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Abstract: Ferrotoroidicity, predicted as the fourth form of primary ferroic order, 

breaks both space and time inversion symmetry and represents a compelling 

avenue for technological advancement. However, accessing ferrotoroidicity in 

natural materials has proven challenging, which impedes the exploration of 

ferrotoroidic phase transitions. Here, we overcome the limitations of natural 

materials by exploring ferrotoroidicity in an artificial nanomagnet system that can 

be characterized at the constituent level and thermally annealed at different 

effective temperatures. We introduce a new nanomagnet array—the first 

realization of a direct-kagome spin ice. This unique artificial spin ice exhibits 

robust toroidal moments and a quasi-degenerate ground state, leading to two 

distinct low-temperature toroidal phases: ferrotoroidicity and paratoroidicity. We 

demonstrate experimentally and numerically a phase transition between 

ferrotoroidicity and paratoroidicity, along with a crossover to a non-toroidal 

paramagnetic phase. Our quasi-degenerate artificial spin ice in a direct-kagome 

structure provides a new model system to investigate magnetic states and phase 

transitions that are inaccessible in natural materials. 

Main 

Ferroic materials are widely used in modern electronics as functional materials. They 

show spontaneous ordering for spin, charge and/or strain. From the point of view of the 

space and time parity operation there are four primary ferroic orders1,2: 1) 

ferromagnetism, a spontaneous magnetization breaking time-inversion symmetry; 2) 

ferroelectricity, a spontaneous charge polarization breaking space-inversion symmetry; 

3) ferroelasticity, a spontaneous strain preserving both symmetries; and 4) 

ferrotoroidicity, a spontaneous alignment of vortices of magnetic moments violating 

both symmetries. One expected primary thermal dynamic property of ferroic materials 

is that they form long-range ordered phases when cooled below a critical temperature 
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through the ferroic phase transition. Among the four primary ferroic orders, the 

ferrotoroidicity is the most elusive form, because it is difficult to characterize it 

experimentally in natural materials3. This is because its order parameter, the toroidal 

moment of a vortex of magnetic moments, has zero net magnetization, making it hard 

to detect. Consequently, the ferrotoroidic phase is still largely unexplored in nature. 

Here, we address this challenge by introducing a purposefully designed artificial spin 

ice nanomagnet array, in which toroidal phases can be visualized directly in a 

controllable and characterizable platform. The direct-kagome artificial spin ice (Fig. 1a) 

reveals emergent toroidal moments, while its quasi-degenerate energetics leads to 

emergence of ferrotoroidic and paratoroidic phases. 

Artificial spin ices (ASIs) are magnetic metamaterials composed of dipolarly coupled 

single-domain nanomagnets4–8. They offer an ideal research playground for directly 

accessing various intriguing collective phenomena and exotic properties that might not 

be found in natural materials. Their basic building blocks are elongated nano-bar 

magnets whose magnetization can be described as a binary degree of freedom, or macro 

Ising spins, because of their shape anisotropy. The magnetic moments of these 

nanomagnets can be conveniently imaged using various magnetic imaging techniques 

such as magnetic force microscopy4,9 and x-ray magnetic circular dichroism10,11, 

allowing direct observation of ASI’s magnetic states. In this way, interesting emergent 

phenomena in matter can be visually displayed in real space, including geometric 

frustration4,12–15, magnetic monopoles10,16–18, and phase transitions19–21.  

Recently, the toroidization as a ferroic order parameter was demonstrated in a so-called 

toroidal square ASI, in which the long-range order of ferrotoroidicity was directly 

imaged and manipulated22,23. However, such realization affords only one type of 

toroidic phase (the ferrotoroidic crystal phase) and the investigation of a phase 

transition between different toroidic phases has not been accessed. Here, we will show 

a unique ASI design which poses three different magnetic phases, including two distinct 

low energy toroidic states, thereby enabling direct investigations on the ferrotoroidic 

phase transition.  

