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Abstract

Compared to standard language model (LM)
pretraining (i.e., from scratch), Knowledge Dis-
tillation (KD) entails an additional forward pass
through a teacher model that is typically sub-
stantially larger than the target student model.
As such, KD in LM pretraining materially slows
down throughput of pretraining instances vis-
a-vis pretraining from scratch. Scaling laws
of LM pretraining suggest that smaller mod-
els can close the gap to larger counterparts
if trained on more data (i.e., processing more
tokens)—and under a fixed computation bud-
get, smaller models are able be process more
data than larger models. We thus hypothesize
that KD might, in fact, be suboptimal to pretrain-
ing from scratch for obtaining smaller LMs,
when appropriately accounting for the compute
budget. To test this, we compare pretraining
from scratch against several KD strategies for
masked language modeling (MLM) in a fair
experimental setup, with respect to amount of
computation as well as pretraining data. Down-
stream results on GLUE, however, do not con-
firm our hypothesis: while pretraining from
scratch performs comparably to ordinary KD
under a fixed computation budget, more sophis-
ticated KD strategies, namely TinyBERT (Jiao
et al., 2020) and MiniLM (Wang et al., 2023),
outperform it by a notable margin. We further
find that KD yields larger gains over pretraining
from scratch when the data must be repeated
under the fixed computation budget.1

1 Introduction

Knowledge distillation (KD; Hinton et al., 2015;
Jiao et al., 2020) during LM pretraining has
emerged as the primary mean of compressing the
capabilities of a large pretrained teacher model
into a task agnostic smaller student model. KD is
praised for yielding high-performing task agnostic
small models, mitigating the need for pretraining

1Code is available at https://github.com/
MinhDucBui/revisiting_distillation.

Identical
Name Architect. Compute

DistilBERT (Sanh et al., 2020) No No
TinyBERT (Jiao et al., 2020) Yes No
MobileBERT (Sun et al., 2020) No No
MiniLM (Wang et al., 2020) No No
Our Work Yes Yes

Table 1: Assessing the fairness of evaluation setups
in previous works for task-agnostic masked language
models, trained with KD and without KD.

(small models) from scratch, which is typically
considered more expensive. The body of exist-
ing KD work for MLM (Jiao et al., 2020; Wang
et al., 2023), however, typically does not com-
pare KD against pretraining from scratch in a fair
setup: (i) with the same target models (exactly the
same architecture) and (ii) under the same compu-
tation budget. Compared to just training the target
model from scratch, KD comes with a computational
overhead of forward passes through the typically
considerably larger teacher model. This, under
the same computation budget, allows pretraining
from scratch to consume more data (i.e., more to-
kens) than KD, which leads to the central research
question of this work: in a fair setup where both
are given equal overall computation budget, is KD
still more effective than pretraining from scratch
(No-KD)? We hypothesize that, under a fair evalua-
tion setup, No-KD may be as effective as KD, render-
ing KD inconsequential. Our reasoning is based on
two observations:

1) Fair KD Comparison. A fair comparison, in
which both setups are given identical computa-
tion budgets (as well as identical target models)
eludes existing work on KD. Jiao et al. (2020) com-
pare their model to BERTTiny (Turc et al., 2019),
which has the same architecture but employs sig-
nificantly different training resources than their
TinyBERTTiny, preventing a fair comparison. Simi-
larly, Sanh et al. (2020) compare their distilled stu-
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dent solely against the teacher, whereas Sun et al.
(2020); Wang et al. (2020) only add comparison
against larger pretrained models and competing KD
strategies. Even the body of work that focuses on
comparing different KD strategies has only recently
sought to standardize training and thus enable fair
comparisons (Lu et al., 2022; Wang et al., 2023).

2) Scaling Laws. Scaling laws (Kaplan et al.,
2020; Hoffmann et al., 2022), reveal that, under
a fixed computation budget, only a marginal cor-
relation exists between the LM size and it’s per-
formance: smaller models compensate their lower
learning efficiency with the ability to process more
tokens within the same budget. While there are
ongoing refinements to the scaling law (Hoffmann
et al., 2022), it has been consistently reaffirmed
by several studies (Geiping and Goldstein, 2023;
Bansal et al., 2022; Clark et al., 2022). For in-
stance, Geiping and Goldstein (2023) showcases
this behavior by training multiple BERT models
with varying architecture sizes for a fix 24 hour
duration, resulting in similar loss values across all
sizes.

