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MAP-FORMER: Multi-Agent-Pair Gaussian Joint Prediction

Marlon Steiner1, Marvin Klemp1, and Christoph Stiller1

Abstract— There is a gap in risk assessment of trajectories
between the trajectory information coming from a traffic
motion prediction module and what is actually needed. Closing
this gap necessitates advancements in prediction beyond current
practices. Existing prediction models yield joint predictions
of agents’ future trajectories with uncertainty weights or
marginal Gaussian probability density functions (PDFs) for
single agents. Although, these methods achieve high accurate
trajectory predictions, they only provide little or no information
about the dependencies of interacting agents. Since traffic is a
process of highly interdependent agents, whose actions directly
influence their mutual behavior, the existing methods are not
sufficient to reliably assess the risk of future trajectories. This
paper addresses that gap by introducing a novel approach to
motion prediction, focusing on predicting agent-pair covariance
matrices in a “scene-centric” manner, which can then be
used to model Gaussian joint PDFs for all agent-pairs in a
scene. We propose a model capable of predicting those agent-
pair covariance matrices, leveraging an enhanced awareness of
interactions. Utilizing the prediction results of our model, this
work forms the foundation for comprehensive risk assessment
with statistically based methods for analyzing agents’ relations
by their joint PDFs.

I. INTRODUCTION

Motion planning has a strong dependency to motion
prediction. Hence, every planned trajectory is influenced by
a guess of how the current scene will evolve in the next
seconds. The prediction of future trajectories is a non-trivial
task: Every action an agent takes, influences its neighboring
and scene-related agents, and thus propagates information
through the scene. Accordingly, there is an interdependency
between actions of all agents in a scene. For the risk
assessment of trajectories it is therefore crucial to represent
the statistical dependencies between agents in their predicted
trajectories. We determine these dependencies by developing
a model, which is able to predict agent-pair covariance
matrices for the x and y coordinates of both vehicles (Fig. 1).

This work is focused on the prediction fundamentals, re-
quired for a statistical risk assessment method of trajectories.
The motion prediction task can be distinguished between mo-
tion prediction (MP), conditional motion prediction (CMP)
and goal-conditioned motion prediction (GCP). [1] provides
a very descriptive figure to portray the differences of the three
motion prediction tasks. A similar illustration is provided
in Fig. 2. The figure shows the motion prediction tasks as
three grids of white and blue pixels with the time axis on
the horizontal and the agent axis on the vertical. While the
white pixels symbolize that the corresponding value can be
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(a) Mode 1: green (b) Mode n: yellow

Fig. 1: Representation of the prediction model’s output: One
Gaussian joint PDF for every time step and every mode
(1a, 1b) of an agent-pair based on the predicted covariance
matrices. The different shadings of the ellipses (joint PDFs)
represent the consecutive time steps. Due to visualization
reasons, 2d ellipses are used instead of 4d Gaussian PDFs
as the model actually predicts. Combining the modes with
uncertainty weights results in a Gaussian mixture PDF.
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Fig. 2: Different tasks in motion prediction. Here the first
two columns represent the past and the last three the future.

accessed by the model, the blue pixels are hidden to the
model and must be predicted. In the classic MP, the past
trajectories of all agents are known by the model and the fu-
ture must be predicted. This can be done jointly respectively
in a “scene-centric” manner or marginal for only one agent.
The former one is currently experiencing increasing interest,
especially because of its higher significance compared to just
predicting marginal trajectories.

In CMP, the whole future of the ego-agent is known, and
all other agents must be predicted. While CMP can be a valid
assumption for marginal trajectory planning of an ego-agent,
we implement MP, since the goal is to predict scene-centric
and not focusing on a single agent. Also, this method might
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be deprecated, since this does not reflect the reality where
driving requires multidirectional responses.

Finally, GCP also defines one agent as the ego-agent
but in contrast to CMP it only provides information about
its last step. We think, that the assumption made in GCP
is only valid for a comparatively long prediction horizon,
otherwise the provided goal position is less an information
of destination but more an information of how the scene
is evolving. E.g, considering a prediction horizon of 5 s in
an interactive scene would implicitly provide the prediction
module the information of how the interaction is solved.
This gives the model more than just routing information,
which are in reality not accessible and thus limiting the
responsiveness of real traffic.

