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Figure 1: The long-tail distribution of patent images within DeepPatent2 [2], plotting Locarno classification IDs against their
frequency. The graph differs between the top 40% of classes (head) and the bottom 60% (tail), showing patent image examples
from different perspectives with their object names under various classifications.

ABSTRACT
In patent prosecution, image-based retrieval systems for identifying
similarities between current patent images and prior art are pivotal
to ensure the novelty and non-obviousness of patent applications.
Despite their growing popularity in recent years, existing attempts,
while effective at recognizing images within the same patent, fail to
deliver practical value due to their limited generalizability in retriev-
ing relevant prior art. Moreover, this task inherently involves the
challenges posed by the abstract visual features of patent images,
the skewed distribution of image classifications, and the semantic in-
formation of image descriptions. Therefore, we propose a language-
informed, distribution-aware multimodal approach to patent image
feature learning, which enriches the semantic understanding of
patent image by integrating Large Language Models and improves
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the performance of underrepresented classes with our proposed
distribution-aware contrastive losses. Extensive experiments on
DeepPatent2 dataset show that our proposed method achieves state-
of-the-art or comparable performance in image-based patent re-
trieval with mAP +53.3%, Recall@10 +41.8%, and MRR@10 +51.9%.
Furthermore, through an in-depth user analysis, we explore our
model in aiding patent professionals in their image retrieval efforts,
highlighting the model’s real-world applicability and effectiveness.
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1 INTRODUCTION
Prior art search aims to identify similarities between new inven-
tions and existing technologies, thus ensuring the inventions satisfy
novelty and non-obviousness requirements during patent drafting,
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examination, and infringement analysis [35]. Traditionally focused
on metadata and textual information [22], researchers have in-
creasingly turned to image-based patent retrieval to overcome the
limitations (e.g., the complexity of legal and technical patent lan-
guage) of textual analysis [15, 18, 23, 43], given that patent images
provide a clearer, more intuitive understanding of inventions (e.g.,
vehicle, design, and fashion), enabling faster and deeper insights
compared to text alone [7].

Patent images, designed to convey technical and scientific in-
formation, exhibit distinctive features that set them apart from
natural and sketch images. Firstly, they often lack the background
context, color, texture, and intensity variability found in natural
images, characterized instead by their abstractness and sparseness.
Secondly, unlike sketch images, patent images provide detailed and
high-quality visualizations from multiple viewpoints. This speci-
ficity results in commercial search engines like Google facing diffi-
culties in accurately retrieving relevant patent images from drawing
queries [23, 43], thereby rendering image-based patent retrieval a
significant and ongoing challenge.

Research on image-based patent retrieval, though limited, can
be broadly categorized into two: (i) Low-level vision-based meth-
ods, which employee basic visual features such as visual words
[40], shape and contour [38, 49], relational skeletons [17], and adap-
tive hierarchical density histograms [41] to describe patent images
for retrieval. These methods, however, falter in large-scale appli-
cations [43]. (ii) Learning-based methods have gained traction in
recent years. For instance, one early work, using object detection
and multi-task framework for patent classification, simultaneously
performs image-based retrieval [18]. With the emergence of Deep-
Patent dataset [23] and the ECCV 2022 DIRA Workshop Image
Retrieval Challenge has prompted exploration into various network
architectures, loss functions, and Re-ID techniques to improve re-
trieval systems [15, 43].

Despite these efforts, past studies have often overlooked the real-
world workflow of patent attorneys conducting prior art searches
with images. In practice, patent attorneys evaluate not only the
visual similarity between current images and those of prior art but
also consider the images’ descriptions and their associated patent
classifications. This oversight leads to several critical gaps and our
corresponding contributions: (i) Given the importance of textual
content, we adopt a visual language model (VLM) [32] without
following pretrain-finetune paradigm. Furthermore, recognizing the
limited semantics in patent images’ textual content (i.e., primarily
object names and perspectives), we, inspired by past prompting
engineering [13, 48], propose using large language models (LLMs)
[6] to generate detailed, alias-containing, free-form descriptions.
(ii) To incorporate patent classification and address its long-tail
distribution (fig. 1), beyond the InfoNCE loss, we introduce multiple
coarse-grained losses with uncertainty factors tailored for long-tail
data into our VLM. This strategy aims to ensure that patent image
representations capture class information while remaining sensitive
to the distribution [37]. (iii) Previous works have treated image-
based patent retrieval tasks as Re-ID tasks, which do not fully align
with industrial needs. Typically, searches are conducted on large
databases and retrieval is carried out both before and after a patent
is granted, primarily in two scenarios: novelty detection or prior
art search, where a current invention is compared against past

