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Abstract The Wald vector potential is an exact solu-
tion of the source-less Maxwell equations regarding an
electromagnetic field of a vacuum uncharged black hole
like the Kerr background black hole in an asymptoti-
cally uniform magnetic field. However, it is not if the
black hole is a nonvacuum solution in a theory of modi-
fied gravity with extra fields or a charged Kerr-Newman
spacetime. To satisfy the source-less Maxwell equations
in this case, the Wald vector potential must be modified
and generalized appropriately. Following this idea, we
derive an expression for the vector potential of an elec-
tromagnetic field surrounding a hairy black hole in the
Horndeski modified gravity theory. Explicit symplec-
tic integrators with excellent long-term behaviour are
used to simulate the motion of charged particles around
the hairy black hole immersed in the external magnetic
field. The recurrence plot method based on the recur-
rence quantification analysis uses diagonal structures
parallel to the main diagonal to show regular dynamics,
but adopts no diagonal structures to indicate chaotic
dynamics. The method is efficient to detect chaos from
order in the curved spacetime, as the Poincaré map and
the fast Lyapunov indicator are.
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1 Introduction

The existence of black holes is an important predic-
tion of the theory of general relativity. It has been
confirmed frequently through the detection of gravita-
tional waves by LIGO [1] and the observations of the
shadow images of supermassive black holes M87* and
Sgr A* by the Event Horizon Telescope (EHT) [2]. How-
ever, the theory of general relativity does not admit
the emergence of dark energy responsible for the ap-
parent accelerating expansion of the Universe. To cure
the limits of general relativity, modified or extended
gravity theories are necessarily given. Some of them are
scalar-tensor theories [3-5], Einstein-æther theories [6-
8], quantum gravity theories [9,10] and Einstein-scalar-
Gauss-Bonnet theories [11].

Several observations support the presence of mag-
netic fields around astrophysical black holes [12-14].
A possible generation of magnetic fields is due to the
dynamo mechanism in the plasma of accretion disks
around the central black holes [12]. The magnetic fields
in the vicinity of the black holes is generally believed to
transfer the energy from the accretion disc to relativis-
tic jets. In this sense, they are helpful for one to un-
derstand the formation and energetics of the black hole
jets. However, the supermassive black hole at the centre
of the Galaxy is surrounded by a strong magnetic field
independent of an accretion disc [14]. In spite of the dif-
ferent claim, the existence of an asymptotically uniform
test magnetic field in the vicinity of a black hole was
shown at large enough distance to the magnetar [15].
The obtainment of such an external, large-scale electro-
magnetic field is based on a Wald solution [16-19]. The
Wald solution requires that the black hole should be
uncharged like the Kerr background black hole or the
Schwarzschild one. In addition to this requirement, the
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external magnetic field should be such a weak field that
its strength is much smaller than 1019M⊙/M Gauss
[20], where M⊙ and M respectively correspond to the
masses of the Sun and black hole. When the black
hole is electrically charged, nonvacuum like the Kerr-
Newman black hole or the Reissner-Nordström (RN)
one, the Wald vector potential does not exactly sat-
isfy the source-less Maxwell equations, as was claimed
by Azreg-Aïnou [21]. This result is also suitable for the
case of a uniform magnetic field near a nonvacuum black
hole of modified gravity with extra fields. To satisfy
the source-less Maxwell equations in the two cases, the
Wald vector potential has to be modified appropriately.
Although relatively weak external magnetic fields have
a negligible effect on the spacetime background, they
can strongly influence the motion of charged particles
in the vicinity of the black hole horizon. The charged
particle chaotic motions induced by the magnetic fields
have appeared in a number of studies [22-33]. If the
external magnetic fields have their strengths close to
1019M⊙/M Gauss, they not only change the metric ten-
sor of the black hole spacetime [34-37] but also influence
the motion of neutral or charged particles in the vicinity
of the black hole horizon. The chaotic motion of neutral
particles can be found in several references [38-43].

Although a Hamiltonian system for the description
of neutral or charged particle motion in the vicinity
of a black hole immersed in an external electromag-
netic field is inseparable and exhibits chaotic charac-
ter in most cases, it or its time-transformed version
may have more than two explicitly integrable splitting
pieces. This brings a chance for the construction of ex-
plicit symplectic integrators in curved spacetimes [44-
49]. The symplectic integrators preserve the symplectic
structures of Hamiltonian dynamics, and show no sec-
ular drifts in errors of the integrals of motion [50,51].
Thus, they are particularly adapted to mimicking the
long-term dynamical evolution of Hamiltonian systems.
The explicit symplectic methods have an advantage over
the implicit ones [52,53] in computational efficiency.

In addition to reliable numerical integration meth-
ods such as the symplectic integrators, efficient chaos
detection methods are necessary to discriminate be-
tween order and chaos of Hamiltonian dynamics. The
Poincaré map is a common chaos detection method
applied to a conservative system with two degrees of
freedom. The maximal Lyapunov exponent (mLE) is
also a common chaos detection method used in a sys-
tem with any dimensions. The fast Lyapunov indicator
(FLI) [54] as a variant of the mLE is a quicker indi-
cator to detect the chaotical behaviour. The mLE and
FLI were developed as those independent of the choice
of spacetime coordinates in general relativity [55,56].

