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Abstract

Research on the physical properties of materials at the nanoscale is crucial for the development of

breakthrough nanotechnologies. One of the key properties to consider is the ability to conduct heat,

i.e., its thermal conductivity. Graphene is a remarkable nanostructure with exceptional physical

properties, including one of the highest thermal conductivities (TC) ever measured. Graphene

nanoribbons (GNRs) share most fundamental properties with graphene, with the added benefit of

having a controllable electronic bandgap. One method to achieve such control is by twisting the

GNR, which can tailor its electronic properties, as well as change their TC. Here, we revisit the

dependence of the TC of twisted GNRs (TGNRs) on the number of applied turns to the GNR

by calculating more precise and mathematically well defined geometric parameters related to the

TGNR shape, namely, its twist and writhe. We show that the dependence of the TC on twist is

not a simple function of the number of turns initially applied to a straight GNR. In fact, we show

that the TC of TGNRs requires at least two parameters to be properly described. Our conclusions

are supported by atomistic molecular dynamics simulations to obtain the TC of suspended TGNRs

prepared under different values of initially applied turns and different sizes of their suspended part.

Among possible choices of parameter pairs, we show that TC can be appropriately described by

the initial number of turns and the initial twist density of the TGNRs.

Keywords: Lattice thermal conductivity, 2D nanomaterials, twist, writhe, linking number.

I. INTRODUCTION

Twist in one-dimensional materials can be either a hindrance or an advantage. It could be

a problem when dealing, for example, with the installation of long cables [1], disentangling

twisted headphone wires or simply washing the garden or the car with a hose [2]. However,

it could be useful when extracting elastic parameters of a nanowire [3], setting up helical

artificial muscles [4, 5] or developing torsional-based elastocaloric refrigerators [6]. Knowing

the relation between twist and physical properties of filaments in general is important

for solving problems in several areas ranging from engineering [1] to biomedicine [7] and

molecular biology [8–10].
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In the particular case of graphene nanoribbons (GNRs), the effects of twisting on their

properties have been predicted to be useful in applications such as sensors and switches [11–

13]. As the term “twisted graphene” became usual to describe the relative rotation of one

graphene layer with respect to the other in bilayer graphene structures, it is important to

make clear that in this work, the words “twist” or “torsion”, as well as the term “twisted

GNRs” (hereafter referred as TGNRs for short) means the application of twist or torsion

along the longitudinal axis of a single GNR.

Gunlycke et al. [14] showed that edge termination can induce twisting in GNRs (at

least in the case of small width GNRs) and that TGNRs present different band-gap

behavior when compared to flat and straight GNRs. Sadrzadeh, Hua and Yakobson [11]

showed that hydrogen-terminated armchair-edge GNRs present a twist dependent band-

gap. Koskinen [15] demonstrated a certain equivalence between the effects of tensile and

twisting strains on the electronic structure of GNRs. Tang et al. [16], Li et al. [12] and

Xu et al. [17] investigated metallic-to-semiconductor transitions in armchair- and zigzag-

edge TGNRs, while several other studies also confirmed the dependence of electronic and

magnetic properties of GNRs on longitudinal twist, and even suggested applications [18–22].

Mechanical properties of TGNRs have also been studied. Li [23] investigated the

stretchability of TGNRs. Cranford and Buehler [24] presented a comprehensive mechanical

study of TGNRs including their conversion to helical GNRs. Dontsova and Dumitrică [25]

investigated the mechanics of twisted single and few-layer GNRs. Diniz [26] and Xia et

al. [27] studied the structural stability of TGNRs while Savin, Korznikova and Dmitriev [28]

showed that TGNRs have larger bending stiffness than flat ones. Further studies demonstrated

that the application of large amounts of twist can lead to the formation of GNR scrolls and

supercoils [29, 30], the formation of helical ribbons [31], changes in the strength of TGNRs

with grain boundaries [32], and the localization of twisting as topological solitons on

substrates [33].

