
Low-overhead General-purpose Near-Data
Processing in CXL Memory Expanders

Hyungkyu Ham∗

POSTECH
Jeongmin Hong∗

POSTECH
Geonwoo Park

POSTECH
Yunseon Shin

POSTECH
Okkyun Woo

POSTECH
Wonhyuk Yang

POSTECH
Jinhoon Bae

POSTECH

Eunhyeok Park
POSTECH

Hyojin Sung
Seoul National University

Euicheol Lim
SK hynix

Gwangsun Kim†

POSTECH

Abstract—To overcome the memory capacity wall of large-
scale AI and big data applications, Compute Express Link (CXL)
enables cost-efficient memory expansion beyond the local DRAM
of processors. While its CXL.mem protocol provides minimal
latency overhead through an optimized protocol stack, frequent
CXL memory accesses can result in significant slowdowns for
memory-bound applications whether they are latency-sensitive or
bandwidth-intensive. The near-data processing (NDP) in the CXL
controller promises to overcome such limitations of passive CXL
memory. However, prior work on NDP in CXL memory proposes
application-specific units that are not suitable for practical CXL
memory-based systems that should support various applications.
On the other hand, existing CPU or GPU cores are not cost-
effective for NDP because they are not optimized for memory-
bound applications. In addition, the communication between the
host processor and CXL controller for NDP offloading should
achieve low latency, but the CXL.io (or PCIe) protocol incurs
µs-scale latency and is not suitable for fine-grained NDP.

To achieve high-performance NDP end-to-end, we propose a
low-overhead general-purpose NDP architecture for CXL mem-
ory referred to as Memory-Mapped NDP (M2NDP), which com-
prises memory-mapped functions (M2func) and memory-mapped
µthreading (M2µthr). The M2func is a CXL.mem-compatible
low-overhead communication mechanism between the host pro-
cessor and NDP controller in the CXL memory. The M2µthr
enables low-cost, general-purpose NDP unit design by introducing
lightweight µthreads that support highly concurrent execution
of NDP kernels with minimal resource wastage. By combining
them, our M2NDP achieves significant speedups for various
applications, including in-memory OLAP, key-value store, large
language model, recommendation model, and graph analytics by
up to 128× (11.5× overall) and reduces energy by up to 87.9%
(80.1% overall) compared to a baseline CPU or GPU host with
passive CXL memory.

I. INTRODUCTION

Compute Express Link (CXL) [15] is emerging as a widely-
adopted interconnect standard for communication between
processors, accelerators, and memory expanders in a sys-
tem. An important use case of CXL is memory expansion
through the memory-semantic CXL.mem protocol that enables
low-latency remote memory access with load/store instruc-
tions. The latency of CXL.mem is known to be significantly
lower than that of PCIe and comparable to cross-socket
NUMA latency, providing 150-175 ns load-to-use latency [89],

∗ These authors contributed equally to this work.
† Corresponding author. Email: g.kim@postech.ac.kr

[114], [125]. Thus, the host’s memory capacity can be cost-
effectively increased beyond the limited local DRAM. Such
capability can be especially beneficial for workloads with
huge memory footprints, including in-memory online analytic
processing (OLAP), key-value store (KVStore), large language
model (LLM) [32], deep learning recommendation models
(e.g., DLRM [101]), and graph analytics [4]. The CXL mem-
ory is already supported by commercial CPUs [3], [30] and
several prototypes with up to 512 GB capacity [73], [106] have
been announced.

However, the CXL interconnect latency can still be signif-
icant for latency-sensitive applications that frequently access
data in CXL memory [89], [97], [125]. In addition, the link
bandwidth (BW) can become a bottleneck for BW-intensive
applications because it is substantially lower than the internal
memory BW within the CXL memory [57], [118]. Thus,
compared to directly accessing CXL memory data for host-
side computation, using near-data processing (NDP) in CXL
memory can provide significant speedups for memory-bound
workloads with low arithmetic intensity [57], [66], [70].

Unfortunately, these prior approaches implement
application-specific NDP HW logic in CXL memory,
limiting their target workloads. Moreover, introducing a wide
variety of special-purpose HW units for different NDP targets
in each CXL memory may not be a practical approach due
to the high total area and NRE cost [96]. While FPGAs can
be adapted to target workloads [18], they have considerable
programmability challenges [29]. Existing CPU or GPU
cores, when used as NDP units [31], [41], [46], [78], [107],
[128], [138], do not provide sufficient performance per cost
based on our evaluation, because they are not optimized for
memory-bound workloads.

Furthermore, conventional MMIO-based NDP offloading
using CXL.io (functionally equivalent to PCIe) in prior
works [57], [66], [70], [118] can incur high latency overhead
from CXL.io protocol stack as well as costly user/kernel mode
switching on the host, wasting CPU cycles. While CXL.mem
has low latency and can be used within user space, it supports
only basic memory reads/writes. Therefore, to achieve high
performance for fine-grained NDP (e.g., key-value stores), an
alternative low-overhead offloading mechanism is necessary.

Thus, to realize low-overhead, general-purpose NDP in

1

ar
X

iv
:2

40
4.

19
38

1v
1

 [
cs

.A
R

]
 3

0
A

pr
 2

02
4

CXL memory, we propose a novel Memory-Mapped NDP
(M2NDP) architecture. M2NDP is based on two key compo-
nents we propose: Memory-Mapped function (M2func) for low-
overhead communication between the host and NDP-enabled
CXL memory, and Memory-Mapped µthreading (M2µthr) for
efficient NDP kernel execution.

