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Abstract

This paper investigates the impact of small instanton effects on the axion mass in the
composite accidental axion (CAA) models. These models are designed to address the axion
quality problem, where QCD gauge symmetry is embedded as an unbroken diagonal subgroup of
a product gauge group. These models contain small instantons not included in low-energy QCD,
which could enhance the axion mass significantly. However, in the CAA models, our analysis
reveals that these effects on the axion mass are non-vanishing but are negligible compared
to the QCD effects. This highlights the important role of anomalous but non-spontaneously
broken U(1) symmetries in restricting the impact of small instantons on the axion mass. Our
study provides crucial insights into the dynamics within CAA models and suggests broader
implications for understanding small instanton effects in other composite axion models.
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1 Introduction

The Peccei-Quinn (PQ) mechanism is the most prominent solution to the strong CP problem [1–4].
In this mechanism, a global U(1) symmetry called PQ symmetry, plays a crucial role. This symmetry
is an exact symmetry, except for the axial anomaly of QCD. With the spontaneous PQ symmetry
breaking, the effective θ–angle of QCD is cancelled by the vacuum expectation value (VEV) of the
axion, so that the strong CP problem is solved.

However, the assumption of such a convenient global symmetry seems to be weakly grounded.
By its definition, the PQ symmetry is an inexact symmetry due to the anomaly. It is also argued
that all global symmetries are broken by quantum gravity effects [5–10]. These arguments suggest
that the presence of (higher-dimensional) operators that violate the PQ symmetry cannot generally
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be ruled out. When such operators are present, the resultant effective θ–angle easily exceeds the
experimental constraints, and spoils the PQ mechanism [10–12]. This issue is known as the axion
quality problem.

The axion quality problem has motivated various extensions of axion models, so that a PQ
symmetry emerges as an almost exact symmetry. For instance, the accidental PQ symmetry can be
achieved by certain (discrete) gauge symmetries, as detailed in Refs. [12–23]. Alternatively, a high-
quality PQ symmetry may arise from an extra-dimensional setup [24–30]. Models with high-quality
accidental PQ symmetry have been also explored, where the axion appears as a composite state
resulting from new strong dynamics, called axicolor dynamics [31–38].

In many of those extensions, SU(3)QCD is often embedded in a larger gauge group. In such cases,
the models have instanton configurations which do not appear in the low-energy QCD. As pointed
out in Ref. [39], those small instantons can induce a sizable effects on the axion mass compared with
the QCD effects. The small instanton effects are currently subjects of intense interest and debate in
the field [40–43].

In this paper, we discuss small instanton effects on the axion mass in composite axion models
with high-quality PQ symmetry. In particular, we mainly discuss composite accidental axion (CAA)
models proposed by Redi and Sato [34], in which SU(3)QCD appears as an unbroken diagonal sub-
group of the product gauge group due to the axicolor dynamics. Since the axion couples to the small
instantons which do not appear in low-energy QCD, it is important to evaluate the effects of those
instantons on the axion mass.

As we will see, those small instantons do contribute to the axion mass, in addition to the QCD
contributions. We will also find, however, that those contributions are negligibly small compared
with the QCD contributions. To derive these conclusions, accidental chiral U(1) symmetries other
than U(1)PQ symmetry play a crucial role.

The organization of this paper is as follows. In Sec. 2, we briefly review the small instanton effects
on the axion potential, in a simple model without fermions. In Sec. 3, we review the composite axion
model in Refs. [44, 45] and the simplest CAA model. In Sec. 4, we discuss small instanton effects
in a perturbative toy model mimicking the CAA model. In Sec. 5, we discuss the small instanton
effects in the CAA model. In Sec. 6, we also discuss other composite axion models. The final section
is devoted to our conclusions.

2 Small Instanton Effects on Axion Mass without Fermion

In the CAA models, the accidental PQ symmetry is spontaneously broken due to the axicolor
dynamics. This dynamics also breaks a product gauge group, resulting in SU(3)QCD emerging as an
unbroken diagonal subgroup. In this section, we review a model where small instantons not included
in low-energy QCD enhance the axion mass significantly [39, 40].

2.1 Constrained Instanton

We consider a model where the small instantons which are not included in the low-energy QCD
reside in a broken part of the product gauge group. Instanton configurations in the broken phase
are called constrained instanton [46]. The essential points of the constrained instantons can be
understood by considering a spontaneously broken SU(2) gauge theory as an example.

2



Following Ref. [47], we assume SU(2) gauge symmetry is broken by the VEV of an SU(2) doublet
scalar field H. The Euclidean Lagrangian of this system is given by,1

LE =
1

2g2
Tr(FµνFµν) + (DµH)†(DµH) +

λ

4
(H†H − v2)2 , (2.1)

where the field strength and the covariant derivatives are defined by

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] ,

Dµ = ∂µ − iAµ .

See Appendix A for notations of Euclidean space. Here, g is the SU(2) gauge coupling, λ > 0 is the
quartic coupling, v > 0 is a mass dimensionful parameter, and Aµ = Aaµτ

a/2 (a = 1, 2, 3) with τa

being the Pauli matrices. At the vacuum, H obtains a VEV,

⟨H⟩ =

(
0

v

)
, (2.2)

which breaks SU(2) completely. The physical scalar boson mass is given by mH =
√
λv and the

gauge boson mass is given by mA = gv/
√
2.

For v = 0, i.e., in the unbroken phase, instanton configurations are local minima of the Euclidean
action, which are labeled by winding number w. An instanton configuration with w = 1 is given by,

Aµ =
2ρ2xν

x2(x2 + ρ2)
τ̄µν , H = 0 , (2.3)

where ρ is the instanton size and τ̄µν is defined in Eq. (A.9). In the semi-classical approximation, an
instanton configuration contributes to the path integral, which is suppressed by a factor e−SE with
SE = 8π2/g2, which is independent of the size ρ.

In the broken phase, where v ̸= 0, no instanton solutions exist in the strict sense as local minima
of the Euclidean action. As discussed in Ref. [46], an instanton-like configuration, whose size is
much smaller than the inverse of the symmetry breaking scale v−1, contributes to the semi-classical
approximation of the path integral, similar to the instantons in the unbroken phase. An instanton-
like configuration with a fixed size is called constrained instanton.

The constrained instanton solution looks like instanton for x ≪ m−1
A,H while decaying exponen-

tially at x≫ m−1
A,H . At x≪ m−1

A,H , the solution behaves as

Ainst
µ =

2ρ2

x2(x2 + ρ2)
τ̄µνxν +O

(
(ρmA,H)

2
)
, (2.4)

H inst =

(
x2

x2 + ρ2

)1/2
(
0

v

)
+O

(
(ρmA,H)

2
)
. (2.5)

Note that H has a nontrivial profile and SU(2) symmetry is restored at the origin. Similarly, we
also obtain constrained anti-instanton solution by replacing τ̄µν with τµν .

1We take the Euclidean metric to be gµν = (+,+,+,+)
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By substituting the constrained (anti-)instanton into the Euclidean action, we obtain,

SE(ρ) =
8π2

g2
+

4π2ρ2m2
A

g2
+

1

g2
O
(
ρ4m4

A,H

)
, (2.6)

where the second term comes from the kinetic term of the scalar field, |DµH|2. Thus, for a sufficiently
small constrained instanton i.e., ρmA,H ≪ 1, it can play an important role in the semi-classical
approximation as the (anti-)instanton configuration in the unbroken phase.

In this section, we have focused on an SU(2) gauge theory as a simple example. The insights
gained about constrained instantons can be applicable to models that include larger gauge groups.

2.2 Axion Mass Enhancement in Model without Fermion

To see how the small instantons affect the axion potential, let us consider a model where SU(3)1 ×
SU(3)2 is broken down to the diagonal subgroup SU(3)QCD [39]. We introduce two axions ai (i = 1, 2)
which couple to the FF̃ terms, i.e.

L =
2∑
i=1

[
− 1

2g2i
Tr(F µν

i Fiµν) +
1

16π2

(
ai
fi

+ θi

)
Tr
(
F µν
i F̃iµν

)]
. (2.7)

Here, i = 1, 2 denotes each gauge sector with the gauge coupling gi and the vacuum angle θi. The
domains of the axions are given by ai/fi = [0, 2π), with fi denoting the decay constants of the
axions. In this model, the PQ symmetries are realized as shifts of the axions, which are anomalous
with respect to each SU(3)i. In the presence of the two axions, both θ1 and θ2 can be set to zero by
the shifts of the axions.

Let us assume that SU(3)1×SU(3)2 is broken down to SU(3)QCD by the VEV of a bi-fundamental
(3, 3̄) scalar field, ϕc

c′ (c, c′ = 1, 2, 3), i.e.,

⟨ϕcc
′⟩ = vδc

c′ . (2.8)

We also assume that SU(3)1 × SU(3)2 is weakly coupled at the scale around v. Below the breaking
scale, the effective QCD coupling is given by,

1

g2QCD(v)
=

1

g21(v)
+

1

g22(v)
, (2.9)

where we take the renormalization scale µ = v. The axions couple to QCD through

L = − 1

2g2QCD

Tr(GµνGµν) +
1

16π2

(∑
i

ai
fi

)
Tr
(
GµνG̃µν

)
, (2.10)

where Gµν denotes the field strength of QCD. Through this coupling, QCD contributes to the axion
potential, which is roughly represented by the following expression:

VQCD(a1, a2) ∼ Λ4
QCD cos

(∑
i

ai
fi

)
. (2.11)
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Here, ΛQCD is the dynamical scale of QCD. The impact of quarks in the Standard Model (SM) on
the axion potential will be discussed at the end of this section.