The lattice thermal conductivity (or simply “TC” from now on) of graphene has been

extensively studied so far (see, for example, Refs. [34–37]). Nonetheless, very few studies

have addressed the dependence of the TC of GNRs on the amount of twist [38–43]. Most

of these studies show that increasing the amount of twist decreases the TC, although one of

them [42] found an inverse behavior arguing that twist increases the local tension strain, and

thus the contribution of the acoustic out-of plane phonon modes to the TC of the TGNR.
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There are even fewer experiments with TGNRs. Chamberlain et al. [44] used carbon

nanotubes as nanoreactors to assembly and produce sulfur-terminated GNRs, including

TGNRs. Cao et al. [45] obtained TGNRs or curled GNRs by thermal annealing poly-

methyl methacrylate (PMMA) terminated GNRs, and Jarrahi et al. [46] studied their

photoresponse. An important observation is that transmission and scanning electronic

micrographs of TGNRs in those references reveal that TGNR structures are not regularly

twisted GNRs as those considered in most of the previously cited modeling and simulation

works. In these studies, only one parameter was considered to characterize the TGNR

geometry: the initial number of turns applied to its axis. However, the TGNR properties

might be dependent also on the GNR length and the curls and folds that form due to its

low flexural rigidity and thermal fluctuations, as seen in the experimental micrographs. A

study of the TC of TGNRs that takes into account these features is missing and can reveal

a higher level of complexity, which would be required for further development of precise

applications.

Two important questions arise from the above discussion: (i) how to precisely define and

determine the geometric features of a TGNR at finite temperature? and (ii) how to describe

the dependence of the TC of a TGNR on these geometric features, including twist and

length, at finite temperatures? In the present study, we are going to answer both questions.

Recently, one of us [47] developed a method to precisely calculate the geometric features

of a TGNR suspended by two substrates. It was demonstrated that the degree of twist

(in a more precise mathematical sense) of a given TGNR is not solely dependent on the

number of turns initially applied to it, but also on the size of its suspended portion. One

reason for this is that the TGNR’s extremities lay on the substrates, becoming flat and

not contributing to its total twist. As a result, the initial turns applied to the TGNR axis

become more densely distributed along the suspended part. This increases the twist density

of the TGNR favoring the so-called twist-to-writhe conversion (TWC) [48, 49] phenomenon

(see the detailed description ahead in section IIA) which allows part of the torsional stress

in a ribbon to be released by flexural deformations of the TGNR axis.

Furthermore, Fonseca [47] used these features to propose that the total twist of a TGNR

can be tuned by simply changing the distance between the substrates holding its ends. He

showed that the total (real) twist of a TGNR can be changed without adding or removing

torsion/rotation at the ends of the TGNR. One advantage of this method is to provide a more
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precise way to determine the total twist of a TGNR and, then, correlate it to other physical

properties. Since the literature is mostly limited to the prediction of physical properties of

regularly twisted GNRs, here we explore the above geometric features of suspended TGNRs,

and their dependence on the size of their suspended part, to investigate the dependence of the

TGNR’s TC on the total amount of twist, the size of the suspended part and other TGNR’s

geometric parameters. We show that the TC of TGNRs cannot be fully determined by a

unique geometric parameter, and that it requires, at least, two parameters.

In the next sections, we present the theoretical background for calculating the total

geometric twist of a piece of TGNR, and the computational methods employed for the

calculation of the TC. Then, we present our results and discussions, followed by our

conclusions.

II. THEORY AND METHODOLOGY

A. Geometric parameters of a TGNR

The twist-to-writhe conversion (TWC) phenomenon, mentioned in the Introduction, is

well known in twisted filamentary structures [48, 49]. It consists of releasing a rod’s torsional

stress by spontaneous bending and folding, after the twist density reaches a critical value.