The M2func selectively repurposes read and write packets
defined in CXL.mem for efficient host-device communication
beyond memory transactions. By encapsulating NDP manage-
ment commands (i.e., function calls) in CXL.mem requests
to pre-determined addresses, we can avoid the high latency
overhead of conventional offloading using CXL.io/PCIe. A
key enabler for the M2func is a packet filter placed at the
input port of the CXL memory. It checks if an incoming
request’s memory address matches the pre-allocated memory
range dedicated for each host process. Then, for matching
requests, different NDP management functions are triggered
depending on the address. Thus, NDP management function
calls (e.g., kernel registration, launch, and status poll) can be
done simply by issuing memory accesses from the host. As
a result, M2func minimizes the latency of NDP offloading,
especially benefiting fine-grained NDP. Additionally, we do
not require any modification to the CXL.mem standard for best
compatibility with host CPUs. Consequently, M2func avoids
the complexity of managing a ring buffer-based shared task
queue between the host and CXL/PCIe-attached devices by
providing a clean function call abstraction.

Furthermore, we propose M2µthr for the intuitive abstrac-
tion of NDP and cost-effective kernel execution. Memory-
bound workloads tend to use fewer registers than compute-
bound workloads. Thus, we propose a µthread, which is a
lightweight thread with a subset of the architectural registers,
as a unit of execution. By reducing register usage, the NDP
unit can concurrently execute many µthreads to hide DRAM
access latency without excessive physical register file cost.
In addition, memory-bound data-parallel workloads are typ-
ically implemented such that each thread is associated with
specific data to be processed. In conventional programming
environments such as CUDA, the association between a thread
and memory location is expressed indirectly via code (e.g.,
calculating the index of the array element for a thread using
threadblock ID, block dimension, and thread ID in CUDA).
In contrast, with our M2µthr, we create each µthread in
direct association with a particular memory location – i.e., the
µthreads are memory-mapped. As a result, the initial address
calculation code can be avoided.

Our NDP unit’s architecture is based on the RISC-V ISA
with vector extension [6] to leverage SIMD units and fully
utilize the DRAM BW within a CXL memory cost-effectively
while supporting scalar operations to avoid redundant ad-
dress calculations in SIMT-only GPUs [56]. Many memory-
mapped µthreads are executed with fine-grained multithread-
ing (FGMT) to hide memory access latency. The µthreads
are also spawned individually, in contrast to threadblock
spawning in GPUs, which can waste resources due to inter-
warp divergence. Our NDP unit’s ISA is also independent of

the host ISA.
By combining M2func and M2µthr, our proposed M2NDP

architecture enables low-overhead, general-purpose NDP in
CXL memory. We demonstrate the effectiveness of our design
for various workloads, including in-memory OLAP, KVStore,
LLM, DLRM, and graph analytics.

To summarize, our contributions include the following:
• We propose M2NDP (memory-mapped NDP) to enable

general-purpose NDP in CXL memory. Our architecture
is based on the unmodified CXL.mem protocol and, thus,
does not require any host processor hardware modifi-
cations. M2NDP consists of M2func (memory-mapped
function) and M2µthr (memory-mapped µthreading).

• The M2func supports low-overhead NDP offloading and
management from the host processor through CXL.mem,
overcoming the high overhead of CXL.io for fine-grained
NDP offloading while retaining standard-compatibility.
As a result, it achieves speedups of up to 3.89× (34.1%
overall) compared to NDP offloading with CXL.io.

• The M2µthr enables efficient NDP kernel execution
by lightweight FGMT using RISC-V with vector ex-
tension while reducing redundant address calculation
overhead compared to SIMT-only GPUs. Its fine-grained
µthread creation also avoids the waste of resources from
threadblock-granularity resource allocation.

• Our evaluation results show that M2NDP can achieve
high speedups of up to 128× (11.5× overall) for various
workloads, compared to the baseline system with passive
CXL memory, while reducing energy consumption by up
to 87.9% (80.1% overall).

II. BACKGROUND AND MOTIVATION

A. Considerations in Architecting NDP in CXL Memory

The CXL memory can cost-efficiently expand the system
memory for workloads with large memory footprints [21],
[42], [53], [108], [117]. Although passive CXL memory can
degrade the performance of latency-sensitive [125] and BW-
intensive [140] workloads, NDP in CXL memory poses a
substantial opportunity to effectively address this challenge.
While CXL memory with NDP capability is somewhat similar
to GPU in that the host can offload computation to these
devices, they are introduced with very different primary objec-
tives (i.e., memory expansion vs. compute acceleration), and
thus, have fundamentally different requirements in terms of
memory capacity, cost, and compute throughput (Table I). In
particular, the CXL memory cannot employ 100s of SMs for
NDP as in high-cost GPUs [36]. In contrast to GPUs, the
NDP architecture specifically targets memory-bound (either
BW-bound [140] or latency-bound [125]) workloads with large

TABLE I
HIGH-LEVEL COMPARISON OF GPU AND CXL MEMORY WITH NDP.

GPU CXL memory with NDP
Memory capacity Low High
Cost (area and power) High Low
FLOPS per memory BW High Low
Key target workloads Compute-bound Memory-bound

2

memory footprints which do not fit in typical on-chip caches
and have low arithmetic intensity. Compute-bound workloads
or those with small working sets that fit in on-chip caches
can be executed more efficiently on the host or GPUs. Conse-
quently, these devices, with their distinctive characteristics, can
complement each other in a system for different workloads.