inventions to identify similarities; and infringement search, which
aims to identify subsequent inventions that might infringe upon
the granted patent [22]. Accordingly, we train and validate our
model on a larger dataset and ensure that the retrieval metrics
align with these temporal concerns. (iv) To further understand
the practical value of our image-based patent retrieval system, we
conducted blind user studies [9]. The goal is to directly evaluate
and compare the satisfaction, usability, and performance of our
method against existing methods in a real-world setting, showing
the practical significance of our approach. Hence, we present four-
fold distinctive contributions to better meet the industrial demands:

• We introduce a language-informed, distribution-aware mul-
timodal approach to patent image feature learning, which is
both simple and robust. This method enhances images with
corresponding semantic information, augmented via LLMs.

• We propose tailored losses specifically designed for the long-
tail distribution of patent classifications. This strategy signif-
icantly boosts the robustness and accuracy of patent image
representations, particularly in scenarios sensitive to class
distinctions, leading our method achieve state-of-the-art re-
sults.

• Our model is validated on a large dataset with metrics specif-
ically tailored for novelty detection, ensuring it meets broad
industrial needs.

• We employ a multi-paradigm approach, validating the sys-
tem’s effectiveness not only through technical retrieval met-
rics but also by accentuating its practical utility through user
studies.

2 RELATEDWORK
Existing learning-based works on image-based patent retrieval
systems can be categorized into two approaches: The first ap-
proach is intuitive, starting with the identification of objects within
patent images, then training a classifier to associate these identi-
fied objects with their respective International Patent Classification
(IPC) classes, and extracting vectors from the network for retrieval
[5, 18, 40]. However, this method faces two limitations: (i) It relies
on objects that the original detector has been pretrained to recog-
nize, resulting in the exclusion of unidentifiable patent images and
thus limiting its applicability for large-scale applications. (ii) Al-
though it considers IPC, IPC provides a rather coarse classification
to the entire patent, which fails to accurately reflect the specific
class of a certain image.

The second approach developed with the release of the large-
scale DeepPatent dataset [23], where a series of studies have treated
learning patent image representation as a Re-ID (i.e., Patent ID)
problem [47]. Employing various CNN backbones such as Efficient-
Net [15, 43], ResNet [23], ViT [15], and SwinTransformer [15],
these studies aim to embed patent drawings into a common fea-
ture space using contrastive loss functions (e.g., triplet loss [23],
ArcFace [15, 43]), clustering identical ID images closely and sep-
arating different ID images. Although these studies have shown
excellent Re-ID capabilities, they have overlooked several critical
aspects: (i) Re-ID primarily focuses on retrieving images within
the same patent, which does not align with the patent industry’s
workflow (i.e., retrieving images from different patents). (ii) The
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Figure 2: Model Architecture. (a) Generation of diverse, alias-containing, fine-grained descriptions for each patent image using
a captioner and LLMs. (b) Text feature extraction from the enriched text via a frozen text encoder. (c) Visual feature extraction
through a trainable visual encoder; a projector is employed when a mismatch between text and visual features. (d) Proposed
distribution-aware contrastive losses. (e) Query patent images are converted into embeddings for retrieval based on cosine
similarity.

Re-ID approach is susceptible to overfitting, which reduces its gen-
eralizability and accuracy in retrieving similar cases across different
patents [30]. (iii) These methods often ignore other patent-specific
information, such as image descriptions and Locarno classification,
which are crucial in practical patent work.

