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We theoretically propose chiral magnon in ferromagnetic chiral crystals. We show that the crystal
chirality is imprinted in orbital angular momentum of magnons which exhibits the opposite signs
for opposite chiralities of the crystal. We also show that a finite magnon orbital angular momentum
can be induced by a temperature gradient which is a magnonic analogue of the Edelstein effect.

Chirality is a fundamental property of an object not
identical to its mirror image by breaking of reflection or
inversion symmetries. Chirality of a lattice structure,
which has either a right-handed or left-handed helix, not
only leads to the chirality-induced spin selectivity ef-
fect [1–4] on the spin degrees of freedom, but also induces
an orbital magnetization by an electric current [5, 6].
Crystals with chirality exist in nature such as tellurium
or selenium. Due to the low crystallographic symme-
tries, electricity and magnetism can be coupled in these
chiral materials, leading to novel orbital effects. For in-
stance, a current-induced orbital magnetization has been
measured in nonmagnetic elemental tellurium [7, 8], and
an hedgehog orbital texture can be found in p-type tel-
lurium [9].

Chiral phonons characterized by circular motions of
ions carry phonon angular momentum, and they pos-
sess chirality due to the low-symmetry crystal struc-
ture [10–13]. Such circular rotations also emerge in
a three-dimensional (3D) chiral crystal and propagate
along the screw chain [14]. Moreover, various uncon-
ventional physics related to phonon angular momentum
have been investigated, such as couplings between chi-
ral phonons, electrons, and magnons [15–20], the phonon
Edelstein effect [21], the phonon rotoelectric effect [22],
the chiral phonon diode effect [23], and chiral phonon-
induced spin current [24–26].

Similar to orbital effects of electrons or phonons,
magnons as magnetically collective excitations show an
orbital angular momentum, which results in a macro-
scopic orbital magnetization [27]. In the recent works,
the orbital angular momentum (OAM) of magnons has
been explicitly formulated in collinear magnets [28–30].
Different from spin magnetization as the projection of
spins onto the quantization axis, OAM of magnons de-
rives from the rotation of the perpendicular compo-
nents of spins in analogy with phonon angular momen-
tum [28, 29]. Recent works on magnon OAM include
OAM of the twisted magnonic beams [31], generation of
magnon OAM by a skyrmion-textured domain wall in a
ferromagnetic nanotube [32], and intrinsic magnon or-
bital Hall effect [33].

In this Letter, considering the interplay between ex-
change interactions and a chiral crystal structure, we in-
troduce a spin model with a chiral exchange interaction
in a 3D chiral crystal with chirality. Then, we theoreti-
cally propose a chiral magnon with an OAM. The crys-

tal chirality is imprinted in OAM of chiral magnons. In
the presence of time-reversal symmetry, the total magnon
OAM as a summation over the whole Brillouin zone van-
ishes in equilibrium because the magnon OAM of each
mode is an odd function of the wavevector k by time-
reversal symmetry [28–30]. Nevertheless, we show that a
finite magnon OAM can be induced by a temperature
gradient, leading to a magnon orbital Edelstein effect
(MOEE). This effect is an orbital version of the magnonic
analog of the Edelstein effect [34], and analog of the Edel-
stein effect in electric [5, 6, 35] or phononic [21] systems.
In order to combine the crystal chirality and ferromag-

netism, we consider a 3D chiral crystal structure com-
posed of infinitely stacked two-dimensional (2D) honey-
comb lattice layers as shown in Fig. 1 [5, 6]. The crystal
structures have two distinguishable helices with the left-
handed helix in Fig. 1(a) and the right-handed helix in
Fig. 1(b), and they can be changed into each other by
the mirror reflection Mx with respect to the yz plane.
Here, we discuss the case of the right-handed helix as an
example. The detailed description of these two crystal
structures is included in the Supplemental Materials [36].
For the chiral crystal with the right-handed helix, we la-
bel the nearest-neighboring vectors as δi (i = 1, 2, 3) and
the next nearest-neighboring vectors as Ri (i = 1, 2, 3)
as shown in Fig. 1(c). Next, we consider the vectors con-
necting the atoms in the same sublattice between two
layers which correspond to chiral spin-spin interactions.
In the right-handed helix, the interlayer vectors between
A sublattices are ±(Ri + cẑ), and those between B sub-
lattices are ±(−Ri + cẑ) as shown in Fig. 1(b).
We now introduce a ferromagnetic Heisenberg spin