We choose the rounD dataset [2] because roundabouts rep-
resent highly interactive traffic scenarios, which is desirable
for our purpose. The dataset contains tracks of 13 746 agents
(including cars, vans, trucks, buses, pedestrians, bicycles,
motorcycles) and has a total length of six hours. Further,
the rounD dataset provides high definition (HD) maps with
nodes and edges representing properties of the road. We have
also deliberately avoided the usage of standard datasets like
WAYMO OPEN MOTION DATASET [3], ARGOVERSE [4] or
NUSCENES [5] because we explicitly do not focus on the best
prediction results regarding a leaderboard but provide a social
aware method to predict agent-pair covariance matrices.

To the best of our knowledge we are the first predicting
covariance matrices for agent-pairs. Compared to just pre-
dicting these for single agents, this provides further statistical
information about the relations of agents. To summarize, the
main contributions of this work are:

1) A novel model architecture of combining spatial, in-
teraction and temporal information with a GNN and a
factorized Transformer for motion prediction.

2) Predicting covariance matrices for agent-pairs in a
scene-centric manner, so that multivariate Gaussian
joint PDFs can be constructed for all agent-pairs in
a scene.

3) A covariance matrix formulation, that can be used in
machine leaning, while guarantying its mathematical
properties and a corresponding multivariate Gaussian
negative log likelihood loss formulation.

4) Proposal of using predicted covariance matrices as a
foundation for statistical interactivity and risk analysis.

II. RELATED WORK

The huge amount of publications in the field of motion
prediction reflects its enormous relevance in research and ap-
plication. While our long-term goal is the usage of prediction
models in motion planning and especially in risk assessment
of trajectories, we still provide a quick overview about recent
research in MP.

Marginal Prediction: MP started with predicting marginal
future trajectories, i.e. trajectories for single agents in a
scene. Different approaches have been used to build the
prediction models: Most recent approaches use graph-based
methods with GNNs, like VECTORNET [6], LANEGCN [7]

and LANERCNN [8] and MULTIPATH++ [9] or TRANS-
FORMER-based [10] architectures, like WAYFORMER [11].
While [6], [7] and [8] state results on marginal prediction
metrics, the authors claim, that joint prediction is possible
with their models. Earlier approaches made predictions based
on CNNs, e.g. MULTIPATH [12] and [13]. All those pre-
diction models consider multi-modality and therefore output
multiple modes of trajectories.

Joint Prediction: In joint prediction, Transformer-
based models like SCENE TRANSFORMER [1] and
AGENTFORMER [14] dominate over other architectures re-
garding the prediction metrics. Those models predict future
trajectories in a scene-centric manner, so that they output
multi-modal futures for all agents in a scene. An example for
GNN-based joint prediction is the JFP model [15]. Instead
of outputting a joint prediction as a single distribution like in
[1], agents get modeled pairwise in [15] and based on that,
the whole joint distribution is build up sequentially.

Due to its superior performance, Transformer-based ar-
chitectures gain increasing interest and have been widely
and successfully used for MP tasks. Nevertheless, there
is still ongoing research in GNN-based architectures due
to their ability of modeling the environmental and social
components.

The latest research direction regarding MP was proposed
by [16]. They make use of language models (LMs) for
predicting joint future trajectories with their model MO-
TIONLM. Therefore, multi-agent rollouts over discrete mo-
tion tokens are leveraged, capturing the joint distribution over
multimodal futures.

Gaussian Prediction: Next to predicting just coordinate-
based trajectories in a marginal or joint manner, research
also focuses on predicting PDFs (mostly Gaussians). This
section provides literature, which is most related to our work.
Examples for predicting Gaussian mixture (GM) PDFs are
WIMP [17], SAMMP [18], CBP [19] and WAYFORMER
[11]. Like most of the approaches in MP, they also perform
multi-modal predictions. Those models share the fact that
they predict Gaussian PDFs for single agents and therefore,
provide uncertainty information only for a respective agent.
Both, the WIMP model [17] and the CBP model [19] are
GNN-based approaches and perform multi-modal prediction
as a CMP task with social, environmental and temporal
information. The SAMMP model [18] is solely based on
vehicle position tracks, and utilizes multi-head attention
mechanisms in combination with LSTMs for its prediction.

