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An study of the equatorial circular motion of photons and massive particles around a rotating
compact body like a neutron star is presented. For this goal, we use an approximate Kerr-like metric
with mass quadrupole as perturbation. The effect of this deformation on the photon sphere, and
the innermost stable circular orbit, is determined via an effective potential. Furthermore, a stability
anaysis is shown, where we observed the same behavior of the effective potential for co-rotating and
counter-rotating particles. A comparison with the results for the innermost stable circular orbit
obtained for the Hartle-Thorne spacetime is also presented.

1. INTRODUCTION

The study of the spacetime of a compact body with certain physical properties is built upon mathematical procedures
deduced from the theory of General Relativity. These methods allow one to obtain information about the space-time
surrounding, for example, a black hole or the Innermost Stable Circular Orbit (ISCO). The papers of Chandrasekhar
and Bardeen [1, 2] establish the appropriate formalisms that one can apply to a metric in order to describe, for the
purpose of this research, the orbits around a compact body.

Regarding the metric that will be employed in this research, Frutos [3, 4] implemented a Kerr spacetime as the seed
to obtain a new one that incorporates the mass quadrupole with the aim of knowing its influence in the propagation
of particles, such as photons. Moreover, one should go back to the Kerr case if the quadrupole parameter is null,
which will be helpful further ahead to compare the results with a much simpler scenario. It is worthwhile to mention
that applications of this spacetime, such as chaotic orbits, have already been studied in [5, 6].

It is important to mention that this contribution will try to part from various of the results from [7], where Pugliese
et al. studied the equatorial circular motion for the Kerr metric. Furthermore, they found stability conditions in
terms of the mass and spin parameters for a test particle orbiting a black hole and a naked singularity. Thus, one
of the objectives of this research will be to determine, through numerical results, how the orbits change when the
quadrupole parameter is added as a perturbation.

Additionally, the paper by Chaverri et al. [8] provides useful information about the Kerr-like metric in [3], such as
the effective potential and the radius for the ISCO, which will be analyzed in more detail in Section 2. In fact, this
research is an extension of what was accomplished in [8], since the latter found the basic expressions for what will be
analyzed in the present work.

In summary, the outline of this contribution is as follows: in the second section, the Kerr-like metric will be
discussed. As mentioned, the goal of the current paper is to analyze the influence of the quadrupole parameter on the
massive and light orbits for the Kerr-like metric on the basis of numerical results generated by codes in Mathematica.
Parallel to the latter, we will determine the radii of massive particles and photon orbits for this spacetime for different
values of mass, rotation parameter, and quadrupole parameter, which is shown in section three. Additionally, the
results for the ISCO will be briefly compared with those obtained with the Hartle-Thorne metric [9]. Moreover, in
section four we present an analysis of the effect of the quadrupole parameter on the stability of circular orbits of test
particles considering their angular momentum through the study of the effective potential. All the numerical codes
written in Mathematica employed for this task are available upon request. Lastly, some conclusions are discussed in
section five.

2. KERR-LIKE METRIC

The Kerr-like metric is an approximate spacetime that was generated using the Kerr metric and the series expansion
of the Erez-Rosen spacetime as seed metrics:
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ds2 =
e−2ψ

ρ2
(a2 sin2 θ −∆)dt2 +

−2Jr

ρ2
sin2 θdtdϕ+ ρ2

e2χ

∆
dr2 + ρ2e2χdθ2 +

e2ψ

ρ2
[(r2 + a2)2 − a2∆sin2 θ] sin2 θdϕ2, (1)

where ∆ = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ; J =Ma is the angular momentum; M and a correspond to the mass
and the spin parameter, respectively. The quadrupole moment q appears in the ψ y χ functions as follows:

ψ =
q

r3
P2 + 3

Mq

r4
P2 (2)

χ =
q

r3
P2 +

1

3

Mq

r4
(−1 + 5P2 + 5P 2

2 ) +
1

9

q2

r6
(2− 6P2 − 21P 2

2 + 25P 3
2 )

and the metric components:

gtt =
e−2ψ

ρ2
(a2 sin2 θ −∆) (3)

gtϕ =
−2Jr

ρ2
sin2 θ (4)

grr = ρ2
e2χ

∆
(5)

gθθ = ρ2e2χ (6)

gϕϕ =
e2ψ

ρ2
[(r2 + a2)2 − a2∆sin2 θ] sin2 θ (7)

where P2 = 1/2(3 cos2 θ − 1). It is important to note that the metric returns to the Kerr case when a = 0. Also, the
Schwarzchild spacetime appears when q = 0 and a = 0 [8].
As established in the Introduction, the metric used in this paper is an approximation, but there are other methods

that allow one to find the exact metric of a rotating compact body with mass quadrupole moment [10]. Nevertheless,
one of the most recognized solutions to the Einstein equations in this particular case is the Hartle-Thorne metric,
which is obtained by means of an approximation [11–13].