Hamiltonian with exchange interactions for the chiral
crystals, which is given by

H = −J1
∑

⟨ij⟩
Si · Sj − J2

∑

[ij]

Si · Sj , (1)

where the first term denotes the nearest-neighboring ex-
change interaction within the honeycomb layers with
the exchange interaction J1 > 0, and the second term
represents the chiral exchange interaction between the
two layers with exchange parameter J2 > 0 as shown
in Figs. 1(a) and 1(b). Then we introduce the lad-
der operators S±

i = Sx
i ± iSy

i , and by means of the

Holstein-Primakoff transformation [37]: Sz
i = S − a†iai,

S+
i ≈

√
2Sai, and S−

i ≈
√
2Sa†i with the magnitude of
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FIG. 1. (Color online) Chiral crystals composed of a stacked
honeycomb lattice with (a) left-handed helix and (b) right-
handed helix. They can be reflected to each other by the mir-
ror operation Mx with respect to yz plane. Lattice constant
along the z direction is denoted by c. The parameter J1 is the
nearest-neighbor exchange interaction within the 2D layers,
and J2 is the chiral exchange interaction between the 2D lay-
ers. (c) 2D honeycomb layer. Solid arrows represent the vec-
tors connecting the nearest-neighboring sites: δ1 = a(−1, 0),
δ2 = a(1/2,

√
3/2), and δ3 = a(1/2,−

√
3/2) with a being

the bond length. Dashed arrow denote the vectors con-
necting the next nearest-neighboring sites: R1 = a(0,

√
3),

R2 = a(−3/2,−
√
3/2), and R3 = a(3/2,−

√
3/2). (d) First

Brillouin zone of the chiral crystal.

spin S, the spin Hamiltonian in Eq. (1) can be expressed
in a bosonic formulation as

H =− J1S
∑

⟨ij⟩

(
a†iaj + h.c

)
− J2S

∑

[ij]

(
a†iaj + h.c

)

(2)

+ 3(J1 + 2J2)S
∑

i

a†iai,

with a†i (ai) denoting the creation (annihilation) opera-
tor of magnons. Here, we show the spin Hamiltonian
for the right-handed helix as an example, and that for
the left-handed helix can be obtained by the mirror re-
flection Mx. The details of the derivation are given in
the Supplemental Materials [36]. For the right-handed
helix, the Hamiltonian can be rewritten in terms of
a quadratic Bogoliubov-de Gennes (BdG) formulation

as H =
∑

k v
†
kH(k)vk, where the vector operator is

vk = (ak,A, ak,B , a
†
−k,A, a

†
−k,B)

T , and the Bloch Hamil-
tonian becomes

H(k) =
3

2
(J1 + 2J2)S



1− Fk −Γ∗

k 0 0
−Γk 1−Gk 0 0
0 0 1− Fk −Γ∗

k
0 0 −Γk 1−Gk


 ,

(3)

with

Γk =
J1

3(J1 + 2J2)

{
eikxa + 2e−i kxa

2 cos

(√
3kya

2

)}
,

(4)

Fk =
2J2

3(J1 + 2J2)

{
cos
(√

3kya+ kzc
)

(5)

+ 2 cos

(
3kxa

2

)
cos
(√

3kya− kzc
)}

,

Gk =
2J2

3(J1 + 2J2)

{
cos
(√

3kya− kzc
)

(6)

+ 2 cos

(
3kxa

2

)
cos
(√

3kya+ kzc
)}

.

The corresponding magnon energies of the lower and up-
per modes are given by

E1(2)k = 3(J1 + 2J2)S

{
1− 1

2
Ck ∓ 1

2

√
B2

k + 4|Γk|2
}
,

(7)

where Bk = Gk − Fk and Ck = Gk + Fk.
Next, we calculate the magnon OAM by following the

method proposed in Refs. [28–30]. Here, we first find the
inverse of the paraunitary matrix X−1(k) determined by
diagonalizing H(k) ·N , where N = σz ⊗ I2×2 is a 4 × 4
matrix with a 2 × 2 identical matrix I2×2 and the Pauli
matrix σz, and introduce vk = X−1(k)wk with wk de-
noting the vector operator in terms of the interacting
Boson operators [28–30]. Under the normalization con-
dition X(k) ·N ·X†(k) = N , we can obtain