Prediction in Roundabout Scenarios: As we evaluate our
method on roundabouts in the rounD dataset, this section lists
papers which also perform prediction on roundabouts. [20],
[21] and [22] also train their prediction models on the rounD
dataset. Another dataset providing roundabout scenarios is
the INTERACTION dataset [23]. Examples for prediction
models evaluated on this dataset are [24] and [25]. Except
of [25], all presented papers train and compete their models
on marginal prediction.
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Fig. 3: Network architecture of our motion prediction model. We use a TEnc (top left) and the different models can switch
between either a GNN-based SaIEnc (middle left), a Transformer-based SaIEnc (bottom left) or no SaIEnc. The red points in
the encoders represent the agents. The colors blue, orange and yellow associated with the tokens, embeddings and trajectories
represent the corresponding agents.

III. METHOD

In comparison to the presented Gaussian prediction mod-
els, which model multiple modes of each agent as a GM PDF,
we are predicting multi-modal PDFs for all relevant agent-
pairs, simultaneously. This makes our approach more suitable
for assessing risk of trajectories, because the agent-pair PDFs
provide more relational information about an agent-pairing.
Also, the ego-agent could, e.g. analyze PDFs of other agent-
pairs for its own motion planning. Additionally, our approach
differs from [17] and [19] that we do scene-centric joint
prediction instead of marginal conditional prediction.

Our multi-agent-pair Transformer model (MAP-FORMER)
is composed of four main modules (see Fig. 3): (1) The
Temporal Encoder uses a Transformer encoder to embed
the past trajectories into high dimensional space. (2) The
second module is the Spatial and Interaction Encoder,
which uses a graph as input and extracts its information
with either a GNN-based architecture or a Transformer-
based architecture. (3) The Factorized Transformer Decoder
applies cross-attention to the outputs of (1) and (2) with
learned embeddings for the future trajectories. (4) The last
module produces the predictions and consists of two sets of n
linear prediction heads: The first set predicts multiple modes
of future trajectories for every agent in a scene. While the
second set predicts the parameters of a covariance matrix for

every agent-pair corresponding to their trajectories. Both is
predicted simultaneously in a single feed-forward pass. The
agent-pair covariance matrix prediction is the core of our
work, since it allows us to model Gaussian joint PDFs for
all agent-pairs in a scene.

A. Temporal Encoder (TEnc)

The TEnc processes information about the past trajectories
of all agents (red points in Fig. 3) in a scene. For every
agent A, the corresponding past trajectory is visualized
in a different color, which matches to the color of the
embeddings in the rest of the figure. Taking every agent’s
past trajectory point as a separate token and stacking the
tokens of different agents into different vectors, produces the
input to the encoder. As the encoder, a Transformer encoder
is used. To process the tokens in the encoder, every token gets
converted into a unique embedding, so that the past trajectory
embedding is of the shape [A,npastTimeSteps, dmodel]. Here
dmodel represents the embedding dimension used over all
modules in the model. The encoder applies self-attention
to each embedding within a trajectory and again outputs
embeddings for every agent and every time step.

B. Spatial and Interaction Encoder (SaIEnc)

To include structural and relational information of a scene,
we use a second encoder which either is a GNN-based



SaIEnc or a Transformer-based SaIEnc.
GNN-based SaIEnc: Since, GNNs have proven strong

performance (e.g. [6], [7]) in learning structural relations,
we implement a GNN-based SaIEnc to capture further con-
textual information. For this encoder, we provide a directed
road-agent-graph consisting of nodes and edges as input.
Nodes represent agents (red points in Fig. 3) and also
structural elements of the road (gray points). Edges serve as a
connection of contextually coherent nodes, so that connected
nodes can aggregate information from each other. The road-
graphs are build up from HD maps.

The agent-graph is implemented as a fully connected graph
(see Fig. 3), where every agent can aggregate information
from all other agents. To enable the aggregation of map
information, every agent is further connected to all road-
graph nodes within a radius of r = 5m to its center. All
nodes and edges are defined by an individual feature vector,
characterizing their properties or in case of an edge, the type
of connection.

