Adam algorithm [41],
with a learning rate set to 0.002. Supplementary settings
encompass a model dimension of dmodel=256, a feed-forward
layer size of dff=2048, with window dimensions denoted by
w=6 and h=4, followed by the number of attention heads
12 and the number of encoder layers 6. In the attention
mechanism, we have set dq , dk, and dv dimensions equal to
dmodel/h=64. Each training batch commences with a size of
64, and the beam search strategy employs a beam width of 10.
Our language model (LM), which operates on the Transformer,
comprises 16 lavers and is trained over 15 epochs. During
training, the weight for the CTC is 0.3, and during inference,
the weight for CTC is 0.6.

B. Evalution systems

To objectively compare the automatic speech recognition
(ASR) performance of the acquired representations across
various noisy environments, we developed four replication-
synthesis frameworks utilizing both Aishell-1 [38] and
HKUST [39] corpora:

• Transformer w/o LM [1]: Transformer-based ASR model
combined with pre-trained language model.

• Transformer LM [1]: Transformer-based ASR model
combined without pre-trained language model

• Conformer [42]: Combining CNN and transformer to
model both local and global interdependencies within
audio sequences.

• Conformer EfficientASR: Replace multi-head attention
(MHA) in Conformer with SRMHA and feedforward
(FFN) network with CFFN.

C. Results

The experimental results conducted on the Aishell-1 dataset
are shown in Table I. The EfficientASR model has only
19.33M parameters, which is a 36% reduction compared to
the Transformer model. The EfficientASR model realized
a 0.1% reduction in Character Error Rate (CER) for the
development (dev) set and a 0.3% decrease for the test
sets. To validate the model’s scalability, SRMHA and CFFN
were applied to the Conformer model, resulting in the Con-
former EfficientASR model. Experimental results indicate that
the Conformer EfficientASR model reduces the parameter
count by 38% compared to the Conformer model while
maintaining a test set CER of 4.9%. Therefore, the proposed
EfficientASR model significantly minimizes the quantity of
parameters that require learning, as well as the computational
expense of the network, without notably degrading the perfor-
mance of the model.

Similarly, we further validated the proposed EfficientASR
model on the HKUST dataset, and the experimental results are
presented in Table II. In contrast to the Transformer model,
the EfficientASR model reduces the parameter count by 36%.
Employing a Language Model (LM) on the dev set led to
a 0.2% enhancement in CER performance. In contrast to

TABLE I
COMPARISON OF CER RESULTS BETWEEN EFFICIENTASR AND

TRANSFORMER BASELINE ON AISHELL-1.
Model dev/test (%) Parameter (M)
Transformer w/o LM [1] 5.5/5.9 30.35
Transformer LM [1] 5.2/5.6 30.35
Conformer [42] 4.5/4.9 45.40
EfficientASR w/o LM 5.4/5.6 19.33 (36% ↓)
EfficientASR LM 5.1/5.3 19.33 (36% ↓)
Conformer EfficientASR 4.6/4.9 28.10 (38% ↓)

TABLE II
COMPARISON OF CER RESULTS BETWEEN EFFICIENTASR AND

TRANSFORMER BASELINE IN HKUST DATASET.
Model dev (%) Parameter (M)
Transformer w/o LM [1] 21.7 29.85
Transformer LM [1] 21.5 29.85
Conformer [42] 19.8 44.96
EfficientASR w/o LM 22.0 18.86 (36% ↓)
EfficientASR LM 21.3 18.86 (36% ↓)
Conformer EfficientASR 20.1 29.23 (38% ↓)

the Conformer model, the Conformer EfficientASR achieves
a reduction of 38% in the count of parameters, but lowers
the CER by 0.3%. These experiments on different datasets
demonstrate that the EfficientASR model maintains strong
competitiveness.

TABLE III
COMPARISON OF SRMHA AND OTHER ATTENTIONAL REDUNDANCY

REDUCTION METHODS ON HKUST DATASET

Model dev (%) Parameter (M)
Transformer [1] 21.5 29.85
Realformer [4] 21.5 29.85
SPAH [8] 21.3 29.06
SEAM [43] 21.4 28.40
RSEAM 21.3 28.40
SRMHA 21.0 28.40

D. Ablation Studies

Method comparison: We compared the sharing of partial
attention heads (SPAH) [8] with sharing the entire attention
map (SEAM) [43] for reducing attention redundancy. We also
compared the addition of residual attention based on sharing
the entire attention map (RSEAM), as well as the use of the
SWD method in SRMHA.