2.1. Hamiltonian

The Lagrangian is defined as follows [8]:

L =
µ

2

ds2

dλ
(8)

where λ is the affine parameter.
This expression allows to obtain the Hamiltonian by means of a Legendre transformation:

H =
1

2
(−Eṫ+ grr ṙ

2 + Lzϕ̇) = ϵ (9)

where E and Lz are the energy and angular momentum of the particles and are conserved quantities. A dot on a
variable means derivative with respect to λ. Moreover, ϵ allows to specify the geodesic types.

2.2. Effective potential and orbits

From the Hamiltonian, it is possible to make a comparison with classical mechanics to find an effective potential,
[8, 14–16]:
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Vef
ε

= −2

(
1− 2Mu+ a2u2 + qu3 − 1

2
Mqu4 +

5

4
q2u6

)
+
L2
z

ε

(
u2 + 2qu5 +

1

2
Mqu6 +

11

4
q2u8

)
− 2Mu3(Lz − Ea)2

− E2

ε

(
1 + a2u2 − 3

4
Mqu4 +

3

4
q2u6

)
(10)

The effective potential gives information about the massive and light orbits. In the case of the latter, the numerical
values can be obtained with the solutions of the denominator of the energy expression [2, 8]:

E2

ε
=

2

Z∓

[
(1− 2Mu)

(
1− 2Mu± 2au

√
Mu

)
+

(
a2M − 1

2
q

)
u3 +

25

2
Mqu4 +

29

2
q2u6

]
(11)

where

Z± =

(
1− 3Mu+

33

2
Mqu4 + 11q2u6

)
± 2au

√
Mu, u = 1/r,

(12)

The ϵ constant represents the Hamiltonian and it is set as 1 [8].
The radii for the photon orbits (rpht±) are the same as the roots of 12, since these values would cause a divergence

in 11, which states that the orbit would have infinite energy per unit mass. This latter means that a photon could be
”trapped” and be forced to orbit the compact body [2, 17–20].

As mentioned before, this Kerr-like metric could be applied to a rotating and deformed object, such as a neutron
star. Although most of the latter do not have a photon sphere, an increment in the density (i.e. an ”ultracompact”
neutron star) would allow the light to orbit around said compact body [21].

There is one type of compact body usually taken into account in this type of analysis which is known as a Naked
Singularity. The latter is characterized for the absence of an event horizon and the inability to ”trap” light or make
it orbit around it. This is still a theoretical object, since there is no experimental evidence for their existence [22–24].

Apart from that, the angular momentum is an expression that will be helpful further ahead. It was also found in
[8]:

L2
z

ε
=

2u

A

[
M − 3M2u+

(
2Ma2 − 3

2
q

)
u2 +

(
6M2a2 − 5

2
Mq

)
u3 +M

(
a4 − 12M2a2

)
u4 +

(
5M2a4 + 6q2

)
u5

± 2Mau
√
Mu

(
a4u4 − 2Ma2u3 + 4a2u2 − 6Mu+ 3

)]
, (13)

Additionally, it is important to mention the Inner most Stable Circular Orbit (ISCO), which is the inner edge of
the accretion disk [7, 9]. It is determined from the dynamics employing an effective potential and its derivatives to
set specific conditions:

ṙ = 0, Vef =
E

µ
,

∂V

∂r
= 0, (14)

For the analysis that we intend, it is also necessary to take into account the necessary conditions to make the motion
equatorial:

θ =
π

2
,

dθ

dτ
= 0, (15)

where τ is the particles proper time.
The ISCO was found by Chaverri et al and it is associated with the following equation [8]:

P =Mr5 − 9M2r4 + 3

(
6M3 −Ma2 +

1

2
q

)
r3 −

(
7M2a2 − 29

2
Mq

)
r2 − 33

2
q2 ± 6Mar

√
Mr∆ = 0 (16)
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This equation can be scaled so the mass is not a free parameter anymore: a → aM , q → qM3. With these
modifications, we obtain the following expression, which allows to calculate numerical values of rISCO±/M :

−3a2ζ3 − 7a2ζ2 ± 12a2ζ5/2 ± 6aζ3/2 ± 6aζ7/2 + ζ5 − 9ζ4 + 18ζ3 − 33q2

2
+

3q

2
ζ3 +

29q

2
ζ2 = 0 (17)

where ζ = r/M .
Before getting to equations 11 and 13, which expresses the energy and the angular momentum in terms of the radius

of the orbit, [3] allows to find an expression for E also in terms of the Lz:

E2 = ε(7q2u6 − 8qu4 − qu3 − 2u+ 2) + x2u3(1− 10qu3 − 33/4q2u5) (18)

where x = (aE − Lz).
Once this equation is solved for E, it gives two solutions:

E±√
ε
=

1

2Q−1

{
33

2
aLzq

2u8 + 20aLzqu
6 − 2aLzu

3 ±

[(
−33

2
aLzq

2u8 − 20aLzqu
6 + 2aLzu

3

)2

(19)

−4Q
(
33

4
L2
zq

2u8 + 10L2
zqu

6 − L2
zu

3 − 7q2u6 + 8qu4 + qu3 + 2u− 2

)]1/2}
,

where

Q =
33

4
a2q2u8 + 10a2qu6 − a2u3 + 1.