Direct-kagome artificial spin ice 

The collective properties and functionalities of ASIs stem from competing dipolar 

interactions among nanobar magnets and are intimately tied to the geometric 

arrangement of the nanomagnets. The honeycomb (or traditional kagome) ASI is made 

of nanomagnets placed on the edges of a honeycomb lattice, thus at the vertices of a 

kagome lattice 10,17–20,24–29. In contrast, we place the nanomagnets on the edges of a 

kagome lattice, maintaining a direct kagome lattice structure in the nanomagnets’ array 

(Fig. 1a). To differentiate our ASI from the honeycomb ASI, which is sometimes also 

called ‘kagome’ ASI, we refer to this new ASI structure as a direct-kagome ASI.  

As shown in Fig. 1a, the direct-kagome ASI is composed of triangular plaquettes, each 

with three nanomagnets in a circle (highlighted by green dashed circle in Fig. 1a), which 

form well-defined toroidal moments of magnetically closed loops (Fig. 1b). Figure 1b 

shows the toroidal moments, ±t, whose polarities are determined by the chiral 

arrangements of the nanomagnets’ moments. The toroidal moments form a honeycomb 

lattice with a six-fold geometrical symmetry (Fig. 1a), which is the same to the 

symmetry of the honeycomb ASI.  
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Unlike the honeycomb ASI, which has tri-legged vertices, each of the vertices in the 

direct-kagome ASI is made of four nanomagnets highlighted by a blue rectangular 

dashed box in Fig. 1a. Each vertex connects two triangular plaquettes (Fig. 1c), and the 

energies in the vertex determine the coupling strength between the neighboring toroidal 

moments. Based on their energies, the sixteen vertex configurations are divided into 

five groups, denominated as Type I, II-α, III, II-β and IV, respectively (Fig. 1d).  

The vertex designations used here are analogous to those in a square ice, except that the 

Type II vertices are further separated into two groups of Type II-α and II-β vertices. As 

in a square ice, the low energy spin configurations of Types I and II-α satisfy the ‘two-

in, two-out’ ice rule, and when all the vertices are in the ground state of Type I 

configurations, the direct-kagome ASI forms a two-fold long range ordered phase of 

ferrotoroidic order (the alignment of the toroidal moments with the same polarity) as 

shown in Fig. 1a and/or Fig. 2a. 

Quasi-degeneracy and thermal phases 

The vertex energetics of the direct-kagome ASI differs from that of square ice because 

of a shearing angle of 30 degrees30. This shearing of vertices lifts the degeneracy of the 

Type II vertices30, resulting in a reduced energy of the Type II-α vertices and a 

significantly enhanced energy of the Type II-β vertices (Fig. 1d). Consequently, the 

excitation energy of Type II-α vertices is very low, and the energy of Type II-β vertices 

is higher than that of the Type III vertices (Fig. 1d). As a result, the energy E1 (the energy 

gap between Types I and II-α vertices) of the lowest excitation Type II-α vertices is 

much lower than the energy E2 (the energy gap between Type I and Type III vertices) 

of the second lowest excitation Type III vertices (see Fig. 1d). In this sense, Types I and 

II-α vertices can be considered quasi-degenerate at an intermediate temperature range, 

E1<<kBT<<E2, where kB is Boltzmann constant and T is temperature31. Quasi-

degeneracy with drastically reduced energy gap was numerically demonstrated in a 

connected square ASI structure31. Recently, a topology-restricted quasi-degeneracy was 

realized in a sheared square colloidal ice, where the ground-state degeneracy of two-

dimensional square ice was partially recovered30. Here, the quasi-degeneracy in our 

direct-kagome ASI also partially recovers the vertex ground-state degeneracy from two-

fold (only Type I) to four-fold (both Type I and Type II-α).  

It follows that in the intermediate temperature range E1<<kBT<<E2, the system would 

be dominated by a state consisting of roughly equal occupancies of Types I and II-α 

vertices. This leads to an emergent low-energy toroidic phase of paratoroidicity (Fig. 

2b). Remarkably, one can thus expect a direct toroidic phase transition between 

ferrotoroidicity and paratoroidicity. 