We denote the winding numbers of SU(3)1 and SU(3)2 sectors by k1 and k2. Following Ref. [48],
we label them by (k1, k2). In the semi-classical approximation, the constrained instanton with a size
ρ contributes to the path integral whicis suppressed by e−SE with the action,

SEi(ρ) =
8π2

g2i (ρ
−1)

+O
(
4π2ρ2v2

)
, (2.12)

where we consider either (1, 0) or (0, 1) instantons. Here, we have taken the renormalization scale
of the gauge couplings to be the inverse of the small instanton size, µ = ρ−1 [49].

In this simple model, the small constrained instantons generate additional axion potentials, which
are dominated by the contributions from those with ρ ∼ v−1. As a result, the total axion potential
amounts to

V (a1, a2) ∼ Λ4
QCD cos

(∑
i

ai
fi

)
+ v4

∑
i

e
− 8π2

g2
i
(v) cos

(
ai
fi

)
. (2.13)

Since the dynamical scale of QCD is related to the symmetry breaking scale via

ΛQCD = ve
− 1

bQCD

8π2

g2
QCD

(v) , (2.14)

the axion potential can be rewritten as

V (a1, a2) ∼ v4e
− 4

bQCD

8π2

g2
QCD

(v) cos

(∑
i

ai
fi

)
+ v4

∑
i

e
− 8π2

g2
i
(v) cos

(
ai
fi

)
. (2.15)

Here, bQCD is the coefficient of the one-loop β-function of the QCD gauge coupling.
Notably, the additional contributions from the small instantons lead to an increase in the axion

mass. For example, when g1 = g2, we find

g21(v) = g22(v) = 2g2QCD(v) , (2.16)

and hence, the additional contributions become comparable to the QCD contribution. If we extend
the gauge group from SU(3)1 × SU(3)2 to [SU(3)]ns (ns ≫ 1), where SU(3)QCD appears as the
diagonal subgroup of [SU(3)]ns , the gauge coupling constant at each sector can be as large as g2i (v) ∼
nsg

2
QCD(v). In such cases, further enhancement of the axion mass is possible [39].
In this discussion, we have neglected the effects of SM quarks for simplicity. Around (constrained)

instantons of both QCD and the broken part, SM quarks exhibit zero modes. Consequently, instanton
effects are suppressed by Yukawa coupling constants of SM quarks. Despite these suppressions,
however, small instanton effects can still lead to the enhancement of the axion mass, especially in
the cases where ns ≫ 1 [39, 40].

3 Model of Composite Accidental Axion

In this section, we review the composite axion model in Refs. [44, 45] and the simplest CAA model in
Ref. [34]. A key difference of this model from the example in Sec. 2.2 is the presence of new fermions.
As we will see in Secs. 4 and 5, chiral symmetries of the new fermions reduce the small constrained
instanton effects on the axion mass.
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SU(3)

SU(N)

SU(N)

SU(4)

SU(4)

SU(N)

SU(N)

SU(4)SM quarks

Figure 1: The moose diagram of the SU(3) × [SU(N)]ns × [SU(4)]ns−1 composite accidental axion
model. The arrow denotes the fundamental representation fermion and the arrow the anti-
fundamental representation of the left-handed . We show tables of the model for ns = 2 and 3 in
Tabs. 1 and 2, respectively.

3.1 Composite Axion Model

In the original composite axion model proposed in Refs. [44, 45], a new SU(N) confining gauge
interaction called axicolor is introduced. This model has left-handed Weyl fermions charged under
SU(N) and SU(3)QCD as,

(N,3)1 ⊕ (N,3)1 ⊕ (N,1)−3 ⊕ (N,1)−3 . (3.1)

Here, the subscripts indicate the charges under the U(1)PQ symmetry, which is imposed by hand.
In the limit of vanishing QCD coupling, this model exhibits a chiral flavor symmetry of SU(4)L ×
SU(4)R×U(1)V .

2 Within this framework, SU(3)QCD is embedded in the vector-like subgroup, i.e.,
SU(3)QCD ⊂ SU(4)V ⊂ SU(4)L × SU(4)R. The U(1)PQ symmetry is identified as an axial subgroup
of SU(4)L × SU(4)R, and is therefore anomaly-free with respect to SU(N). Note that U(1)PQ is, on
the other hand, anomalous with respect to SU(3)QCD.

At the dynamical scale of SU(N), Λ, the confinement occurs and the (approximate) chiral flavor
symmetry is spontaneously broken, i.e., SU(4)L×SU(4)R → SU(4)V , which includes the spontaneous
breaking of U(1)PQ. The corresponding 15 Goldstone modes including the axion are decomposed in
terms of SU(3)QCD representations as,

15 = 8⊕ 3⊕ 3̄⊕ 1 . (3.2)

The color singlet Goldstone boson corresponds to the QCD axion. The colored Goldstone modes
obtain masses of O(gQCDΛ) from the QCD radiative corrections. The key aspect of the composite
axion model is the embedding of QCD and U(1)PQ into the SU(4)L × SU(4)R flavor symmetry in
axicolor dynamics.

In the original composite axion model, the U(1)PQ symmetry is imposed by hand, and therefore,
the model cannot address the axion quality problem. In the following section, we will discuss an
extension of the composite axion model proposed in Ref. [34], where the U(1)PQ symmetry emerges
accidentally.

2The flavor symmetry of N fermions is denoted by SU(4)L and that of N by SU(4)R.
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SU(3)w SU(N)S1 SU(4)w SU(N)S2 U(1)
(SSB)
PQ U(1)1 U(1)B U(1)′B

ψcA2
3 1 1 N 1 1 1 1

ψA2 1 1 1 N −3 1 −3 1

ψA1
c 3 N 1 1 1 1 −1 −1

ψA1 1 N 1 1 −3 1 3 −1

ψpA1
1 N 4 1 0 −1 0 1

ψA2
p 1 1 4 N 0 −1 0 −1

Table 1: The minimal model of the CAA with ns = 2. The subscript “S” denotes the strong
coupling while “w” denotes the weak coupling. The indices A1 and A2 of the left-handed Weyl
fermions ψ’s are for the representations under SU(N)S1 and SU(N)S2. The indices c and p are for
the representations under SU(3)w and SU(4)w. The U(1)PQ symmetry is anomalous with respect to
SU(3)w, and the U(1)1 symmetry is anomalous with respect to SU(3)w × SU(4)w. The global U(1)B
and U(1)′B symmetries are anomaly-free with respect to all the gauge groups. Blue and red columns
highlight weakly and strongly coupled gauge interactions. The green columns highlight anomalous
U(1) symmetries with respect to weakly coupled gauge groups.

3.2 SU(3) × SU(N)ns × SU(4)ns−1 Model

Gauge Group and Matter Content

In the composite accidental axion (CAA) model in Ref. [34], the axicolor is extended to a product
group, SU(N) → [SU(N)]ns (ns ≥ 2). Each SU(N) gauge sector (labeled as SU(N)Si (i = 1, · · · , ns))
consists of four pairs of fundamental and antifundamental left-handed Weyl fermions. The maximal
flavor symmetry of each sector is SU(4)L × SU(4)R× U(1)V as in the case of the original composite
axion model. The subgroups of the flavor symmetries are weakly gauged so that the model possess
[SU(N)]ns × [SU(4)]ns−1 × SU(3) gauge symmetry. The moose diagram of the model is given in
Fig. 1.

Each of ns weakly gauged symmetries corresponds to the diagonal subgroup of the product of the
SU(4)L flavor symmetry in the SU(N)Si sector and the SU(4)R flavor symmetry in the SU(N)S(i+1)

sector, respectively. Among those ns weakly coupled gauge symmetries, ns − 1 of them are gauged
as SU(4) symmetries and the other one is gauged as SU(3) symmetry. Altogether, the model has
[SU(N)]ns × [SU(4)]ns−1×SU(3) gauge symmetry. Due to the axicolor dynamics, the weakly gauged
symmetry, [SU(4)]ns−1 × SU(3), is spontaneously broken down to the diagonal subgroup which is
identified with SU(3)QCD.

To illustrate how the model works, let us consider the simplest setup of the model with ns = 2.
The left-handed Weyl fermions in this example are listed in Tab. 1. In the table, “w” denotes the
weak coupling. The gauge couplings of the two strong gauge symmetry are given by gS1, gS2, while
those of weak SU(3)w and SU(4)w are given by g3 and g4, respectively. Note that SM quarks are
charged under SU(3)w gauge symmetry which are not shown in Tab. 1.