The dependence of the energy with the angular momentum allows to fix a specific value of L± and study the
orbits for co-rotating particles (L− and E−) and counter-rotating particles (−L+ and E+) [7]. Nevertheless, these
combination of signs happen to give the same effective potential whenever the absolute value of the fixed angular
momentum is the same, i.e., | −L| = |L|. This can be visualized in the figure 1 and 2, where it is also possible to see
that both energies are exactly opposite to each other.

Lastly, algebraic software, such as Mathematica, will provide the possibility to perform complex calculations, plots
and hence obtain numerical results that will be useful to understand the dependence between the ISCO and the fixed
parameters. The Mathematica code used in the current research is available upon request.

3. NUMERICAL RESULTS FOR THE PHOTON ORBITS AND ISCO RADII

In this section, the numerical results of the photon orbit and the ISCO when a is constant and q varies are shown
in tables I-VI, while tables VII-XII display the data obtained for q fixed and different values of a.

It should be clarified that equations 12 and 17 might not have solutions for one of the two possible signs in the ±
involved in the expressions. In that scenario, the tables mentioned before show a ”-”. Besides that, whenever there
is more than one solution for the photon orbits and/or the ISCO, a coma separates the roots found for Z and P .

Moreover, since there is no expression for the Kerr-like metric event horizon and this paper does not intend to
find one, the Kerr metric event horizon (r+ =M +

√
M2 − a2) has been established as an approximate filter for the

calculated radii [25]. In detail, these have to be higher than r+, since it would not make physical sense in the opposite
case.

Let it be known that rpht±/M and rISCO±/M with q = 0 return to their respective values for the Schwarzschild
metric. On the other hand, the Kerr metric results are obtained back in table VI when q = 0. This proves that the
Kerr-like spacetime is consistent with the existing theory, as expected. It also means that the numerical approximation
done so far is correct.

It is possible to see that, whenever a is fixed, the increase of the quadrupole parameter causes a contraction in the
photon orbits and the ISCO, except for the cases where a ”degeneracy” of certain radii appears. Nevertheless, there
is still a tendency for each component of these pairs of radii: one of them is always smaller than its companion, but
grows along with the quadrupole parameter; the other is, in consequence, bigger, but decreases as q increases. The
exact opposite happens when q is fixed and a magnifies.
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(a) (b)

(c) (d)

Figure 1: Energies for a positive/negative fixed angular momentum and its respective effective potential. Notice
that the energies are opposite to each other, but the effective potential generated is exactly the same. (a) and (c)

plot the case with Lz < 0, while (b) and (d) represent Lz > 0.

Table I: Values of rpht+/M , rpht−/M , rISCO+/M , and rISCO−/M for different values of q/M3 with a/M = 0.1.

q/M3 rpht+/M rpht−/M rISCO+/M rISCO−/M

0.00 2.88219 3.11335 3.11335, 5.6693 2.88219, 6.32289

0.02 2.86789 3.10248 3.16314, 5.63646 2.91921, 6.30098

0.04 2.85308 3.09135 3.21358, 5.60248 2.95619, 6.27871

0.06 2.83774 3.07993 3.26483, 5.56727 2.99317, 6.25605

0.08 2.8218 3.06822 3.31703, 5.53068 3.0302, 6.23299

0.10 2.80521 3.05619 3.37039, 5.49254 3.06732, 6.2095

0.12 2.7879 3.04382 3.42512, 5.45266 3.10456, 6.18558

0.14 2.76979 3.03108 3.48149, 5.41079 3.14197, 6.16118

0.16 2.75079 3.01796 3.53982, 5.36662 3.17959, 6.13628

0.18 2.73078 3.00441 3.60054, 5.31976 3.21747, 6.11086

0.20 2.70961 2.99041 3.66418, 5.26966 3.25564, 6.08487

On the other hand, whenever q is fixed, the increase of the spin parameter causes an expansion in the (-) cases of
the photon orbits and the ISCO. The same degeneracy mentioned before manifests for the case q/M3 = 0.7, and there
is a specific tendency for each of the radius in both pairs: the smaller one decreases as q increases and the bigger one
grows along with q.
Although it is important to recognize that there exists a radius with an opposite tendency for some combination of

parameters, the results indicate that q reduces the distance at which an accretion disk can be formed for a compact
body. Furthermore, the faster the object rotates, the larger these orbits are.
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Figure 2: Surface produced by the effective potential for negative and positive values of the angular momentum.