X−1(k) =
1√
2Γ∗

k




Γ∗
kK

−
k −Γ∗

kK
+
k 0 0

|Γk|K+
k |Γk|K−

k 0 0
0 0 Γ∗

kK
−
k −Γ∗

kK
+
k

0 0 |Γk|K+
k |Γk|K−

k


 ,

(8)

where

K±
k =

√
1± Bk√

B2
k + 4|Γk|2

. (9)

Details of this derivation are given in Supplemental Ma-
terial [36].
Here, the magnon OAM can be calculated by using the

inverse of the paraunitary matrix X−1(k) derived from
the BdG Hamiltonian in Eq. (3) [28–30]. The expectation
value of the OAM as a function of wavevector k in the n-
th eigenmode for the chiral crystal with the right-handed
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helix is given by

Lzn(k) =
ℏ
2

2∑

n=1

{
X−1(k)rn l̂zkX

−1(k)∗rn (10)

−X−1(k)r+2,n l̂zkX
−1(k)∗r+2,n

}
,

where l̂zk = −i
(
k̄x∂ky

− k̄y∂kx

)
represents the op-

erator of magnon OAM with the periodic func-
tions k̄xa = sin (3kxa/2) cos (

√
3kya/2) and

√
3k̄ya =

sin (
√
3kya/2) cos (3kxa/2) + sin (

√
3kya) within the 2D

honeycomb layers to guarantee the periodicity of magnon
OAM on a discrete lattice [28, 29]. Then, the magnon
OAM in Eq. (10) can be further expressed as

Lz1(2)(k) =
ℏ
4

(
1± Bk√

B2
k + 4|Γk|2

)
Γk

|Γk|
l̂zk

Γ∗
k

|Γk|
, (11)

for the lower and upper bands by means of Eq. (8). Here,
we notice that the first term

L0(k) =
ℏ
4

Γk

|Γk|
l̂zk

Γ∗
k

|Γk|
(12)

denotes the contribution from the 2D honeycomb layers,
which is a function of wavenumbers kx and ky, and has
been thoroughly investigated by the previous studies [28–
30]. On the other hand, the second term

∆Lz1(2)(k) = ±ℏ
4

Bk√
B2

k + 4|Γk|2
Γk

|Γk|
l̂zk

Γ∗
k

|Γk|
, (13)

which comes from the chiral exchange interaction is a
function of wavenumbers kx, ky and kz, and plays an
essential role in chiral magnons. Figure 2 show the dis-
tribution of ∆Lz2(k) in the kx-ky momentum space for
kz = ±π/3. We see that ∆Lz2(k) is six fold symmetric
around the z-axis and odd in kz.

The numerical results of the k-dependent magnon
OAM distributions Lzn(k) in Eq. (11) of each magnon
band along the high-symmetry points for the left-handed
and right-handed helices are shown in Fig. 3(a) and
Fig. 3(b), respectively. One can clearly see that the
magnon OAM has the opposite signs between the chi-
ral crystals with the opposite helices. Here, for a given
wavevector k, the opposite signs of the magnon OAMs
mean that the rotations of the spins around the z axis
are in the opposite directions for different helices. There-
fore, crystal chirality is imprinted in magnon OAM in
chiral crystals. In addition to magnon OAM, spin angu-
lar momentum plays an important role in ferromagnets.
However, here the spin angular momentum has no differ-
ence between the two chiral structures because they can
be reflected to each other via the mirror operation Mx:
UHR(kx, ky, kz)U

−1 = HL(−kx, ky, kz), where HR(k)
and HL(k) are the Bloch spin Hamiltonians for the right-
handed and left-handed helices, respectively, where the

kz = π/3

kz = -π/3

FIG. 2. (Color online) Distribution of ∆Lz2(k) in Eq. (13)
in the kx-ky plane. Color represents the magnon OAM in the
unit of ℏ. The parameters are set to be J2 = 0.5J1.

unitary matrix is given by U = I2×2 ⊗ σx in our model.
Thus, the expectation values of the spin along the quan-
tization axis satisfy ⟨SL

z ⟩ = ⟨SR
z ⟩.

In equilibrium, the total magnon OAM for the z com-
ponent per volume V is given by

Lorb
z =

1

V

∑

k,n=1,2

Lzn(k) {2f0(Enk) + 1} , (14)

where f0(Enk) = 1/
(
eEnk/kBT − 1

)
is the Bose-Einstein

distribution function [30]. In this case, the total
magnon OAM vanishes because time-reversal symmetry
requires X−1(−k) = X−1(k)∗, resulting in Lzn(k) =
−Lzn(−k) [28–30]. Nevertheless, a finite magnon OAM
can be generated by a temperature gradient because the
magnon distribution can become out of equilibrium.