In the limit of vanishing weak gauge couplings, g3, g4 → 0, the global symmetry is enhanced
to the maximal symmetry SU(4)L × SU(4)R × U(1)V in each SU(N) gauge sector. Hereafter, we
call them SU(4)Li × SU(4)Ri × U(1)V i (i = 1, 2), respectively. For g3 ̸= 0 and g4 ̸= 0, the flavor

7



SU(3)w SU(N)S1 SU(4)w1 SU(N)S2 SU(4)w2 SU(N)S3 U(1)
(SSB)
PQ U(1)1 U(1)B U(1)′B U(1)2

ψc
A3

3 1 1 1 1 N 1 1 1 1 0

ψA3
1 1 1 1 1 N −3 1 −3 1 0

ψA1
c 3 N 1 1 1 1 1 1 −1 −1 0

ψA1 1 N 1 1 1 1 −3 1 3 −1 0

ψp1
A1

1 N 4 1 1 1 0 −1 0 1 0

ψA2
p1 1 1 4 N 1 1 0 0 0 −1 −1

ψp2
A2

1 1 1 N 4 1 0 0 0 1 1

ψA3
p2 1 1 1 1 4 N 0 −1 0 −1 0

Table 2: The CAA model with ns = 3. This model possesses an extra U(1) symmetry U(1)2, in
addition to those in the model with ns = 2. Since U(1)2 is anomalous only with respect to SU(4)w2

and not broken spontaneously, it can be used to cancel the θ–angle of SU(4)w2. Meanings of the
colors are the same with those in Tab. 1.

symmetries are reduced to four U(1) symmetries. Two of them are U(1)V 1 and U(1)V 2. In the
Tab. 1, we rearranged U(1)V 1 and U(1)V 2 into U(1)1 and U(1)′B, where U(1)1 is anomalous with
respect to SU(3)w × SU(4)w, while U(1)′B is free from anomaly. The other two are the vector/axial
combinations of U(1) symmetries in the SU(4)L2 × SU(4)R1 flavor symmetry which commute with
SU(3)w. The axial combination is anomalous with respect to SU(3)w and is identified with U(1)PQ.
The vector combination U(1)B is anomaly-free.

Note that all the U(1) symmetries are realized as accidental ones at the renormalizable level.
Mass terms are also prohibited by the same reason.3 Let us also comment on the θ–angles of each
gauge groups denoted by θS1, θS2, θw3 and θw4. As for θS1 and θS2, they can be set to zero by two
global U(1) rotations which are anomalous with respect SU(N)S1 and SU(N)S2. The angles θw3 and
θw4 can be set to zero by using U(1)PQ and U(1)1 rotations. Therefore, the θ–angles in this model
do not spoil the axion mechanism. These arguments can be easily extended for ns > 2. For example
we show the model contents for ns = 3 in Tab. 2.

Chiral Flavor Symmetry Breaking and Composite Axion

The dynamics of the CAA model is as follows. We assume that the strong gauge interactions of
SU(N)Si (i = 1, 2) exhibit confinement and chiral condensations at dynamical scales Λi. The VEVs
of fermion bilinears are assumed to be

⟨ψpA1
ψA1
p̃ ⟩ ∼ Λ3

1 δ
p
p̃ ,

⟨ψp̃A2
ψA2
p ⟩ ∼ Λ3

2 δ
p̃
p , (3.3)

where SU(3)w–colored ψcA2
and SU(3)w–singlet ψA2 are grouped together as ψp̃A2

= (ψcA2
, ψA2) and

ψA1
c , ψA1 are also grouped together as ψA1

p̃ = (ψA1
c , ψA1). Hereafter, we take Λ1 = Λ2 = Λ for

simplicity. The condensations in Eq. (3.3) spontaneously break SU(3)w × SU(4)w into SU(3) which
is identified with SU(3)QCD. The condensations also break U(1)PQ spontaneously, while the other

3We can also consider a more generic weakly coupled gauge group SU(3)w× [SU(m)w]
ns−1

. To forbid PQ-breaking
mass terms of the fermions, we need m ≥ 4.
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U(1) symmetries in Tab. 1 are not broken spontaneously by the condensations.4

As a result, the axion associated with U(1)PQ breaking appears as a composite state,

ψpA1
ψA1
c ∼ Λ3 δpc e

i a
Fa , ψpA1

ψA1 ∼ Λ3 δp4e
−3i a

Fa ,

ψcA2
ψA2
p ∼ Λ3 δcp e

i a
Fa , ψA2ψ

A2
p ∼ Λ3δ4p e

−3i a
Fa . (3.4)

The domain of the axion is given by a/Fa ∈ [0, 2π) with Fa being the axion decay constant of O(Λ).
The U(1)PQ symmetry is anomalous under QCD, and hence, a plays a role of the QCD axion.

Let us comment on the other Goldstone bosons associated with the chiral symmetry breaking,
SU(4)Li×SU(4)Ri → SU(4)V i (i = 1, 2). In the limit of g3, g4 → 0, there are 2×15 goldstone modes.
The 15 modes of them are absorbed by the Higgs mechanism associated with the spontaneous gauge
symmetry breaking, SU(3)w × SU(4)w → SU(3)QCD. The other 15 modes including the axion are
massless at the tree-level. Except for the axion, they obtain masses due to the radiative corrections
from SU(3)w × SU(4)w gauge interactions, as in the case of the original composite axion model (see
Eq. (3.2)). As a result, all the composite states made by the axicolor dynamics obtain large masses
of O(Λ), except for the axion.

Axion Quality Problem

The advantage of the CAA model is that the PQ symmetry appears as an accidental symmetry at the
renormalizable level. This accidental symmetry is, however, explicitly broken by non-renormalizable
interactions. For ns = 2, the lowest-dimensional operators which violate the PQ symmetry are

L��PQ ∼ κ

M2
Pl

ψA1
c ψpA1

ψA2
p ψcA2

+ h.c. , (3.5)

whereMPl denotes the reduced Planck scale and κ is a numerical coefficient. This should be compared
with the original composite axion model, where the mass terms of the fermions, which are allowed
by any gauge symmetry can break the PQ symmetry explicitly.

The above argument can be extended straightforwardly for ns ≥ 3, where the lowest dimensional
PQ symmetry breaking operators are

L��PQ ∼ κ

M3ns−4
Pl

ψA1
c ψp1A1

· · ·ψAns
pns−1

ψcAns
+ h.c. . (3.6)

These PQ breaking terms result in an additional axion potential

V��PQ ∼ |κ| Λ3ns

M3ns−4
Pl

e2ia/Fa+arg(κ) + h.c , (3.7)

where we have assumed that the dynamical scales of all the strong SU(N) sectors are comparable
and of O(Λ), for simplicity. As a result, the VEV of the axion is shifted from zero to〈

a

Fa

〉
∼ |κ|

(
Λ

MPl

)3ns
(
MPl

ΛQCD

)4

arg(κ) (3.8)

4As for U(1)B , a linear combination of U(1)B and a subgroup of SU(4)w generated by the diag(1, 1, 1,−3) remains
unbroken.
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where we have used a rough estimate of the low-energy QCD contribution, V ∼ Λ4
QCD cos(2Na/Fa).

The axion quality problem is solved for ns ≥ 4, where the shift of the QCD θ–angle is well below the
current constraints for Λ ∼ 1010GeV. There are other possible PQ breaking operators which consist
of baryonic composite operators of SU(N). Contributions from these operators are suppressed for
sufficiently large N .

4 Small Instanton Effects vs Chiral Symmetry

The CAA model in the previous section involves multiple broken gauge symmetries, and hence,
constrained instantons potentially enhance the axion mass as we have seen in Sec. 2.2. In the CAA
model, however, there are new fermions. In general, chiral symmetries of the fermions coupling to
the axion have significant impacts on the axion mass.

In this section, we discuss the effect of chiral symmetries of the new fermions on the axion mass
by considering a perturbative example which has the same breaking pattern of the weakly coupled
gauge symmetries as well as the same chiral symmetries with the CAA model. We will discuss the
axion mass in the CAA model in Sec. 5.

4.1 Toy Example: SU(3)w × SU(4)w Model

In the CAA model, the spontaneous breaking of the product gauge group, SU(3)w × [SU(4)w]
ns−1

is caused by the strong dynamics. Here, instead, we consider a model with gauge group SU(3)w ×
SU(4)w which is broken by condensations of complex scalar fields

Φp̃
p (3⊕ 1, 4̄) , Φ̄p̃

p (3̄⊕ 1,4) , (4.1)

with the SU(3)w×SU(4)w representations in the parentheses. Here, p denotes an index of the SU(4)w
fundamental representation, and p̃ runs the SU(3)w color (p̃ = c = 1, 2, 3) and the SU(3)w singlet
(p̃ = 4). This model mimics the CAA model with ns = 2, by assuming that the VEVs of the scalars
are given by,

⟨Φp̃
p⟩ = vδp̃

p , ⟨Φ̄p̃
p⟩ = vδp̃p . (4.2)

These VEVs break SU(3)w × SU(4)w into the diagonal subgroup SU(3) as in the case of the CAA
model. The unbroken subgroup is identified with SU(3)QCD.

In this toy model, we restrict the scalar potential and its coupling to the fermions as

V = −m2Φ†Φ + λ(Φ†Φ)2 + ξ detΦ + (Φ → Φ̄)− κ|ΦΦ̄|2 , (4.3)

Lint = −yΦψ̄1Φψ2 − yΦ̄ψ̄2Φ̄ψ1 + h.c. , (4.4)

where λ, ξ, κΦ and yΦ,Φ̄ are coupling constants, and the mass parameter is m2 = O(v2). We take
all the parameters real positive valued. All the global U(1) symmetries of the toy model are listed
in Tab. 3, which are the same with those in the CAA model in Tab. 1. Note that, unlike the CAA
model, these symmetries are imposed by hand in Eqs. (4.3) and (4.4).