Table II: Values of rpht+/M , rpht−/M , rISCO+/M , and rISCO−/M for different values of q/M3 with a/M = 0.15.

q/M3 rpht+/M rpht−/M rISCO+/M rISCO−/M

0.00 2.8214 3.16854 3.16854, 5.50062 2.8214, 6.48175

0.03 2.798 3.15313 3.25115, 5.4442 2.87377, 6.45143

0.06 2.77319 3.13718 3.33651, 5.38395 2.92596, 6.42044

0.09 2.74676 3.12066 3.42555, 5.31902 2.97807, 6.38874

0.12 2.71841 3.1035 3.51955, 5.24822 3.03021, 6.35629

0.15 2.68778 3.08566 3.62042, 5.16973 3.0825, 6.32303

0.18 2.65435 3.06705 3.73119, 5.08056 3.13503, 6.28891

0.21 2.61737 3.04759 3.85752, 4.97512 3.18792, 6.25384

0.24 2.57576 3.02718 4.01276, 4.84011 3.24129, 6.21777

0.27 2.52768 3.00571 4.25822, 4.61427 3.29526, 6.1806

0.30 2.46974 2.98302 - 3.34996, 6.14222

Lastly, there is a decrease on the amount of photon orbits and solutions of the ISCO the faster the compact body
rotates. There does not seem to be a clear pattern or limit for the parameters that cause this effect. Nevertheless, it
is more common for high values of a and big differences between a and q.

The results obtained for the ISCO can be compared to those found in [9] for the Hartle-Thorne metric. The latter
plots a unique solution for the ISCO radius as a function of the spin and quadrupole parameters.

It is clear that the increase of j in [9] causes the ISCO to be smaller, while the opposite happens the larger q
is. These tendencies are followed by one of the degenerate roots of the ISCO, whether it is the (+) or the (-) case.
Nevertheless, its companion radius behaves in exactly the opposite way. Therefore, for each sign there is one root
that obeys the pattern given by the Hartle-Thorne metric and another one that does exactly the opposite.

4. STABILITY

For this section, the effective potential is plotted for different combinations of a and q. Given that the surfaces are
exactly the same in both positive and negative halves of the angular momentum axis and to improve visualization, it
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Table III: Values of rpht+/M , rpht−/M , rISCO+/M , and rISCO−/M for different values of q/M3 with a/M = 0.25.

q/M3 rpht+/M rpht−/M rISCO+/M rISCO−/M

0.00 2.69545 3.27624 3.27624, 5.15554 2.69545, 6.79485

0.05 2.6481 3.25318 3.45534, 5.02333 2.77422, 6.75129

0.10 2.59411 3.22893 3.6655, 4.85676 2.85202, 6.70648

0.15 2.53058 3.20333 3.96191, 4.60114 2.92926, 6.66033

0.20 2.45182 3.1762 - 3.00628, 6.61271

0.25 2.34281 3.1473 - 3.08341, 6.56349

0.30 - 3.11631 - 3.16099, 6.51249

0.35 - 3.08282 - 3.23933, 6.45953

0.40 - 3.0463 - 3.31878, 6.40436

0.45 - 3.00594 - 3.39972, 6.34672

0.50 - 2.96057 - 3.48259, 6.28624

Table IV: Values of rpht+/M , rpht−/M , rISCO+/M , and rISCO−/M for different values of q/M3 with a/M = 0.5.

q/M3 rpht+/M rpht−/M rISCO+/M rISCO−/M

0.00 2.3473 3.53209 3.53209, 4.233 2.3473, 7.55458

0.08 2.20069 3.50343 - 2.45293, 7.50383

0.16 - 3.47302 - 2.55418, 7.45174

0.24 - 3.44057 - 2.65232, 7.39824

0.32 - 3.40575 - 2.74827, 7.34319

0.40 - 3.36809 - 2.8428, 7.28647

0.48 - 3.32696 - 2.93651, 7.22792

0.56 - 3.28147 - 3.02997, 7.16736

0.64 - 3.2303 - 3.12367, 7.10459

0.72 - 3.17127, 1.97216 - 3.2181, 7.03935

0.80 - 3.10046, 2.10603 - 3.31376, 6.97134

Table V: Values of rpht+/M , rpht−/M , rISCO+/M , and rISCO−/M for different values of q/M3 with a/M = 0.7.