The GNN layers are implemented based on the GIN [26]
architecture, where the feature vector h(k)

v of node v in layer
k is calculated as follows:

h(k)
v = MLP(k)

h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

 .

The sum is formed over the set N (v) of neighboring nodes u
of the node of interest v. It can be guaranteed that different
nodes with different neighborhoods are always mapped as
different embeddings, since the MLP and the sum operator,
which operates on multisets, are injective. A GNN layer can
be seen as a message passing algorithm, where every node
receives messages from its neighbors and aggregates them
into a new feature vector. For every GNN layer k added to
the network, the receptive field consequently increases by
one “hop”.

The original GIN implementation is not meant to process
edge features. Therefore, we use the PyTorch Geometric [27]
version of the GIN network (GINE), which can also handle
edge features in the message passing.

The output of the GNN are embeddings for every node in
the graph of shape [nnodes, dmodel], with encoded informa-
tion about their k-hop neighbors. Fig. 3 visualizes the agent
embeddings bordered with the same colors as in the TEnc.
The node embeddings of the road-graph (gray points) are
discarded.

Transformer-based SaIEnc: As an alternative to the
previous encoder, we use a Transformer-based encoder to
capture the contextual information of the scene [28]. Here,
the nodes of the road-agent-graph are directly used as input.
The Transformer encoder applies self-attention between the
node embeddings, to extract the structural and relational
information between the nodes.

C. Factorized Transformer Decoder

The Factorized Transformer Decoder aggregates the in-
formation of both, the TEnc and the SaIEnc, and outputs

the final embeddings per agent. We use learned embeddings
(green in Fig. 3) of the shape [A,nfutureTimeSteps, dmodel]
as another input to the decoder, which attach to the encoder
embeddings.

First, self-attention is applied among the learned embed-
dings to identify the relevant relations between the time step
embeddings per agent. The output of the self-attention is then
used as the query in the first cross-attention block. Here, the
node embeddings from the SaIEnc serve as agent specific
values and keys. Thus, the learned embeddings can attend
to the relevant structural and social information. In the next
step, the output is again used as the query for the second
cross-attention block. The values and keys are taken from
the TEnc, so that the learned embeddings get updated by
attending to the past trajectory embeddings. Analogous to
[10] the whole decoder block is repeated N times.

D. Multihead Agent-Pair Prediction

This module takes the generated embeddings of the Fac-
torized Transformer Decoder as its input. For the trajectory
prediction this information is directly fed into n = 6
MLP heads to predict multiple modes of future trajectories.
Whereas, for predicting the agent-pair covariance matrices,
we first form agent-pairs. Therefore, we choose one agent
per scene serving as the “ego-vehicle”, whose embedding
is then concatenated with all other agent embeddings. E.g.
in Fig. 3, the blue embedding (blue agent) is concate-
nated with the orange embedding respectively the yellow
embedding. The concatenation results in an embedding of
shape [A− 1, nfutureTimeSteps, 2 · dmodel]. Our architecture
also allows to extend the concatenation for all existing agent-
pairs in a scene. In the next step, the agent-pair embeddings
are fed into n MLP prediction heads, resulting in agent-
pair covariance matrices Σ corresponding to the predicted
trajectories.

To guaranty, that the predicted covariance matrices fulfill
the requirements on symmetry and positive-definiteness, we
utilize the properties of the Cholesky decomposition: A sym-
metric and positive-definite matrix can be decomposed with
a lower triangle matrix L and a positive-definite diagonal
matrix D to:

Σ = LDLT.

Adapted to our case with four coordinates as random vari-
ables, the matrices L and D can be constructed as following:

L =


1 0 0 0
a 1 0 0
b c 1 0
d e f 1

 , D =


σ̂2
x1

0 0 0
0 σ̂2

y1
0 0

0 0 σ̂2
x2

0
0 0 0 σ̂2

y2

 .

With this formulation of the covariance matrix Σ, we need
to predict ten parameters: σ̂x1

σ̂y1
σ̂x2

σ̂y2
∈ R+ and the

parameters a, b, c, d, e, f ∈ R of the matrix L. The standard
deviations σ of the covariance matrix cannot directly be
chosen by the σ̂ in D, but these parameters significantly
influence the standard deviations. Standard deviations take
on values σ > 0 per definition. This property is modeled



by using a Softplus activation function. Afterwards, we shift
the output by adding a fixed bias, under which the standard
deviation is physically not reasonable.