Contribution Motivated by the recent findings
in the realm of scaling laws and recognizing the ab-
sence of a fair comparison between KD and No-KD,
our primary contribution lies in the comparison of
No-KD against KD strategies for MLM while ensur-
ing a fair setup with regards to compute budget and
pretraining data. We initially assess No-KD in an
optimal setup, where unlimited pretraining tokens
are available within a fixed compute budget. Ad-
ditionally, we examine the scenario when data is
constrained within a fixed compute budget.

Our results reveal that, in the optimal setting,
No-KD performs indeed comparably to vanilla-KD,
exhibiting an average improvement over vanilla-KD
of 0.4 and 0.1 points for 6-, and 12-layer models on
GLUE. However, No-KD falls short of surpassing
more advanced KD strategies, exemplified by the
comparison with TinyBERT and MiniLM. When
available data is limited within the fixed compute
budget, KD strategies outperform No-KD by an even
larger margin: No-KD, though faster, needs more
epochs, whereas KD strategies extract more infor-
mation from limited data.

2 Distillation Strategies

Vanilla-KD Vanilla-KD for MLM pretraining is
set up as follows. A small MLM student is trained

to mimick the predictions for a particular train-
ing instance of a large pretrained MLM teacher:
The distillation objective is to minimize the soft
cross-entropy between the logits zT of the MLM
teacher and the logits zS of the MLM student, with
a temperature factor t: Lpred = CE(zT /t, zS/t).
Following Hinton et al. (2015), the final training
loss equally combines Lpred with the MLM loss
LCE during pretraining.

TinyBERT Jiao et al. (2020) distill knowledge by
minimizing the mean-squared error (MSE) between
latent representations of the MLM student S and
the MLM teacher T by model layers as follows.
First, the embedding matrices of the student (ES)
and the teacher (ET) are aligned by minimizing
the loss Lembd = MSE(ESWe,E

T ). The authors
further fit the unnormalized attention scores per
head h of the MLM student S to the MLM teacher
T by optimizing Latt = 1/h

∑h
i=1 MSE(A

S
i ,A

T
i ).

Lastly, the output hidden states HS of transformer
layers of the student are also regressed onto the
corresponding teacher output representations HT

by optimizing Lhid = MSE(HSWh,H
T ).2

MiniLM Wang et al. (2020) also mimic the self-
attention modules of the MLM teacher. Un-
like TinyBert, MiniLM focuses on the last at-
tention module. Wang et al. (2020) minimize
the KL-divergence between the self-attention
distributions of the MLM teacher and the
MLM student. They further minimize the
KL-divergence between the value relations of
the MLM teacher T and MLM student S, i.e.
LV R = 1

Ah|x|
∑Ah

a=1

∑|x|
t=1DKL(VRT ||VRS).

The value-relation denotes the outer product of
values V across heads in the last attention module,
i.e. VR = softmax(VVT

√
d
).

3 Experiment Setup

Model Architectures We experiment with two
different teacher and student sizes: First, we
use a 12-layer pretrained BERTbase (Devlin et al.,
2019) model (L=12, H=768, A=12, Total Parame-
ters=110M) as the teacher and a randomly initial-
ized 6-layer BERT6 model (L=6, H=768, A=12, To-
tal Parameters=67M) as the student. We then scale
the setting up to a pretrained BERTLarge (L=24,

2The distillation of embeddings E and output hidden states
H is learned up to projection matrices We;h matrices to
bridge varying dimensionalities of representations across ar-
chitectures.