B. Compute Express Link Interconnect

The CXL [15] uses the PHY layer of PCIe and defines
three protocols: CXL.io, functionally equivalent to PCIe, is
used for device management; CXL.cache allows a CXL device
to access host memory using a cache coherence protocol;
CXL.mem enables memory expansion through CXL. In par-
ticular, CXL.mem enables processors to access CXL memory
data by simply issuing load/store instructions while providing
lower latency compared to CXL.io [97], [125]. The load-to-
use latency for CXL memory can be as low as ∼150 ns,
which includes round-trip latencies through the host cache,
CXL protocol stack, physical off-chip wires, and DRAM [89],
[114], [115]. The round-trip latency through the CXL protocol
stack and physical wires alone is ∼70 ns, as shown in Fig. 1.
The CXL memory access latency through a CXL switch can
approach 300 ns [89].

The CXL specification also defines three device types based
on the protocols supported. In all types, CXL.io should be sup-
ported for device management. Type 1 devices are accelerators
without memory (e.g., smart NIC) that use CXL.cache. Type
2 devices are cache-coherent accelerators with memory (e.g.,
GPU and FPGA) that use CXL.cache and CXL.mem. Type 3
devices are memory expanders that support CXL.mem.

With CXL.mem, the CXL memory is managed by the
host processor, referred to as Host-managed Device Memory
(HDM), and can be accessed by the host using a Host Physical
Address (HPA). A type-3 CXL memory expander can use
either HDM-H (host-only coherent) or HDM-DB (device co-
herent using back-invalidation) coherence model. The HDM-H
is for passive memory expanders, which are not supposed to
manipulate the memory exposed to the host [15]. In contrast,
HDM-DB supports a device coherence agent (DCOH) and a
snoop filter in the CXL memory to track the host’s caching of
HDM using a metadata field of requests. Thus, it can perform
back-invalidation (BI) to host cache when needed using BI
channels of CXL.mem [15]. Thus, HDM-DB is suitable for
CXL memory with NDP capability and we assume this model
in this work. The host can also flush HDM data from its cache
using HW support in the CPUs and bound the flush time with
the cache size [13], [82] or (NDP) data size [68].

The CXL 3.0 also supports direct peer-to-peer (P2P) access,
allowing a CXL device to directly access the HDM of another
CXL device through a CXL switch [16]. This feature can be
useful for scalable NDP across multiple CXL memories.

For address translation, a CXL device can use the ATS [9]
defined in PCIe to request translation from the host. However,
it can incur several µs of latency due to the protocol overhead
and page table walks on the host [126]. To reduce the
overhead, the device can have an Address Translation Cache

A
p

p
lic

at
io

n
/

P
ro

ce
ss

in
g

Lo
gi

c

TL
 Q

u
eu

es
,

P
ro

ce
ss

in
g

Fl
it

 P
ac

ki
n

g
/

U
n

p
ac

ki
n

g

C
R

C
,

C
re

d
it

s,
 R

ep
la

y

P
H

Y
Lo

gi
ca

l

P
C

Ie
 P

H
Y

C
P

I

P
IP

ELP
IF

LP
IF

CXL.$Mem
Transaction Layer

CXL.$Mem
 Link Layer

4 ns 2 ns

P
h

ys
ic

al

W
ir

es

CXL.io

CXL Port

10
-20 ns

21
-25 ns

A
rb

it
er

/M
u

x

Total 52-70 ns

15
-19 ns

21-25 ns

CXL Port

Fig. 1. CXL implementation and measured round-trip latencies (figure and
latency numbers adapted from D. D. Sharma [114]). CXL.$Mem refers to
both CXL.cache and CXL.mem.

(ATC) to keep recently used translation information. When the
page table is updated, the host can invalidate the ATC on the
device to prevent incorrect translations.

C. Communication Overhead with CXL.io/PCIe

Computation offloading through CXL.io/PCIe (hereafter,
CXL.io) involves several SW and HW steps that can result
in significant overhead in terms of latency and host proces-
sor usage, especially for fine-grained offloading. A common
method used for various devices (e.g., GPU, SSD, and NIC) is
based on a ring buffer shared and manipulated by both the host
driver and a CXL.io device [45]. For a GPU kernel launch,
the host runtime first writes the kernel launch command in the
user buffer and the driver pushes a packet that points to the
GPU command into the ring buffer in the kernel space. The
host then updates the write (or tail) pointer for the ring buffer
to notify the GPU of the new command [92], [129], which
incurs additional latency through the PCIe and triggers two
DMA operations from the GPU to fetch the GPU command.
Overall, the complex manipulation of the ring buffer shared
between the host and GPU can incur two and a half CXL.io
round-trips for a kernel launch [45], resulting in high latency of
∼4.5µs [94]. To check kernel completion, polling or interrupt
can be used and they consume additional host processor cycles.
Polling over PCIe can incur 2-3µs [67] overhead and interrupt
has similar or higher overhead [58], [60], [136]. Thus, the
total latency of a kernel launch and completion check can take
significantly longer than 5µs or 10,000 cycles at 2 GHz. Such
latency may be acceptable for coarse-grained NDP but can be
too high for latency-sensitive, fine-grained NDP kernels.

Alternatively, to avoid such overhead, a pair of device-
side registers can be directly accessed through MMIO over
CXL.io to send a request and check the result [43], [57],
[118]. However, this approach is limited to supporting a single
request at a time and cannot support multiple concurrent
requests, resulting in limited performance. Thus, to enable
concurrent NDP kernels, generalization of such scheme using
many different addresses is required. In addition, since the
memory-mapped registers are physical resources, it cannot
be shared among multiple user processes safely and requires
context switch to kernel space for every access. This challenge
motivates us to design a low-overhead offloading mechanism
based on CXL.mem that can be effective for both fine- and
coarse-grained offloading while supporting high concurrency.