With the rise of VLM and multimodal learning, the retrieval
of natural color images has seen significant improvements [3, 10,
19, 28]. Likewise, multimodal methods have become increasingly
prevalent in retrieval strategies for sketch images, which are sim-
ilar, if not identical, to patent images. For example, sketch-based
image retrieval involves retrieving natural images using sketch
representations [11, 34, 42, 46]. They mainly utilize the associa-
tions with natural images to achieve such effective results. While
patent images lack the stroke information found in sketches and
are challenging to associate with natural images due to their nature
of novelty and multiple perspectives, the textual information and
well-defined classification in patents provide a solid foundation for
employing a VLM approach. Therefore, we explore the potential of
applying VLM to patent image retrieval, an area currently under-
appreciated, leveraging the rich auxiliary information in patents
[2].

3 METHOD
3.1 Model Overview
Our objective is to leverage the powerful capabilities of pre-trained
LLMs to facilitate feature learning for patent images, thus achieving
semantically rich image representations and efficient patent image
retrieval. To this end, we introduce a one-stage framework, distinct
from the conventional pretrain-finetune approaches employed by
prior studies. As depicted in fig. 2, our model comprises two main
components: visual feature extraction and text feature extraction. In

the visual component of our model, we preprocess the input patent
images using data augmentation techniques tailored for patent
images, such as flipping, random cropping [12], random erasing
[50], and gridmask [8]. We then employ CNN-based backbones
to extract visual features from these augmented images. For cases
where the output feature dimensions from certain backbones are
too long or too short, we utilize projectors composed of MLPs to
align the dimensions of visual features with those of text features
for subsequent contrastive training (fig. 2 (c)).

In the textual component, our process begins with employing
an image captioner, which, given a patent image and a prede-
fined prompt, generates a sophisticated description of the image
[19, 24, 25]. This generated description is then combined with other
pertinent information about the image, such as its Locarno classi-
fication, original image description, object name, and perspective.
This composite input is fed into LLMs to produce diversified, alias-
caontaining, fine-grained text descriptions, thereby enriching the
semantic understanding of the patent image (see fig. 2 (a) and sec-
tion 3.3). Following, we employ a frozen text encoder (i.e., text
encoder in CLIP), to extract textual features of the descriptions
(fig. 2 (b)).

To ensure our contrastive loss is distribution-aware, we intro-
duce three types of loss functions. Firstly, for the conventional
VLM contrastive loss Lclip, we treat the pairing of a fine-grained
image with its corresponding description as a positive match. For
the coarse-grained approach, inspired by [29, 37], we define two
scenarios: class-wise, where an image and a sentence from the same
class are considered a positive pair (Lcls); and category-wise, where
an image and a sentence from the same category (e.g., head or tail
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categories) are seen as a positive pair (Lcat). These losses are com-
bined to update the visual encoder during the training phase (see
fig. 2 (d) and section 3.2).

In the query phase (fig. 2 (e)), each patent image is transformed
into embeddings with the visual encoder and then stored in a vector
database. Retrieval of other images is done by comparing these em-
beddings via cosine similarity, where embeddings closer in distance
are ranked higher, and those farther apart are ranked lower.

3.2 Distribution-Aware Contastive Loss
As previously mentioned, we formulate our task as a VLM con-
trastive learning paradigm. The traditional instance-based training
objective for a single image can be described as follows (i.e., In-
foNCE loss, eq. (1)):

Lclip = − log(
exp(t𝑇+ · v/𝜏)∑𝐵
𝑖=1 exp(t𝑇𝑖 · v/𝜏)

), (1)

where (t𝑇1 , t
𝑇
2 , ..., t

𝑇
𝐵
) denotes 𝐵 text features extracted by the text

encoder and v denotes the learned feature of a patent image. The
term t𝑇 ·v represents the cosine similarity score between the patent
image and texts and 𝜏 is a learnable temperature coefficient. This
objective is to maximize t𝑇+ · v, which indicates the feature sim-
ilarity between the patent image and the corresponding textual
information.