Total Token QNLI SST-2 MNLI MRPC QQP RTE CoLA Avg ∆
Throughput (Acc) (Acc) (Acc) (F1) (Acc) (Acc) (Mcc)

6-Layer: Unlimited Pretraining Tokens within Fixed Compute Budget

No-KD6 4.6B 86.5 89.8 79.2 87.3 90.1 60.7 47.3 77.3 –
Vanilla-KD6 2.6B 87.3 89.2 78.8 87.1 89.7 61.7 44.8 76.9 −0.4
MiniLM6 2.6B 88.5 90.6 81.7 90.0 90.3 64.3 43.9 78.5 +1.2
TinyBERT6 2.6B 89.5 91.0 82.2 90.3 90.4 67.2 40.8 78.8 +1.5

12-Layer: Unlimited Pretraining Tokens within Fixed Compute Budget

No-KD12 4.6B 87.8 90.1 80.6 86.5 90.3 60.3 51.1 78.1 –
Vanilla-KD12 2.6B 86.3 90.5 79.8 88.8 89.9 62.1 48.6 78.0 −0.1
MiniLM12 2.6B 90.0 91.2 83.3 90.1 90.9 69.0 49.1 80.5 +1.4
TinyBERT12 2.6B 89.5 91.4 82.0 90.8 90.6 65.5 41.1 78.7 +0.6

6-Layer: Limited Pretraining Tokens within Fixed (Increased) Compute Budget

No-KD6 27.9B 88.8 91.2 81.3 88.0 90.4 59.6 50.5 78.5 –
Vanilla-KD6 15.4B 86.9 91.1 81.1 89.5 90.3 61.7 58.3 79.8 +1.3
MiniLM6 15.6B 90.0 91.5 83.0 90.3 90.6 65.7 50.7 80.3 +1.8
TinyBERT6 15.6B 90.5 92.3 83.3 90.2 90.8 67.5 51.8 80.9 +2.4

Table 2: Upper part: optimal scenario for No-KD – unlimited pretraining tokens within a fixed compute budget. Lower
part: limited data within a fixed compute budget. We present the performance results on the GLUE development
set, maintaining a consistent pretraining wall-clock time across all models within each group. The column Avg
represents the average performance across all tasks, while ∆ quantifies the average difference between No-KDxx and
the other distillation strategies.

H=1024, A=16, Total Parameters=340M) teacher
and a randomly initialized 12-layer BERT12 stu-
dent. To speed up the training pipeline and con-
vergence, we use the implementation of Izsak et al.
(2021) for the models.

Data We follow BERT (Devlin et al., 2019) and
pretrain all models on the Toronto BooksCorpus
(Zhu et al., 2015) and English Wikipedia.3 After
MLM pretraining, we finetune and evaluate the
models on the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018),
a collection of diverse natural language understand-
ing tasks.4

Pretraining We first pretrain a BERT6 model
from scratch (without KD). This model is denoted
as No-KD6. We further apply the KD strategies (cf.
§2), for which BERTbase (BERTlarge) is the MLM
teacher for the 6-layer (12-layer) MLM student.
The resulting 6-layer models are indicated with a
subscript 6, while the 12-layer models are marked
with a subscript 12. Notably, we only employ the
last layer for layer-wise distillation, as we confirm
the findings of Wang et al. (2023) that distilling
knowledge of multiple layers does not yield con-

3In November 2023, we crawled the English Wikipedia
using Attardi (2015). The official BookCorpus is no longer
accessible; however, it was re-crawled by Kobayashi (2018).

4We refer to Appendix A.3 for more information about the
GLUE datasets.

sistent performance improvements. We refer to
Appendix A.2 for additional hyperparameter, hard-
ware details and wall-clock training time.

Downstream Finetuning We perform a grid
search over batch sizes {16, 32} and learning rates
{1e-5, 3e-5, 5e-5, 8e-5} to identify the ideal hyper-
parameters for each task on the GLUE benchmark.
We train all configurations for 5 epochs. We utilize
a polynomial learning rate schedule and a maxi-
mum sequence of 128.

4 Results

4.1 Setting: Unlimited Data with Fixed
Compute

We assess No-KD for a single epoch and fix the re-
sulting training wall-clock time for the distillation
strategies. Within this compute budget, we train on
unlimited pretraining tokens without the need for
sample repetition. We report our main results in
the upper segment of Table 2.

Low KD Token Throughput We find that the to-
ken throughput of No-KD6 and No-KD12 is approxi-
mately 1.8 times greater than that of the distillation
models. This observation underscores that the pres-
ence of a teacher model greatly reduces the speed
of pretraining.