There are other chaos detection methods, which include
the smaller alignment index (SALI) [57] and its gen-
eralized alignment index (GALI) [58], the 0-1 binary
test correlation method [59], the recurrence plot (RP)
method based on the recurrence quantification analysis
[23,60-63] and so on. Although these techniques have
been shown to be very efficient to detect the chaos on-
set in many Newtonian gravitational systems, they have
few applications in the context of relativistic gravita-
tional problems. The RP method was applied to iden-
tify the transition between different dynamical regimes
in the Kerr black hole background immersed in a weak,
asymptotically uniform magnetic field [23,62]. The SALI
was used to trace the chaotic motion of charged parti-
cles around a deformed Schwarzschild black hole with
an external magnetic field [64]. Recently, the 0-1 binary
test correlation method was employed to identify chaos
in magnetized Kerr-Newman spacetimes [43].

In the present paper, we use the RP method com-
bined with an explicit symplectic method to study the
chaotic dynamics of charged test particles around a
hairy black hole with an external magnetic field in the
Horndeski gravity [65]. Because the Horndeski gravity
is a very general scalar-tensor theory belonging to a the-
ory of modified gravity [66-68], we give the vector po-
tential of electromagnetic field by modifying the Wald
vector potential in Section 2. Then we explore the dy-
namical properties of charged test particles in Section
3. Finally, our main results are concluded in Section 4.

2 Electromagnetic field of hairy black hole in
Horndeski gravity

There have been many interesting solutions describing
hairy black holes in literature (see e.g. [65-72]). Here,
we focus on a hairy black hole spacetime in Horndeski
gravity [65-68]. Above all, the expressions for the vec-
tor potential and electromagnetic field around the hairy
black hole are given.

2.1 Hairy black hole solution in sqrt quartic Horndeski
gravity

Horndeski gravity [65] is a very general scalar-tensor
theory, which belongs to a theory of modified gravity.
A scalar field ϕ in the theory has a shift symmetry
ϕ → ϕ+ const. We focus on one black hole solution in
the class of Horndeski theory, which is obtained from
the action [66-68]

S =

∫
d4x

√
−g (L2 + L4) , (1)
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where d4x is products of infinitesimal spacetime coor-
dinate elements (such as dt, dx, dy and dz, or dt, dr, dθ
and dφ), and g is the determinant of a metric matrix
gαβ . In additon, L2 and L4 are two Lagrangian terms:

L2 = G2(X), (2)
L4 = G4(X)R+G4,X

[
(□ϕ)2 − (∇µ∇νϕ)

2
]
. (3)

Here, G2 and G4 are two arbitrary functions of a canon-
ical kinetic term X = −∂µϕ∂µϕ/2. G4,X corresponds to
a derivative of G4 with respect to X, and R stands for
the Ricci scalar. (□ϕ)2 = (∂µ∂

µϕ)
2, and (∇µ∇νϕ)

2
=

∇µ∇νϕ∇ν∇µϕ. For example, G2 and G4 are chosen as

G2 = ηX, G4 = 1/(16π) + β
√
−X, (4)

where η and β represent two dimensionless parameters.
It is clear that G2 depends on the canonical kinetic
term only. G4 has the constant term 1/(16π) associated
with an Einstein-Hilbert piece in the action and the X-
dependence term yielding a contribution to the Noether
current that is independent of the scalar field ϕ. Because
of the expression of the Lagrangian term L4, the theory
given by the action (1) was referred to as a "sqrt quartic
Horndeski gravity" in [66,67].

Using the action (1), the authors of [66,67] wrote
a hairy black hole solution in Boyer-Lindquist coordi-
nates as

ds2 = gµνdx
µdxν

= −(1− 2M

r
− 8πρeff

r2
)dt2

+(1− 2M

r
− 8πρeff

r2
)−1dr2

+r2dθ2 + r2 sin2 θdφ2, (5)

where ρeff = β2/η is a scalar hairy parameter. If the
hairy parameter satisfies the condition

ρeff ≥ −M2/(8π), (6)

the black hole solution has one or two event horizons
r± = M ±

√
M2 + 8πρeff . For ρeff = −M2/(8π), the

metric (5) corresponds to the black hole with one hori-
zon r = M . When −M2/(8π) < ρeff < 0, the metric is
the RN-like black hole with two event horizons, where
Qsc =

√
−8πρeff is a scalar charge [73]. Although it is

not an electric charge of the black hole, it has a physi-
cal behaviour like the electric charge effect of the black
hole. If the hairy parameter ρeff is nonzero, it yields an
extra force for the neutral black hole. When ρeff < 0,
the extra force leads to the acceleration of positively
charged particles in the increasing φ direction, but to
the deceleration of negatively charged particles. In a
word, the effect should be considered in the vicinity of

the event horizon. For ρeff = 0, the metric becomes the
Schwarzschild spacetime with one horizon r = 2M . If
ρeff > 0, the metric is unlike the RN black hole but has
two event horizons. However, the metric is no longer
any black hole solution when ρeff < −M2/(8π) because
no event horizon can exist in this case. Throughout this
paper, the constant of gravity G and the speed of light
c take one geometric unit, G = c = 1.

