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Quantum neural networks (QNNs) is a parameterized quantum circuit model, which can be trained
by gradient-based optimizer, can be used for supervised learning, regression tasks, combinatorial op-
timization, etc. Although many works have demonstrated that QNNs have better learnability, gen-
eralizability, etc. compared to classical neural networks. However, as with classical neural networks,
we still can’t explain their working mechanism well. In this paper, we reveal the training mechanism
of QNNs by mutual information. Unlike traditional mutual information in neural networks, due to
quantum computing remains information conserved, the mutual information is trivial of the input
and output of U operator. In our work, in order to observe the change of mutual information during
training, we divide the quantum circuit (U operator) into two subsystems, discard subsystem (D)
and measurement subsystem (M) respectively. We calculate two mutual information, I(Di : Mo)
and I(Mi : Mo) (i and o means input or output of the corresponding subsystem), and observe their
behavior during training. As the epochs increases, I(Di : Mo) gradually increases, this may means
some information of discard subsystem is continuously pushed into the measurement subsystem, the
information should be label-related. What’s more, I(Mi : Mo) exist two-phase behavior in training
process, this consistent with the information bottleneck anticipation. The first phase, I(Mi : Mo)
is increasing, this means the measurement subsystem perform feature fitting. The second phase,
I(Mi : Mo) is decreasing, this may means the system is generalizing, the measurement subsystem
discard label-irrelevant information into the discard subsystem as many as possible. Our work dis-
cussed the working mechanism of QNNs by mutual information, further, it can be used to analyze
the accuracy and generalization of QNNs.

I. INTRODUCTION

Many works have revealed that QNNs have advantages
over classical neural networks in terms of performance [1–
5], generalization [6–8] and trainability [9, 10], but it also
faced the problem of poor interpretability, we can’t un-
derstand its decision-making process well. This limit its
application in critical areas such as medical diagnostics
and smart finance.

The information bottleneck based on mutual informa-
tion has achieved some success in the interpretability of
classical neural networks, the information bottleneck it-
self is based on rigorous mathematical theory [11]. In
recent years, Tishby et al. have found that it can be used
to explain deep neural networks, and discover informa-
tion processing inequalities (Markov chain) for deep neu-
ral networks, the representation T maximizes the com-
pressed input X, and maximally preserves the mutual
information about label Y [12]. And they found that
there were two phases in the training process: fitting and
compression, in fitting phase, the mutual information of
the representation T and input X increases, the neural
network fits the input data, in compression phase, the
mutual information of the representation T and input X
decreases, the neural network discard information that is
not relevant to the label [13]. Tishby’s work sheds some
light on how neural networks work from an information
perspective, but can it be used to explain QNNs? This
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is an important and open question.
Banchi et al. first used information bottlenecks for

quantum neural networks [14], they define three spaces:
quantum state space Q, classical parameter space X and
class space C, and their mutual information I(C : Q)
and I(X : Q), and the Lagrangian of the quantum in-
formation bottleneck is defined by mutual information
LIB = I(X : Q) − βI(C : Q), the trade-off between ac-
curacy and generalization is achieved by minimizing the
Lagrangian for a certain value of β. A small β means that
theX have maximum compression, the model generalizes
well, a large β means that Q reserve more information re-
lated to C,the model have better accuracy.
The significance of paper [14] is the first introduction of

information bottlenecks into QNNs, and used it as a tool
to analyze the accuracy and generalization of the QNNs,
but their work is still not consummate, firstly, they didn’t
connect the information bottleneck to the interpretability
of the QNNs Ansatz, secondly, they did not study the
behavior of mutual information during training and did
not find the critical two-phase phenomenon.
In paper [15], Zhai et al. studied the magnetic prop-

erties of spin models using QNNs combined with tripar-
tite mutual information, find a two-phase behavior dur-
ing training, that is the tripartite mutual information
increase first then decrease. They believe that the phase
of tripartite mutual information increasing is learning
small-scale structure, and the phase of tripartite mutual
information decreasing is learning large-scale structure.
This paper focuses on the mutual information of QNNs