In analogy with the Edelstein effect in phononic sys-
tems [21, 23], here we theoretically show that a chiral
magnon carrying an OAM can be driven by a temper-
ature gradient in chiral crystals. This phenomenon can
be considered as MOEE. In general, a non-equilibrium
magnon distribution can be obtained when a tempera-
ture gradient ∂T/∂xi is applied. By using the Boltz-
mann equation with the relaxation time approximation,
the distribution function of magnons in nonequilibrium
is given by

fnk = f0(Enk)− τvnk,i
∂f0
∂T

∂T

∂xi
, (15)

where τ represents the magnon relaxation time and
vnk,i = ∂Enk/ℏ∂ki is the group velocity of the n-th mode
of magnons. Accordingly, the magnon OAM per unit vol-
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FIG. 3. (Color online) Magnon spectra for the (a) left-handed
helix and (b) right-handed helix with the color representing
the magnon OAM Lz1(2) in Eq. (11) in the unit of ℏ. The
parameters are set to be J2 = 0.5J1.

ume generated by the temperature gradient becomes

Lorb
i = − 2τ

ℏV
∑

nk

Lin(k)
∂Enk

∂kj

∂f0(Enk)

∂T

∂T

∂xj
≡ αij

∂T

∂xj
,

(16)

where αij denotes the response tensor, which can be de-
termined by the point-group symmetry. In our model, for
the chiral crystals with the D6 point group, the response
tensor is generally represented as [21]

αij =



αxx 0 0
0 αxx 0
0 0 αzz


 . (17)

Therefore, in the case of the chiral crystals shown in
Figs. 1(a) and 1(b), when the temperature gradient is
applied along the z direction, we can obtain a finite z
component of magnon OAM: Lorb

z = αzz∂zT , with the
temperature gradient ∂zT and the response coeffcient αzz

of the MOEE. Here the k-dependent magnon OAM sat-
isfies Lzn(kx, ky, kz) = L0(kx, ky) + ∆Lzn(kx, ky, kz) as
given in Eqs. (11), (12), and (13). We notice that the
summation in Eq. (16) for the first term L0(kx, ky) be-
comes zero due to the time-reversal symmetry. L0(kx, ky)
is independent of kz, and corresponds to the spin waves
only propagating within the 2D honeycomb layer for a
given wavevector k. As a result, only ∆Lzn(kx, ky, kz)
contributes to the MOEE coefficient αzz, and αzz even-
tually becomes

αzz = − 2τ

ℏV
∑

k,n=1,2

∆Lzn(k)
∂Enk

∂kz

∂f0(Enk)

∂T
, (18)

0

0.3

0.6

0.9

1.2

1.5

 0  1  2  3  4  5

J
2
/J

1

kBT/J1S

 0

 1

 2

 3

 4

 5

0

0.3

0.6

0.9

1.2

1.5

 0  1  2  3  4  5

J
2
/J

1

kBT/J1S

-5

-4

-3

-2

-1

 0(c) (d) 

(a) (b) 

x10-3x10-3

FIG. 4. (Color online) Calculated MOEE coefficient αzz given
in Eq. (18). (a) and (b) show αzz versus chiral exchange
interaction J2 with different temperatures for the left-handed
and right-handed helices, respectively. (c) and (d) show αzz

as a function of kBT/J1S and J2/J1 for the left-handed and
right-handed helices, respectively.

for the chiral crystals. Figure 4 shows the numerical re-
sults of the MOEE coefficient αzz based on Eq. (18).
We see that the MOEE coefficient αzz is not monotonic
in T and J2. The sign of αzz becomes opposite be-
tween the crystal structures with the opposite helices be-
cause ∆Lzn(kx, ky, kz) changes the sign when the helix
is changed into its mirror image as shown in Fig. 3. Here
we notice that the chiral exchange interaction in Eq. (1)
contributes to the chirality of magnon OAM.