The hairy black hole spacetime (5) is spherically
symmetric and asymptotically flat. There are two Killing
vectors ξµt = (1, 0, 0, 0) and ξµφ = (0, 0, 0, 1). They deter-
mine the conserved energy Ē and orbital angular mo-
mentum L̄ per unit mass of a test particle:

Ē = −uµξtµ = −uµgµνξ
ν
t = −gttṫ = −P̄t, (7)

L̄ = uµξφµ = uµgµνξ
ν
φ = gφφφ̇ = P̄φ, (8)

where the dots denote the derivatives of the coordi-
nates t and φ with respect to the proper time τ , i.e.
two components of the 4-velocity uµ = ẋµ. P̄t and P̄φ

are two components of the generalized 4-momentum
P̄µ = gµν ẋ

ν . For the test particle with mass m around
the black hole, its motion can be described by a Hamil-
tonian system

H =
1

2m
gµνPµPν

= − E2

2m
(
1− 2M

r − 8πρeff
r2

) +
L2 csc2 θ

2mr2

+
P 2
r

2m

(
1− 2M

r
− 8πρeff

r2

)
+

P 2
θ

2mr2
, (9)

where Pµ = mP̄µ, E = mĒ and L = mL̄. This Hamil-
tonian is a conserved quantity

H = −m

2
, (10)

which is due to the rest mass relation gµν ẋ
µẋν = −1.

There is a fourth constant of motion, which is obtained
from the separation of variables in the Hamilton-Jacobi
equation of the Hamiltonian system (9). The fourth
constant reads

Ck =
r2E2

m
(
1− 2M

r − 8πρeff
r2

) −mr2

−r2P 2
r

m

(
1− 2M

r
− 8πρeff

r2

)
=

P 2
θ

m
+

L2 csc2 θ

m
, (11)

where Ck is the Carter-like constant. Thus, the Hamil-
tonian system (9) is integrable and has formally ana-
lytical solutions.

For simplicity, we give dimensionless operations to
the Hamiltonian system (9) via scale transformations:
t → Mt, τ → Mτ , r → Mr, ρeff → M2ρeff, E →
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mE, L → mML, Pr → mPr, Pθ → mMPθ, H →
mH and Ck → mM2Ck. In this way, the mass factors
m and M are eliminated in all the above expressions.
That is, Pµ = P̄µ, E = Ē, L = L̄, · · · . Hereafter, the
scaled quantities are still represented in terms of Pµ,
E, L, ρeff and so on for convenience. These operations
give not only the simple expressions but also the links
between the practical quantities and the scaled ones.
For instance, the transformation ρeff,pra → M2ρeff,sca
means that the scaled value of the hairy parameter
ρeff,sca corresponds to its practical value ρeff,pra equal
to M2ρeff,sca.

2.2 Electromagnetic field around the hairy black hole

Wald [16] considered the solution for an electromag-
netic field of a vacuum, stationary, axisymmetric black
hole immersed in a uniform magnetic field aligned with
the axis of symmetry of the black hole. The solution is
described by the vector potential

Aµ = Ct(B)ξµt + Cφ(B)ξµφ, (12)

where coefficients Ct and Cφ depend on the magnetic
field strength B. When the black hole is neutral, the
coefficients obtained from the Wald’s solution are

Ct = aB, Cφ =
B

2
, (13)

where a is the rotation angular momentum of the black
hole. If the black hole has an electric charge Q, the
coefficients are

Ct = aB +
Q

2M
, Cφ =

B

2
. (14)

Azreg-Aïnou [21] pointed out that the potential (12)
given by the coefficients (13) in the Kerr background
metric (including the Schwarzschild one) is an exact
solution of the source-less Maxwell equations

Fαβ;γ + Fγα;β + Fβγ;α = 0, (15)
Jµ = Fµν

;ν = 0, (16)

where Fµν = Aν,µ − Aµ,ν is the electromagnetic field
tensor. However, the potential (12) given by the co-
efficients (14) in the Kerr-Newman metric (including
the RN one) does not exactly satisfy Eq. (16) because
the electric charge density J t and the current density
Jφ are nonvanishing for the charged, nonvacuum black
hole metric. This thing also occurs in the case of non-
vacuum black holes under theories of modified gravity.
Extra sources are included in the theories of modified
gravity, therefore, the coefficients (12) or (13) based on
the vacuum black holes are not suitable for the nonva-
cuum ones in general. It is necessary to give extensions

to Wald’s coefficients (12) or (13) for black holes in
Hořava-Lifshitz gravity [74] and in a braneworld [75].
If the coefficients Ct and Cφ are assumed to be func-
tions of the coordinates r and θ, the potential may be
solved from the source-less Maxwell field equations (15)
and (16). Following this idea, Azreg-Aïnou modified the
coefficients (13) as

Ct = aB + ct, Cφ =
B

2
+ cφ, (17)

where ct and cφ are functions of the coordinates r and θ

and the parameters a and B. In the Gürses-Gürsey met-
ric [76], Eq. (12) with Eq. (17) can satisfy Eq. (15) and
two equations Jr = Jθ = 0 of Eq. (16). When the black
hole is nonrotating and spherically symmetrical, ct and
cφ do not depend on θ. If gtt = −