Ansatz in the training process, thereby elaborates the
working mechanism. Since the information processing
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FIG. 1. Structure diagram of QNNs. (a)The overall archi-
tecture of QNNs, it contains three parts encoding, process-
ing and measurement. (b)Illustrate qubit encoding method.
(c)Illustrate Ansatz structure of Brick Wall, l is the number
of repetitions of the module.

of QNNs is unitary and the information is conserved,
thus we cannot directly calculate the mutual informa-
tion of input and output. In this paper, we borrow from
scrambling model [16], we divide Ansatz into measure-
ment subsystem and discarding subsystem, and calcu-
late the mutual information behavior intra- and inter-
subsystems separately, we find a two-phase behavior of
the measurement subsystem in which mutual informa-
tion increase first then decrease, the two-phase behavior
may have different mechanisms with paper [15], because
our measurement subsystem only have one qubit, it can-
not learn large-scale structure, so we think it consistent
with information bottlenecks anticipation. Moreover, in
the framework of the information bottleneck, using the
scheme of paper [14], we can study the accuracy and gen-
eralization error bounds of QNNs.

II. QUANTUM NEURAL NETWORKS MODEL

QNNs is a class of quantum circuits that can be
used for classification and regression based on variational
methods, which can be divided into three categories:
explicit quantum models [10, 17, 18], quantum kernel
method [19–21] and data reuploading models [22, 23].
Jerbi et al. reviewed these three methods and analyzed
their relationship in paper [24].

In this paper, we focus on explicit quantum models,

it is also the most studied model at present, the overall
architecture as shown in Fig. 1(a). This model can be di-
vided into three parts, the first part is the data encoding,
which mapped classical data (feature data) to quantum
states, the commonly used methods are amplitude en-
coding and qubit encoding [25]. Amplitude encoding is
the mapping of feature data to probability amplitudes of
quantum states, the encoding complexity is exponential.
For qubit encoding method, each feature corresponds to a
rotation gate, which shown in Fig. 1(b), and we can also
use ”interleaved” qubit encoding, which shown in Fig.
1(c), we can encode more features in fewer qubits, the
encoding complexity is linear. The second part is state
processing, the task is to evolve the encoded quantum
state to a target quantum state through unitary transfor-
mation, that can minimize the value of the loss function,
this is achieved by training the parameterized quantum
circuits (Ansatz). We can build different Ansatz, this
paper adopts Brick Wall structure, which shown in Fig.
1(d). Ansatz is the most important part of QNNs, and
the interpretability of this paper is focused on it. The
third part is measurement, we can get classification or
regression result after measurement.
Suppose xi is the ith training sample, it is a d-

dimensional vector (d is the number of feature), y is
the label corresponding to the sample (represented by
a vector of 0,1), They form the sample pair (xi,y). xi

is encoded as quantum state ρ(xi) by qubit encoding,
and the quantum state evolved into U(θ)ρ(xi)U

†(θ) af-
ter Ansatz, the result after measurement is hk(xi,θ) =

Tr(M†
kMkU(θ)ρ(xi)U

†(θ)) (Mk is the Pauli Z measure-
ment, which act on kth qubit), we can define the cross-
entropy (CE) loss function,

LCE(h(xi,θ),y) =
∑
k

yklog(hk(xi,θ)) (1)

By taking the derivative of the loss function with θ, we
obtain the gradient, but it’s very different from classical
neural network, we don’t use back propagation to calcu-
late the gradient, the generally used method is parameter
shift [26, 27], the formula is as follows.

∂LCE(h(xi,θ),y)

∂θ
=

∑
k

yk
hk(xi,θ)

∂hk(xi,θ)

∂θ
(2)

∂hk(xi,θ)

∂θ
≈
hk(xi, θ +

∆θ
2 )− hk(xi, θ − ∆θ

2 )

∆θ
(3)

After obtaining the gradient, we can update the train-
able parameters θ by optimizer such as gradient descent
or Adam [28], until the loss function converges.