3

D. NDP Support with Unmodified CXL.mem

Whereas CXL.io can have high overhead for frequent and
fine-grained communication, CXL.mem messages can be sent
with lower latency [51], [97], [125] and CPU usage. The
current CXL.mem protocol defines several unused bits in the
packet format. Thus, one might consider using the bits to en-
code information required to implement special functionalities
(e.g., NDP management) that are not defined in the standard.

However, to enable such customized communication, the
host processor HW should be modified to support the special
usage of the reserved bits. Thus, commodity processors that
only support the standard protocol cannot utilize it. Further-
more, to send special packets, special instructions would need
to be introduced in the host’s ISA as in prior works [64],
[78], [105]. Such propriety extension of the standard protocol
or host’s ISA would hinder widespread adoption.

III. MEMORY-MAPPED NEAR-DATA PROCESSING

A. Overview

To overcome the limited flexibility and cost-efficiency of
prior NDP approaches while avoiding the high latency over-
head in the offloading procedure (§II-C) for NDP in CXL
memory, we propose Memory-Mapped Near-Data Processing
(M2NDP) in CXL memory, called CXL-M2NDP (Fig. 2). The
M2NDP comprises two mechanisms – 1) Memory-Mapped
functions (M2func) for low-overhead NDP management and
offloading based on unmodified standard CXL.mem and
2) Memory-Mapped µthreading (M2µthr) for cost-effective
general-purpose NDP microarchitecture. They are combined
to holistically improve end-to-end NDP performance including
both offloading procedure and kernel execution. They are
implemented in the CXL controller chip which also supports
the basic read/write CXL.mem transactions.

B. Memory-mapped NDP Management Function (M2func)

To exploit NDP for fine-grained computation offloading as
well as coarse-grained offloading, the communication latency
between the host and CXL-M2NDP needs to be minimized.
While the CXL.mem protocol provides low latency, the stan-
dard only defines packet types for normal CXL memory
accesses and cannot be directly used for other communication.
Extending CXL.mem to support custom packet types breaks
its compatibility across different host processors and prevents
widespread adoption of the NDP architecture. In contrast,
CXL.io can be used for arbitrary communication, but incurs
higher latency in the protocol stack and requires a context
switch to the OS for privileged IO device communication,
which further increases latency (§II-C).

Thus, to enable low-overhead and flexible communication
with CXL-M2NDP from the host using unmodified CXL.mem,
we propose M2func. Its basic idea is to reserve some physical
memory space of the CXL memory for host communication
referred to as the M2func region. To distinguish between the
two different usages of CXL.mem, we introduce a packet filter
placed at CXL memory’s input port to examine all packets
and determine if the packet should be interpreted as normal

CXL-M2ND
CXL-M2NDP

…

NDP
Unit
NDP
Unit

NDP
Unit

CXL Controller

CXL Memory Expander with M2NDP

Packet filter

CXL-M2NDP

CXL

CXL
Cache

Cache

Cache

Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

DRAM

DRAM

DRAM
… …

NDP Controller

CXL

CPU

CXL Switch
(optional)

…

…

Fig. 2. Overview of the proposed system with M2NDP-enabled CXL memory.

C
X

L-
M

2
N

D
P Packet filter

0x10040x7

v1

vse64.v v1, (x7) // store vector register v1 at x7

H
o

st
co

d
e

0 1 0xA000 0xA1FF 16 0xB000 0xC000 0

Sync
/async

μthread pool region
base & bound

Arg. size
(bytes)

NDP kernel
 arguments

(ignored…)Kernel
ID

CXL.mem
write packet

H
o

st
p

ro
ce

ss
o

r

Addr: [0x10040], Data: [0, 1, 0xA000, 0xA1FF, …]

NDP Unit 0

NDP Unit 1

μthr0: 0xA000
μthr4: 0xA080

…

…

μthr1: 0xA020
μthr5: 0xA0A0…

NDP Unit 3
μthr3: 0xA060
μthr7: 0xA0E0…

M2func region ASID

0x10000-0x1FFFF 0x07

0x20000-0x2FFFF 0x0A

… … N
D

P
 C

o
n

tr
o

lle
r

Fig. 3. Example NDP kernel launch using M2func with VectorAdd NDP
kernel that computes C=A+B. Vectors A, B, and C are placed at 0xA000,
0xB000, and 0xC000, respectively. Each µthread computes a 32B (8x4B)
partial vector output. Other datapath components are not shown for brevity.

reads/writes or M2func call based on the packet’s address.
M2func calls are handled by the NDP controller (Fig. 2) im-
plemented similarly to microcontrollers in GPUs [11]. M2func
can provide different functionalities, including NDP kernel
registration, unregistration, and launch. Different functions can
be called by using addresses with different offsets from the
base of the M2func region for the CXL.mem packet (Table II).

For the initialization of M2func, each user process on
the host allocates an uncacheable M2func region in CXL
memory. Through a CXL memory driver, the region’s address
range can be inserted into the packet filter using CXL.io.
Once initialized, CXL.io is not needed anymore for NDP
and CXL.mem can be used for both normal reads/writes and
M2func.

The packet filter entry requires little storage of only 18 B per
host process (64-bit base, 64-bit bound, and 16-bit ASID), so
a small packet filter can support many processes (e.g., 18 KB
for 1024 processes). Given the small size, it can provide high
throughput and be easily replicated in multi-ported (or multi-
headed) CXL memory [15].