[
1− 2(f1r + f2)/r

2
]
=

−1/grr, ct solved from the equation J t = 0 is

ct = − κ1

rgtt
− κ2

gtt
, (18)

where κ1 and κ2 are integration constants. In principle,
the two constants can be chosen arbitrarily. However,
they must be κ1 = Q and κ2 = 0 for the black hole with
an electric Q, and κ1 = κ2 = 0 for the black hole that is
neutral. Such choices are determined by the Coulomb
potential −Q/r, which corresponds to a nonzero co-
variant component of the four-vector electromagnetic
potential At = −(κ1/r) − κ2. The equation Jφ = 0

yields

cφ =
Bf2
r2

. (19)

In light of the results of Azreg-Aïnou, we can easily
write the expression for the vector potential of elec-
tromagnetic field around the hairy black hole (5) as a
particular form of the Gürses-Gürsey metric [76]. Here,
Q = 0, f1 = M and f2 = 4πρeff . Considering Eqs. (12),
(17)-(19), we have the vector potential

Aα =
(
4π
r2 Bρeff + B

2

)
ξαφ , (20)

which is equivalent to the following expression

Aφ =
1

2
B
(
r2 + 8πρeff

)
sin2 θ. (21)

This vector potential is an exact solution of the source-
less Maxwell field equations (15) and (16). Note that
the vector potential should have been Aφ = 1

2Br2 sin2 θ

based on the Wald potential, but such a vector potential
satisfies Eq. (15) and the two equations Jr = Jθ = 0

of Eq. (16) except the other equations J t = Jφ = 0 of
Eq. (16).

In order to obtain nonzero orthonormal components
of the electromagnetic field, we introduce four orthogo-
nal basis vectors in an observer’s reference frame. The
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observer basis {et̂, er̂, eθ̂, eφ̂} is expressed in the coordi-
nate basis {∂t, ∂r, ∂θ, ∂φ} as
eµ̂ = eνµ̂∂ν , (22)
where the transform matrix eµ̂ satisfies the relation
gµνe

µ
α̂e

ν
β̂
= ηα̂β̂ . ηα̂β̂ is the metric of Minkowski space-

time. For the hairy black hole metric (5), a simple choice
of the basis is given as follows:

eνµ̂ =


√
−gtt 0 0 0

0
√
grr 0 0

0 0
√
gθθ 0

0 0 0
√
gφφ

 . (23)

The 4-velocity of the rest observer Uα at the reference
frame is
Uα =

√
−gtt(1, 0, 0, 0), (24)

Uα =
√
−gtt(−1, 0, 0, 0). (25)

The components of the electric and magnetic fields in
the frame read
Eα = FαβU

β , (26)

Bα =
1

2
ϵβαµνF

µνUβ , (27)

where ϵβαµν is the Levi-Civita tensor. Thus, the nonva-
nishing orthonormal components of the electromagnetic
field measured by the zero angular momentum observer
are

Br̂ = Bre
r
r̂ = B(1 +

8πρeff

r2
) cos θ, (28)

Bθ̂ = Bθe
θ
θ̂
= −B sin θ

√
1− 2

r
− 8πρeff

r2
. (29)

The total magnetic field is Btot =
√
B2

r̂ +B2
θ̂
. In Fig.

1, we plot Btot varying with the parameter ρeff or the
radial distance r. It is clear that the magnetic field in-
creases with an increases of the parameter |ρeff|, but
decreases with an increases of θ.

3 Motions of charged particles around hairy
black holes in external magnetic fields

Suppose that a particle with a charge q moving around
the hairy black hole with the external magnetic field
(21). The momentum in Eq. (9) is Pµ = pµ − qAµ.
The charged-particle motion is described by the super-
Hamiltonian

K =
1

2
gµν(pµ − qAµ)(pν − qAν)

= −1

2

(
1− 2

r
− 8πρeff

r2

)−1

E2

+
1

2

(
1− 2

r
− 8πρeff

r2

)
p2r +

1

2

p2θ
r2

+
1

2r2 sin2 θ

[
L− b

2

(
r2 + 8πρeff

)
sin2 θ

]2
, (30)

where b = qB. The scale transformations in K are sim-
ilar to those in H. In addition, q → mq and B → B/M

are used. Similar to H, K still satisfies the constraint

K = −1

2
. (31)

However, the external magnetic field leads to the ab-
sence of the fourth constant (11). As a result, the Hamil-
tonian (30) is nonintegrable. This fact shows that the
weak electromagnetic field can exert an influence on the
charged particle dynamics although it gives no contri-
bution to the geometry of spacetime.

3.1 Explicit symplectic integrators

Symplectic schemes are naturally viewed as the most
appropriate solvers for long-term integration of the Hamil-
tonian system (30) because they preserve the symplec-
tic structure of Hamiltonian dynamics. Explicit sym-
plectic methods are less than implicit ones at the ex-
pense of computational time. The Hamiltonian is not
directly split into two explicitly integrable pieces and
then explicit symplectic integrators become useless. How-
ever, they are still variable when the Hamiltonian is
split into more than two explicitly integrable parts. In
fact, the construction of explicit symplectic schemes
based on the multi-part splitting method has appeared
in recent literature [44-49].