This TWC has been shown to satisfy the Călugăreanu-White-Fuller linking number (Lk)

theorem [49–51]:

Lk = Tw +Wr (1)

where Tw and Wr are the total (real) amount of twist and a quantity called writhe of a

curve which measures its non-planarity, respectively. The linking number, Lk, is a geometric

parameter of a pair of closed curves and although it is well defined in terms of a double

integral along them, it has been shown to be an integer equal to half the number of times

one curve crosses the other [52].

The total twist, Tw, of a pair of curves and the writhe, Wr, of one space curve, are given

by the following integrals along the corresponding curves [52]:

Tw =
1

2π

∫
x

tx ·
(
u× du

ds

)
ds , (2)

Wr =
1

4π

∫
x

∫
x

(tx(s) × tx(s′)) · (x(s)− x(s′))

|x(s)− x(s′)|
dsds′ , (3)
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where s is the arc-length of the curve x, t is its unitary tangent vector and u is a unitary

vector orthogonal to t and pointing from the curve x to its parallel curve. All these vector

quantities are functions of s. The total length of the curve x is simply given by L =
∫ L

0
ds.

Suppose we initially prepare two space closed curves such as to present a certain amount

of Lk. The Călugăreanu-White-Fuller theorem guarantees that Lk is always conserved no

matter how the curves change along the time, provided they remain closed. Changes to

the curves mean changes to their values of Tw and Wr through equations (2) and (3),

respectively. According to the theorem, these changes are such that Tw + Wr remains

constant as along as the curves remain closed. An interesting feature is that the theorem

has also been shown to hold for a pair of non-closed curves if their extremities are flat and

belong to the same plane [52]. There exists a pair of parallel open curves with Tw = Wr = 0

that connect the first two ones at infinity [52]. A similar argument can be made for a pair

of open curves having a semi-integer value of Lk. As long as the ends of the curves lay on

parallel planes, there exists a pair of twisted parallel curves with Wr = 0 and Tw = 0.5

that connect the first pair at infinity.

The two space curves required to calculate the twist and writhe of our TGRNs can be

defined prior to applying the initial turns to the straight GNR. The first curve can be the

GNR axis, and the second curve can be a line parallel to the first. Numerically, both curves

can be defined by sets of co-linear carbon atom positions along the main length of the

straight untwisted GNR. Once the curves are defined, if one fixes one end of a GNR and

applies n turns to the other end while keeping the GNR straight, the twist will be Tw = n

and the writhe Wr = 0. Thus, the initial linking number applied to the, now twisted, GNR

is Lk = n. If the ends of this TGNR are placed such that they belong to the same plane

and are not allowed to rotate back to release the initially applied torsional stress, the value

of Lk will remain constant.

As shown by Fonseca [47], if the extremities of a TGNR are laid down on two different

planar substrates, and their planes coincide, the Lk theorem can be applied to the TGNR

and eqs. (2) and (3) can be used to infer the values of Tw and Wr of the suspended part.

Additionally, it is possible to investigate how Tw and Wr vary with several other parameters

and physical conditions, such as the distance between the substrates, temperature, etc. The

interesting thing is that as long as the extremities of the TGNR are kept on the substrates

(and van der Waals forces guarantee that), no matter how Tw and Wr change with other
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physical conditions, Lk will remain the same. For instance, Fonseca [47] showed that it

holds true for changing the distance between substrates and the temperature of the system.

Here, we will investigate how the TC of TGNRs depends on Lk, its length, d, as well

as its Tw and Wr taking into account that these last two quantities change with both Lk

and d. We will analyze the twist and writhe of non-closed TGNRs to which an integer or

semi-integer number of turns was initially applied.