We have numerically tested the various phases and phase transitions. Our Monte Carlo 

(MC) simulation of the temperature-dependent heat capacity and entropy (Fig. 2d) of 

the direct-kagome ASI clearly reveals three distinct thermal phases (Fig. 2a-2c), 

separated by a toroidic phase transition and a crossover, as indicated by a peak and a 

bump in the heat capacity curve, respectively, and two steps in the entropy curve (see 

Fig. 2d). The low-temperature peak signals a phase transition from ferrotoroidicity to 

paratoroidicity due to the spontaneous symmetry breaking in the net value of toroidal 

moments. The bump at higher temperature signals a crossover to nontoroidicity as 

Type-III vertices appear, toroidal moments disappear, and the material becomes 

paramagnetic. 
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Imaging toroidic phase transitions 

To experimentally access the various intriguing thermal phases and phase transitions in 

athermal ASI samples at room temperature, we designed samples with a series of lattice 

constants (Figs. 3a, 3b and Extended Data Fig. 1). Based on the Boltzmann distribution 

law, the population probability of an excitation in thermal equilibrium is roughly 

proportional to exp(-Ei/kBT), where Ei is excitation energy and T is temperature. Instead 

of increasing the temperature T we can reduce the excitation energy Ei to access the 

effective thermal states in a thermal equilibrium system. Here, the vertex excitation 

energy is dominated by the local coupling strengths, e.g., E1 = 2(J2 - J3) and E2 = J1 + J2 

- J3 in our direct-kagome ASI (see Fig. 1d). Previous investigation has shown that 

adjusting the local coupling strengths allows to tune the effective temperature of ASI 

systems32–35. One of the most direct ways to tune the local interactions is to regulate the 

ASI’s lattice constant. As shown in Fig. 4a, increasing the lattice constant reduces all 

the coupling strengths. Moreover, the ratio between J1 (the coupling defines the toroidal 

moment) and J2-J3 (the coupling defines the ferrotoroidic correlation strength between 

neighboring toroidal moments) remains roughly constant with changing the lattice 

constant (inset of Fig. 4a). This implies that adjusting the lattice constant affects all the 

critical energies, such as E1 = 2(J2 - J3) and E2 = J1 + J2 - J3, in the same way. This 

enables us to tune the effective temperature for the whole system by changing the lattice 

constants. 

We fabricated samples with a series of lattice constant a (see Fig. 1a for the definition 

of a) ranging from 300 nm to 1760 nm. To prevent nanomagnets from overlapping in 

samples with a < 360 nm, we slightly shift them away from the centers of triangular 

plaquettes (refer to Supplemental Information). The nanomagnet size for all the samples 

is 220 nm × 80 nm × 20 nm, which results in a single domain magnetization along its 

long axis36. The details of sample fabrications can be found in Methods. Figures 3a and 

3b show scanning electron microscopy (SEM) images of the direct-kagome ASI with a 

= 360 nm and 720nm, respectively (see Extended Data Fig. 1 for all the samples).  

To access the low energy equilibrium states, we performed high temperature annealing 

for all the samples (see Methods and Extended Data Fig. 2 for details). Figures 3c and 

3d show the magnetic force microscopy (MFM) images of the samples corresponding 

to Figs. 3a and 3b, respectively. Extended Data Fig. 3 displays MFM images of all the 

samples in large areas, from which we extract the microscopic spin/vertex (Figs. 3e-3i) 

and toroidal moment (Figs. 3j-3n) configurations, respectively (see Extended Data Figs. 

4 and 5 for more data). For small lattice constants, all the triangular plaquettes form 

toroidal moments of closed loops, as shown by red and blue plaquettes in Figs. 3j-3l. A 

single domain of ferrotoroidicity is observed (Fig. 3j). As the lattice constant increases, 

the domain size becomes smaller and the distribution of toroidal moments become 

disordered (Figs. 3k-3m). When further increasing lattice constant the toroidal moments 

are gradually broken, as shown by the white plaquettes in Fig. 3n.  