For an M2func call, we use a write request format to include
arguments in the write data portion of the request. To send it,
the host executes a store instruction with a register that holds
the arguments (Fig. 3). Vector registers [6], [17], [120] can
be used to send multiple arguments up to the vector register’s
size. Because the M2func region is uncacheable, the writes
will bypass the host cache. However, the response to the write
request cannot include any return value data from the NDP
controller using the CXL.mem. Thus, we use a subsequent
read request to the same address to access the return value of

4

TABLE II
PRE-DEFINED NDP MANAGEMENT FUNCTION DESCRIPTION.

Offset Description Privi- M2func Arguments Return Value
(stride=25) leged

NDP kernel CodeLoc, ScratchpadMemSize, New
0 ≪ 5 registration No NumIntRegs, NumFloatRegs, kernel ID

NumVectorRegs or -1 (error)

1 ≪ 5 NDP kernel No NDPKernelID 0 (success)
unregistration or -1 (error)

NDP kernel Synchronicity, NDPKernelID Kernel
2 ≪ 5 launch No µthreadPoolRegion (base, bound), instance ID

KernelArgSize, KernelArguments or -1 (error)

3 ≪ 5 NDP kernel No NDPKernelInstanceID 0 (finished)
status poll or 1 (running)

4 ≪ 5 TLB entry Yes ASID, VirtualPageNumber 0 (success)
shootdown or -1 (error)

the latest call of the function by the current process. Because
the return value will be accessed with normal memory access,
the NDP controller can simply store the function’s return
value at the corresponding memory address and serve the read
request as normal access. For proper ordering, the host process
code should have a fence instruction between the requests.

Table II lists the NDP management functions for different
address offsets from the base of the M2func region. To support
sufficient sizes for function arguments and return values, the
offsets can be strided (by 32 B in this example). Thus,
multiple arguments and return values can be communicated.
For example, to register (unregister) an NDP kernel, assuming
the base address is 0x00FF0000, a write request to 0x00FF0000
(0x00FF0020 or 0x00FF0000+(1≪5)) can be used. Since dif-
ferent kernels can require varying amounts of register and
scratchpad memory (§III-G), they are given as arguments for
registration. In addition, the kernel argument size should be
specified such that the arguments can be properly extracted
from a kernel launch packet. The metadata of registered
kernels are stored in the M2func region for the current host
process, beginning at a pre-determined location beyond the
offsets used in Table II for ease of accesses by the host. As
the M2func region is allocated by each process, it is protected
from other processes by the host.

C. NDP Kernel Launch

The M2func enables NDP kernel launch with minimal
overhead (Fig. 4a). NDP kernel launch can be done by calling
the M2func at offset 2≪5 (Table II) by sending a write request
with kernel launch arguments. Note the difference between
M2func arguments for kernel launch function (which deter-
mines how a kernel is launched) and NDP kernel arguments
(which will be directly used in the NDP kernel code). Large
kernel inputs (e.g., arrays) can be stored in a separate memory
location in CXL memory and its pointer can be passed as an
argument. Each kernel instance is associated with a virtual
memory region for an input or output data array called µthread
pool region provided in a kernel launch call for our M2µthr
mechanism (§III-D). After a kernel launch, the NDP controller
sends back an acknowledgment packet immediately.

Afterward, the host can have a memory fence and a load
instruction to fetch the return value for the kernel launch
function at the same M2func offset 2≪5. The difference is

CXL.mem CXL.io

NDP
unit

Total
~6.47μs

35ns

35ns

Host
processor

CXL
port

~6.4μs

CXL
port

NDP
unit

Total
~13.9μs

6.4μs

~4.5μs

~3μs

Barrier

Enqueue(CMD)

R
ep

eated
 tw

ice
(lau

n
ch

 &
 erro

r ch
eck)

Total
~9.4μs

~6.4μs

~1μs

~2μs

CXL
port

NDP
unit

Host
processor

N
D

P
 K

ern
el

N
D

P
 K

ern
el

N
D

P
 K

ern
el

Host
processor

Tim
e

Tim
e

Tim
e

(a) M2func (b) CXL.io (ring buffer) (c) CXL.io (direct)

Fig. 4. Example timelines with different NDP offloading schemes, assuming
a synchronous launch and 6.4 µs NDP kernel runtime from DLRM(SLS)-B32
(§IV-C). We assume ∼4.5 µs for ring buffer latency [94], 2 µs latency
for round-trip CXL.io/PCIe and kernel overhead [67], and 70 ns round-
trip CXL.mem protocol latency (from 150 ns load-to-use latency for CXL
memory [89], [114]). For the ring buffer, CMD and CMP refers to command
and completion messages enqueued into the ring buffers, respectively. Two
pairs of CMD and CMP are needed for kernel launch and error checks [20].

that this time, a read request will be sent. Its response with
the return value can be sent back differently based on the
Synchronicity argument given for kernel launch: it will be
returned immediately for an asynchronous launch, whereas it
will be returned after kernel termination for a synchronous
launch. The asynchronous launch enables overlapping host-
side computation with an NDP kernel. The host can then later
use the kernel status poll function to check its completion.

When the NDP unit’s available resource is insufficient for
a kernel launch due to other kernels currently running, the
kernel launch request will be buffered and served after prior
kernels are completed. If the buffer is full, the kernel launch
will return -1 to signify an error.
Comparison with traditional approaches. With the tra-
ditional ring buffer scheme used by various PCIe/CXL.io
devices, an NDP kernel launch can require multiple link round-
trips to update the write pointer, and transfer the pointer to
the command from the ring buffer and then the command
itself to the device similar to GPU kernel launches [92], [129]
(Fig. 4b). Subsequently, to check if the launch is done without
an error, the procedure should be repeated [20]. This approach
incurs high latency but allows concurrent execution of multiple
NDP kernels. On the other hand, a simpler approach of directly
manipulating dedicated device registers through MMIO [43]
takes a shorter latency (Fig. 4c) but can execute only one
kernel at a time as the registers should not be overwritten.