The Hamiltonian (30) is separated in the form

K = K1 +K2 +K3 +K4 +K5, (32)

where all sub-Hamiltonians are written as follows:

K1 =
1

2r2 sin2 θ

[
L− b

2
(r2 + 8πρeff) sin

2 θ

]2
−E2

2

(
1− 2

r
− 8πρeff

r2

)−1

, (33)

K2 =
1

2
p2r, (34)

K3 = −1

r
p2r, (35)

K4 =
p2θ
2r2

, (36)

K5 = −4πρeff

r2
p2r. (37)

It is easy to check that each of the five parts has an
analytical solution as an explicit function of the proper
time τ . Solvers for the sub-Hamiltonians K1, K2, K3,
K4, and K5 are termed κ1, κ2, κ3, κ4 and κ5, respec-
tively.

Setting h as a time step, we have a second-order
explicit symplectic integrator

S2(h) = χ∗(
h

2
)× χ(

h

2
), (38)
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where two first-order solvers are

χ(h) = κ5(h)× κ4(h)× κ3(h)× κ2(h)× κ1(h), (39)
χ∗(h) = κ1(h)× κ2(h)× κ3(h)× κ4(h)× κ5(h). (40)

Composing three second-order methods, we obtain a
fourth-order explicit symplectic algorithm

S4 = S2(γh)× S2(δh)× S2(γh), (41)

where γ = 1/(1− 3
√
2) and δ = 1−2γ. The construction

is that of Yoshida [77]. By the component of more first-
order operators χ and χ∗, an optimized fourth-order
partitioned Runge-Kutta (PRK) symplectic algorithm
was given in [49] by

PRK64 = χ∗(α12h)× χ(α11h)× · · ·
×χ∗(α2h)× χ(α1h), (42)

where time coefficients are

α1 = α12 = 0.079203696431196,

α2 = α11 = 0.130311410182166,

α3 = α10 = 0.222861495867608,

α4 = α9 = −0.366713269047426,

α5 = α8 = 0.324648188689706,

α6 = α7 = 0.109688477876750.

Let us take h = 1, E = 0.996, L = 4.6 and ρeff =

0.001. The initial conditions are r = 16, θ = π/2 and
pr = 0. The initial value pθ > 0 is given by Eqs. (29)
and (30). The magnetic field parameters are b = 10−4

for Orbit 1 and b = 10−3 for Orbit 2. When the in-
tegration time reaches 107, the three methods S2, S4
and PRK64 give no secular drifts to Hamiltonian er-
rors ∆K = K + 1/2 for integrations of the two orbits
in Fig. 2a, b. They exhibit an advantage of symplectic
methods in the energy conservation. It is also shown
that S4 is four orders of magnitude better than S2 but
two orders of magnitude poorer than PRK64 in accu-
racy. Thus, the algorithm PRK64 is employed in later
computations.

3.2 Chaos detection methods

The phase space structures of Orbits 1 and 2 in Fig. 2a,
b can be described through the Poincaré map in the two
dimensional r−pr plane. In fact, these points (r, pr) ob-
tained from the Poincaré map are intersections of the
particles’ orbits with the surface of section θ = π/2 and
pθ > 0. Orbit 1 is regular and nonchaotic because the
intersection points form a closed curve in Fig. 2c. How-
ever, Orbit 2 is chaotic because the intersection points
behave in a random distribution way. The Poincaré map
method is useful to classify whether a number of orbits

in a conservative system with four-dimensional phase
space are regular or chaotic.

The maximum Lyapunov exponent (mLE) is also
a common tool to distinguish between regular motions
and irregular ones. It is often used to quantify the rate
of divergence between nearby orbits. If a bounded or-
bit has a positive Lyapunov exponent, it is chaotic; If
the mLE of a bounded orbit vanishes, this orbit is or-
dered. It takes a very long time to calculate the mLE
in a weakly chaotic orbit. The fast Lyapunov indicator
(FLI) of Froeschlé et al. [54] is a quicker chaos indica-
tor to investigate such a weak chaotic property. It was
developed as a relativistic invariant form of two nearby
orbits [55] from a modified version of the relativistic in-
variant Lyapunov exponent with two nearby orbits [56].
The linear growth of FLI with time shows the regularity
of Orbit 1 in Fig. 2d, whereas the exponential growth
of FLI indicates the chaoticity of Orbit 2.