III. MUTUAL INFORMATION IN QNNS

In 2000, Tishby first proposed the information bottle-
neck theory based on mutual information, gave the math-
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FIG. 2. Schematic diagram of the Scrambling model. First,
we divided the input and output of U operator into subsys-
tems, such A, B, C and D in this figure. Next, we can cal-
culate the mutual information of different subsystem, such as
I(A : C) or I(B : C), thus we can obtain the property of U
operator by this mutual information.

ematical definition and iterative method, and proved the
convergence [11]. With the rise of deep learning, Tishby
et al. used it to explain deep learning, they discovered
the information processing inequalities in deep learning,
and two-phases phenomenon in the training: fitting then
compression [12, 13].

However, there is no sense calculating the mutual infor-
mation of the input and output for QNNs, because the
quantum information processing is unitary, there is no
loss of information, the mutual information is constant.
Scrambling model [15] proposed by Hosur et al. give the
solution idea, we can divide the input and output of uni-
tary evolution into different subsystems, we can obtain
the property of U by calculating the mutual information
of different subsystems. The schematic diagram of the
Scrambling model is shown in Fig. 2.

This paper is inspired by the Scrambling model [15],
the U operator (QNNs Ansatz) is divided into two sub-
systems, which are measurement subsystem and dis-
carder subsystem, the measurement subsystem is com-
posed of qubits that perform measurement operation,
the discarder subsystem is composed of other qubits, as
shown in Fig. 3(a). By calculating the mutual informa-
tion between Mi and Mo, as well as Di and Mo, during
training, we expect to find the working mechanism of
QNNs.

In the actual calculation, we flip the input leg of the U
operator to down, treat them equal, this can be expressed
as formula |Ψ⟩ =

∑
j

√
pj |ψj⟩in ⊗ |ϕj⟩out, ρ = |Ψ⟩⟨Ψ| is

the density matrix after evolved, the density matrices of
different subsystems can be obtained by the partial trace
of ρ. The flip can be realized by EPR pair, as shown
in Fig. 3(b). Suppose the density matrix is ρ after U
evolved (we can get it by quantum states tomograph on
physical quantum computer), thus the density matrix of
Di can be represented as ρDi = TrDo,Mo,Mi(ρ), the en-
tropy can be calculated by S(Di) = −tr(ρDilog(ρDi)),
the entropy of subsystem of Mi, Mo, DiMo and MiMo

FIG. 3. (a)Left: We divide the input and output of the U
operator into four subsystems depending on whether the qubit
has a measurement or not, they are the input of measurement
subsystem (Mi), the output of measurement subsystem (Mo),
the input of discard subsystem (Di), and the output of discard
subsystem (Do). Right: In order to facilitate calculation,
flipping the input leg of the U operator to down. (b)The
schematic diagram of flipping the input leg by EPR pair.

can be calculated by same method. Thus the mutual in-
formation intra- and inter- subsystems can be calculated
by the following formula.

I(Di :Mo) = S(Di) + S(Mo)–S(DiMo) (4)

I(Mi :Mo) = S(Mi) + S(Mo)–S(MiMo) (5)

IV. RESULT AND ANALYSIS

In this paper, we experimented the explicit quantum
models with Brick Wall Ansatz, with n=4 (qubit num-
ber) and l=4 (repeat number). We conducted experi-
ments on four datasets: Iris [29], diabetes, and Breast
Cancer Wisconsin (Original). For Iris dataset, we only
selected two categorical of them (setosa and versicolor),
and constructed a two-categorized dataset, we use qubit
encoding for this dataset. For diabetes dataset, it have 8
features, we use ”interleaved” qubit encoding. For Breast
Cancer Wisconsin (Original) dataset, we use amplitude
encoding, this dataset have 9 features, but the quantum
states need encode 16 amplitude, the rest is denoted by
0. The experiments were performed on LFQAP platform
[30], we update the parameters use Adam optimizer, and
the total training was performed for 100 iterations. We
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FIG. 4. The results are averaged over 500 experiments. (a)Result for Iris dataset, Top: I(Di : Mo) as functions of the
training epoch, it increase with iteration. Middle: I(Mi : Mo) as functions of the training epoch, which demonstrates a
two-phase behavior, it increases before 8 iteration, then begins to decrease. Bottom: Loss as functions of the training epoch,
it decrease during training. (b)Result for diabetes dataset, Top: I(Di : Mo) as functions of the training epoch, it increase
with iteration. Middle: I(Mi : Mo) as functions of the training epoch, which demonstrates a two-phase behavior, it increases
before 12 iteration, then begins to decrease. Bottom: Loss as functions of the training epoch, it decrease during training.
(c)Result for Breast Cancer Wisconsin (Original) dataset, Top: I(Di : Mo) as functions of the training epoch, it increase with
iteration. Middle: I(Mi : Mo) as functions of the training epoch, which demonstrates a two-phase behavior, it increases before
22 iteration, then begins to decrease. Bottom: Loss as functions of the training epoch, it decrease during training.