B. Computational methods

The TC calculation for the TGNRs will be performed by non-equilibrium molecular

dynamics (NEMD) simulations using the Adaptive Intermolecular Reactive Empirical

Bond Order (AIREBO) potential [53, 54] as implemented in LAMMPS [55]. AIREBO

is an extension of the REBO potential originally developed by Brenner et al. [53], which

includes Lennard Jones and torsional potential terms [54]. After more than two decades, the

AIREBO potential is still being successfully used to simulate structural [56–59] and thermal

properties [60–66] of carbon nanostructures, including heat transport simulations [34–

37, 67, 68]. One fundamental aspect of our choice is the computational time involved.

Nonetheless, we must keep in mind that AIREBO does not quantitatively reproduce

absolute TC values for carbon nanostructures. In order to overcome this limitation, we

will focus on how the TC of TGNRs depends on their geometric features, and not on its

absolute value. Zhang and collaborators, for example, have performed a similar study using

the original REBO/AIREBO to investigate TC trends in graphene with the number of

isotopes [69], and in graphene oxide with the percentage of oxygen coverage [70].

The TC simulation protocol can be described as follows. TGNRs having Lk = 0 (non-

twisted and straight), 0.5, 1.0, 1.5 and 2.0 are generated by fixing one of their ends and

applying 2πLk rads with respect to the ribbon axis to the opposite end. With the extremities

fixed, the TGNRs are optimized with the conjugate gradient energy minimization algorithm

as implemented in LAMMPS (with energy and force tolerances of 10−8 eV and 10−8 eV/Å,

respectively). Then, the TGNR extremities are placed at ∼ 3.4 Å of distance to two different

substrates modeled as large area square shape graphene single layers of ∼ 287 Å of side,

distanced by d. The amount of area of the TGNR extremities laid on each substrate is such

that its suspended part has one of the following sizes: d = 100, 200, 300, 400 and 500 Å.
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Each TGNR is further equilibrated at 300 K for about 1 ns using a Langevin thermostat,

with 0.5 fs as time step and 1 ps as thermostat damping factor. Long time simulations are

required in order to guarantee that the suspended part of the TGNR reaches equilibrium.

During these simulations, the substrates are kept fixed and the objective of this part of the

protocol is to get the equilibrium shape of the TGNR at the chosen 300 K temperature.

From the equilibrium shapes of TGNRs, Tw and Wr can be calculated using the algorithm

described in Ref. [47].

Armchair GNRs of about 600 Å length and 33 Å width are considered in the present

study. They are fully hydrogen-passivated. As classical MD simulations show no special

dependence of TC with the direction of thermal conduction in pristine graphene we have

not repeated the simulations with zigzag GNRs [34].

The TC was calculated as follows. In a real situation, the substrates play the role of

thermal baths. However, the simulations to determine the TC of TGNRs will be performed

in the nanoribbons alone, without the substrates, to save time in the thermal equilibration

of the substrates and to avoid the unknown heat transmission and thermal resistance at the

interface between the substrate and the TGNR. Thermostats at THOT = 350 K and TCOLD =

250 K are, then, applied to the carbon atoms that, in the simulations with substrates, laid

on each of them. In the absence of the substrates, a free TGNR would rotate and release its

torsional stress. In order to avoid that, the hydrogen atoms that also laid on the substrates

are kept fixed during the simulations to determine the TC. The carbon and hydrogen atoms

that are suspended in the simulations with the substrates, are allowed to freely evolve, i. e.,

no thermostat or constraints are applied to them. The simulations to determine the TC of

each TGNR were performed for, at least, 40 ns.

Figure 1 depicts three TGNRs with different values of Lk and d. There, red and blue

atoms are thermostated at THOT and TCOLD temperatures, respectively, while black atoms

are kept fixed. Cyan, white, red and pink atoms at the suspended part of the TGNR are

allowed to evolve freely. Red and pink atoms in the suspended part of the TGNR are those

whose coordinates will be used to obtain the space curves needed to calculate Tw and Wr

using equations (2) (3), respectively. For every TGNR, the TC, Tw andWr of the suspended

part were calculated.
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FIG. 1. Examples of atomistic structures of TGNRs with Lk = 2 and d = 100 Å (top), Lk = 1 and

d = 200 Å (middle), and Lk = 0.5 and d = 300 Å (bottom). Red (blue) carbon atoms represent

those to which thermostats at THOT = 350 K (TCOLD = 250 K) were attached in the simulations

to determine the TGNRs’ TC. Black, white and cyan atoms correspond to fixed hydrogen, free

hydrogen and free carbon atoms, respectively, during those simulations. Red and pink lines of

atoms define the two space curves representing the geometry of the suspended part of the TGNR.