Compared with the techniques of Poincaré map, mLE
and FLI, the recurrence analysis method [23,60-63] is
rarely used to detect chaos from order in relativistic
astrophysics. The method relates to the description of
recurrence plots (RPs), which measure the recurrences
of an orbit into the vicinity of previously reached phase-
space points in terms of the recurrence quantification
analysis. The method is described as follows. For a given
phase-space variable x(τ) of an orbit at time τ in a dy-
namical system, the recurrence matrix is defined as

Rij(ε) = Θ(ε− ||x(i)− x(j)||) (i, j = 1, ..., N). (43)

Here, Θ is the Heaviside function: Θ(ϑ) = 0 for ϑ < 0

and Θ(ϑ) = 1 for ϑ ≥ 0. ε stands for a pre-defined
threshold parameter. N represents the sampling num-
ber. When T is the total integration time, one of the
sampling number corresponds to the time T/N . In this
sense, i denotes the time τi = iT/N . || . || is the Eu-
clidean norm L2. A visual plot of the recurrence matrix
Rij is made of points (i, j), which correspond to the
binary values 0 and 1. A black dot represents the pair
(i, j) for Rij = 1 and a white dot denotes the pair (i, j)
for Rij = 0. Because Rij = Rji, the visual is sym-
metric with respect to the main diagonal, i.e. the line
of identity j = i. The visual behaviour of points (i, j)

about the presence or absence of diagonal structures
can contain wealth of dynamical information. If there
are many diagonal lines parallel to the main diagonal,
the considered orbit is regular. If there are short, dis-
rupted diagonal features or no diagonal lines parallel
to the main diagonal, the motion is chaotic. In a word,
the RP behaves in regular diagonal structures for the
nonchaotic case, but has more complicated, irregular
structures for the chaotic case. The regular or chaotic
dynamics of an orbit can be characterized via the visual



7

behaviour of points (i, j) corresponding to the binary
values 0 and 1 in a two-dimensional plane.

We take N = 1000, T = 107 and ε = kσ, where σ is
the standard mean deviation of the given data set and
k is a proportionality constant [61]. Although x(τ) is
taken as the phase-space variables (r, θ, pr, pθ), any one
of the phase-space variables is admissible. For example,
r is given to x(τ). We draw the RPs of Orbits 1 and
2 in Fig. 2e, f. The presence of a number of diagonal
lines parallel to the main diagonal shows the regularity
of Orbit 1. The absence of diagonal lines parallel to the
main diagonal determines the chaoticity of Orbit 2. The
RP method is an efficient tool to identify the dynamical
features of Orbits 1 and 2, as the techniques of Poincaré
surfaces of section and FLIs are.

The visual plot of Rij for the quasiperiodic orbit
1 is shown in Fig. 2e. What is a visual for a periodic
orbit? In order to answer this question, we choose some
circular orbits of particles in the system (9). Based on
Eq. (11) with Pr = Pθ = 0, the effective potential for
particles moving at the plane θ is

Veff = E2 =

(
1 +

Ck

r2

)(
1− 2

r
− 8πρeff

r2

)
, (44)

Ck = L2 csc2 θ. (45)

When L = 4 and ρeff = 0.001 are given, the effec-
tive potentials at the three planes θ = π/4, π/3, π/2

are shown in Fig. 3a. The conditions for stable cir-
cular orbits at the planes θ are dVeff/dr = 0 and
d2Veff/dr

2 ≥ 0. The stable circular orbits in Fig. 3b
correspond to their parameters and radii as follows:
E = 0.98 and r = 28.62 for the circular orbit 1 at the
plane θ = π/4; E = 0.97 and r = 17.68 for the circular
orbit 2 at the plane θ = π/3; E = 0.96 and r = 11.95

for the circular orbit 3 at the plane θ = π/2. When the
circular orbit conditions and the algorithm PRK64 are
applied to the Hamiltonian (30) with b = 0, we plot the
visuals of Rij for these stable circular orbits. The visual
for the circular orbit 1 has diagonal lines parallel to the
main diagonal and numerous square lattices in Fig. 3c.
The visual for the circular orbit 3 in Fig. 3d looks like
that for the quasiperiodic orbit 1 in Fig. 2e and has a se-
ries of diagonal lines parallel to the main diagonal. This
fact shows that the RPs of periodic orbits and those of
quasiperiodic orbit are not strictly distinguishable.

3.3 The effect of varying one parameter on a
transition from regular to chaotic regime

We use the method of FLIs to study the effect of varying
one parameter on the transition from regular to chaotic
regime in the Hamiltonian (30) with b ̸= 0. For com-

parison, the methods of Poincaré surfaces of section and
RPs are also employed.

Taking the parameters L = 4.6, b = 0.0001, ρeff =

0.0001 and the initial conditions r = 16, θ = π/2, we es-
timate the FLIs of 30 trajectories with the energy run-
ning over the interval E ∈ [0.9970, 0.9999]. The FLIs
in Fig. 4a show the occurrence of abrupt transitions
to chaos at E = 0.9977 and E = 0.9992. Each of the
FLIs is obtained after the integration time arrives at
τ = 2 × 106. All FLIs larger than (or equal to) 15
correspond to the onset of chaos, but those less than
this value indicate the regular dynamics. The FLIs at
E ≤ 0.9976 indicate the regular dynamics. The tra-
jectory for the energy E = 0.9976 is a torus on the
Poincaré surface of section in Fig. 4b, and its regu-
larity is also confirmed through the RP with diagonal
lines parallel to the main diagonal in Fig. 4f. When
E = 0.9977, the weak chaoticity is shown by the meth-
ods of Poincaré map and FLI in Fig. 4a, b. The RP
in Fig. 4e seems to have diagonal line structures that
are slightly disrupted. The regular dynamics exists for
0.9978 ≤ E ≤ 0.9992, but the chaotic dynamics does for
E ≥ 0.9993. Especially for E = 0.9996 and E = 0.9998,
the chaotic behaviours are described in Fig. 4b, and
are also shown by the RPs in Fig. 4c, d. The RPs
have complex large-scale torus structures unlike diag-
onal line structures. Fig. 4 shows that the degree of
chaos increases when the energy increases in the inter-
val 0.9992 ≤ E ≤ 0.9996. In fact, the degree of chaos is
strengthened with the energy increasing from a global
phase-space structure under appropriate conditions.