calculated I(Di : Mo), I(Mi : Mo) and Loss separately
for the three datasets, the results are shown in Fig. 4.

Let’s look at I(Di :Mo) first, the result is shown in the
top of Fig. 4, it is obvious that I(Mi : Mo) increasing
with training iteration for the three datasets, this means
some information of discard subsystem pushed into the
measurement subsystem. In conjunction with the bot-
tom of Fig. 4, the loss decreases during training, so we
have strong reasons to assume that the information about
label of discard subsystem pushed into the measurement
subsystem during training, this caused the loss decreas-
ing.

Next, we focus on I(Mi : Mo), which is shown in the
middle of Fig. 4, all three datasets with different encod-
ing demonstrate a two-phase behavior, this is consistent
with the information bottleneck theory[12], so we can as-
sume that the measurement subsystem performs feature
fitting in the first phase, and the discard some informa-
tion in the second phase, because of the loss is decreasing
in the whole phase, so the discarded information is not
related to label, and it’s obvious that the discarded in-
formation is pushed into the discard subsystem because

of the information conservation.

In order to further reveal the behavior of QNNs, We
calculated the mutual information ofMo and single input
qubits (Di1, Di2, Di3, Mi) during training, we consider
Iris dataset as an example, the result is shown in Fig.
5. The mutual information I(Di1 : Mo), I(Di2 : Mo),
I(Di3 : Mo) have completely different behaviors with
I(Di : Mo), and I(Di1 : Mo) + I(Di2 : Mo) + I(Di3 :
Mo) is much smaller than I(Di :Mo), this suggests that
quantum entanglement carries the main classification dis-
criminant information in QNNs learning, this may im-
plies that the global features with entanglement more
likely to be real discriminative features with generaliza-
tion ability, the localized feature more likely to be spuri-
ous features only valid on specific samples. In the other
aspect, I(Di1 : Mo), I(Di2 : Mo) and I(Di3 : Mo)
demonstrates a broadly similar behavior, and it is very
different with I(Mi :Mo), this further explains the mea-
surement subsystem and discard subsystem have differ-
ent working mechanisms, it confirms the rationality of
the system division.

This experiment reveals the working mechanism of
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FIG. 5. The mutual information of Mo and single input
qubits of Iris dataset. Di1, Di2, Di3 is the qubits from right
to left in upper left of Fig. 3.

QNNs from the information perspective, for discard sub-
system, the information about label was pushed into the
measurement subsystem continued during training. for
measurement subsystem, we observed a two-phase behav-
ior, it may the process of feature fitting and information
compression.

V. DISCUSSION AND OUTLOOK

This paper studied the mutual information behavior
in QNNs, we find the label-related information of dis-
card subsystem is pushed into the measurement subsys-
tem during training, and the find a two-phase behav-
ior of measurement subsystem in training process, which
consistent with the information bottleneck anticipation.
We are able to understand the working mechanism of
QNNs to some extent based on experimental results, it
can promote the application of QNNs in some critical ar-
eas. Further, it also can be used to analyze the accuracy
and generalization based on paper [14].
But it’s worth noting that although some results have

been achieved in explaining QNNs by using information
theory, there are still many key issues that need to be
addressed. For example, calculating the mutual infor-
mation behavior between different layers of QNNs and
drawing the information plane (the paper [12] draws the
information plane of a classical neural network). And
how to use the results of mutual Information to help de-
sign more accurate and more trainable QNNs.
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