In Fig. 4b, we obtained the vertex and toroidal moment populations as a function of 

lattice constants. From Fig. 4a, we can extract the coupling energies J2 for the samples 

with various lattice constant a. Then we plot the vertex and toroidal moment 

populations as a function of 1/J2, as shown by open dots in Fig. 4c. We also plot the 

temperature-dependent statistical results obtained from Monte Carlo simulations (solid 

lines in Fig. 4c). The nearly perfect matching between lattice constant (or coupling 
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strength)-dependent experiments and temperature-dependent simulations validates the 

accessing of thermal dynamic properties in the direct-kagome ASI by tuning its lattice 

constant. 

One remarkable result is that the population of the Type II-α vertices increases with 

(effective) temperature at low temperatures and then decreases with a further increase 

in temperature (red in Fig. 4c). At the low temperature region, where the number of 

Type II-α vertices increases while that of the Type I vertices decreases. In this region, 

the population of the toroidal moments remains at 100%. This effect originates from 

the effective quasi-degeneracy of Type I and II-α vertices when gradually increasing 

the temperature to intermediate values. The plots show a toroidal phase transition from 

ferrotoroidicity to paratoroidicity. When the (effective) temperature increases further, 

Types III, Ⅱ-β and IV vertices emerge gradually, and the population of the toroidal 

moments decreases. At high enough temperatures, all types of vertices and the toroidal 

moments saturate at their configurational (random) population rate, as the system enters 

a completely disordered paramagnetic state. 

To quantitatively describe the three thermal phases and phase transitions in the direct-

kagome ASI, we define two order parameters 𝜓  and 𝜑  for toroidicity and 

ferrotoroidicity, respectively. First, we define the vorticity as 𝑣 = ±3, ±1  for the 

triangular plaquettes (see the inset of Fig. 4d), where 𝑣 = ±3 indicates well-defined 

toroidal moments with fully closed magnetic loops, while 𝑣 = ±1  denotes the 

breaking of toroidal moments. Then the order parameters are defined as:  

𝜓 =
4

3
[𝜓0 −

1

4
], where 𝜓0 =

1

2𝑁
∑(|𝑣| − 1) 

𝜑 =
1

3𝑁
|∑ 𝑣|, 

where N is the total number of the triangular loop units. Here, 𝜓0  quantifies the 

population of well-defined toroidal moments, and the order parameter 𝜓, normalized 

to the range [0, 1], measures the local onset of toroidicity.  

The second order parameter, 𝜑, measures the symmetry breaking due to the long-range 

ordering of toroidal moments. It is zero if domains of opposite toroidal orientation are 

equally represented. The order parameters extracted from experiments (open dots) and 

MC simulations (solid lines) are plotted in Fig. 4d. At the lowest (effective) temperature 

(smallest lattice constant), both order parameters are equal to one, revealing a single 

domain of ferrotoroidicity. However, at an intermediate temperature, 𝜑  decreases, 

while ψ remains close to one, when 𝜑  reaches zero. The system remains toroidal, but 

the emergence of Type II-α vertices (see Fig. 4c) disrupts the toroidal symmetry 

breaking, leading to paratoroidicity. Finally, at higher temperatures, ψ begins 

decreasing and approaches to zero, as shown in Fig. 4d. This signals the system’s 

crossover into the non-toroidal paramagnetic phase, corresponding to the appearance 

of high energy vertices. 

We can resort to a more sensitive characterization of ferrotoroidic ordering and the 

associated phase transitions, by plotting the magnetic structure factor (MSF) maps for 

spin configurations and toroidal moment configurations in Figs. 5a-5f and 5g-5l, 

respectively (see Methods). Extended Data Figs. 6 and 7 show the MSF maps for all 

the samples. For the samples with small lattice constants (low effective temperatures), 
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clear and sharp Bragg peaks are observed in MSF maps of both spins (Figs. 5a and 5b) 

and toroidal moments (Figs. 5g and 5h), which exactly match the theoretical prediction 

of ferrotoroidicity (Figs. 5m and 5p). This unambiguously reveals the ordering of both 

spin and toroidal moments required for ferrotoroidicity. One interesting feature is that 

the MSF maps contain both strong and weak Bragg spots, which are typical features of 

the ferrotoroidic ordering of direct-kagome ASI (as illustrated in Extended Data Figs. 