Let us estimate the size of the magnon OAM gener-
ated by a temperature gradient. Here, we set the param-
eters J2 = 0.5J1 with J1 = 1meV, kBT = 2.5J1S, and
a lattice constance a = 10−9m. The MOEE coefficient
is estimated as αzz ∼ 1026ℏ × [τ/(1s)]m−2K−1. We use
the relaxation time of magnon τ = 10−10s and a temper-
ature gradient ∂zT = 10K/mm [34]. Then, we can esti-
mate the magnon OAM generated along the z direction
with the size of 1014ℏ/cm3, which is of the same order
as the magnon Edelstein effect due to the spin angular
momentum [34] and experimentally observable.

To summarize, we have theoretically proposed chiral
magnon with OAM, which exhibits a chirality in a ferro-
magnetic chiral crystal due to the lack of inversion and
mirror symmetries. A finite magnon orbital angular mo-
mentum can be generated by a temperature gradient,
leading to MOEE. Therefore, chiral crystals provide a
platform for detecting the magnon OAM via the magnon
orbital Edelstein effect. We propose a candidate material
Cu2OSeO3, which is a magnetic insulator with a chiral
structure [38, 39]. Because temperature gradient leads
to a redistribution of electrons in metals, this insulating
material is suitable for future measurement.
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Supplemental Material I. DERIVATION OF THE BLOCH SPIN HAMILTONIAN

Here we show the derivation of the spin Hamiltonian Eq. (2) in the main text for the chiral structures with the
right-handed and left-handed helices. In fact, the choice of the unit cell is not unique, and here in order to discuss the
results clearly, the unit cells in the crystals with the opposite chirality are set to be mirror image of each others as
shown in Fig. S1. Here, δ′i (i = 1, 2, 3) represents the vector connecting the nearest-neighbor sites in Fig. S1(a) for the
left-handed helix, and δi (i = 1, 2, 3) represents that in Fig. S1(b) for the right-handed helix. The chiral structures
shown in Figs. 1(a)(b) in the main text consist of honeycomb-lattice layers, stacked along the z axis. Vectors for the
chiral exchange interactions between two atoms are combinations of the vectors connecting the next-nearest-neighbor
sites Ri (i = 1, 2, 3) and the translation of c along the z axis. The interlayer vectors between A sublattices are
± (Ri + cẑ), and those between B sublattices are ± (−Ri + cẑ) in the right-handed coordinate system.

(a)

A

B

a

A

B

Mx

x

y

z

Right-handed helix

(b)

Left-handed helix

FIG. S1. Schematics of two chiral structures with (a) the left-handed helix and (b) the right-handed helix. The vectors con-
necting the nearest-neighbor sites in (a) the left-handed helix are δ′

1 = a(1, 0), δ′
2 = a(−1/2,

√
3/2), and δ′

3 = a(−1/2,−
√
3/2),

and those in (b) the right-handed helix are δ1 = a(−1, 0), δ2 = a(1/2,
√
3/2), and δ3 = a(1/2,−

√
3/2).

Then, the first term of the spin Hamiltonian in Eq. (2) for the structure with the left-handed helix can be written
as

HL
1 = −J1S

∑

r

3∑

i=1

a†B,r+δ′
i
aA,r + h.c. =

∑

k

(
a†A,k a†B,k

)(
0 −γk

−γ∗
k 0

)(
aA,k

aB,k

)
, (S1)

and that for the structure with the right-handed helix can be written as

HR
1 = −J1S

∑

r

3∑

i=1

a†B,r+δi
aA,r + h.c. =

∑

k

(
a†A,k a†B,k

)(
0 −γ∗

k
−γk 0

)(
aA,k

aB,k

)
, (S2)

where

γk = J1S
3∑

i=1

eik·δ
′
i = J1S

(
3∑

i=1

eik·δi

)∗

= J1S
{
eikxa + e−i(kxa+

√
3ky)/2 + e−i(kxa−

√
3ky)/2

}
, (S3)

with δ1 = −δ′1, δ2 = −δ′3, and δ3 = −δ′2. Next, the second term of the spin Hamiltonian in Eq. (2) for the left-handed
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2

helix and that for right-handed helix are the same if we take the vectors in Fig. S1, which is given by