However, relying solely on instance-based contrastive loss falls
short in capturing class or category information, potentially leading
to suboptimal performance in datasets with skewed distributions
[29]. Therefore, we propose class-based and category-based coarse-
grained losses (i.e., Lcls and Lcat, see fig. 2 (d)). These losses can
be described in a similar form as follows (eq. (2)):

− 1
|V+

𝑖
|

∑︁
V𝑗 ∈V+

𝑖

log
exp(t𝑇

𝑖
· v𝑗/𝜏)∑

V𝑘 ∈V exp(t𝑇
𝑖
· v𝑘/𝜏)

− 1
|T+
𝑖
|

∑︁
T𝑗 ∈T+

𝑖

log
exp(t𝑇

𝑗
· v𝑖/𝜏)∑

T𝑘 ∈T exp(t
𝑇
𝑘
· v𝑗/𝜏)

,

(2)

where 𝑉 represents a batch of patent images, and 𝑇 denotes the
corresponding set of text sentences. The subset 𝑇 +

𝑖
comprises texts

that share the same class (in the case of Lcls) or category (for Lcat)
with the image 𝑉𝑖 . Similarly, 𝑉 +

𝑖
includes all images that share the

same class or category with the text 𝑇𝑖 . By doing so, our model
gains an understanding of the class and category information, en-
abling it to acquire robust representations even for those in the
tail classes. Furthermore, since the text description for each image
sample varies with each iteration, and combined with the class or
category loss, the one-to-one pairing relationship between images
and texts is less rigid. This variability acts as an additional regular-
ization mechanism, preventing the model from adhering to fixed,
trivial correlations within specific image-text pairs.

Considering each loss’s stability varies, we move away from
linear loss combination towards a method based on homoscedastic
uncertainty [20, 21], learnable through probabilistic deep learning.
This type of uncertainty, independent of input data, reflects the
task’s intrinsic uncertainty. The loss includes residual regression
and uncertainty regularization components. The implicitly learned
variance 𝑠 moderates the residual regression, while regularization

prevents the network from predicting infinite uncertainty. Hence,
The overall loss can be written as in eq. (3).

L =Lclip exp(−𝑠clip) + 𝑠clip
+ Lcls exp(−𝑠cls) + 𝑠cls
+ Lcat exp(−𝑠cat) + 𝑠cat

(3)

where 𝑠 is learnable homoscedastic uncertainty. We find this loss is
robust to our task.

3.3 Text Enrichment
Converting object names, perspectives, class names, and the patent
image’s original descriptions into text for input into a text encoder
is a plausible way to generate text embeddings for supervisory
purposes. However, this method encounters several limitations.
Firstly, the most comprehensive descriptions provided by patents
are typically succinct and straightforward, such as FIG. 3 is a front
elevational view of the light device, leading to unclear and sparse
information about the image. Additionally, the similarity and po-
tential overlap among different classes (e.g., automobiles, motor
cars, and toy cars) can obscure the distinction of nuanced concepts.
To overcome these challenges and derive more discriminative text
features, we employee captioners [25] and LLMs [6] for producing
detailed, enriched descriptions that enhance the semantic under-
standing of the images.

Specifically, we firstly employ captioners to generate descriptions
of images in a manner that would capture aspects patent attorneys
focus on. We provide the captioners with images alongside a set
of predefined instructions that guide the description process. For
example, instructions might include: Describe the distinct visual ele-
ments present in the design, such as shapes, contours, texture, and the
arrangement of various components. The outcomes of this process,
merged with pre-existing auxiliary information and predetermined
instruction templates, are then fed into LLMs. For example, we em-
ploy templates such as This is a photo of {Object Name}, classified
as {Class}, This image features {Details}, and {Object Name}
can also be referred to as {Synonym}, to generate enriched text. Ul-
timately, this approach yields around 20 detailed text descriptions
per image, designed to mine the semantic nuances within the text
feature space.

Additionally, our research revealed that utilizing more specific
object names significantly enhances feature learning. For exam-
ple, the broad class of Emergency equipment, which encompasses
distinct items such as lighting fixture, horticulture grow light, and
lighting device. Therefore, in our text generation process, we priori-
tize these detailed object names over the more generic class names,
different from the previous approach that typically leans on class
categorization [16, 33].