As in the case of the CAA model, the U(1)PQ symmetry and the weakly coupled SU(3)w×SU(4)w
symmetries are spontaneously broken by the VEVs in Eq. (4.2) simultaneously. The corresponding
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SU(3)w SU(4)w U(1)
(SSB)
PQ U(1)1 U(1)B U(1)′B

Φp̃
p 3⊕ 1 4 (−1, 3) 0 (−1, 3) 0

Φ̄p̃
p 3⊕ 1 4 (−1, 3) 0 (1,−3) 0

ψ̄p̃1 3⊕ 1 1 (1,−3) 1 (1,−3) 1

ψ1p̃ 3⊕ 1 1 (1,−3) 1 (−1, 3) −1

ψ̄p2 1 4 0 −1 0 1

ψ2p 1 4 0 −1 0 −1

Table 3: The toy model which mimics the CAA model with ns = 2, where the gauge symmetry is
broken by the VEVs of the scalar fields, Φ and Φ̄. Meanings of colors are similar to those in the
CAA model.

axion appears in the phases,

Φc
p = v δc

p e−i
a
Fa , Φ4

p = v δ4
p e3i

a
Fa ,

Φ̄c
p = v δcp e

−i a
Fa , Φ̄4

p = v δ4p e
3i a

Fa . (4.5)

The axion decay constant is Fa = O(v). As in the case of the CAA model, U(1) symmetries remain
unbroken except for U(1)PQ.

Note that there is no additional Goldstone mode other than the axion and the would-be Goldstone
modes associated with the gauge symmetry breaking, SU(3)w×SU(4)w → SU(3)QCD. Note also that
all the fermions obtain masses of O(v) through the Yukawa interactions and the VEVs in Eq. (4.2).
As a result, this toy example leaves only the axion as a light particle as in the CAA model.

In the following discussion, we will neglect the effects of SM quarks to the axion potential. As
we will see later, those effects are irrelevant when comparing the QCD instanton contributions with
those from the small instantons.

4.2 Suppression of Instanton Effects by Anomalous Symmetry

Let us examine the impact of anomalous chiral symmetries on the axion mass within the SU(3)w ×
SU(4)w toy model. The axion mass can be obtained from the vacuum amplitude with a constant
axion background field a,

W (a)|m,n =

∫
Dψ̄†

1Dψ̄1Dψ†
1Dψ1Dψ̄†

2Dψ̄2Dψ†
2Dψ2 e

−SE[ψ,a] . (4.6)

Here m and n represent the winding numbers of SU(3)w and SU(4)w gauge field backgrounds,
respectively. See Appendix A for notations of fermions in Euclidean space. The axion dependence
of SE[ψ, a] appears through

Lint =− yΦve
−i a

Fa ψ̄1ψ2|colored − yΦve
3i a

Fa ψ̄1ψ2|singlet
− yΦ̄ve

−i a
Fa ψ̄2ψ1|colored − yΦ̄ve

3i a
Fa ψ̄2ψ1|singlet . (4.7)
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In the broken phase, the U(1)PQ transformation is realized by the phase rotations of ψ1’s,

ψ1c → ψ′
1c = eiαPQψ1c , ψ14 → ψ′

14 = e−3iαPQψ14 , (4.8)

ψ̄c1 → ψ̄c′1 = eiαPQψ̄c1 , ψ̄4
1 → ψ̄4′

1 = e−3iαPQψ̄4
1 , (4.9)

and a shift of the axion,
a

Fa
→ a

Fa
+ αPQ , (4.10)

which leaves SE[ψ, a] invariant. By using the U(1)PQ transformation, we find that the vacuum
amplitude satisfies,

W (a+ αPQFa)|m,n = e2miαPQW (a)|m,n , (4.11)

where the phase factor appears due to the anomaly of U(1)PQ with respect to SU(3)w. This confirms
that the non-vanishing axion potential requires m ̸= 0.

However, this is not the end of the story. In this toy model, as well as in the CAA model, there
exists another anomalous symmetry, U(1)1, which does not undergo spontaneous breaking. The
U(1)1 transformation is realized as

ψ1p̃ → ψ′
1p̃ = eiαψ1p̃ , ψ̄p̃1 → ψ̄p̃′1 = eiαψ̄p̃1 , (4.12)

ψ2p → ψ′
2p = e−iαψ2p , ψ̄p2 → ψ̄p′2 = e−iαψ̄p2 , (4.13)

while the axion is not shifted. By using the U(1)1 transformation, we find that the vacuum amplitude
satisfies,

W (a)|m,n = e2iα(m−n)W (a)|m,n . (4.14)

The phase factors appear from the U(1)1 anomalies with respect to SU(3)w × SU(4)w. As a result,
we find that W (a)|m,n is vanishing unless m = n. That is, small instantons do not contribute to
the axion mass, unless the winding numbers of SU(3)w and SU(4)w are identical. Notice that this
argument does not contradict with the non-vanishing axion potential from the QCD instantons in
this model, since the QCD instantons have the winding number satisfying m = n.

It is instructive to note that the above discussion also stems from an ambiguity of the U(1)PQ
symmetry. For example, we may redefine the PQ charge assignment from that in Tab. 3 to

Q′
U(1)PQ

= QU(1)PQ
+ xQU(1)1 , (4.15)

with an arbitrary factor x. In this case, Eq. (4.11) becomes,

W (a+ αPQFa)|m,n = e2miαPQ+2x(m−n)iαPQW (a) , (4.16)

which is free from the ambiguity and can be non-vanishing, only for m = n.

4.3 Fermion Zero Modes and ’t Hooft Operator

As we have seen, small instantons can contribute to the axion mass only when the winding numbers
of the SU(3)w and SU(4)w backgrounds coincide. In the following, we estimate the axion mass from
small instantons satisfying this condition.
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To determine the non-vanishing effects of the instanton background, we must take into account
the fermion zero modes around the instantons. In general, the Dirac operator /D has normalizable
zero modes in the instanton background. In the case of the constrained instanton in the broken
phase, it is notable that massive fermions also have normalized zero modes when they obtain masses
from the gauge symmetry breaking field Φ [47]. More closely, the kinetic operators of those massive
fermions are given by,

i /D − yΦ(x) , (4.17)

which have zero modes around the constrained instanton in the broken phase (see Appendix B). In
the present toy model, there are zero modes in the fermions ψ’s around the constrained instanton
associated with SU(3)w × SU(4)w → SU(3)QCD, even though they become massive in the vacuum.

’t Hooft Operator

To account for the effects of the fermion zero modes, it is useful to introduce the ’t Hooft operator [49,
50]. For example, let us consider an SU(Nc) gauge theory with Nf pairs of left-handed Weyl fermions
of the fundamental (ψL) and the antifundamental representations (ψ̄R). In the following, we omit
the index of the flavor. Around an instanton, ψ†

L and ψ̄†
R have normalizable zero modes. The effects

of the path-integration over fermion zero modes can be captured by the insertion of a local operator
at the position of the instanton. Such operator is called as ’t Hooft operator, det

Nf

(
ψLψ̄R

)
. That is,

we approximate the instanton effects by,∫
Dψ†Dψ exp

[
−
∫
d4x
(
ψ̄Ri /D

inst
E ψ̄†

R + ψ†
Li /̄D

inst

E ψL

)]
(4.18)

→
∫

Dψ†Dψ
[
det
Nf

(
ψLψ̄R

)
exp

[
−
∫
d4x
(
ψ̄Ri /DEψ̄

†
R + ψ†

Li /̄DEψL

)]]
, (4.19)

where Dinst
µ and Dµ are the covariant derivatives with/without the instanton background (see Ap-

pendix A). The determinant is taken over the Nf flavors, and the gauge and spinor indices of the
fermions are contracted appropriately as in Ref. [49, 50]. Similarly, the anti-instanton contribution

is proportional to det
Nf

(
ψ†
Lψ̄

†
R

)
.

The ’t Hooft operators are accompanied by the instanton factor and by the integration over sizes,
that is [40],

C
∫
dρ

ρ5
ρ3Nf

(
8π2

g2

)2Nc

e−SE(ρ
−1) det

Nf

(
ψLψ̄R

)
, SE(ρ

−1) =
8π2

g2(ρ−1)
. (4.20)

Here, g represents the gauge coupling constant of SU(Nc), and we have taken the renormalization
scale to be the inverse of the small instanton size, µ = ρ−1 [49]. The coefficient C is a dimensionless
constant which depends on Nc and Nf . The ’t Hooft operator reproduces the anomaly of the chiral
U(1) symmetry in the presence of an SU(Nc) instanton.