C. Theoretical method to determine the TC

The TC, κ, of a system along a direction x, can be obtained from Fourier law:

Jx = −κ∇xT (4)

where Jx is the heat flux along x direction and ∇x ≡ ∂/∂x. The heat flux is calculated

by the energy per time per cross-sectional area that the thermostats provide to the system.

The temperature gradient is calculated by dividing the TGNR in several slabs of length

about 10 Å, and determining the local temperature of each slab through the average kinetic

energy of the moving atoms over 10000 timesteps every 10000 timesteps. Figure 2 shows a

typical temperature profile along the TGNR after the system reaches the steady state.

III. RESULTS

Figure 3(a) presents the results for the TC as function of Lk for the structures at 300

K. Each curve shows the TC for a given value of suspended length, d, of the TGNR. The
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FIG. 2. A typical example of the steady state temperature profile along the TGNR of the middle

panel of Fig. 1, after 40 ns of a NEMD simulation to determine its TC. Each point corresponds to

a slab along the TGNR. The line connecting the points at the central region is a fitting straight

curve needed to obtain the temperature gradient. The meaning of the colors of the atoms is the

same as given in the caption of Fig. 1.

curves have in common the decrease of the TC with Lk up to 1.5, after which the TC

remains approximately constant within the error bars, which represent a 5% uncertainty

in all calculated conductivities. The curves also show that although the TC increases with

increasing d, it seems to converge, since the curves for d ≥ 300 Å become closer to each

other than those for d ≤ 300 Å. As the linking number, Lk, is determined by the number of

turns initially applied to the straight GNR, one might think that Figure 3(a) represents the

dependence of the TC of a TGNR on twist. However, the ability to change the suspended

length, d, of the GNR, without changing Lk, poses an extra complexity to the issue of

dependence of TC on twist.

Another form to see the complexity of the dependence of TC on twist comes from the

plot of TC as a function of the suspended length, d, as shown in Figure 3(b). The curves

show that even for the same value of Lk, the TC of a TGNR can change significantly. This
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FIG. 3. (a) Thermal conductivity (TC) as a function of linking number, Lk, in each ribbon with

increasing suspended length. (b) TC as a function of suspended length for ribbons with increasing

Lk. Dashed lines are just a guide to the eyes.

observation confirms that, alone, Lk cannot characterize the dependence of TC on twist.

Figure 3(b) also allows us to infer that the average rate of change of TC with d roughly

increases with Lk, at least for d ≤ 400 Å.

The above results indicate that the TC of a TGNR is not a simple function of only one

variable, the number of turns initially applied to the GNR or Lk. The TGNR TC seems

to require, at least, a second parameter to appropriately describe its dependence on the

geometric features of the TGNR. In order to find out which set of quantities best suits

this requirement, we propose, here, three possible alternatives: (A) considering the TGNR

suspended length, d, as second parameter; (B) considering the pair (Tw,Wr) parameters

(or equivalently, Lk and one of them); and (C) considering the initial twist density, Lk/d,

as the second parameter.

A. TC dependence on Lk and d

Figure 4 illustrates the 3D distribution of values of the TC of the TGNRs as functions

of d and Lk. The gray surface is the result of an arbitrarily chosen fitting function TC =

TC(d, Lk), given by:

(5)TC(d, Lk) = 70.7806− 28.7985 d+ 0.0439798 d ln d− 0.000383411 d2

− 0.098039 dLk − 8.59172Lk2 − 0.000051652 d2Lk2 + 1.08634Lk5 ,
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where the parameters were determined by a nonlinear fitting.