The results of the experiments are detailed in Table III.
The performance of residual attention is comparable to the
baseline Transformer. We evaluated the model’s CER on the
development set and the parameter size of different mod-
els. SPAH improved the CER by 0.2% while reducing only
0.79M parameters. SEAM improved the CER by only 0.1%
but reduced 1.45M parameters and reduced more attention
computations. Based on these experimental results, combin-
ing residual attention with sharing the entire attention map
can simultaneously reduce attention redundancy and improve
network performance. Furthermore, when applying the SWD
method to the network, the network can reduce even more
redundant computations and exhibit diagonalized features
at higher layers. Therefore, compared to previous methods,
SRMHA has more advantages as it not only eliminates more
attention redundancy but also achieves better performance in
model performance.



TABLE IV
USE SRMHA ON THE ENCODER OR DECODER ON THE HKUST DATASET.

Encoder Decoder dev(%) Parameter (M)
SR2 × 22.1 29.06
SR3 × 21.1 28.79
SR4 × 21.1 28.66
SR6 × 21.3 28.53
SR12 × 21.8 28.40
× SR2 21.2 29.45
× SR3 21.4 29.32
× SR6 21.2 29.19
SR3 SR2 21.0 28.40

In order to examine the effects of minimizing attention
mechanism calculations on the model’s performance, we in-
tegrated the SRMHA technique into both the encoding and
decoding components of the Transformer architecture. The
findings from our experiments are delineated in Table IV.

Attention Redundancy Analysis: To investigate the ef-
fects of reducing attention computations on the model, we
integrated the SRMHA method into both the encoding and
decoding components of the Transformer. The findings from
our experiments are delineated in Table IV. Here, SR i
denotes updating attention computations every i sub-layers,
where a larger value of i leads to a reduction in parameters
and attention computations. × represents the traditional self-
attention method.

In the encoder, using SRMHA with updates every 3 or 4
layers yielded optimal results, and updating every 6 layers
did not significantly impact model performance. Similarly, in
the decoder, using SRMHA with values of i = 2, i = 4,
and i = 6 all benefited network performance. This is because
by employing SRMHA in the decoder instead of multi-head
attention (MHA), the contextual distribution of labels can
be repeatedly applied at different layers, thereby facilitating
network learning.

Ultimately, in EfficientASR, we selected a configuration of
i = 3 in the encoder and i = 2 in the decoder. Through this set
of experiments, we found that SRMHA did not significantly
reduce the majority of network parameters. However, the
method analysis revealed that it could effectively reduce a
substantial amount of repetitive attention computations.

TABLE V
COMPARE THE IMPACT OF DIFFERENT CHUNK-LEVEL FFNS.

Model Dataset CER (%) Parameter (M)
Transformer [1] Aishell-1 5.2/5.6 30.35
1/2FFN Aishell-1 5.2/5.4 20.91 (31% ↓)
1/4FFN Aishell-1 5.3/5.6 16.20 (47% ↓)
Transformer [1] HKUST 21.5 29.85
1/2FFN HKUST 21.6 20.44 (32% ↓)
1/4FFN HKUST 22.4 15.74 (47% ↓)

Chunk-level Feedforward Networks: We partitioned the
embedding dimension of input features into multiple chunks
and analyzed the effects of varying chunk sizes on the ef-
ficiency of performance. The results are detailed in Table V,
where 1/2 FFN and 1/4 FFN represent splitting the embedding
dimension into two and four chunks, respectively.

On the Aishell-1 corpora, the results showed that using
1/2FFN reduced the network parameters by 31% and improved

the CER by 0.2% on the test sets. Further employing 1/4FFN
reduced 47% of parameters while achieving the same CER as
the baseline. However, on the HKUST dataset, using 1/2FFN
reduced parameters by 32%, but performance deteriorated with
a 1% increase in CER. On the other hand, using 1/4FFN
reduced 47% of parameters, but performance experienced a
significant decline. Based on the experimental results, we
observed significant fluctuations in the effectiveness of this
method across different datasets. Nevertheless, selecting 1/2
FFN allows for a significant reduction in network parameters
while maintaining stable performance.

E. Memory usage of long sequences

As shown in Fig.2, we show the impact of using SRMHA
and CFFN on memory usage at different input sequence
lengths. Experimental results show that as the sequence length
continues to increase, the architecture using EfficientASR can
effectively reduce the overall memory consumption (including
model loading and data reading).

Fig. 2. Different models’ memory usage for processing long sequences on
HKUST dataset.

For audio sequences longer than 10 seconds, the utilization
of SRMHA and CFFN in the encoder and decoder layers of
ASR model leads to a reduction in overall memory usage for
the same sequence length. Regardless of whether the base
model is a Transformer-based or Conformer-based model,
our method demonstrates the ability to decrease memory
consumption when processing long sequences.

V. CONCLUTION

The proposed EfficientASR, 1) reduces redundant compu-
tations, enhances attention diagonalization and fusion with
sliding windows and residuals in the network; 2) captures
spatial knowledge and reduces parameter size by dividing the
input features into multiple chunks and using smaller feed-
forward networks in each chunk.
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