Now, we consider the effect of the angular momen-
tum on the chaotic motion. When the parameters E =

0.996, b = 0.0006, ρeff = 0.0001 and the initial condi-
tions r = 16, θ = π/2 are given, L ranges from 4.0 to
4.2. The FLIs in Fig. 5a show that the transition from
chaotic to regular regime occurs at the angular momen-
tum L = 4.07. It is seen clearly that the extent of chaos
decreases with the angular momentum increasing. The
Poincaré maps in Fig. 5b and the RPs without com-
plete diagonal line structures in Fig. 5c, d give chaotic
dynamical information for L = 4.03, 4.05. Although the
diagonal lines seem to be present for L = 4.05, they are
shorter and then indicate the weak chaoticity. The tra-
jectories are ordered for L = 4.07, 4.10, as shown via
the Poincaré maps in Fig. 5b and the RPs with diagonal
line structures in Fig. 5e, f.

Then, let the magnetic field parameter b be varied
in the interval b ∈ [−0.001, 0.001], where the other pa-
rameters are E = 0.996, L = 4.4, ρeff == 0.0001 and
the initial separation is r = 10. The FLIs in Fig. 6a
have abrupt changes at b = −0.0008, 0.0003, 0.0006,
0.0008. As claimed below Eq. (31), the external mag-
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netic field destroys the existence of a fourth constant
in the Hamiltonian system (30), and thus, it should be
responsible for chaotic dynamics of charged particles.
Even the small values of the magnetic parameter such
as b = −0.0008, 0.0008 can exert strong chaotic effects
on the trajectories of charged particles in Fig. 6b. The
chaotic behaviours at b = −0.0008, 0.0008 are also de-
scribed via the RPs in Fig. 6c, d.

Finally, we investigate the dependence of regular
and chaotic dynamics on varying the hairy parameter
ρeff. In various simulations, the hairy parameter is con-
strained in the interval ρeff ∈ [−0.1, 0.1], which comes
from the limits of ρeff based on the Event Horizon Tele-
scope (EHT) observations of Sagittarius A∗ (Sgr A∗)
[67]. The other parameters are E = 0.996, L = 4.6,
b = 0.00088 and the initial conditions are r = 16,
θ = π/2. Chaos exists for ρeff ≥ 0.005 in Fig. 7a about
the FLIs depending on ρeff. The chaoticness of charged-
particle motions for ρeff = 0.005, 0.01 is checked by
the Poincaré maps in Fig. 7b and the RPs without
diagonal line structures in Fig. 7c, d. If the param-
eters and one of the initial conditions are altered as
E = 0.999, b = 0.00001 and r = 9, the FLIs in Fig.
8a correspond to chaos for −0.001 ≤ ρeff ≤ −0.003 and
ρeff = 0, 0.005, 0.006. The regular dynamics is also
shown for ρeff = −0.002, − 0.001, 0.001 ≤ ρeff ≤ 0.004,
and 0.007 ≤ ρeff ≤ 0.01. The chaoticity for ρeff = 0

and the regularity for E = 0.01 can be observed from
the RPs in Fig. 8c, d. When the parameters and one
of the initial conditions become E = 0.996, L = 4.1,
b = −0.00008 and r = 6, there is an abrupt transi-
tion to chaos when ρeff exceeds -0.006, as is seen from
the FLIs in Fig. 9a. Fig. 9b-d describe the regular dy-
namics at ρeff = −0.01 and the chaotic dynamics at
ρeff = 0.005. Because of different choices of the initial
conditions and other parameters in Figs. 7a, 8a and 9a,
there is no universal rule for the dependence of chaotic
dynamics on the hairy parameter ρeff.

The above demonstrations completely support the
results of [23]. The results are summarized here. The vi-
suals of RPs for periodic or quasiperiodic orbits exhibit
typical regular structures on the diagonal lines parallel
to the main diagonal, as shown in Figs. 2e, 3c, d, 4f,
5e,f, 8d and 9d. The visuals of RPs for weakly chaotic
orbits still have the contour of diagonal line structures,
but the structures are short or slightly disrupted. Thus,
no strict diagonal line structures are present, as shown
in Figs. 4e and 5c, d. There are no diagonal line struc-
tures or complex, irregular large-scale torus structures
unlike diagonal line structures in the visuals of RPs for
the existence of strong chaos, as shown in Figs. 2f, 4c,
d, 6c, d, 7c, d, 8c and 9c.