In contrast to these approaches, M2func reduces the kernel
launch latency by requiring fewer round-trips compared to the
ring buffer scheme while exploiting CXL.mem and avoiding
kernel mode transition to further reduce latency. In addition,
M2func also supports concurrent execution of multiple kernels.
As a result, we reduce the end-to-end latency of NDP by 31.2-
53.5% compared to the traditional schemes for a fine-grained
example NDP kernel from DLRM as shown in Fig. 4.

Note that while we focus on supporting NDP offloading

5

with CXL.mem to minimize overhead, we do not preclude
the use of CXL.io for NDP management. For long kernels,
CXL.io overhead can be well-amortized over the runtime.

D. Memory-mapped µthreading (M2µthr)

To maximize the NDP kernel’s memory bandwidth utiliza-
tion, a large number of memory accesses need to be done
concurrently to hide memory latency. While out-of-order cores
can perform multiple memory accesses simultaneously, it is
not suitable for cost-efficient NDP due to high control logic
overhead. Fine-grained multithreading (FGMT), especially
with a large number of threads as in GPUs, can efficiently
provide high concurrency. However, GPU SM’s SIMT-only ex-
ecution can be inefficient when its threads perform redundant
computation within a warp due to a lack of scalar operations
(e.g., loop variable management, and address calculation) [56].

Thus, to efficiently support both scalar and SIMD op-
erations, we adopt RISC-V ISA with vector extension and
modify it to support highly concurrent FGMT-based M2µthr
(Table III). Particularly, for CPUs, the OS creates and manages
threads, but the overhead can be tremendous for a large number
of threads, especially if they are short-lived [134], due to µs-
scale delay per thread [7], [88]. In addition, a CPU thread
requires the entire ISA-defined register set, so the register file
grows linearly with the HW thread count. However, memory-
bound workloads tend to use fewer registers than compute-
bound workloads due to lower arithmetic intensity. Thus, we
use GPU-style HW-managed threads without the conventional
OS for CPUs and provision the number of registers for
each thread as specified by SW (i.e., compiler) during kernel
registration (Table II) to reduce register file cost. For example,
if 5 integer and 3 vector registers are needed, only registers
x0-x4 and v0-v2 are used in the kernel. We refer to this type
of thread as µthread due to its low resource usage. Creating
a µthread can be done quickly as in GPUs. The µthreads can
also use on-chip scratchpad memory for communication.

Despite similarities, our µthreads differ from GPU threads
in several ways besides the difference in ISA (i.e., SIMT-only
GPU ISA vs. SISD+SIMD by RISC-V ISA with vector exten-
sion for µthreads). First, whereas a GPU thread is identified
by multidimensional threadblock and thread indices, µthreads
are identified by the address it is mapped to in a µthread pool
region. By using one of the input data arrays as a µthread
pool region (Fig. 3), the µthread can begin data access without
redundant address calculation done across threads in a GPU
warp, which can account for a substantial ∼30% of dynamic
instruction counts [56]. The mapped address is given as a
(base, offset) pair (§III-E), so the offset can also be used to
access other data with different bases.

Second, whereas GPU threads are created in a coarse
threadblock granularity, µthreads are created in fine, individual
thread granularity. The coarse-grained thread creation can
result in resource fragmentation and underutilization due to
inter-warp divergence – i.e., resource unused by finished warps
of a threadblock will remain unused until the entire thread-
block they belong to is finished and its resource is released

TABLE III
ARCHITECTURAL DIFFERENCES BETWEEN THE CPU, GPU, AND M2NDP.

CPU GPU M2NDP

Thread creation Each thread Threadblock Each µthread
granularity (fine-grained) (corase-grained) (fine-grained)
Flynn’s taxonomy SISD + SIMD SIMD (SIMT) only SISD + SIMD
Per-thread registers Fixed by ISA By usage By usage
Thread creation By OS By HW By HW

Thread scheduling ST/SMT/ FGMT FGMT
FGMT/CGMT

Out-of-order exec. Yes or No No No
Scratchpad N/A Threadblock All µthreads run
memory scope on an NDP unit
Thread Process ID (Threadblock ID, mapped µthread
Identification thread ID) pool address

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250 300 350 400
Time (x1000 cycles)

NDP unit SM (TB size: 32) SM (TB size: 64) SM (TB size: 128)

R
at

io
 o

f a
ct

iv
e

co
nt

ex
ts

1.0
0.8
0.6
0.4
0.2
0.0

Fig. 5. Ratio of active contexts (i.e., warps for GPU SMs and µthreads for
M2µthr) executed on an SM or NDP unit over time for a main kernel of
PGRANK benchmark [34] with configuration in §IV-A. Maximum threadblock
count per SM limits the active warp ratio for the threadblock (TB) size of 32.

for the next threadblock [135]. For example, Fig. 5 shows that,
on a GPU SM used for NDP, the ratio of active warps varies
between 0.5 and 1.0 over time with different threadblock sizes.
In contrast, with M2µthr, resources for a finished µthread are
released immediately for the next µthread, improving resource
utilization and performance/cost. While reducing the GPU’s
threadblock size can improve resource utilization in some
cases, it can make it more difficult to effectively use the
CUDA shared memory because different threadblocks cannot
share data through shared memory. As a result, global memory
traffic can be increased. While NVIDIA’s Hopper GPU [19]
introduces distributed shared memory that allows different
threadblocks within a thread block cluster to share data in
the on-chip shared memory, it requires that the threadblock
be scheduled in the even coarser cluster granularity and can
aggravate the SM resource underutilization issue (Fig. 5). By
removing the threadblock hierarchy, M2µthr also eliminates
the need for optimizing the threadblock dimension, which can
significantly affect performance [98].