H2 =− J2S
∑

r

3∑

i=1

a†A,r+Ri+cẑaA,r + a†A,r−Ri−cẑaA,r − J2S
∑

r

3∑

i=1

a†B,r−Ri+cẑaB,r + a†B,r+Ri−cẑaB,r

=− J2S
∑

k

(
a†A,k a†B,k

)(
hA
k 0
0 hB

k

)(
aA,k

aB,k

)
, (S4)

with

hA
k =cos

(√
3kya+ kzc

)
+ cos

(
−3kxa

2
−

√
3kya

2
+ kzc

)
+ cos

(
3kxa

2
−

√
3kya

2
+ kzc

)
(S5)

hA
k =cos

(√
3kya− kzc

)
+ cos

(
−3kxa

2
−

√
3kya

2
− kzc

)
+ cos

(
3kxa

2
−

√
3kya

2
− kzc

)
(S6)

The last term of the spin Hamiltonian in Eq. (2) can be written as

H3 = 3(J1 + 2J2)S
∑

k

(
a†A,k a†B,k

)(
1 0
0 1

)(
aA,k

aB,k

)
. (S7)

Therefore, we can write down the total spin Hamiltonian in terms of a quadratic Bogoliubov de Gennes form as

Hα =
∑

k v
†
kHα(k)vk with α = R/L, the vector operator vk =

(
a†A,k a†B,k aA,−k aB,−k

)T
, the Bloch Hamiltonian

HL(k) =
3

2
(J1 + 2J2)S



1− Fk −Γk 0 0
−Γ∗

k 1−Gk 0 0
0 0 1− Fk −Γk

0 0 −Γ∗
k 1−Gk


 (S8)

for the left-handed helix and that

HR(k) =
3

2
(J1 + 2J2)S



1− Fk −Γ∗

k 0 0
−Γk 1−Gk 0 0
0 0 1− Fk −Γ∗

k
0 0 −Γk 1−Gk


 , (S9)

for the right-handed helix, where

Γk =
J1

3(J1 + 2J2)

{
eikxa + 2e−i kxa

2 cos

(√
3kya

2

)}
, (S10)

Fk =
2J2

3(J1 + 2J2)

{
cos
(√

3kya+ kzc
)
+ 2 cos

(
3kxa

2

)
cos
(√

3kya− kzc
)}

, (S11)

Gk =
2J2

3(J1 + 2J2)

{
cos
(√

3kya− kzc
)
+ 2 cos

(
3kxa

2

)
cos
(√

3kya+ kzc
)}

. (S12)

Supplemental Material II. MAGNON ORBITAL ANGULAR MOMENTUM

In this section, we follow the method proposed by Fishman et. al. [1] to calculate the magnon orbital angular
momentum (OAM) for the ferromagnetic chiral crystal. Here we show the calculation for the right-handed helix from
the Hamiltonian in Eq. (S9) as an example, and that for the left-handed helix from the Hamiltonian in Eq. (S8) can
be similarly performed. Based on the Hamiltonian in Eq. (S9), we first find that the eigenvectors of HR(k) ·N are

u1 = X(k)∗1j = c∗1
(
Gk − Fk −

√
4|Γk|2 + (Gk − Fk)2 −2Γk 0 0

)
, (S13)

u2 = X(k)∗2j = c∗2
(
Gk − Fk +

√
4|Γk|2 + (Gk − Fk)2 −2Γk 0 0

)
, (S14)

u3 = X(k)∗3j = c3
(
0 0 Gk − Fk −

√
4|Γk|2 + (Gk − Fk)2 −2Γk

)
, (S15)

u4 = X(k)∗4j = c4
(
0 0 Gk − Fk +

√
4|Γk|2 + (Gk − Fk)2 −2Γk

)
, (S16)
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where N = σz ⊗ I2×2. Hence, the paraunitary matrix of the Hamiltonian in Eq. (S9) can be expressed as

X(k) =




c1

(
Bk −

√
B2

k + |Ak|2
)

−c1A
∗
k 0 0

c2

(
Bk +

√
B2

k + |Ak|2
)

−c2A
∗
k 0 0

0 0 c∗3
(
Bk −

√
B2

k + |Ak|2
)

−c∗3A
∗
k

0 0 c∗4
(
Bk +

√
B2

k + |Ak|2
)

−c∗4A
∗
k




, (S17)

where Ak = 2Γk and Bk = Gk − Fk, and its inverse is

X−1(k) =
1

2A∗
k




− A∗
k

c1
√

B2
k+|Ak|2

A∗
k

c2
√

B2
k+|Ak|2

0 0

−Bk+
√

B2
k+|Ak|2

c1
√

B2
k+|Ak|2

Bk−
√

B2
k+|Ak|2

c2
√

B2
k+|Ak|2

0 0

0 0 − A∗
k

c∗3
√

B2
k+|Ak|2

A∗
k

c∗4
√

B2
k+|Ak|2

0 0 −Bk+
√

B2
k+|Ak|2

c∗3
√

B2
k+|Ak|2

Bk−
√

B2
k+|Ak|2

c∗4
√

B2
k+|Ak|2




. (S18)