4 Conclusions

The Horndeski gravity is a theory of modified gravity
based on a very general scalar-tensor theory. A hairy
black hole solution in the Horndeski gravity is spheri-
cally symmetric and asymptotically flat. It is the RN-
like black hole solution for a negative value of the hairy
parameter. An asymptotically uniform magnetic field
in the vicinity of the hairy black hole is so weak that
it has a negligible effect on the spacetime background
but exerts a large influence on the motion of charged
test particles. The vector potential of electromagnetic
field in the context of modified gravity must be a modi-
fied version of the Wald potential derived from the vac-
uum background. Such a modified vector potential can
strictly satisfy the source-less Maxwell equations.

Explicit symplectic integrators exhibit excellent long-
term behaviour in simulating the motion of charged
particles around the hairy black hole immersed in the
external magnetic field. Chaos indicators such as the
methods of Poincaré surfaces of section, FLIs and RPs
are used to investigate the regular and chaotic dynam-
ics of charged particles. The RP method is the recur-
rence quantification analysis method, which measures
the recurrences of an orbit into the vicinity of previ-
ously reached phase-space points. A visual plot of the
recurrence matrix with or without diagonal structures
parallel to the main diagonal can contain wealth of dy-
namical information. The presence of diagonal struc-
tures means the regular dynamics, but the absence of
diagonal structures or the existence of short, disrupted
diagonal features shows the chaotic dynamics. The RP
method is efficient to detect chaos from order, as the
methods of Poincaré surfaces of section and FLIs are.
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Fig. 1 Magnetic configurations of the hairy black hole. (a): The total magnetic field Btot with B = 1 and θ = π/4 for three positive
values of the hairy parameter ρeff. (b): The total magnetic field Btot for three negative values of the hairy parameter ρeff. (c): The
total magnetic field Btot with B = 1 and ρeff = 0.01 for different observational angles θ. (d): Magnetic field lines in the vicinity of the
hairy black hole in the x− z plane, where B = 1, ρeff = 0.001 for blue lines, and ρeff = 0.01 for pink lines.
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Fig. 2 (a) and (b): Hamiltonian errors ∆K = K + 1/2 for several explicit symplectic algorithms integrating Orbits 1 and 2, which
have common parameters E = 0.996, L = 4.6, ρeff = 0.001 and initial conditions r = 16, θ = π/2, but different magnetic parameters
b. (c): Poincaré sections of the two orbits. (d): FLIs of the two orbits. (e) and (f): RPs of the two orbits. Here, i corresponds to the
time τi = i × 10000. Many diagonal lines parallel to the main diagonal j = i show the regular dynamics of Orbit 1, whereas no
diagonal lines parallel to the main diagonal describe the chaotic dynamics of Orbit 2. That is, the dynamical features of Orbits 1 and
2 described by the RPs are consistent with those given by the techniques of Poincaré sections and FLIs.
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Fig. 4 (a) FLI describing a dynamical transition to chaos with the energy E increasing, where the initial conditions are r = 16,
θ = π/2, and the other parameters are L = 4.6, b = 0.0001, ρeff = 0.0001. Chaos occurs at E = 0.9977 and 0.9992 ≤ E < 1. (b)
Poincaré sections for four values of the energy E. (c)-(f): RPs for four values of the energy E. The RPs in (c) and (d) correspond
to strong chaos. The RP in (e) seems to exhibit a symmetrical structure with diagonal lines parallel to the main diagonal, while
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Fig. 5 (a) FLI describing a dynamical transition to chaos with the angular momentum L increasing, where the initial conditions are
r = 16, θ = π/2, and the other parameters are E = 0.996, b = 0.0006, ρeff = 0.0001. The transition to the regular dynamics from
the chaotic dynamics at L = 4.07. (b) Poincaré sections for four values of the angular momentum L. (c)-(f): RPs for four values of
the angular momentum L. The RPs in (c) and (d) correspond to chaos, while the RPs in (e) and (f) show the regular dynamics.
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0.0008 ≤ b ≤ 0.001. (b) Poincaré sections for four values of the magnetic parameter b. (c)-(f): RPs for four values of the magnetic
parameter b. The RPs in (c) and (d) correspond to chaos, while the RPs in (e) and (f) show the regular dynamics.
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Fig. 7 (a) FLI describing a dynamical transition to chaos with the hairy parameter ρeff increasing, where the initial conditions are
r = 16, θ = π/2, and the other parameters are E = 0.996, L = 4.6, b = 0.00088. Chaos occurs when ρeff ≥ 0.005. (b) Poincaré
sections for three values of the hairy parameter ρeff. The RPs in (c) and (d) correspond to chaos.
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Fig. 8 Same as Fig. 7, but the initial conditions are r = 9, θ = π/2, and the other parameters are E = 0.999, L = 4.6, b = 0.0001.
Chaos exists at −0.01 ≤ ρeff ≤ −0.003 and ρeff = 0, 0.005, 0.006.
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Fig. 9 Same as Fig. 7, but the initial conditions are r = 6, θ = π/2, and the other parameters are E = 0.996, L = 4.1, b = −0.0008.
There is the chaotic dynamics when ρeff ≥ −0.006.
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