E. Multivariate Gaussian Negative Log Likelihood Loss

By taking the predicted coordinates µ and the covariance
matrix Σ of a single time step and considering the four
coordinates x1, y1, x2, y2 as random variables X, the density
function of a multivariate Gaussian PDF can be constructed:

fX(x1, y1, x2, y2) =
exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)√

(2π)k det(Σ)
.

Here k represents the dimension of X. As a modification of
the Gaussian negative log likelihood loss (GNLL), we form
the multivariate case of this loss (MGNNL):

loss = −log (fX)

= log

(√
(2π)k det(Σ)

)
+

(
1

2
(x− µ)TΣ−1(x− µ)

)
.

The GNLL loss is derived from the assumption, that the
target values are normally distributed around the predicted
values. The loss measures how well the predicted PDF
explains the predicted values. It encourages the model to not
only make accurate predictions but also provide appropriate
uncertainty estimates and thus fit a reasonable distribution.

This loss formulation is the core of our work, since the
goal is to receive a covariance matrix for all future time steps
of every agent-pair. Due to the properties of the Cholesky
decomposition, this matrix is always symmetric and positive-
definite. Thus, the inversion of the covariance matrix Σ−1 for
the loss calculation can be guaranteed.

IV. EVALUATION

As mentioned before, we train our models on the rounD
dataset. Since we perform agent-pair prediction, we skip all
frames in which only a single agent occurs. The maximum
number of agents recorded in the dataset for a single frame is
25. Hence, our model predicts 2-25 agents jointly, depending
on the frame. We predict trajectory points in a frequency of
5Hz and provide 1 s of history to the model.

For the evaluation of our prediction results, we use the
standard metrics but in an extended way, so that they are
capable of capturing the scene-centric joint prediction:

• Minimum Scene-Centric Average Displacement Error
(minSADE) in meters: The ADE is calculated as the
average Euclidean L2 distance between all points of a
predicted trajectory and the corresponding points of the
ground truth. The SADE is therefore the mean over all
ADEs of a specific mode. Therefore, the min refers to
the mode that provides the minimum SADE.

• Minimum Scene-Centric Final Displacement Error
(minSFDE) in meters: The FDE is the L2 distance
between the endpoint of a predicted trajectory and its
ground truth. Analogous to the SADE, the SFDE is the
mean over all FDEs of a specific mode. Consequently,
the minSFDE takes the minimum over all predicted
modes.

• Scene-Centric Miss Rate (SMR): A prediction counts
as a “miss”, when the FDE is larger than 2m. In our
case, the SMR is calculated as the number of scenarios
where the FDE of at least one agent of the mode with
the lowest SFDE is larger than 2m, divided by the total
number of scenarios.

Table I shows the performance of different models on the
rounD dataset. We propose three different models resulting
from the MAP-FORMER architecture (Fig. 3): First, the
MAP-FORMER (Baseline), which only uses the TEnc as
an encoder. Second, the MAP-GRAPHFORMER, which uses
the TEnc and the GNN-based SaIEnc. And third, the MAP-
FORMER (full), which uses the TEnc and the Transformer-
based SaIEnc.

For comparison, we implement a simple joint prediction
CNN Baseline [29]. To the best of our knowledge, we are
the first performing joint prediction on the rounD dataset.
Therefore, the results of three marginal prediction models
([20], [21], [22]) are provided (gray background in Table I).

Adding information about the scene structure to our
model, as done with the SaIEnc, improves the prediction
performance. While the MAP-GRAPHFORMER represents
an improvement over the MAP-FORMER (Baseline), the
MAP-FORMER (full) outperforms the given joint prediction
models in all metrics. The results of the marginal models
and the joint models are not directly comparable. Anyway,
the MAP-FORMER (full) competes with the best marginal
prediction model (N-ODE2 [21]) in the longer prediction
horizon. Only in the short prediction horizon, the MAP-
FORMER (full) is outperformed by the SSP-ASP [20] model.
Notably, the SSP-ASP and the N-ODE2 models get a
history of 3 s instead of 1 s like our models.