8). With the lattice constant (or effective temperature) increasing, the spin MSF map is 

gradually becoming diffusive but still featured (from Figs. 5a to 5d). The featured 

pattern of the spin MSF represents the local correlations of the nanomagnets within 

each toroidal moment (the satisfying of all the J1 couplings). However, the diffusive 

MSF pattern indicates no long-range spin ordering. On the other hand, the toroidal 

moment MSF map is gradually changing to featureless patterns (from Figs. 5g to 5j), 

suggesting that there are no correlations among the toroidal moments. These are 

consistent with the prediction of ferrotoroidic phase transition from ferrotoroidicity to 

paratoroidicity in the direct-kagome ASI (Figs. 5n and 5q). At very large lattice 

constants (high effective temperatures), both structure factor maps (Figs. 5f and 5l) are 

featureless, implying that the system transitions into a paramagnetic state (Figs. 5o and 

5r). 

Conclusions 

The direct-kagome ASI structure offers an ideal platform to explore toroidal magnetism 

and its transitions. The quasi-degeneracy of the direct-kagome ASI, stemming from the 

unique structure of the Kagome lattice, leads to multiple phases. Very large excitation 

energies would suppress the quasi-degenerate state, thereby limiting the richness of 

phase diagram (see Extended Data Fig. 9). As an engineerable platform, its excitation 

energies can be fine-tuned through structure modifications34,37–39, potentially leading to 

even more interesting phenomena. Fabricating thermally activated direct-kagome 

samples with ultra-thin magnetic layers would enable the study of dynamic properties11. 

Exploring connected counterparts of direct-kagome ice could unveil interesting 

transport effects40 and introduce additional energy tuning parameters31,33,35,41. 

Fascinating phenomena in direct-kagome ices are also anticipated in other ice platforms, 

such as qubit ices42–44, superconducting flux-quantum ices45–48 and colloidal ices30,49. 

The direct-kagome ice could pave the way for innovative applications, including 

reconfigurable hybrid devices48,50,51, programmable magnonics52,53, and advanced 

computational technologies54,55. The violation of both space and time inversion 

symmetries by ferrotoroidicity not only facilitates magnetoelectric responses but also 

hints at potential functionalities in heterosystems. For instance, leveraging 

ferrotoroidicity in superconductor heterostructures might enable the creation and 

control of superconducting diode effects, which require simultaneous space-inversion 

and time-reversal symmetry breaking56. 
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Figures 

 

Fig. 1 | Quasi-degenerate direct-kagome ASI with well-defined toroidal moments. 

a, Geometric structure of the direct-kagome ASI. A triangular plaquette and a four-leg 

vertex are highlighted. b, Toroidal moments of the nanomagnets in the triangular 

plaquette. c, Three local couplings in two neighboring triangular plaquettes. d, Vertex 

classification based on energies. Values of the degeneracy d are listed for each type of 

vertices. The tiny energy gap between Type I and Type II-α vertices induces a quasi-

degenerate state. The energies are calculated from micromagnetic simulations for 

nanomagnets with size of 220 nm × 80 nm × 20 nm and lattice constant a = 360 nm. 
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Fig. 2 | Three thermal phases and phase transitions. a-c, Spin and toroidal moment 

configurations of ferrotoroidicity (a), paratoroidicity (b), and paramagnetism (c). The 

red and blue dots represent positive (red) and negative (blue) toroidal moments. d, 

Temperature-dependent heat capacity and entropy from Monte Carlo simulation. The 

phase transition and the crossover among the three phases are depicted by two gray 

dashed vertical lines, respectively. 

  



9 

 

 

Fig. 3 | Lattice constant dependent experiments. a and b, SEM images of direct-

kagome ASI with a = 360 nm (a) and a = 720 nm (b), respectively. c and d MFM images 

corresponding to (a) and (b), respectively. Scale bars, 500 nm (a,c) and 1 μm (b,d). e-i 

spin/vertex distributions extracted from MFM images with various a values. Types I, 

II-α, III, II- 𝛽  and IV are shown in gray, light blue, green, gold, and magenta, 

respectively. j-n toroidal moment distributions corresponding to (e)-(i), respectively. 