3.4 Metrics for Patent Retrieval
As mentioned before, in image-based patent retrieval, particularly
for novelty detection and related work searches, patent profes-
sionals explore databases of patents, applications, and scientific
literature to determine an invention’s uniqueness. This process,
crucial both before and after a patent application is filed, focuses on
identifying if similar prior inventions exist. Accordingly, when eval-
uating retrieval metrics, it’s necessary to account for the temporal
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Table 1: Evaluation results across models using metrics such as mAP, Recall@K, and MRR@K, under different settings. Highest
values are highlighted in bold.

Head Classes Tail Classes All Classes

mAP R@5 R@10 M@10 mAP R@5 R@10 M@10 mAP R@5 R@10 M@10

Baseline
PatentNet [23] 22.1 13.4 26.2 35.7 12.9 3.1 11.6 25.2 15.8 8.0 16.8 29.4
EfficientNetB0+ArcFace [43] 31.5 19.8 34.9 43.9 20.1 8.7 20.3 33.1 24.1 13.6 26.7 37.4
SwinV2-B+ArcFace [15] 32.0 19.4 34.2 45.2 20.3 6.3 21.4 32.7 25.1 11.6 27.3 37.7

Ours (backbone)

ResNet50 31.9 35.1 48.9 45.7 22.4 20.9 38.2 36.3 25.6 26.6 42.2 40.1
EfficientNetB-0 64.2 43.5 58.5 76.4 43.0 31.2 44.0 55.7 52.4 36.9 50.5 63.1
ViT-B-32 78.0 51.7 65.3 90.3 61.6 36.7 53.5 75.4 69.1 43.4 58.6 81.3
SwinV2-B 77.2 52.5 66.2 90.8 61.3 42.5 52.5 75.0 67.8 46.0 57.7 80.6

factor, ensuring that only prior art—rather than contemporaneous
or subsequent inventions—is considered for retrieval [22]. Consid-
ering a database 𝐷 where each data point is represented by a tuple
(v, 𝑡), with v being the image embedding and 𝑡 the granted time of
the patent the image belongs to. For each query image v𝑞 with a
granted time 𝑡𝑞 , define 𝐷′

𝑞 ⊆ 𝐷 containing images granted before
𝑡𝑞 . Hence, the following retrieval metrics should be calculated over
𝐷′
𝑞 given v𝑞 : (i) We use mean Average Precision (mAP), a metric

obtained by averaging AP scores across all classes. (ii) Following
previous works, the standard evaluation protocol [4] is to report
the recall at rank 𝐾 (Recall @ 𝐾 or R@𝐾 ) at different ranks (5, 10).
(iii) We calculate the Mean Reciprocal Rank @ 𝐾 with temporal
concern (MRR@𝐾 or M@𝐾 ), which averages the reciprocal of the
rank for the first correctly predicted patent image within the top
10 rankings across all test samples.

4 EXPERIMENTS
4.1 Implementation Details
In our experiments, we employed PyTorch [31] and utilized clusters
of NVIDIA A100 GPUs. For the VLM, we explored various ViT
variants [12], ResNet50 [14], EfficientNetB-0 [36], and SwinV2-
B [26, 27] as backbones for the visual encoder. The text encoder
was adapted from the original CLIP model [32], remaining fixed
throughout the experiments. For captioner, we leveraged open-
source BLIP-2 [24] and GPT-4V [1]. Regarding LLMs, our focus was
on GPT-4 [1], though we also experimented with other LLMs like
GPT-3.5-Turbo [6] and LLaMA-2 [39].

For our experiments, we employed the DeepPatent2 dataset. Pre-
vious research has mainly adopted the original DeepPatent dataset
[23]; however, this dataset suffers from a narrow collection span,
lacks image-related metadata, and does not segment sub-images.
These limitations can introduce substantial noise in inter-image
relationships. Fortunately, the DeepPatent2 [2] dataset addresses
these issues effectively. To maintain comparability with previous
methods, we utilized DeepPatent2 data from 2016 to 2019, consist-
ing of 822,792 records with 407 Locarno classes. Of these, 90% were
used for the training set, and 10% for the validation set. For our
query dataset, we used 252,296 records from the year 2020.