’t Hooft Operator in SU(3)w × SU(4)w Toy Model

Let us go back to the SU(3)w × SU(4)w axion toy model. As we have already mentioned, fermions
have zero modes around SU(3)w and SU(4)w constrained instantons. Let us first discuss fermion
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zero modes more closely. The fermion kinetic terms in Euclidean space are,

(
ψ†
1 ψ̄2 ψ†

2 ψ̄1

)

−iσ̄µD(3)

µ −yΦ̄Φ̄†

−yΦ̄Φ̄ iσµD
(4)
µ

−iσ̄µD(4)
µ −yΦΦ†

−yΦΦ iσµD
(3)
µ



ψ1

ψ̄†
2

ψ2

ψ̄†
1

 , (4.21)

where D
(3)
µ and D

(4)
µ denote the SU(3)w and SU(4)w covariant derivatives, respectively. In the

following, we take yΦ = yΦ̄ = y, for simplicity.
Following the discussions in Ref. [47], of which the result is also summarized in Appendix B,

we see how fermion zero modes emerge around small instantons. Around an SU(3)w constrained
instanton with a size ρ ≪ v−1, fermions ψ̄†

1 and ψ†
1 have zero modes accompanied by small O(ρyv)

contributions of ψ2 and ψ̄2, respectively. When the instanton is at the origin, one of the zero mode
wave functions is roughly expressed as,(

ψ
†(0)
1 (x) , ψ̄

(0)
2 (x)

)
∼
(

ρ

(x2 + ρ2)3/2
,

ρyv

x2 + ρ2

)
, (4.22)

for x, ρ ≪ v−1, while they are decaying exponentially at x ≳ v−1. Around an anti-instanton, on
the other hand, fermions which have zero modes can be obtained by exchanging (ψ1, ψ2,ψ̄1, ψ̄2) and
(ψ†

1, ψ
†
2,ψ̄

†
1, ψ̄

†
2), in Eq. (4.22). For SU(4)w (anti-)instantons, zero modes are obtained by exchanging

1 ↔ 2.
The model corresponds to the case with Nf = 1 for both SU(3)w and SU(4)w sectors. Thus, the

corresponding ’t Hooft operator for the zero modes around SU(3)w instanton is(
ψ1 +O(ρyv)ψ̄†

2

)(
ψ̄1 +O(ρyv)ψ†

2

)
, (4.23)

while the ’t Hooft operator for SU(4)w instantons is(
ψ2 +O(ρyv)ψ̄†

1

)(
ψ̄2 +O(ρyv)ψ†

1

)
. (4.24)

The gauge and spinor indices are implicit, and the operators are accompanied by the integrations
over collective coordinates in Eq. (4.20). These ’t Hooft operators reproduce the anomalies of the
U(1)PQ and U(1)1 symmetries in the presence of the instantons. Notice that the differences of the

U(1)PQ charges, for example between ψ1 and ψ̄†
2 in Eq. (4.23), are compensated by those of Φ’s.

In the following, we denote the winding numbers m of SU(3)w sector and n of SU(4)w sector
together by (m,n). The ’t Hooft operators for (−1, 0) and (0,−1) instantons are obtained by
exchanging ψ’s and ψ†’s in the operators in Eqs. (4.23) and (4.24).

4.4 Non-vanishing Small Instanton Effects in SU(3)w × SU(4)w model

As we have discussed in Sec. 4.2, the small instanton effects can induce the axion potential only
when the winding numbers of SU(3)w and SU(4)w backgrounds coincide with each other. The most
relevant contributions are expected from m = n = ±1 backgrounds, and hence, let us first consider
(1, 0) and (0, 1) instantons. In this case, non-vanishing vacuum amplitude appears through diagrams
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ei
a
Fa

ei
a
Fa

Φ̄†

Φ†

ψ1

ψ̄1

ψ̄2

ψ2

O
(
v2
)

SU(3)w SU(4)w

Figure 2: Non-vanishing contributions to the vacuum amplitude. Two gray blobs denote the ’t Hooft
vertices associated with an SU(3)w and an SU(4)w instanton, respectively. The axion dependence
of the vacuum amplitude stems from the Yukawa interaction terms in Eq. (4.4). The black blob
collectively describes the connection between Φ and Φ̄ through the couplings to the gauge bosons
and the scalar potentials. In the figure, the effects of SM quarks are neglected.

in Fig. 2 where two blobs denote the ’t Hooft vertices associated with SU(3)w (i.e., (1, 0)) and SU(4)w
(i.e., (0, 1)) instantons, respectively.

The contributions from (1, 0) and (0, 1) instantons are accompanied by the integrations over the
sizes

O(1,0)(x3) =

∫
dρ3
ρ53

ρ33e
− 8π2

g23(ρ
−1
3 )ψ1(x3)ψ̄1(x3) , O(0,1)(x4) =

∫
dρ4
ρ54

ρ34e
− 8π2

g24(ρ
−1
4 )ψ2(x4)ψ̄2(x4) ,

(4.25)

respectively. Here, we omitted O(ρyv) contributions in the operators in Eqs. (4.23) and (4.24). The
coordinates x3 and x4 are the positions of the instantons. Note that the integration of these operators
over the position of the instanton is dimensionless. In the Feynman diagrams, the ultraviolet (UV)
cutoff on the momentum which goes through a ’t Hooft vertex is given by the inverse of its size, i.e.
O(ρ−1). The infrared (IR) cutoff on the loop momentum is, on the other hand, given by v, below
which the zero modes are exponentially damped. From the loop momentum integration, we find
that the vacuum amplitude is roughly given by,

W (a)|m=n=1 ∼ V T ×
∫

dρ3
ρ53

dρ4
ρ54

ρ33ρ
3
4v

2e
− 8π2

g23(ρ
−1
3 ) e

− 8π2

g24(ρ
−1
4 ) e2i

a
Fa , (4.26)

where V T denotes the spacetime volume.
Now, let us consider the integrations over the instanton sizes ρ3, ρ4 ≲ v−1. To extract the

size dependence of the classical actions, we rewrite the running couplings by using the one-loop
coefficients of β-functions, b3 and b4 for SU(3)w and SU(4)w,

8π2

g2i (ρ
−1
i )

=
8π2

g2i (v)
+ bi log

1

ρiv
, (i = 3, 4) . (4.27)

By substituting these expressions, the vacuum amplitude is given by

W (a)|m=n=1 ∼ V T × v4e
− 8π2

g23(v) e
− 8π2

g24(v) e2i
a
Fa

∫ v−1

dρ3
ρ3

(ρ3v)
b3−1

∫ v−1

dρ4
ρ4

(ρ4v)
b4−1 . (4.28)
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ei
a
Fa

ei
a
Fa

ψ1 ψ̄2

ψ̄1 ψ2

yΦ̄v

yΦv

QCD

Figure 3: QCD instanton contribution to the vacuum amplitude with size of ρQCD = O(v−1). A
gray blob denotes the ’t Hooft vertex associated with QCD instanton. The axion dependence of
the vacuum amplitude stems from the Yukawa interaction terms in Eq. (4.4) with Eq. (4.5). In the
figure, the effects of SM quarks are neglected.

These integrals are dominated by the contributions from instantons with sizes ρ3, ρ4 ∼ v−1 for
b3, b4 > 1. As a result, the vacuum amplitude is reduced to,

W (a)|m=n=1 ∼ V T × v4e
− 8π2

g2
QCD

(v) e2i
a
Fa , (4.29)

for b3, b4 > 1. Here, we have used the matching condition,

1

g2QCD(v)
=

1

g23(v)
+

1

g24(v)
, (4.30)

at the symmetry breaking scale.
By adding contributions from a pair of anti-instantons, we find that the amplitude in the small

constrained instanton backgrounds for m = n = ±1 ends up with,

W (a)|m=n=1 +W (a)|m=n=−1 ∼ V T × v4e
− 8π2

g2
QCD

(v) cos

(
2a

Fa

)
. (4.31)

Since e−8π2/g2QCD(v) is small, we can use the dilute gas approximation, and we obtain the axion
potential,

V (a)|small instantons ∼ v4e
− 8π2

g2
QCD

(v) cos

(
2a

Fa

)
, (4.32)

for b3, b4 > 1.
Let us next consider the QCD (anti-)instanton effects of the similar instanton size, i.e., ρQCD ∼

v−1. Since QCD gauge group is realized as a diagonal subgroup of SU(3)w and SU(4)w, QCD (anti-
)instantons have the winding number (m,m) and automatically satisfy the non-vanishing condition
of the vacuum amplitude in Eq. (4.14). Accordingly, for ρQCD ∼ v−1, the dominant contribution
from the QCD (anti-)instanton is from m = 1, that is,

V (a)|ρQCD∼v−1 ∼ v4e
− 8π2

g2
QCD

(v) cos

(
2a

Fa

)
. (4.33)
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A diagram for a QCD instanton contributing to the axion mass is shown in Fig. 3. The axion
dependence appears from insertions of Eq. (4.5). This should be compared with Fig. 2, where we
needed a scalar loop to obtain non-vanishing contributions. The difference stems from the fact that
the ψ’s have the zero modes of the kinetic terms around the constrained instantons, while they do
not around the the QCD instantons.

The above QCD instanton effects with a size of ρQCD ∼ v−1 can be also rewritten by using ΛQCD,

V (a)|ρQCD∼v−1 ∼ Λ4
QCD

(
ΛQCD

v

)bQCD−4

cos

(
2a

Fa

)
, (4.34)

where bQCD = 7 is the coefficient of the beta function of the QCD below the symmetry breaking
scale v. Therefore, from Eqs. (4.32), (4.33) and (4.34), we find,

VQCD ≫ V (a)|ρQCD∼v−1 ∼ V (a)|small instantons , (4.35)

where VQCD ∼ Λ4
QCD cos(2a/Fa). Note that the second equality is valid for b3, b4 > 1. As a result,

we find that the small instanton effects do not enhance the axion potential unlike in Sec. 2.2.
Several comments are in order. First, the effects of the zero modes of SM quarks are common

to both the QCD instanton contributions and the constrained instanton contributions of the similar
sizes. Therefore, the conclusion in Eq (4.35) are not affected by the presence of SM quarks.