Red and blue plaquettes respectively denote positive and negative toroidal moments. 

Scale bars, 2 μm. 
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Fig. 4 | Accessing effective thermal states by tuning lattice constant. a, local 

interactions J1, J2 and J3 (defined in Fig. 1c) as a function of lattice constant a, which is 

calculated from micromagnetic simulations. Inset: the ratio between J1 and J2-J3. b 

statistics of the spin/vertex and toroidal moment populations extracted from MFM 

images. c, comparison of spin/vertex and toroidal moment populations between energy 

dependent experiments (open dots) and temperature dependent MC simulations (solid 

lines). Experimental (EX) results are normalized by c/J2+kBTb/J0, where J2 is obtained 

from micromagnetic simulation for various lattice constants a (refer to the 

Supplemental Information for all J2 values), while the constants c and Tb satisfy c = 

0.35J0 and kBTb = 0.33J0, with J0=J2(a=360 nm)=1.19×10-18 J. d, comparison of order 

parameters between experiments (open dots) and MC simulations (solid lines). The 

vorticity v is defined in the inset, and black and red curves/dots are for the order 

parameters 𝜓  (toroidicity) and 𝜑  (ferrotoroidicity), respectively. The gray dashed 

vertical lines in (b-d) correspond to the phase transition and crossover lines in Fig. 2d. 
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Fig. 5 | Visualizing toroidic phase transitions from magnetic structure factors. a-l, 

MSF maps of spins (a-f) and toroidal moments (g-l) deduced from experimental images 

for samples with various lattice constants. m-r, theoretical MSF maps of spins (m-o) 

and toroidal moments (p-r) from three ideal phases.  
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Methods 

Sample fabrication. The ASIs’ nanomagnet arrays were fabricated on a silicon 

substrate with a 200 nm silicon nitride layer. The nanomagnet arrays were patterned 

using e-beam lithography using a bilayer electron-beam (e-beam) resist of PMMA 495 

(100 nm) and PMMA 950 (80 nm), followed by e-beam evaporation of 20 nm thick 

permalloy (Ni0.8Fe0.2) at a deposition rate of 0.3Å/s. The lift-off process was conducted 

by sonication in n-methyl-pyrrolidone and acetone. Detailed sample dimensions can be 

found in Supplemental Information. 

Thermal annealing. The annealing process was conducted in a high vacuum chamber 

with a base pressure of 10-8 Torr. The sample was placed on an annealing stage covered 

by mu-metal shielding to prevent the influence of magnetic fields. The sample stage 

was heated using a laser with a beam spot diameter of 1 cm and an adjustable output 

power up to 100 W in continuous mode. The sample was gradually heated from room 

temperature to 550 ℃ in 60 minutes and held at this temperature for 15 min before 

being cooled at 0.3 ℃ per min to 100 ℃ (refer to Extended Data Fig. 2a).  

Micromagnetic simulations. The micromagnetic simulations were performed using 

the Mumax3 software package57,58, with the following material parameters for 

permalloy: the exchange constant of 1.3×10-11 J/m, the saturation magnetization of 8.6 

× 105 A/m, and the Gilbert damping of 0.01. The mesh size is 2 × 2 × 2 nm3.   

Monte Carlo simulations. The Monte Carlo simulations were conducted by using a 

thermal annealing protocol. The simulations were performed on 31×31 Kagome lattice 

sites with free boundary conditions. The Hamiltonian is defined as jiji ij SSJ=
,

-H , 

where Si and Sj are Ising variables on the sites i and j, and Jij is the coupling strength 

between the two sites. We only consider the interactions of the nearest neighbors, J1, J2 

and J3, which are defined in Fig. 1c and are determined from micromagnetic simulations. 

We used the values of J1, J2 and J3 for the sample with a lattice constant of a = 360 nm 

in our simulation. The thermal annealing protocol starts from a high temperature 

kBT/J0=10. Each temperature update is set to 96% of the previous temperature value. 