Our baseline models are our replicating state-of-the-arts on the
same dataset to ensure comparability: these include PatentNet [23],
SwinV2-B+ArcFace [15], and EfficientNet+ArcFace [43]. Our pri-
mary experiments focused on a variety of visual encoder backbones,

such as ResNet50, EfficientNetB-0, ViT-B-32, and SwinV2-B. Due to
space constraints in this paper, detailed results from experiments
involving the captioner and LLMs will be presented in the full
manuscript. For preliminary insights, we utilized GPT-4 for both
the captioner and LLMs. In our ablation study, we explore the ef-
fects of distribution awareness losses (i.e., Lcls and Lcat), the text
generation component, and the captioner.

Table 2: Evaluation results of an ablation study on various
components within the model architecture.

Head Classes Tail Classes All Classes

mAP R@10 mAP R@10 mAP R@10

Baseline 32.3 34.7 21.9 30.2 26.0 32.8
Lcls and Lcat 47.4 49.2 47.0 48.4 47.9 49.7
Text Generation 70.2 59.7 52.4 53.6 58.7 56.3
Captioner 78.0 65.3 61.6 53.5 69.1 58.6

4.2 Experimental Results
Table 1 presents the quantitative results on the DeepPatent2 query
set. Overall, our approach significantly outperforms the state-of-
the-art, achieving up to a 53% improvement in the mAP metric,
38% in Recall @ 5, 41.8% in Recall @ 10, and 51.9% in MRR @ 10.
Notably, both ViT-B-32 and SwinV2-B show comparable perfor-
mance, with each excelling under different metrics or scenarios. For
instance, ViT-B-32 performs better in tail classes, while SwinV2-B
shows strength in head classes, suggesting an interaction between
data distribution and model architecture. With these results, we
have achieved the state-of-the-art in this task. Given the strong
performance across all classes with ViT as the backbone, we will
base our ablation study on this model to further investigate the
impact of various model components on performance.

Table 2 presents the evaluation results of an ablation study on
four components, starting with a baseline model, which is a stan-
dard CLIP model. The subsequent rows represent enhancements
to this baseline. Firstly, by incorporating a distribution-aware con-
trastive loss, we observe significant performance gains in both head
and tail classes, with tail classes experiencing more substantial im-
provements (approximately 20% in mAP and Recall @ 10), and head
classes seeing a 10% increase in these metrics. Next, by incorpo-
rating text generation functionality, which is guided by the LLM,
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Figure 3: Qualitative Results of the Image-Based Patent Image Retrieval System. The leftmost image represents the query
image, annotated with its object name and classification as either a head or tail class. The middle section displays the retrieval
results from our method, where images framed in black indicate a match with the query image’s class, and those framed in red
indicate a mismatch. The right section shows the comparative results using the previous state-of-the-art method (SwinV2-B +
ArcFace).

the model learns richer semantic relationships between images.
The addition of this feature leads to a 10-20% improvement across
various metrics. Finally, by integrating a captioner module, the key
details of the design inventions in the images are directly expressed
by the captioner, further highlighting the semantic focal points of
the images and enhancing the retrieval performance.

4.3 Qualitative Results
Qualitative results (see fig. 3) indicate that our approach retrieves
better results than the previous state-of-the-art, evident in both
head and tail classes. Focusing solely on our model, it is apparent
that it underperforms in tail classes. Additionally, our system not
only retrieves the correct class given an image but also finds images
that are visually similar to the query image. Furthermore, we delve
into the errors made by the previous state-of-the-art. For example,
when presented with an image labeled shoe, the previous model
might retrieve a shoe image, but it actually belongs to the category
of shoelaces. This reveals that the previous approach did not align
semantic information within the images, often leading to the re-
trieval of visually similar but categorically different images. Similar
issues occur with categories like vehicles & toy cars or flashlights
& chargers, where the images look alike but differ semantically.
Our model mitigates these errors by guiding the image’s embed-
ding space with linguistic information, which enhances semantic
alignment.