Performance of 6-layer Students We observe
that No-KD6 surpasses Vanilla-KD6 by an av-
erage of 0.4 points. This result indicates that
Vanilla-KD6 does not exceed pretraining from
scratch in a fair setting. However, more advanced
KD strategies exhibit notable performance gains
over No-KD. On average, TinyBERT6 outperforms
No-KD6 by 1.5 points, while MiniLM6 achieves a 1.2
point advantage. These findings suggest that pre-
training from scratch falls short in outperforming
sophisticated distillation strategies in a fair setup,
even when exposed to a higher volume of tokens.
The only exception to this trend is CoLA (Corpus
of Linguistic Acceptability) (Warstadt et al., 2019),
on which No-KD6 excels.

Performance of 12-layer Students We find the
same pattern when we double the number of trans-
former layers in MLM students: Vanilla-KD12
fails to outperform No-KD12, yet it is surpassed by
MiniLM12 by an average of 1.4 points. Notably,
No-KD12 once again exhibits superior performance
on the CoLA task compared to other strategies.

CoLA Performance No-KD6 demonstrates supe-
rior performance on CoLA, surpassing the next
most effective strategy by 2.5 and 2.0 points for
6- and 12-layer models, respectively. We hypothe-
size that CoLA benefits significantly from masked
language modelling, as evidenced by the improved
performance of Vanilla-KD on CoLA compared to
other distillation strategies, aligning with findings
by Wang et al. (2023). Another contributing factor
could be the scalability of CoLA with respect to
tokens encountered during pretraining. This obser-
vation contradicts the results of Liu et al. (2021),
who suggest that CoLA can be learned relatively
quickly compared to other downstream tasks. How-
ever, it aligns with the conclusions of Geiping and
Goldstein (2023), who also note that their BERT
version, exposed to less data, exhibits subpar per-
formance on CoLA.

4.2 Setting: Limited Data with Fixed Compute

To extend our findings, we increase the compute
budget while retaining a fixed dataset size. We eval-
uate this setup with 6-layer MLM students and the
12-layer MLM teacher. The analysis provides an
estimate of the viability of No-KD when data repeti-
tion is necessary within the fixed compute budget.
The results are presented in the lower section of
Table 2.

The No-KD6 model is underperforming, com-
pared to all distillation strategies, including
Vanilla-KD6 by 1.3 points. The performance gap
widens even more when compared to MiniLM6 and
TinyBERT6, with a substantial difference of 1.8 and
2.4 points on average. We attribute this to the
fact that while No-KD benefits from exposure to
a larger number of tokens, it also necessitates a
larger dataset for effective scaling. Although this
requirement can be met in high-resource languages
with up-to-date datasets (Kudugunta et al., 2023),
it presents a significant challenge in mid to low-
resource scenarios. Additionally, No-KD6 is now be-
ing outperformed even on CoLA. These results sug-
gest that CoLA’s performance indeed needs to pro-
cess a certain quantity of tokens during pretaining
to scale effectively, regardless of additional token
repetitions: e.g., the performance of Vanilla-KD6
increases by 13.5 points if scaled from 2.6B unique
to 15.4B non-unique pretraining tokens. Interest-
ingly, our findings reveal that Vanilla-KD6 ex-
hibits the best performance on CoLA, underscoring
the advantageous impact of masked language mod-
elling on this particular dataset.

5 Discussion

While our study provides insights into a fair eval-
uation of No-KD and KD for encoder-only mod-
els of moderate sizes, revealing negative results
for No-KD, it may not cover the full spectrum
of model sizes and architectures. For instance,
Jha et al. (2023) show that for large decoder-only
language models, No-KD performs comparably to
Vanilla-KD, aligning with our findings. However,
advanced KD strategies like MiniLM exhibit poorer
performance than No-KD and Vanilla-KD, chal-
lenging both our results and common beliefs about
KD regarding large decoder models. This dispar-
ity underscores the need for further investigation
into a fair KD evaluation across a range of archi-
tectures and scales. Additionally, we recommend
investigating the impact of the teacher budget on
performance in the fair setting, a consideration not
closely examined in our current work.