q/M3 rpht+/M rpht−/M rISCO+/M rISCO−/M

0.00 2.01333 3.72535 3.39313, 3.72535 2.01333, 8.14297

0.09 - 3.69849 - 2.12761, 8.09665

0.18 - 3.67017 - 2.23337, 8.04941

0.27 - 3.64017 - 2.33313, 8.00119

0.36 - 3.60825 - 2.42854, 7.95192

0.45 - 3.57409 - 2.52073, 7.90155

0.54 - 3.53727 - 2.61055, 7.84999

0.63 - 3.49726, 1.71532 - 2.69869, 7.79716

0.72 - 3.45328, 1.83434 - 2.78566, 7.74297

0.81 - 3.40422, 1.95271 - 2.87194, 7.68732

0.90 - 3.34834, 2.0732 - 2.95792, 7.63009

is only shown the co-rotative part of the effective potential. The behavior shown in the latter should be the same as
in the counter-rotative region (for an opposite value of Lz).
Moreover, 2D plots that show the effective potential against the radius are selected from the surface so it is possible

to find radial intervals (delimited by the ISCO’s and photon orbits) and angular momentum limits for the stable and
unstable orbits associated to a specific combination of parameters. Let it be clear that the minima and maxima points
necessary for the analysis just described are found with the Mathematica functions FindMinimum and FindMaximum.
The seed is selected after taking a look at the respective 2D plots. The AccuracyGoal and PrecissionGoal are fixed
in Automatic because the main interest is to know whether there is a minimum/maximum or not and to obtain an
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Table VI: Values of rpht+/M , rpht−/M , rISCO+/M , and rISCO−/M for different values of q/M3 with a/M = 1.

q/M3 rpht+/M rpht−/M rISCO+/M rISCO−/M

0.0 - 4.0 1.0, 4.0 1.0, 9.0

0.1 - 3.97659 2.66322, 3.42996 1.38284, 8.96036

0.2 - 3.95212 - 1.54836, 8.92017

0.3 - 3.92649, 1.15365 - 1.67818, 8.87941

0.4 - 3.89954, 1.30341 - 1.78997, 8.83807

0.5 - 3.87113, 1.43659 - 1.89061, 8.7961

0.6 - 3.84105, 1.55899 - 1.98366, 8.75349

0.7 - 3.80904, 1.67409 - 2.07124, 8.71021

0.8 - 3.7748, 1.78428 - 2.15475, 8.66622

0.9 - 3.73791, 1.89139 - 2.23518, 8.62149

1.0 - 3.69783, 1.99695 1.0148 1.01488, 2.31325, 8.57599

Table VII: Values of rpht+/M , rISCO−/M , rISCO+/M , and rpht−/M for different values of a/M with q/M3 = 0.1.

a/M rpht+/M rpht−/M rISCO+/M rISCO−/M

0.00 2.93418 2.93418 3.21399, 5.86141 3.21399, 5.86141

0.02 2.90899 2.95909 3.2442, 5.78961 3.18415, 5.93241

0.04 2.88352 2.98373 3.27484, 5.71692 3.15462, 6.00266

0.06 2.85774 3.00812 3.30602, 5.64325 3.12533, 6.07223

0.08 2.83164 3.03227 3.33782, 5.56851 3.09625, 6.14116

0.10 2.80521 3.05619 3.37039, 5.49254 3.06732, 6.2095

0.12 2.77842 3.07988 3.40387, 5.4152 3.03851, 6.27729

0.14 2.75127 3.10335 3.43847, 5.33628 3.00978, 6.34456

0.16 2.72371 3.12662 3.47442, 5.25552 2.98111, 6.41134

0.18 2.69574 3.14969 3.51206, 5.1726 2.95246, 6.47766

0.20 2.66732 3.17256 3.55184, 5.08705 2.92381, 6.54355

Table VIII: Values of rpht+/M , rpht−/M , rISCO+/M , and rpht−/M for different values of a/M with q/M3 = 0.15.

a/M rpht+/M rpht−/M rISCO+/M rISCO−/M

0.00 2.89699 2.89699 3.32487, 5.78489 3.32487, 5.78489

0.03 2.85708 2.9361 3.37738, 5.67039 3.27416, 5.89663

0.06 2.8163 2.97447 3.43224, 5.55259 3.22485, 6.00603

0.09 2.77456 3.01215 3.4902, 5.43072 3.17663, 6.11341

0.12 2.73176 3.0492 3.55236, 5.30367 3.12925, 6.21901

0.15 2.68778 3.08566 3.62042, 5.16973 3.0825, 6.32303

0.18 2.64248 3.12155 3.69726, 5.02598 3.03621, 6.42565

0.21 2.59569 3.15693 3.78854, 4.86676 2.99025, 6.52699

0.24 2.54718 3.19181 3.90853, 4.67777 2.94449, 6.62718

0.27 2.49666 3.22623 4.14279, 4.37341 2.89881, 6.7263

0.30 2.44375 3.2602 - 2.85312, 6.82445

approximate radial location.
As said before, the angular momentum will be fixed in order to study the orbits with the effective potential. The

values of Lz are chosen in order to picture the intervals in the tables mentioned before.
Once again, the Kerr event horizon is settled as an approximated limit to the results, given that we are not interested

in considering data from a region that cannot contain orbits for particles or light.
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Table IX: Values of rpht+/M , rpht−/M , rISCO+/M , and rISCO−/M for different values of a/M with q/M3 = 0.25.