Each temperature update includes 3000 simulation steps. In each step, 1500 single-spin 

flip calculations are performed, followed by 750 loop update calculations. The output 

of each step serves as the input for the next step. The specific heat and entropy are 

calculated by following the reference59. 

Magnetic structure factor. The spin MSF was calculated by following the reference34. 

The toroidal moment MSF is calculated in the same way as the magnetic charge MSF 

in reference34. We define the vorticity 𝑣 = ±3, ±1 (see the inset of Fig. 4d) to be in 

the Z direction, perpendicular to the sample plane. For each triangular plaquette, we 

consider the �⃗� at the center of the plaquette. For every vector q = (qx, qy) the intensity 

I(q) is given by  
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where N stands for the number of the triangular plaquettes.  

In order to simplify the calculation, the equation is divided into two parts, each 

containing site i and j respectively, and is rewritten as 
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The above equation can also be written as 
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Then we obtain the equation 
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 . I is now the quantity of 

toroidal moment MSF that we calculate for the interval (qx, qy) = [-5.9π, -5.9π] − [5.9π, 

5.9π] in 501×501 steps. 
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Extended Data Fig. 1 | SEM images of samples with various lattice constants. Scale 

bar, 500 nm (a-h), 1 μm (i-l) and 2 μm (m).  
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Extended Data Fig. 2 | The annealing process. a The sample was heated from room 

temperature to an annealing temperature of 550 ℃ in 60 minutes, held for 15 min, then 

cooled from 550 ℃ to 100 ℃ with 0.3 ℃ min-1. b and c SEM (b) and MFM (c) images 

of a square ASI sample, which served as a reference and was annealed on the same 

substrate of the direct-kagome ASIs. The nanomagnet size is the same with that of the 

direct-kagome ASI. The lattice constant of the square ASI is 360 nm. The nearly perfect 

ground state proves the effectiveness of our annealing. 
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Extended Data Fig. 3 | MFM images with various lattice constants. The MFM 

imaging was conducted after a sample annealing process shown in Extended Data Fig. 

1. Scale bar, 2 μm. 
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Extended Data Fig. 4 | Vertex distributions extracted from Extended Data Fig. 3. 

Vertices of Types I, II-α, III, II-β, and IV are shown in gray, light blue, green, gold and 

magenta, respectively. Scale bar, 2 μm. 
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Extended Data Fig. 5 | Toroidal moment distributions corresponding to vertex 

distributions in Extended Data Fig. 4. Red and blue denote positive and negative 

toroidal moments, respectively. Scale bar, 2 μm. 
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Extended Data Fig. 6 | Spin MSF maps for all the samples. a-m Spin MSF maps for 

the samples with various lattice constants ranging from 300 nm to 1760 nm, 

respectively. 
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Extended Data Fig. 7 | Toroidal moment MSF maps for all the samples. a-m 

Toroidal moment MSF maps corresponding to the spin MSF maps in Extended Data 

Fig. 6, respectively. 
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Extended Data Fig. 8 | Strong and weak Bragg peaks in spin MSF of the direct-

kagome ASI. a, The spin MSF map of ideal ferrotoroidic ordering. A weak Bragg peak 

and a strong Bragg peak are marked by vectors �⃗�1  and �⃗�2 , respectively. b, the �⃗�1 

peak originates from the spin scattering between neighboring nanomagnets with an 

angle of 120 degrees. c, the �⃗�2  peak originates from the spin scattering between 

neighboring nanomagnets with an angle of 60 degrees. d, line cuts of MSF maps across 

�⃗�1 and �⃗�2 peaks from (a). The different spin components, 𝑆⊥, perpendicular to �⃗�1 

and �⃗�2 lead to distinct intensities in the MSF for �⃗�1 and �⃗�2 (refer to Supplemental 

Information for a detailed derivation).  
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Extended Data Fig. 9 | MC simulations of specific heat and entropy under various 

coupling energies. When the lowest excitation energy E1 approaching the second 

lowest excitation energy E2, the low temperature phase transition peak is gradually 

merging into the high temperature crossover. Therefore, the quasidegneracy, requiring 

E1<<E2, is critical for observing the low temperature phase transition. 
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