The size of the data associated with a µthread equals the
memory access granularity of the DRAM (e.g., 64 B for
DDR5 and 32 B for LPDDR5). In contrast, GPU tends to
process a larger amount of data in a warp (e.g., 128 B per
warp with 32 threads processing FP32 data). As a result,
for irregular workloads, there can be significant intra-warp
control and memory divergence, lowering compute resource
utilization. To load-balance NDP units, µthreads are mapped
to NDP units in an interleaved manner with the memory-access
granularity. The µthreads are concurrently executed in the bulk
synchronous parallel model without any ordering guarantee as
with CUDA threads in a GPU kernel. Thus, the NDP kernel
should be written accordingly.

6

E. NDP Unit Microarchitecture

The NDP unit is designed at low cost while supporting
general-purpose computation (Fig. 6). When an NDP kernel is
launched, the NDP controller commands the µthread genera-
tor to spawn µthreads by allocating µthread slots and register
file resources across the sub-cores of the NDP unit. Having
multiple sub-cores instead of a monolithic core simplifies
the dispatch unit. A µthread slots consist of a PC (program
counter), CSR (configure and status register) of RISC-V,
opcode and register IDs of the current instruction decoded,
and base IDs for INT/FP/vector registers. The base register IDs
are determined when each µthread is created and allocated the
required registers for a kernel. Logical registers are renamed
to physical registers simply by adding a logical ID to the base
ID. In addition, the first two non-zero-valued scalar registers
(i.e., x1 and x2) are initialized with the address and offset
within the µthread pool associated with the µthread. After a
µthread is allocated a slot, its PC is initialized with the kernel
code location to begin execution.

An on-chip scratchpad memory is also available in each
NDP unit for data sharing among all µthreads executed on
the same NDP unit. The kernel arguments are also placed
in the scratchpad memory after the launch. The scratchpad
memory is mapped to the unused region in the virtual memory
layout [49] and can be accessed using normal loads/stores.

A load/store unit for the scratchpad memory with atomic
operations capability [8] is also provided to manipulate shared
data in an NDP unit (e.g., for reduction by multiple µthreads).
Global memory atomics are done at the memory-side L2 cache
to avoid coherence issues (§III-F). Address translation is done
using the on-chip TLBs, DRAM-TLB, and ATS (§III-H). The
NDP unit can access any memory location in CXL memories
in the system through on-chip and off-chip interconnects.

Instructions from a µthread are executed serially while dif-
ferent µthreads independently issue instructions with FGMT.
Thus, complex dependency checks between instructions or
data forwarding logic are not needed, minimizing control logic
overhead. With sufficient µthread slots (e.g., 64 per NDP unit),
the CXL memory bandwidth can be highly utilized. The width
of the vector functional units is also matched with the DRAM
access granularity (e.g., 32 B for LPDDR5) for high efficiency.
When a µthread is finished, another µthread in the µthread
pool is spawned in the idle slot.

F. Caches Hierarchy

To avoid the complexity of cache coherence, we adopt
the cache hierarchy of the GPU [127], using write-through
policy for L1 data cache of NDP units and placing the L2
cache in front of the memory controller (Fig. 2). L1 data
cache’s capacity is also configurable between normal L1 data
cache and scratchpad memory. The L2 cache supports global
memory atomic operations for data from DRAM. The NDP
unit employs a small instruction cache because data-parallel,
memory-bound workloads have relatively smaller instruction
footprint than compute-bound workloads. To prevent access
to stale code, the instruction caches are flushed when an NDP

NDP unit NDP sub-core

PC,
Opcode,
RegIDs,
State,
CSR

… …

L0 I $

Decoder / Register renaming

μthread
slot 0

μthread
slot 1

μthread
slot 15

μthread
slot 2

Dispatch (4-way)

Sc
al

ar
AL

U
Sc

al
ar

AL
U

Sc
al

ar
LS

U

Sc
al

ar
SF

U

Ve
ct

or
LS

U

Ve
ct

or
SF

U

Ve
ct

or
AL

U

Re
gi

st
er

 fi
le

L1 I TLB L1 D TLB

L1 I $

μthread
generator

NDP
sub-core

NDP
sub-core

NDP
sub-core

NDP
sub-core

L1 D $

Scratch-
pad mem.

Fig. 6. Proposed NDP unit microarchitecture.

// init. local sum
LI x3 0x1000…000
SD x0 (x3)

// load local sum
LI x3 0x1000…000
LD x4 (x3)
// accumulate global sum
LD x5 8(x3)
AMOADD.D x4 x4 (x5)

// load input data
VLE64.v v2 (x1)
VMV.v.i v1 0
// reduce to scalar sum
VREDSUM.vs v3 v2 v1
// move to scalar register
VMV.x.s x4 v3
// local sum’s shmem addr
LI x3 0x1000…000
// accumulate local sum
AMOADD.D x4 x4 (x3)

(a) Initializer

(c) Finalizer (b) Kernel body

Fig. 7. NDP kernel example for reduction of a large data. It is assumed that
the scratchpad memory is mapped to 0x10000000 and the final result will be
stored at the location given in scratchpad memory at 0x10000008. AMOADD
instruction performs atomic memory operation.

kernel is unregistered (§III-B). However, it would be done
infrequently and have negligible performance impact.