a/M rpht+/M rpht−/M rISCO+/M rISCO−/M

0.00 2.81021 2.81021 3.56187, 5.61122 3.56187, 5.61122

0.05 2.73291 2.88336 3.68701, 5.38402 3.45248, 5.82023

0.10 2.65031 2.95316 3.84179, 5.12471 3.35271, 6.01721

0.15 2.56057 3.02015 4.07694, 4.78254 3.25921, 6.20551

0.20 2.46042 3.08476 - 3.1699, 6.38715

0.25 2.34281 3.1473 - 3.08341, 6.56349

0.30 2.18458 3.20802 - 2.99873, 6.73548

0.35 - 3.26714 - 2.91508, 6.9038

0.40 - 3.32481 - 2.83184, 7.06898

0.45 - 3.38118 - 2.74845, 7.23142

0.50 - 3.43636 - 2.66441, 7.39144

Table X: Values of rpht+/M , rpht−/M , rISCO+/M , and rISCO−/M for different values of a/M with q/M3 = 0.5.

a/M rpht+/M rpht−/M rISCO+/M rISCO−/M

0.00 - - - -

0.08 2.61521, 2.0056 - - 3.99199, 5.46916

0.16 2.79907 - - 3.71694, 5.89209

0.24 2.94399 - - 3.50651, 6.24492

0.32 3.07007 - - 3.32459, 6.56353

0.40 3.18443 - - 3.15771, 6.86107

0.48 3.29054 - - 2.99888, 7.14404

0.56 3.39044 - - 2.84368, 7.41617

0.64 3.48543 - - 2.68875, 7.67985

0.72 3.5764 - - 2.531, 7.93669

0.80 3.66399 - - 2.36705, 8.18786

Table XI: Values of rpht+/M , rpht−/M , rISCO+/M , and rISCO−/M for different values of a/M with q/M3 = 0.7.

a/M rpht+/M rpht−/M rISCO+/M rISCO−/M

0.00 - - - -

0.09 - - - -

0.18 - - - 4.12482, 5.60428

0.27 - 2.71234, 2.24479 - 3.78036, 6.10441

0.36 - 2.94153, 2.08255 - 3.52575, 6.50789

0.45 - 3.10683, 1.98357 - 3.30733, 6.86781

0.54 - 3.24704, 1.90908 - 3.10671, 7.20179

0.63 - 3.37268, 1.84855 - 2.9144, 7.51816

0.72 - 3.48848, 1.79729 - 2.72396, 7.82163

0.81 - 3.59705, 1.75272 - 2.52972, 8.11513

0.90 - 3.69998, 1.71325 - 2.32492, 8.40065

4.1. General

First, three basic cases are analysed: a equal to q (figure 3), a higher than q (figure 5), and a lower than q (figure
7).

For the first scenario, both stable and unstable orbits can be found. As it is possible to see in the plots from figure
4, the increase in the angular momentum causes the minima and maxima to be further from the compact body.

In the a lower than q case, only unstable orbits are produced, and these tent to be more external for higher angular
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Table XII: Values of rpht+/M , rpht−/M , rISCO+/M , and rISCO−/M for different values of a/M with q/M3 = 1.

a/M rpht+/M rpht−/M rISCO+/M rISCO−/M

0 - - - -

0.1 - - - -

0.2 - - - -

0.3 - - - 4.31446, 5.72417

0.4 - - - 3.87274, 6.32523

0.5 - - - 3.56194, 6.78664

0.6 - 3.07871, 2.34011 - 3.29754, 7.19168

0.7 - 3.27451, 2.2142 - 3.05356, 7.56447

0.8 - 3.43254, 2.12545 - 2.81617, 7.91587

0.9 - 3.57131, 2.05536 - 2.5742, 8.25183

1 - 3.69783, 1.99695 1.0148 1.01488, 2.31325, 8.57599

momentum values.
Finally, whenever q is larger than a, the results are similar to those from the first case, but the change in q (now

larger) causes the stable/unstable orbits to begin at higher angular momentum values. Also, the increase in Lz has
the same influence on the maxima, but it has an opposite effect on the minima: the higher the angular momentum
is, the closer the stable orbits are from the compact body.