Second, in Eq. (4.26), we have neglected the O
(
ρ23,4v

2
)
contributions in the classical action for

the constrained instantons in Eq. (2.6). Since the integration over the instanton sizes is dominated
by ρ3, ρ4 ∼ v−1, the O

(
ρ23,4v

2
)
contributions become sizable. In addition, we have also neglected

the effect of overlapping of two constrained instantons. When two constrained instantons get close
comparable to their respective sizes, i.e. |x3−x4| ≲ ρ3,4, the configurations deviate from the isolated
constrained instanton configurations. Thus, we expect that those effects enhance the value of the
classical action, that is,

SE > SE3(v
−1) + SE4(v

−1) , (4.36)

where SE3,4(ρ3,4) are the classical action for the isolated constrained instanton in Eq. (2.6). Since
the vacuum amplitude is suppressed by e−SE , the larger SE results in a smaller vacuum amplitude.
Therefore, the small constrained instanton contributions estimated in this section should be regarded
as rough upper limits.

Third, in the above discussion, we have assumed b3, b4 > 1. When b3, b4 < 1, on the other hand,
the instantons with sizes much smaller than v−1 can be dominant and the estimate in Eq. (4.32)
is altered. In the CAA model, we will see that the effects from instantons much smaller than the
dynamical scale of the axicolor dynamics are more suppressed from a dynamical reason.

5 Small Instanton Effects on Composite Accidental Axion

Let us examine small instanton effects in the CAA model. Note that global symmetries and gauge
groups relevant for the discussion of the axion mass are identical between the CAA model and the
toy model in the previous section. In the following, we discuss the small instanton effects in the
CAA model by repeating the arguments in the previous section.
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5.1 Vanishing Small Instanton Effects

Let us consider the ns = 2 model. We can extend the following discussion for ns > 2 straightfor-
wardly. As in the previous section, we do not discuss the effects of the zero modes of SM quarks, since
they are common to both the QCD instanton contributions and constrained instanton contributions
of the similar instanton sizes.

The axion mass can be again obtained from the vacuum amplitude with a constant axion back-
ground field a,

W (a)|m,n =

∫ ∏
DANDψ†Dψ e−SE[ψ,AN ] , (5.1)

where m and n represent the winding numbers of SU(3)w and SU(4)w gauge field backgrounds,
respectively. Here, ψ and ψ† collectively denote the fermions, while AN are the gauge fields of the
axicolor SU(N)Si dynamics. The axion dependence of Eq. (5.1) appears through Eqs. (3.4). Note
again that the axicolor dynamics does not break the U(1)PQ symmetry, and hence, does not generate
the axion potential by itself.

Now, let us consider the U(1)1 rotation ψ → ψ′ in Tab. 1,

ψ′p̃
A2

= eiαψp̃A2
, ψ′A1

p̃ = eiαψA1
p̃ , (5.2)

ψ′p
A1

= e−iαψpA1
, ψ′A2

p = e−iαψA2
p . (5.3)

Note that the axion is not affected by the U(1)1 rotation. Under this rotation, the vacuum amplitude
changes its phase as,

W (a)|m,n =

∫ ∏
DANDψ′†Dψ′ e−SE[ψ

′,AN ]

=

∫ ∏
DANDψ†Dψ exp

[
2N

(∫
d4x

1

32π2
F3

a
µνF̃3

aµν−
∫

d4x
1

32π2
F4

a
µνF̃4

aµν
)
iα

]
e−SE[ψ,AN ]

= e2N(m−n)iαW (a)|m,n . (5.4)

Here, F3 and F4 represent the field strengths of SU(3)w and SU(4)w gauge fields, respectively, and
the second equality is the result of the chiral anomaly of U(1)1. Therefore, as in the toy model, we
find that the vacuum amplitude vanishes unless m = n.

5.2 Non-vanishing Small Instanton Effects

Let us consider the small instanton effects with m = n. In particular, we focus on the effects
from a pair of (±1, 0) and (0,±1) instantons, which provide the dominant contribution to the axion
potential.

Let us consider small constrained instantons with sizes ρ ≪ Λ−1, around which the fermions
have zero modes of the kinetic terms. The relevant ’t Hooft operators which encapsulate the effects
of the zero modes around the (1, 0) and (0, 1) instantons in the CAA model are proportional to,

O(1,0) =

∫
dρ3
ρ53

ρ3N3 e
− 8π2

g23(ρ
−1
3 ) det

A1,A2

(ψc
′

A2
ψA1
c ) , O(0,1) =

∫
dρ4
ρ54

ρ3N4 e
− 8π2

g24(ρ
−1
4 ) det

A1,A2

(ψp
′

A1
ψA2
p ) , (5.5)
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Figure 4: Non-vanishing contributions to the vacuum amplitude. Two gray blobs denote the ’t Hooft
vertices associated with an SU(3)w and an SU(4)w instanton, respectively. The black blob describes
the effective interaction term in Eq. (5.6). In the figure, the effects of SM quarks are neglected.

where ρ3, ρ4 ≪ Λ−1 (see Eq. (4.20)). The integration of these operators over the position of the
instanton is dimensionless. The determinants are taken over the axicolor indices.

In the toy model in the previous section, the ’t Hooft operators O(1,0) and O(0,1) are connected
through the Yukawa interactions with a scalar loop (see Fig. 2). In the CAA model, on the other
hand, the operators O(1,0) and O(0,1) are connected through the effective interactions such as,

Osym ∼M4−6N [(ψA1
c ψpA1

)(ψcA2
ψA2
p )]N det

A1,A2

(ψ†A2

c ψ†c
A1
) det
A1,A2

(ψ†A1

p ψ†p
A2
) + h.c. , (5.6)

which are generated by the axicolor strong dynamics. Here, M denotes the Wilsonian cutoff scale
for the effective operator. Let us emphasize that the operators generated by the axicolor dynamics
do not violate the U(1)PQ and U(1)1 symmetries, since those U(1) symmetries are anomaly-free with
respect to SU(N)Si.

With the operator Osym, the fermion zero modes in O(1,0) and O(0,1) are closed up as shown in
Fig. 4. The axion dependence appears by inserting Eqs. (3.4) to Eq. (5.6). To estimate the vacuum
amplitude, let us assume that the integration over the loop momenta ℓ’s in Fig. 4 is dominated by
ℓ ∼ ℓdom, where ℓdom is in between Λ ≲ ℓdom ≲ ρ−1

3,4. In this case, we can crudely estimate the vacuum
amplitude by substituting

M4−6N ∼ ℓ4−6N
dom , (5.7)

[(ψA1
c ψpA1

)(ψcA2
ψA2
p )]N ∼ Λ6Ne2Ni

a
Fa , (5.8)

which results in

W (a)|m=n=1 ∼ V T ×
∫ Λ−1

dρ3
ρ53

ρ3N3 e
− 8π2

g23(ρ
−1
3 )

∫ Λ−1

dρ4
ρ54

ρ3N4 e
− 8π2

g24(ρ
−1
4 ) × ℓ−4

dom × Λ6Ne2Ni
a
Fa . (5.9)

By noting ℓ−1
dom ≲ Λ−1, we find that the size of the vacuum amplitude from the small instanton

contributions is limited as,∣∣∣W (a)|m=n=1

∣∣∣ ≲ V T ×
∫ Λ−1

dρ3
ρ53

ρ3N3 e
− 8π2

g23(ρ
−1
3 )

∫ Λ−1

dρ4
ρ54

ρ3N4 e
− 8π2

g24(ρ
−1
4 ) × Λ6N−4

∼ V T × Λ4e
− 8π2

g23(Λ) e
− 8π2

g24(Λ)

∫ Λ−1

dρ3
ρ3

(ρ3Λ)
b3+3N−4

∫ Λ−1

dρ4
ρ4

(ρ4Λ)
b4+3N−4. (5.10)

Here, we have used the running gauge coupling constants in Eq. (4.27) to obtain the final expression.
The IR cutoff of the integration over ρ3,4 is of O(Λ−1).
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From this expression, we find that the integration over the instanton sizes is dominated by the
IR contribution, i.e., ρ3,4 ≃ Λ−1, for

b3,4 > 4− 3N . (5.11)

As the β-function coefficients in the CAA model are given by,

b3 = bQCD − 2

3
N = 7− 2

3
N , (5.12)

b4 =
44

3
− 2

3
N , (5.13)

the condition (5.11) is satisfied for both SU(3)w and SU(4)w with N > 0. Therefore, in the CAA
model, the crude upper limit on the vacuum amplitude from the small constrained instanton effects
is given by, ∣∣∣W (a)|m=n=1

∣∣∣ ≲ V T × Λ4e
− 8π2

g23(Λ) e
− 8π2

g24(Λ) . (5.14)

Accordingly, the axion potential from the small instanton effects is at most,

V (a)|small instantons ∼ Λ4e
− 8π2

g2
QCD

(Λ) cos

(
2Na

Fa

)
. (5.15)

Here, we have used the matching condition of Eq. (4.30) at Λ. Therefore, as in the case of the
toy model, we find that the small constrained instanton effects do not enhance the axion potential
compared with the QCD contributions.