6 Conclusion

In this work, we investigate our hypothesis that,
provided a fair training scenario, model pretrain-
ing from scratch yields similar results as KD during
pretraining. Our rationale is grounded in recent
advancements in scaling laws for language models



and that the literature lacks a fair comparison be-
tween No-KD and KD. Our findings demonstrate that
our initial assumption does not hold true: while, in
an optimal setting for No-KD, No-KD performs on
par with ordinary KD, it falls short when compared
to more sophisticated KD strategies.

Limitations

Firstly, we acknowledge that assessing the compute
budget based on training wall-clock time comes
with inherent limitations. As outline in Kaddour
et al. (2023), wall-clock time can fluctuate even on
identical hardware. This fluctuation may arise from
factors such as the utilization of non-deterministic
operations or hidden background processes. Nev-
ertheless, we only see negligible variations across
different runs for the same training pipeline.

Another limitation of our work pertains to data
size. Exploring larger pretraining corpora than ours
might be worthwhile, although we note that even
within our current data scale, KD consistently out-
performs No-KD by a significant margin. Even with
potential increases in data size, KD remains valuable
as it provides a stronger starting point compared to
No-KD.

Lastly, we acknowledge that the pretraining cor-
pus is the same as what the teacher used. This
shared corpus might influence KD strategies either
positively or negatively.
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A Appendix

A.1 Implementation Details
We use the code base from Izsak et al. (2021) for
both pretraining and finetuning of No-KD models.
In the case of KD models, we utilize the code base in-
troduced by Wang et al. (2023), which itself builds
upon the work of Izsak et al. (2021). Our code is
available at https://github.com/MinhDucBui/
revisiting_distillation.

A.2 Pretraining Details
Our pretraining pipeline employs a batch size of
1024, employing gradient accumulation with a
batch size of 256. We adopt a time-based learning
rate schedule with a linear curve. The peak learning
rate is set to 5e-4 for distillation strategies and 1e-3
for No-KD. We opt for a warmup proportion of 0.06
for both scenarios. Utilizing the AdamW optimizer
with (β1, β2) = (0.9, 0.98) and ϵ = 1e − 6, we
conduct training with mixed precision techniques.

We measure compute budget by wall-clock time.
All experiments are conducted on NVIDIA A100.
Training our 6-layer model for a single epoch re-
quires around 4 hours of wall-clock training time,
while the 12-layer model demands approximately
11 hours. Scaling up the 6-layer model to 27.9B
tokens extends the training duration to about 24
hours. Fine-tuning on GLUE with a single A100
GPU, coupled with grid-hyperparameter search,
consumes up to 50 hours for the 6-layer models
and nearly 100 hours for the 12-layer variants.

A.3 GLUE Details
We provide a brief overview of each dataset within
GLUE. For additional information regarding each
data split, evaluation metric and more, see Wang
et al. (2018).

CoLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2019) comprises English accept-
ability judgments sourced from books and journal
articles on linguistic theory.

SST-2 The Stanford Sentiment Treebank (Socher
et al., 2013) includes sentences extracted from
movie reviews, along with human annotations of
their binary sentiment.

MRPC The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) consists of sen-
tence pairs automatically extracted from online
news sources, with human annotations indicating
whether the sentences are semantically equivalent.

QQP The Quora Question Pairs dataset is a com-
pilation of question pairs from the community
question-answering website. The objective is to
determine whether a pair of questions are semanti-
cally equivalent.

STS-B The Semantic Textual Similarity Bench-
mark (Cer et al., 2017) contains sentence pairs with
a human annotated similarity score ranging from 1
to 5.

MNLI The Multi-Genre Natural Language In-
ference Corpus (Williams et al., 2018) is a crowd-
sourced collection of sentence pairs with textual
entailment annotations. The task involves predict-
ing whether a premise sentence entails, contradicts,
or is neutral with respect to a hypothesis.

QNLI The Stanford Question Answering Dataset
(Rajpurkar et al., 2016) is a question-answering
dataset comprising question-paragraph pairs, with
the task of determining whether the context sen-
tence contains the answer to the question.

RTE The Recognizing Textual Entailment (RTE)
datasets originate from annual textual entailment
challenges. The dataset is standardized to a two-
class split, collapsing neutral and contradiction into
"not entailment" for consistency.
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