Figure 3: Effective potential with a = 0.5M and q = 0.5M3.

q = 0.5M3, a = 0.5M

Angular momentum interval Radial region

Stable Lz > 3.19M r < rISCO−(2)

Unstable Lz > 3.19M r < rISCO−(2)

Table XIII: Possible angular momentum values and radial regions for stable and unstable orbits in the effective
potential with q = 0.5M3 and a = 0.5M .
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(a) (b)

(c)

Figure 4: Effective potential for different values of Lz with a = 0.5M and q = 0.5M3. Maxima (unstable orbits): (a)
at (2.66274, -2.40098), with E−/ε = −1.29984, (b) at (3.77188, -2.43275), with E−/ε = −1.41057, (c) at (4.63761,
-0.901079) with E−/ε = −1.77053. Minima (stable orbits): (a) at (2.55292, -2.40124) with E−/ε = −1.29589,(b) at

(2.15138, -3.42892) with E−/ε = −1.53804, (c) at (2.07731, -11.957) with E−/ε = −2.9431.

q = 0.1M3, a = 0.5M

Angular momentum interval Radial region

Stable - -

Unstable Lz > 1.28M r < rISCO−(2)

Table XIV: Possible angular momentum values and radial regions for stable and unstable orbits in the effective
potential with q = 0.1M3 and a = 0.5M .

q = 0.9M3, a = 0.5M

Angular momentum interval Radial region

Stable Lz > 5.98M rpht−(2) < r < rISCO−(1)

Unstable Lz > 5.98M rpht−(1) < r < rISCO−(2)

Table XV: Possible angular momentum values and radial regions for stable and unstable orbits in the effective
potential with q = 0.9M3 and a = 0.5M .

4.2. Extreme case

In this subsection, the value of a is set as equal to M . The main difference with the results seen until now is that,
despite q always being lower than a, it is possible to find stable orbits, which sit closer to the compact body with the
increase in angular momentum. In addition to this, the tables XVI, XVII, and XVIII make evident that the increase
of the quadrupole parameter causes the minimum Lz value for minima/maxima to be higher.
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Figure 5: Effective potential with a = 0.5M and q = 0.1M3.

(a) (b)

Figure 6: Effective potential for different values of Lz with a = 0.5M and q = 0.1M3. Maxima (unstable orbits): (a)
at (1.87126, -1.9528), with E−/ε = −1.13446, (b) at (4.67241, -1.85804) with E−/ε = −1.58106.

q = 0.1M3, a = M

Angular momentum interval Radial region

Stable Lz > 0.39M r < rISCO+(1)

Unstable Lz > 0.39M rISCO−(1) < r < rISCO−(2)

Table XVI: Possible angular momentum values and radial regions for stable and unstable orbits in the effective
potential with q = 0.1M3 and a =M .

4.3. Schwarzchild and Kerr cases:

Lastly, the Schwarzchild (a/M = 0, q/M3 = 0) and Kerr (q/M3) cases are plotted in figures 15, 17 and 19. The
most important detail out of these three scenarios is that none of them present stable orbits. Also, the increase of the
angular momentum causes the maxima to be further from the compact body.

Contrary to what was determined for the relation between the quadrupole parameter and the lowest angular
momentum value to produce a minimum/maximum in the other cases, the higher the spin parameter, the smaller the
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Figure 7: Effective potential with a = 0.5M and q =M3.

(a) (b)

(c)

Figure 8: Effective potential for different values of Lz with a = 0.5M and q =M3. Maxima (unstable orbits): (a) at
(3.26388, -2.22094), with E−/ε = −1.60876 (b) at (4.20912, -1.36905) with E−/ε = −1.75685, (c) at (4.53867,

3.10496) with E−/ε = −2.5176. Minima (stable orbits): (a) at (3.20423, -2.22097) with E−/ε = −1.62671, (b) at
(2.77345, -2.11063) with E−/ε = −2.64278, (c) at (2.71622, -1.71677) with E−/ε = −5.02585.

angular parameter magnitude requirement is. An example of this is that, for the surface with q = M3 and a = M
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Figure 9: Effective potential with a =M and q = 0.1M3.

(a) (b)

Figure 10: Effective potential for different values of Lz with a =M and q = 0.1M3. Maxima (unstable orbits): (a)
at (1.92869, -2.47565), with E−/ε = −1.06946, (b) at (5.11728, -2.92928) with E−/ε = −1.38163. Minima (stable

orbits): (a) at (1.83596, -2.47593) with E−/ε = −1.0495, (b) at (1.20812, -117.884) with E−/ε = −4.54246.

Figure 11: Effective potential with a =M and q = 0.5M3.

it was found that every Lz value generates an unstable orbit in a valid radial interval, which is no delimited by any
ISCO or photon orbit (that is why there is not a table for the analysis of the surface).
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(a) (b)

Figure 12: Effective potential for different values of Lz with a =M and q = 0.5M3. Maxima (unstable orbits): (a)
at (2.73843, -2.81681), with E−/ε = −1.18972, (b) at (5.42236, -2.10592) with E−/ε = −1.56047. Minima (stable

orbits): (a) at (2.64327, -2.81689) with E−/ε = −1.17918, (b) at (2.06342, -20.6084) with E−/ε = −2.78731.

q = 0.5M3, a = M

Angular momentum interval Radial region

Stable Lz > 1.37M rISCO−(1) < r

Unstable Lz > 1.37M rISCO−(1) < r < rISCO−(2)

Table XVII: Possible angular momentum values and radial regions for stable and unstable orbits in the effective
potential with q = 0.5M3 and a = 1M .