FIG. 4. Thermal conductivity (TC) as a function of both suspended length, d and the Linking

number Lk. Black, red, blue, magenta and green dots corresponds to the TC values of simulated

TGNRs having Lk = 0, 0.5, 1.0, 1.5 and 2.0, respectively. The gray surface is a fitting function of

the TC points given by equation (5). See the text for details.

The functional form the the fitting function by itself is not so important at the moment.

Different dnLkm terms could have been added to the fitting equation with no significant

difference in the final result. The point is that it is possible to obtain an empirical analytical

function for TC = TC(d, Lk) from computational and/or experimental data and, then, use

it for future predictive purposes. Here, Figure 4 serves to reinforce the conclusion that the

TC of TGNRs cannot be described in a simplistic manner, solely in terms of the number of

initially applied turns or Lk.

B. TC dependence on Tw and Wr

The TC of the TGNRs can be correlated to their geometric features twist, Tw, and writhe,

Wr, instead of d and Lk, because the present simulations were conducted in such a way that

the linking number (or the initial number of turns applied to the straight GNR) remained

fixed. Then, the Călugăreanu-White-Fuller theorem, eq. (1), can be used to distinguish

groups of TC surfaces in a Tw ×Wr space, each one corresponding to a value of Lk.
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Figure 5 displays four non-zero constant-Lk TC surfaces as function of both Tw and Wr

corresponding to the values of d and Lk considered in the present study. The area of the

surfaces increases with Lk which reflects the ability of the TGNRs to convert twist to writhe

to release at least part of the torsional stress. As the surfaces do not intersect one another,

each pair of geometric coordinates, (Tw,Wr) univocally characterizes the TC of a TGNR.

FIG. 5. Thermal conductivity as a function of both the twist, Tw and the writhe, Wr. Red, blue,

magenta and green corresponds to TGNRs having Lk = 0.5, 1.0, 1.5 and 2.0, respectively

Separated plots of TC versus Tw and versus Wr, for different values of suspended length,

d, are shown in Figure 6. They allow for a better observation of the complexity of the

dependence of TC of the TGNRs on their geometric parameters than Figure 5.

Figure 6(a) shows that TGNRs with smaller suspended lengths, d, present larger

variations of the TC with the real twist, Tw. In other words, as the value of d increases, the

TC becomes less dependent on Tw. This shows that the TGNR TC could not be described

uniquely even by the real twist, Tw. In fact, the above result is not unexpected. As can

be seen in the examples of TGNRs shown in Figure 1, the suspended part of the structure

becomes less curved as d increases. This is a consequence of the decrease of the linear twist

density with increasing d of the TGNR having the same Lk. Literature has shown that

rods and ribbons become unstable when the applied twist is such that the twist density

becomes larger than a critical value [1–3]. Because of this, we decided to also investigate
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FIG. 6. (a) Thermal conductivity (TC) as a function of the twist Tw. (b) TC as a function of the

writhe Wr. Dashed lines are just a guide to the eyes.

the dependence of TC on the twist density, as we will discuss in subsection III C.

The curves in Figure 6(b) look different from those of panel (a) but they are consistent

and reflect the fact that Tw and Wr are, in fact, connected by Eq. (1). In fact, Figure

6(b) shows that for TGNRs with larger suspended length, d, there is a larger number of TC

points corresponding to Wr < 0.1. This particular observation is coherent with the fact

that increasing d decreases the twist density of the TGNRs. If the twist density is small, the

twisted but straight ribbon is a stable spatial conformation. In other words, the structure

becomes less curved when the twist density is low. The points corresponding to values of

Wr > 0.2 are those obtained for the largest values of Lk considered in the present study, or

Lk ≥ 1.5. Finally, Figure 6(b) also shows that the TGNR TC cannot be described by only

its writhe, Wr.