Here the coefficients c1, c2, c3, and c4 can be obtained by X(k) ·N ·X†(k) = N . Therefore we have

1

2|c1|2
=

1

2|c3|2
=
√

B2
k + |Ak|2

(√
B2

k + |Ak|2 −Bk

)
, (S19)

1

2|c2|2
=

1

2|c4|2
=
√

B2
k + |Ak|2

(√
B2

k + |Ak|2 +Bk

)
, (S20)

and finally the inverse of the paraunitary matrix Eq. (S18) becomes

X−1(k) =
1√
2Γ∗

k




Γ∗
kK

−
k −Γ∗

kK
+
k 0 0

|Γk|K+
k |Γk|K−

k 0 0
0 0 Γ∗

kK
−
k −Γ∗

kK
+
k

0 0 |Γk|K+
k |Γk|K−

k


 , (S21)

where

K±
k =

√
1± Bk√

B2
k + 4|Γk|2

. (S22)

As we mentioned in the main text, the magnon OAM is generally given by Eq. (10) [1–3]. By using the inverse of
the paraunitary matrix X−1(k), we can calculate the magnon OAM as

LR
z1(k) =

ℏ
2

{
X−1

11 (k)l̂zkX
−1
11 (k)∗ +X−1

21 (k)l̂zkX
−1
21 (k)∗

}
(S23)

=
ℏ
2

{
K−

k√
2
l̂zk

K−
k√
2
+

K+
k√
2

|Γk|
Γ∗
k

l̂zk

(
K+

k√
2

|Γk|
Γk

)}
(S24)

=
ℏ
4

{
K+

k l̂zkK
+
k +K−

k l̂zkK
−
k + (K+

k )2
Γk

|Γk|
l̂zk

Γ∗
k

|Γk|

}
(S25)

=
ℏ
4

(
1 +

Bk√
B2

k + 4|Γk|2

)
Γk

|Γk|
l̂zk

Γ∗
k

|Γk|
, (S26)

for the lower band, where K+
k l̂zkK

+
k + K−

k l̂zkK
−
k = 0. Similarly, the magnon OAM for the upper band can be

calculated as

LR
z2(k) =

ℏ
4
(K−

k )2
Γk

|Γk|
l̂zk

Γ∗
k

|Γk|
=

ℏ
4

(
1− Bk√

B2
k + 4|Γk|2

)
Γk

|Γk|
l̂zk

Γ∗
k

|Γk|
. (S27)
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On the other hand, we can also calculate the magnon OAM for the left-handed helix from the Hamiltonian Eq. (S8):

LL
z1(2)(k) =

ℏ
4
(K±

k )2
Γ∗
k

|Γk|
l̂zk

Γk

|Γk|
=

ℏ
4

(
1± Bk√

B2
k + 4|Γk|2

)
Γ∗
k

|Γk|
l̂zk

Γk

|Γk|
. (S28)

Notice that

Γk

|Γk|
l̂zk

Γ∗
k

|Γk|
= − Γ∗

k

|Γk|
l̂zk

Γk

|Γk|

=
−1

|γk|2

{
√
3k̄x sinK1 sinK2 − k̄y

[
(cosK1 + 2 cosK2) (cosK1 − cosK2) + sin2 K1

]
}
, (S29)

with K1 = 3kx/2, K2 =
√
3ky/2, and γk =

√
1 + 4 cosK1 cosK2 + 4 cos2 K2. Here, we introduce

k̄x = sin (3kxa/2) cos (
√
3kya/2),

k̄y =
1√
3a

{
sin (

√
3kya/2) cos (3kxa/2) + sin (

√
3kya)

}
, (S30)

corresponding to the 2D honeycomb layders to guarantee the periodicity of magnon OAM on a discrete lattice [1, 2].
Eq. (S29) can have opposite sign if we choose the unit cells to be mirror symmetric as shown in Fig. S1. Thus, we
have LL

z1(2)(k) = −LR
z1(2)(k) which reflects the chirality of the magnon OAM in chiral structures.
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