In the following, we shortly present the results for the
agent-pair covariance matrix prediction. A covariance matrix
(4 × 4) can be seen as a 2 × 2 block matrix with four
2 × 2 blocks. The blocks on the main diagonal represent
the marginal covariance matrices of the predicted trajectory
points of the respective agents within an agent-pair. While the
block on the upper diagonal (identical to the lower diagonal
block) represents the covariance matrix between the agents.
For a first proof of concept, we sum up the absolute values
of the upper diagonal blocks of the predicted agent-pairs’
covariance matrices. These sums are shown in Fig. 4 as
lines with variable thickness connecting the agents. Where
the thickness represents a measure of the dependency respec-
tively the interactivity between agent-pairs. The predictions
originate from our MAP-FORMER (full) model.

In this example we build up agent-pairs based on agent 0
and visualized possibly interesting dependencies in Fig. 4.
Agent 6 inside the roundabout is a human, maintaining
the planted area. We can see that agent 0 has the lowest
dependency with agent 2, which is reasonable because agent
2 is spatially far away from agent 0 and there are also agents
between them. Also, agent 8 has a low dependency with
agent 0, since agent 8 has already entered the roundabout
and agent 0 is about to exit. Agent 10 and 11 have a higher
and quite similar dependency with agent 0. Given that agent



TABLE I: Results on rounD dataset for n = 6 prediction heads (or modes) and a prediction horizon of t = 3 s and t = 5 s
with “scene-centric” (S) metrics. The models with gray background are only evaluated on marginal prediction (not scene-
centric). The best joint prediction results are highlighted in bold and the best marginal prediction results are underlined.

Method minSADE ↓ minSFDE ↓ SMR ↓
3 s 5 s 3 s 5 s 3 s 5 s

SSP-ASP [20] 0.17 1.25 (6 s) 0.74 4.61 (6 s) - -
N-ODE2 [21] - 0.98 - 3.09 - 0.35
Extended DGNN [22] 1.68 - 1.69 - - -
CNN Baseline [29] 1.46 3.57 4.30 10.29 1.00 1.00

MAP-FORMER (Baseline) (Ours) 0.71 1.49 1.84 4.03 0.90 0.97
MAP-GRAPHFORMER (Ours) 0.60 1.30 1.59 3.48 0.83 0.96
MAP-FORMER (full) (Ours) 0.52 1.20 1.38 3.22 0.75 0.95
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Fig. 4: Visual prediction results: The figure shows a scene from rounD [2] with twelve agents (red points). For every agent
the figure provides its past trajectory (gray), its ground truth (black) and its predicted trajectory for t = 3 s (colored). The
lines, connecting the agent-pairs, represent the upper diagonal blocks of the predicted covariance matrices and therefore
describe the dependencies between agent-pairs.

0 is about to exit the roundabout, agent 10 and 11 are in
a similar situation to agent 0. The highest dependencies to
agent 0 have – in ascending order – agents 6, 9 and 3. Agent 9
is spatially close to agent 0 and therefore, a high dependency
is reasonable. It is possibly unsure, if agent 6 intends to
cross the road, and it is additionally spatially close related to
agent 0, so a high dependency is also reasonable. Agent 3 is
spatially further away from agent 0, but it can be considered
as the leading vehicle and thus has a high dependency with
agent 0. A comprehensive statistical analysis of the agent-
pair Gaussian PDFs will be part of a follow-up work, so we
will not go into more detail about the agent-pair correlation
analysis.

V. CONCLUSIONS AND FUTURE WORK

In this work we presented a novel view on motion predic-
tion in the context of motion planning and risk assessment.
We propose to predict statistical information between agent-
pairs. Therefore, we developed a multi-agent-pair prediction
model, capable of predicting not only coordinates of a
trajectory but predicting joint covariance matrices. These can
be used for modeling agent-pair Gaussian PDFs and calculate
dependencies between them. While Gaussian PDFs for single
agents only allow a statement about the uncertainties of
each agent’s coordinates, our method also provides infor-
mation about their dependencies. Based on this prediction
approach, a follow-up paper will comprehensively analyze
agent interactivity and risk utilizing the probabilistic joint



PDFs generated by the predicted covariance matrices.
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