Figure 4: t-SNE Visualization of Image Embeddings. This fig-
ure presents a two-dimensional t-SNE projection of randomly
sampled 2,000 image embeddings, with each axis represent-
ing one dimension. Different colors and shapes in the plot in-
dicate distinct classes. The left subplot illustrates the results
from our model, while the right subplot displays the results
using the previous state-of-the-art, SwinV2-B+ArcFace.

Based on the t-SNE results shown in fig. 4, our method yields
more clustered embeddings, suggesting that the model effectively
captures the inherent structures or classes within the data. Each
cluster represents a group of similar images, closely correspond-
ing to predefined classes, indicating that the model has learned
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meaningful and discriminative features for each class. This cluster-
ing enables the model to effectively distinguish between different
classes.

Conversely, the previous approach results in a t-SNE visualiza-
tion with less clustered andmore continuous embeddings, making it
difficult to identify distinct clusters or their correlation to predefined
classes. This indicates that the model’s learned representations are
less discriminative, potentially capturing more generalized features
shared across multiple classes. Although some clustering is visible,
it may not relate to actual classes but rather to visually similar
images, blurring the boundaries between different classes.

5 USER STUDY
To further ensure the practical value of our system, we conducted
a user study following rigorous psychological procedures. As for
participants, we recruited 15 patent agents (48% female, average
age: 33.4 years) to perform tasks related to design patent image
retrieval.

As for procedure, we employed a double-blind test, where par-
ticipants were unaware of the underlying retrieval system during
their tasks. They could encounter either our retrieval system or a
system based on the previous approach. Each patent agent handled
30 retrieval tasks, with these tasks randomly assigned to one of the
two systems—15 tasks with our system and 15 with the previous
approach. After each task, participants rated their satisfaction with
the retrieval results on a scale from 1 to 5 and recorded the time
taken to complete the task (in hours). To minimize randomness, we
averaged the scores across systems for each participant, resulting
in four scores per person (two systems × two scores).

The results of the paired t-test revealed significant differences in
satisfaction levels, with patent agents showing a higher satisfaction
with our system compared to the previous approach, 𝑡 (14) = 3.30,
𝑝 < 0.01. Regarding task completion time, agents completed tasks
faster using our system, 𝑡 (14) = -4.30, 𝑝 < 0.001. These results
indicate that our system is more efficient and better meets the
practical needs of professionals in the field.

6 CONCLUSION
Our method has achieved new state-of-the-art results in the quan-
titative evaluation of mAP, Recall@𝐾 , and MRR@𝐾 , as well as
in high-quality image retrieval during qualitative evaluation. For
many years, current commercial design patent retrieval systems
have had significant shortcomings. For example, traditional text-
based searches can be limiting due to the subjective interpretation
of design features and the difficulty in describing visual details
with text. Although learning-based image retrieval systems have
started to emerge in the last two years, their practical value remains
limited.

To address these issues, our proposal can effectively solve this
problem. Firstly, we proposed a new learning-based architecture
capable of learning image features with practical value. These repre-
sentations not only contain visual information but are also aligned
with corresponding (augmented) semantic text and classification
data. This has substantial practical value because specific graphic
semantic features such as curvature, edges, and geometric details
are considered. Focusing solely on the image itself might overlook

these critical visual elements. Secondly, we utilize a larger and more
well-defined dataset, which encompasses a broader collection span,
image-related metadata, and segmented sub-images. This makes the
model more robust and enhances its accuracy. Thirdly, addressing
the long-tail distribution in classification, our study is the first to
propose distribution-aware losses, which have proven to be effec-
tive. Lastly, we conducted a user study to demonstrate the practical
value of our system in the field, showing that it is more efficient,
accurate, and time-saving.

In the future, we have several directions for further expansion:
(𝑖) Identifying similarities between this invention and prior arts,
which involves not only using existing models for visualizations
through explainable AI [45] but also leveraging data from exam-
iner’s reports (Office Actions) to guide further explorations. (𝑖𝑖)
While our research currently focuses on prior art searches, future
work could also explore other temporal dimensions, such as in-
fringement searches. Additionally, image domain adaptation [44]
could be used to enhance the effectiveness of searches across differ-
ent domains, such as retrieving E-commerce images using patent
drawings.
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