Several comments are in order. First, in Eq. (5.9), we have used Eq. (5.8) regardless of the size
of the dominant loop momentum ℓdom. This substitution overestimates the size of the vacuum
amplitudes if ℓdom ≫ Λ, since the condensation of the fermion bilinears disappear at the scale
much higher than Λ. Second, we have also neglected the O(ρ2Λ2) contributions to the classical
action for the constrained instantons. Third, we have also neglected the increase of the value of the
classical action due to the overlapping of the constrained instantons. These two effects lead to an
underestimation of the classical action and therefore to an overestimation of the vacuum amplitude.
Putting altogether, the small constrained instanton contributions estimated in this section should
be regarded as rough upper limits.

5.3 Small Instanton Effects for ns > 2

Finally, we mention the CAAmodels with ns > 2. In the above discussion for ns = 2, the U(1)1 global
symmetry plays an important role to show that only the m = n instantons contribute to the axion
potential. The crucial feature of U(1)1 is that it is free from the axicolor anomaly and also not broken
spontaneously by the axicolor dynamics, while being anomalous with respect to SU(3)w × SU(4)w.
In models with ns > 2, we have ns − 1 global U(1) symmetries, U(1)i (i = 1, · · · , ns − 1), which
have the same roles of U(1)1 in the model with ns = 2. For example, ns = 3 model possesses U(1)2
in Tab. 2, in addition to U(1)1.
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In the model with ns ≥ 2, the vacuum amplitudes are labeled by the winding numbers of SU(3)w,
SU(4)w,1, · · · , SU(4)w,ns−1 sectors denoted by (m,n1, · · · , nns−1). Under the ns − 1 anomalous U(1)
transformations, the vacuum amplitude labeled by (m,n1, · · · , nns−1) changes its phase as

W (a)|m,n1,··· ,nns−1 = eiα1(2m−n1−nns−1)eiα2(n2−n1) . . . eiαns−1(nns−1−nns−2) ×W (a)|m,n1,··· ,nns−1 , (5.16)

where αi (i = 1, · · · , ns − 1) are the rotation angles of U(1)i transformations. Thus, we again find
that the contributions from the small constrained instantons vanish unless

m = n1 = · · · = nns−1 . (5.17)

As a result, by repeating the discussion in Sec. 5.2, we find that the small instanton effects are
at most

V (a)|small instanton ∼ Λ4e
− 8π2

g2
QCD

(Λ) cos

(
2Na

Fa

)
. (5.18)

Here, the QCD coupling is matched to the gauge couplings of SU(3)w × [SU(4)w]
ns−1 via

1

g2QCD(Λ)
=

1

g23w(Λ)
+

1

g24w,1(Λ)
+ · · ·+ 1

g24w,ns−1(Λ)
, (5.19)

at the symmetry breaking scale Λ. Therefore, the axion mass is not enhanced by small constrained
instantons, also in the case of ns > 2.

6 Application to Other Composite Axion Models

As we have learned in the previous section, the small instanton effects do not enhance the axion
mass in the CAA model. In this section, let us extend our discussion to other types of composite
axion models.

6.1 Composite Axion Models with Spectator QCD

Let us first consider a class of composite axion models in which SU(3)QCD does not take part in
the chiral symmetry breaking caused by the axicolor dynamics. Specifically, we examine a model
with gauge symmetry of GS × Gw × SU(3)QCD where GS represents the axicolor gauge group, and
Gw is a weakly gauged subgroup of flavor symmetry. In these models, the axicolor dynamics only
spontaneously breaks Gw. QCD, therefore, acts as a spectator to the axicolor dynamics. The original
composite axion model in Ref. [45] (see Sec. 3.1) is one of the examples.

In this class of models, extensions have been proposed to solve the axion quality problem by
adding a new chiral gauge symmetry to the original composite axion model [31, 38], by replacing
axicolor dynamics with chiral axicolor dynamics [37], or by incorporating supersymmetry [36]. Note
that SU(3)QCD does not mix with the other gauge groups when PQ breaking occurs. By construction,
the PQ symmetry is only anomalous with respect to QCD. Therefore, in this class of models, there
are no additional instanton effects on the axion potential other than those from QCD. This conclusion
is different from the case in the CAA model discussed in the previous section, where the constrained
instantons have small but non-vanishing contributions to the axion mass.
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6.2 Axial SU(3) × [SU(N)]n
′
s × [SU(m)]n

′
s Model

In Sec. 3.2, we discussed the CAA model, which features SU(3) × [SU(N)]ns × [SU(4)]ns−1 gauge
groups. In this model, the SU(3) and SU(4) groups are embedded in the vector-like subgroups of
the SU(4)L × SU(4)R flavor symmetry, associated with each axicolor SU(N) gauge dynamics. In
contrast, Ref. [34] also proposes another model with SU(3) × [SU(N)]n

′
s × [SU(m)]n

′
s gauge groups,

where SU(m) and SU(3) are embedded in the axial part of the flavor symmetries of the axicolor
[SU(N)]n

′
s .

For n′
s = 1, for example, the model includes left-handed Weyl fermions with the following gauge

charges:

(N,m,1)⊕ (N,m,1)⊕ (N,1,3)⊕ (N,1,3)⊕ (N,1,1)× 2(m− 3) , (6.1)

where the first, second, and third entries in the parentheses denote the representations under the
SU(N), SU(m), and SU(3) gauge groups, respectively. The fundamental and anti-fundamental
fermions of SU(N) exhibit SU(2m)L and SU(2m)R flavor symmetries, respectively. The 2m funda-
mental fermions are decomposed into m ⊕ m representations of SU(m) ⊂ SU(2m)L, while the
2m anti-fundamental fermions are decomposed into 3 ⊕ 3 ⊕ (1 × 2(m − 3)) representations of
SU(3) ⊂ SU(2m)R.

This model can be derived by deforming the SU(3)× [SU(N)]ns × [SU(4)]ns−1 model in Sec. 3.2,
with ns = 2n′

s. Specifically, we pair i-th SU(N) with (ns−i+1)-th SU(N) (i = 1 · · ·n′
s), and identify

one of the SU(N) symmetries with the complex conjugate of the other. In Fig. 5, we illustrate this
deformation with moose diagrams of the SU(3) × [SU(N)]ns × [SU(4)]ns−1 model and the axial
SU(3)× [SU(N)]n

′
s × [SU(4)]n

′
s model, specifically for ns = 2.

In this model, the low energy QCD emerges as the diagonal subgroup of SU(m)’s and SU(3)
as in the case of the model in Sec. 3.2. The composite axion appears as one of the Goldstone
modes, resulting from the spontaneous breaking of the generators of SU(2m)R which commute with
SU(3)QCD.

Since SU(3)QCD appears as the diagonal subgroup of SU(m)×SU(3), constrained instantons can
contribute to the axion potential. Similar to the CAA model in Sec. 3.2, we find that the model
possesses U(1) symmetries that are free from the axicolor anomaly but are anomalous with respect to
SU(m) and SU(3). For example, consider the U(1) symmetry with the charge assignment indicated
by the subscripts:

(N,m,1)−1 ⊕ (N,m,1)−1 ⊕ (N,1,3)1 ⊕ (N,1,3)1 ⊕ (N,1,1)1 × 2(m− 3) . (6.2)

This U(1) symmetry remains unbroken and is anomalous with respect to SU(m) and SU(3). Note
that this anomalous but unbroken U(1) symmetry corresponds exactly to U(1)1 as discussed in
Tab. 1 in the previous section.

By revisiting the discussion in Sec. 5.1, which is based on U(1)1, we find that small constrained
instantons affect the axion potential only when the winding numbers of SU(m)’s and SU(3) are iden-
tical. Furthermore, the arguments in Sec. 5.2 using ’t Hooft operators demonstrate that constrained
instantons which are significantly smaller than the inverse of the dynamical scale are irrelevant for
the axion potential. Consequently, we again find that the small instanton effects contribute to the
axion potential at most as follows:

V (a)|small instanton ∼ Λ4e
− 8π2

g2
QCD

(Λ) cos

(
2Na

Fa

)
, (6.3)
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Figure 5: The moose diagrams for the SU(3) × [SU(N)]ns × [SU(4)]ns−1 model in Sec. 3.2 (see
Tab. 1), and for the axial SU(3)× [SU(N)]n

′
s × [SU(4)]n

′
s model when ns = 2 and m = 4. An arrow

represents the fundamental representation, and an arrow represents the antifundamental
representation. From the SU(3)× [SU(N)]2×SU(4) model, the axial SU(3)×SU(N)×SU(4) model
is derived by identifying the upper SU(N) with the complex conjugate of the lower SU(N), which is
indicated by flipping the arrow heads colored in red. Extending these models to cases with n′

s > 1
is straightforward.

which is subdominant compared with the axion potential generated by low-energy QCD.

7 Conclusions

In this paper, we have discussed the small instanton effects in the composite accidental axion (CAA)
models proposed in Ref. [34]. In those models, SU(3)QCD emerges as an unbroken diagonal subgroup
of the product gauge group along with the spontaneous breaking of PQ symmetry by axicolor
dynamics. The models have instanton configurations which do not appear in the low-energy QCD.
In general, those configurations could significantly enhance the axion mass compared with the QCD
effects. Indeed, the axion mass can be significantly enhanced by the small instanton effects in
models where the axion directly couples to the product gauge groups from which QCD appears as
the unbroken subgroup [39].