Figures 6(a) and (b) can be re-arranged if we group data points by their Lk values rather

than d. Indeed, Figure 7 shows TC as a function of Tw (top panel) and Wr (bottom

panel), for each value of Lk. Now, the curves display additional results about the complex

dependence of the TC of TGNRs on their geometric features. It can be seen that the rate

of change of TC with either Tw or Wr, depends on Lk. However, as Lk = Tw + Wr is

constant, dTw = −dWr for the curves corresponding to the same values of Lk. Thus, for

a given value of Lk, the rate of change of TC with Tw is equal in modulus to the rate of

change of TC with Wr. For Lk = 0, TC does not depend on Tw or Wr, since there is no

twist and the different values of TC correspond only to different values of d. It is equivalent
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FIG. 7. The dependence of the thermal conductivity on the twist, Tw, (top panel) and writhe,

Wr, (bottom panel) for each value of Lk. Dashed lines are just a guide to the eyes.

to say that ∆TC/∆Tw → ∞ if Lk, Tw,Wr → 0.

However, for Lk ̸= 0, we observe that TC varies with either Tw or Wr. The difference

amongst the curves is the rate of change of TC with Tw or Wr, ∆TC/∆Tw, whose average

values are given in Table I. Although we have only a few values of ∆TC/∆Tw, and their

values might have large uncertainties, we can infer that they roughly decrease from a large

amount and converge with increasing Lk.
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TABLE I. Average rate of change of TC with Tw, ∆TC/∆Tw, for the curves shown in Figure 7

and Lk ̸= 0.

Lk ∆TC/∆Tw [W/(m-K)]

0.5 11.15× 106

1.0 360.4

1.5 92.2

2.0 104.6

The above analysis confirms that the TC of TGNRs in realistic conditions (large size

GNRs, suspended and at different temperatures) is much more complex than the simple

consideration of its dependence on the number of initially applied turns can deal with. The

literature has only presented predictions for the dependence of TC on twist, for zero K,

non-writhed, small width TGNRs.

The study of the dependence of TC on both Tw and Wr is not practical from the

experimental point of view. It is easier to record the number of times the straight GNR was

initially rotated and measure the suspended length of the produced TGNR than defining

two space curves along the GNR and develop computational tools to extract its points to

compute the corresponding Tw and Wr. Therefore, although the above results show the TC

can be well characterized by the pair (Tw,Wr), they are not unique as shown in subsections

IIIA and III C.

C. TC dependence on Lk and the twist density

The analyses in the previous sections suggest one more attempt to characterize the TC

of TGNRs on just one quantity: the twist density. In fact, there are two possible twist

densities to consider, Lk/d and Tw/d. We will stick to the first one since, as mentioned in

Section III B, it is easier for an experiment to measure Lk then to measure Tw in a TGNR.

Figure 8 shows the TC of TGNRs as a function of Lk/d for different values of Lk. It can

be seen that each set of data points corresponding to one value of Lk seems to follow one

particular decaying curve. We, then, fitted each one to the following equation:

f(x) = Ce[−α(x−x0)], (6)
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FIG. 8. Thermal conductivity as a function of the twist density, Lk/d. Points are results from MD

simulations, and the curve is a fitting function given by equation (6). Inset: fitting exponent α as

a function of Lk.

where C and α are constants that depend on Lk, and x0 = Lk/d0 is the smallest twist

density of the set of data points corresponding to the same Lk, with d0 being the largest

suspended size of the TGNRs that, in our case, is 500 Å. The TC of TGNRs is, then,

described by the following equation:

TC(Lk, Lk/d) = C(Lk)e

[
−α(Lk)

(
Lk
d
−Lk

d0

)]
. (7)

Table II shows the values of C and α obtained from the fitting of the data points in the

main panel of Figure 8, for each value of Lk. While C is shown to be weakly dependent on

Lk, α seems to be a significant function of Lk. In fact, the inset of Figure 8 shows that α(Lk)

displays an approximately linear decreasing behavior with Lk. The meaning of this result

is quite interesting. As C(Lk) ∼ const., one can conclude that larger values of Lk lead to a

weaker dependence of the TC on the twist density Lk/d. It is a remarkable, and apparently
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TABLE II. Values of C and α obtained from the fitting of the data points sets shown in Figure 8.