Figure 13: Effective potential with a =M and q =M3.

q = M3, a = M

Angular momentum interval Radial region

Stable Lz > 2.58M rISCO−(2) < r < rpht−(1)

Unstable Lz > 2.58M rISCO−(2) < r < rISCO−(3)

Table XVIII: Possible angular momentum values and radial regions for stable and unstable orbits in the effective
potential with q =M3 and a = 1M .
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(a) (b)

Figure 14: Effective potential for different values of Lz with a =M and q =M3. Maxima (unstable orbits): (a) at
(3.36211, -2.92171), with E−/ε = −1.26501, (b) at (5.20639, -2.03959) with E−/ε = −1.57422. Minima (stable
orbits): (a) at (3.2585, -2.92178) with E−/ε = −1.25917, (b) at (2.72116, -5.1865) with E−/ε = −2.08216.

Figure 15: Effective potential with a/M = 0 and q/M3 = 0.

(a) (b)

Figure 16: Effective potential for different values of Lz with a/M = 0 and q/M3 = 0. Maxima (unstable orbits): (a)
at (2.00593, -1.60495) with E−/ε = −1.26594, (b) at (4.01612, -0.937375) with E−/ε = −1.74521.

q/M3 = 0, a/M = 0

Angular momentum interval Radial region

Stable - -

Unstable Lz > 2.20M r < rISCO(1)

Table XIX: Possible angular momentum values and radial regions for stable and unstable orbits in the effective
potential with q/M3 = 0 and a/M = 0.
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Figure 17: Effective potential with a = 0.5M and q/M3 = 0.

(a) (b)

Figure 18: Effective potential for different values of Lz with a = 0.5M and q/M3 = 0. Maxima (unstable orbits): (a)
at (2.00511, -1.96762) with E−/ε = -1.16334, (b) at (4.78924, -1.63142) with E−/ε = -1.62692.

q/M3 = 0, a = 0.5M

Angular momentum interval Radial region

Stable - -

Unstable Lz > 1.10M r < rISCO−

Table XX: Possible angular momentum values and radial regions for stable and unstable orbits in the effective
potential with q/M3 = 0 and a = 0.5M .
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Figure 19: Effective potential with a =M and q/M3 = 0.

(a) (b)

Figure 20: Effective potential for different values of Lz with a =M and q/M3 = 0. Maxima (unstable orbits): (a) at
(1.63464, -2.16675), with E−/ε = −1.00651, (b) at (5.15135, -2.93433) with E−/ε = −1.38192.
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5. CONCLUSIONS

The numerical results for the radii show that the increase of q causes a shrinkage of the photon sphere, while a
tends to expand it. Therefore, the spin and quadrupole parameters have opposite effects on the light orbits of the
Kerr-like metric.

Furthermore, the ISCO can be degenerate in both + and - cases, which can even get to be triple, as it can be
observed in tables VI and XII. Whenever there are two values per sign, the - case causes the smaller root to grow
along with q and the bigger one to decrease, but the opposite happens as a gets larger. For the + case, the tendency
is the same despite the parameter that is being increased: the bigger root grows and the smaller one shrinks.

On the other hand, the analysis of the effective potential shows that the increase in q makes the angular momentum
requirement higher for stable/unstable orbits, while the increase in a does exactly the opposite. Moreover, the
maxima locate further away from the compact body the larger the angular momentum (Lz) is, but there is not an
exact tendency for the minima, as some become more external and others more internal.

It is also worthwhile to mention that the extreme case (a = M) allows us to obtain stable orbits even when the
quadrupole parameter is lower than the spin, which did not happen in any other scenario seen.

Moreover, when we compare the ISCO given by the Hartle-Thorne metric with our results, it is possible to appreciate
that one component of the degenerate radius for each sign follows the behavior seen in [9], while the other changes in
exactly the opposite way whenever one of the parameters (spin and mass quadrupole) changes.

In terms of future works, we would like to expand this numerical analysis to more complex types of spacetime and
compare the results obtained in this contribution with these. For example, we could take the Kerr-like spacetime,
add a magnetic dipole to it, and analyse its stability along with the photon orbits and the ISCO [26–28]. Besides
that, it would also be possible to study the shadow of a rotating compact body with mass quadrupole moment or
even expand the analysis of the chaotic behavior in its orbits [5].
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