In the CAA models, we have confirmed that small instantons in the broken part of the product
group do contribute to the axion mass independently from those in QCD. However, we have also
found that those contributions to the axion mass are negligibly small compared with the QCD
contributions. As a result, the axion mass is not enhanced by the small instanton effects in the CAA
models.

The absence of the enhancement of the axion mass stems from the fact that the models possess
global chiral U(1) symmetries which are not broken spontaneously but are anomalous with respect
to the weakly coupled gauged groups, such as SU(3)w× [SU(4)w]

ns−1. As we have seen in Eq. (4.14),
SU(3)w instantons contribute to the axion potential only when the winding number of each SU(4)w
background coincides with that of SU(3)w. Furthermore, the effects of small constrained instantons
are dominated by those with sizes around the inverse of the breaking scale, Λ. As a result, we find
that small constrained instanton effects on the axion mass are at most comparable to the effects of
QCD instantons of the same size, ρQCD ∼ Λ−1. Therefore, they are negligible compared with the
low-energy QCD effects.

We emphasize that the presence of anomalous U(1) symmetries which are not spontaneously
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broken restricts the small instanton effects on the axion potential significantly. This observation is
valuable in discussing how small instantons might affect the axion potential in other axion models
as well.
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A Notation and Remarks on Euclidean Space

A.1 Notation in Euclidean Space

We adopt the following notation for coordinates and derivatives in Minkowski spacetime and Eu-
clidean space related via

xiE = xi , ∂iE = ∂i , x4E = ix0 , ∂4E = −i∂0 , (A.1)

for i = 1, 2, 3. The metric tensors are defined by,

gµν = (+1,−1,−1,−1) , (A.2)

in Minkowski spacetime and

gEµν = (+1,+1,+1,+1) , (A.3)

in Euclidean space. The gauge potentials are also related via

AiE = Ai , A4
E = −iA0 . (A.4)

In Minkowski spacetime, we use

(σµM)αα̇ = (12,σ) , (σ̄µM)
α̇α = (12,−σ) , (µ = 0, 1, 2, 3) , (A.5)

while we use

(σµE)αα̇ = (σ, i12) , (σ̄µE)
α̇α = (σ,−i12) , (µ = 1, 2, 3, 4) (A.6)

in Euclidean space as in Ref. [47]. Here, σ denote Pauli matrices. The generators of the Lorentz
group, σ̄µν , are defined by

σµν =
1

4i
(σ̄µσν − σ̄νσµ) , σ̄µν =

1

4i
(σµσ̄ν − σν σ̄µ) . (A.7)
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We also define the corresponding generators in Euclidean space similarly from σµE and σ̄µE.
For the generators of the SU(2) gauge group, we use the Pauli matrices τ . To describe the

instanton solution, we use

(τµ) = (τ , 12) , (τ̄µ) = (τ ,−i12) , (µ = 1, 2, 3, 4) , (A.8)

and

τµν =
1

4i
(τ̄µτν − τ̄ντµ) , τ̄µν =

1

4i
(τµτ̄ν − τν τ̄µ) . (A.9)

Finally, we use the following notation for the two-dimensional anti-symmetric tensors,

ϵ12 = −ϵ21 = 1 , ϵ12 = −ϵ21 = −1 , ϵ1
2 = −ϵ21 = 1 . (A.10)

A.2 Remarks on Fermions in Euclidean Space

We make some remarks on the relationship between fermions in Minkowski spacetime and Euclidean
space. As an example, we consider the Lagrangian in Minkowski spacetime,

LM = (χL)
†
α̇i(σ̄

µ
M)

α̇α ∂µ(χL)α + (η̄R)
αi(σµM)αα̇ ∂µ(η̄R)

†α̇ −m(χL)α(η̄R)
α −m(χL)

†
α̇(η̄R)

†α̇ . (A.11)

Here, both (χL)α and (η̄R)
α are left-handed Weyl spinors. We follow the conventions of the spinor

indices in Minkowski spacetime in Ref. [51].
In Minkowski spacetime, χ†

L and η̄†R are the hermitian conjugates of χL and η̄R. In Euclidean
space, on the other hand, (χ†

L, η̄
†
R) and (χL, η̄R) should be translated into independent fermions,

respectively. We introduce the subscripts A and B to distinguish the dotted and undotted spinors in
Euclidean space, which are related to the left-handed and right-handed Weyl fermions (i.e., undotted
and the dotted fermions) in Minkowski spacetime via,

(χL)
†
α̇ → (χ†

A)α̇ , (χL)α → (χB)α , (η̄R)
†α̇ → (η̄†A)

α̇ , (η̄R)
α → (η̄B)

α . (A.12)

This notation is following Ref. [47]. In the main text, L/R, A/B and M/E subscripts are omitted
since they should not cause any particular confusion.

Let us comment on this notation. In Euclidean space, the space rotation is SO(4) ≃ SU(2)A ×
SU(2)B. The subscripts A or B of the fermions indicate which subgroup of spatial rotation is
associated with the fermion, SU(2)A or SU(2)B. Note again that fermions labeled with subscripts A
and B are not related by Hermitian conjugation, and the † symbol should be considered as part of
the fermion’s name rather than denoting a conjugate.

In this notation, the Minkowski Lagrangian (A.11) corresponds to the Euclidean Lagrangian,

LE = −(χ†
A)α̇i(σ̄

µ
E)
α̇α ∂µ(χB)α + (η̄B)

αi(σµE)αα̇ ∂µ(η̄
†
A)

α̇ −m(χB)
α(η̄B)α −m(χ†

A)α̇(η̄
†
A)

α̇ . (A.13)

Here, raising and lowering indices α and α̇ are defined by multiplying the antisymmetric epsilon
symbol as in Minkowski spacetime. An extra minus sign in front of σ̄E is relevant to reproduce the
Minkowski propagators by Wick rotation.

We use the following notation,

/̄∂E = −σ̄µE∂µ , /∂E = σµE∂µ , (A.14)

and also /̄DE and /DE for the covariant derivatives in gauge theories.
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B Zero Modes of Massive Fermions around Constrained In-

stanton

We briefly summarize the features of fermion zero modes around the constrained instantons. As in
Sec. 2.1, let us consider an SU(2) gauge theory in Euclidean space. We introduce two pairs of SU(2)
singlet fermions (ē†A, ēB) and (ν̄†A, ν̄B), and a pair of SU(2) doublet fermions (ℓ†A, ℓB). Note that each
pair (f †

A, fB) is mapped to f †
L and its conjugate fL in Minkowski spacetime (see Eq. (A.12)). Here,

following the notation in Ref. [47], the fermions are named like the SM leptons (and the right-handed
neutrino), although they are not related to the SM leptons.

We consider the following Lagrangian,

LE =
1

2g2
Tr(FµνFµν) + (DµH)†(DµH) +

λ

4
(H†H − v2)2

− ℓ†Aiσ̄µDµℓB + ēBiσµ∂µē
†
A + ν̄Biσµ∂µν̄

†
A

− yeℓ
†
AHē

†
A − yeēBH

†ℓB − yνℓ
†
A(ϵH)†ν̄†A − yν ν̄B(ϵH)ℓB ,

(B.1)

where ye,ν denote the Yukawa coupling constants, and ϵ denotes the two-dimensional anti-symmetric
invariant tensor with respect to SU(2) gauge group. At the vacuum, the scalar obtains a VEV,
H = (0, v)T , and all the fermions obtain masses, me = yev and mν = yνv, respectively. The fermion
kinetic terms can be rewritten as

Lf
E = Ψ†i /̂DHΨ , Ψ† =

(
ℓ†A, ēB, ν̄B

)
, Ψ =


ℓB

ē†A

ν̄†A

 , (B.2)

where we have defined the derivative operator,

i /̂DH ≡


−iσ̄µDinst

µ −yeH inst −yν(ϵH inst)†

−yeH inst† iσµ∂µ 0

−yν(ϵH inst) 0 iσµ∂µ

 . (B.3)

Here, the superscript “inst” denotes the constrained instanton background (see Eqs. (2.4) and (2.5)).
Note that the off-diagonal elements give the mass terms for the fermions at far from the instanton,
i.e., H inst|x→∞ → (0, v)T .

As discussed in Ref. [47], i /̂DH has a normalizable zero mode in the anti-instanton background
which behaves as

ℓBαi(x) = xµ(σµ)αα̇

[
N ρ

x(x2 + ρ2)3/2
ϵα̇i +O

(
(ρmA,H,e,ν)

2
)]

, (B.4)

ē†A
α̇(x) = − i

2
Nρme

1

x2 + ρ2
δα̇1 +O

(
(ρmA,H,e)

2
)
, (B.5)

ν̄†A
α̇(x) = +

i

2
Nρmν

1

x2 + ρ2
δα̇2 +O

(
(ρmA,H,ν)

2
)
, (B.6)
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at x≪ m−1
A,H,e,ν . They decay exponentially at x≫ m−1

A,H,e,ν . Here, i denotes the gauge SU(2) index
of the doublet fermion, and N is a finite normalization constant. In the instanton background, on
the other hand, there are zero modes in ℓ†A with O(ρme,ν) contributions of e

†
B and ν†B. In Minkowski

spacetime, the zero mode around the constrained anti-instanton appears in ℓL (with ē†R/ν̄
†
R) and the

zero mode around the constrained instanton in ℓ†L (with ēR/ν̄R).
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