Lk C α

0.5 115.4 118.5

1.0 111.2 86.74

1.5 102.0 70.92

2.0 103.9 47.75

contradictory, result because larger values of Lk imply larger values of the twist density

and, therefore, a stronger dependence of TC on twist density. Thus, one would expect that

α(Lk) should increase and not decrease with Lk. But the richness of the twist-to-writhe

phenomenon can help understand this feature. As shown by Fonseca [47], a TGNR on top of

two separated substrates can present a twist-to-writhe transition, where part of its twist is

converted to writhe through curving and curling in the space. As this phenomenon decreases

the torsional stress on the nanoribbon, it decreases the torsional stress/strain contribution

to its TC.

While the dependence of the TC of TGNRs on (Lk, d) is relatively simple, equations

similar to (5) are difficult to interpret in physical terms. However, although the dependence

on (Lk, LK/d) is a bit more complicated than that on (Lk, d), equation (7) carries a simple

and physically meaningful form of describing the TC of TGNRs.

IV. CONCLUSION

We have carried out fully atomistic molecular dynamics simulations of TGNRs at 300

K, and obtained their thermal conductivity dependence on geometrical parameters as twist,

Tw, writhe, Wr, linking number, Lk, size of the TGNRs suspended parts, d, and the twist

density, Lk/d. The results showed that alone, the number of initially applied turns to a

straight GNR, Lk, cannot be considered the only parameter that determines the TC of

TGNRs. We showed that the TC of TGNRs can be a function of, at least, two parameters,

and analysed three sets of parameter pairs: (Lk, d), (Tw,Wr) and (Lk, Lk/d). Even though

each set of parameters can describe the TC of a TGNR, we also showed that a simple and

physically meaningful description can be achieved with equation (7), which describes the
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dependence of TC on a twist density (Lk, Lk/d). In the present work, we were mostly

concerned on showing that the dependence of the TC on twist is not as simple as previous

works have suggested, which is probably related to the lack of experimental studies on

TGNRs. We hope that the present analysis and findings will stimulate further experimental

investigations of TGNRs, including their thermal transport properties.
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10.1016/j.carbon.2014.04.048.

[20] D. -B. Zhang, G. Seifert, and K. Chang, Strain-Induced Pseudomagnetic Fields

in Twisted Graphene Nanoribbons, Phys. Rev. Lett. 112, 096805 (2014), DOI:

10.1103/PhysRevLett.112.096805.

[21] M. Saiz-Bret́ın, F. Domı́nguez-Adame, and A. V. Malyshev, Twisted graphene nanoribbons as

nonlinear nanoelectronic devices, Carbon 149, 587 (2019), DOI: 10.1016/j.carbon.2019.04.069.

[22] R. Thakur, P. K. Ahluwalia, A. Kumar, B. Mohan and R. Sharma, Electronic structure

and carrier mobilities of twisted graphene helix, Physica E 124, 114280 (2020), DOI:

10.1016/j.physe.2020.114280.

[23] Y. Li, Twist-enhanced stretchability of graphene nanoribbons: a molecular dynamics study,

J. Phys. D: Appl. Phys. 43, 495405 (2010), DOI: 10.1088/0022-3727/43/49/495405.

[24] S. Cranford and M. J. Buehler, Twisted and coiled ultralong multilayer graphene ribbons,

Modelling Simul.Mater. Sci. Eng. 19, 054003 (2011), DOI: 10.1088/0965-0393/19/5/054003.
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