G. NDP Kernel Structure

To support various use cases, an NDP kernel consists of an
initializer, kernel body, and finalizer. The initializer (Fig. 7a)
is executed only once when an NDP kernel is launched
for initialization of scratchpad memory (if needed) and any
required pre-computation before the main computation. For the
initializer, one µthread is spawned in each µthread slot with a
unique ID in the x2 (or offset) register (§III-E). When they are
finished, the µthread generator starts spawning µthreads from
the µthread pool region to execute the kernel body (Fig. 7b).
There can be multiple kernel bodies such that when a kernel
body is finished for all µthreads, all µthreads are generated
again for the next kernel body. After all kernel bodies finish,
the finalizer (Fig. 7c) is executed, similar to the initializer, but
for post-processing and storing the result to DRAM if needed.

H. Virtual Memory Support

Our M2NDP can efficiently support virtual memory. Be-
cause the host uses host physical addresses for normal
CXL.mem requests, address translation is not needed for them.
However, the µthread pool region is given with virtual address
and NDP kernels also use virtual addresses for memory
accesses. Our NDP unit employs TLBs (Fig. 6), but on-chip
TLBs may not be sufficient for kernels that process large data
in CXL memory. Although ATS is supported by CXL, its
latency can be high (§II-B). Thus, we adopt DRAM-TLB [69],
[109] to cost-effectively improve the TLB reach of NDP units
and minimize the miss penalty of on-chip TLBs.

Each DRAM-TLB entry uses 16 bytes to store the ASID,
tag, physical page number, and other attributes (e.g., permis-

7

sion bits). The location of a DRAM-TLB entry is computed
based on the hash of the virtual page number and ASID as
well as base address per CXL memory, ensuring that all NDP
units within the same CXL memory can share them.

The DRAM-TLB can be implemented with low overhead.
Even with the smallest 4 KB page size, the overhead of storing
a DRAM-TLB entry is only 16 B/4 KB=0.4%, and for 2 MB
pages, the overhead is negligible. If the DRAM-TLB region is
sized such that its TLB reach is similar to the memory capacity
of CXL memory, there will be few DRAM-TLB misses with
the hashed location calculation, after DRAM-TLB warms up.

The on-chip and DRAM TLBs of CXL-M2NDP can also
keep translations for addresses in other CXL memories if
they exist. A TLB shootdown needs to be done for all CXL-
M2NDPs if a page’s mapping changes, but it can rarely occur
for in-memory data we assume (i.e., no swapping to disks).

I. Scaling with Multiple Memory Expanders

Using direct P2P access between CXL devices through
a CXL switch (§II-B), NDP kernels can access data from
other CXL-M2NDPs to process huge data. However, the CXL
interface bandwidth can become a bottleneck for frequent P2P
accesses, so localizing data across multiple CXL memories
needs to be done carefully. Because different workloads exhibit
varying memory access patterns, data partitioning schemes
are typically specialized for target workloads [116]. For best
performance, current multi-GPU systems also require the user-
level SW to partition the data across GPUs and launch separate
kernels. Thus, we similarly assume that the data are placed by
SW across CXL memories and an NDP kernel is launched
in each CXL-M2NDP for multi-device scaling, and leave the
exploration of automatic scaling for future work. However, the
data localization does not have to be perfect since NDP units
can directly access other CXL memories for reads and atomic
operations similar to GPUs. We assume page-granularity data
placement across them by the user for localization opportunity.

J. Concurrent NDP Kernel Execution

With M2NDP, multiple NDP kernels from one or multiple
users can be concurrently executed on the same or different
NDP units, similar to the multi-process service (MPS) of
GPUs [102]. However, resource sharing in any system intro-
duces fundamental trade-offs between performance isolation,
security, and resource utilization. The sharing of resources
(e.g., DRAM) in the CXL memory can inevitably result
in performance interference and security concerns between
different NDP kernels and host processes that share them.
GPU’s MPS is also reported to have similar issues [27], [100].
Static partitioning of the resources, including the caches and
memory channels can provide performance isolation and better
security but may result in lower resource utilization, similar
to multi-instance GPU (MIG) [27]. We leave an in-depth
investigation of such trade-offs in NDP for future work, but as
in cloud services in general, the system can provide different
options to meet the requirements of different users [26].

IV. EVALUATION

A. Methodology

We faithfully modeled the functional and timing aspects of
CXL-M2NDP with an in-house cycle-level simulator based on
Ramulator [81]. Baseline CPU and GPU with passive CXL
memory are modeled using modified ZSim [111] and Accel-
Sim [77]; while CPUs are typically used as hosts, for data-
parallel GPU workloads, we assume GPU as the host processor
because GPUs integrated with CPU cores [74] can function as
a host. Table IV gives the simulator configurations. In addition,
we provide comparison with high-end CPU [12] and GPU
cores [14] used for NDP within CXL memory, referred to
as CPU-NDP and GPU-NDP, respectively. They represent prior
approaches for general-purpose NDP.

For CPU-NDP evaluation for OLAP workload, we measure the
performance on a dual-socket system with high-end AMD
EPYC 75F3 CPUs (2.3 GHz) [12] that has the same total
memory bandwidth as the CXL memory that we model (i.e.,
409.6 GB/s). The evaluation was done using multiple copies
of Apache Arrow processes and memory allocation was done
locally to avoid the NUMA effect. We use 32 CPU cores in
total (i.e., 16 cores per socket) to match the 32 NDP units

TABLE IV
SIMULATOR CONFIGURATION. WHEN MULTIPLE VALUES ARE GIVEN, THE

DEFAULT IS INDICATED WITH BOLDFACE.
GPU

Parameter Value
SM count and freq. 82 SMs @ 1695 MHz
SM organization Max. 32 threadblocks, Max. 1536 threads, 256 KB reg. file,

4 SP units, 4 DP units, 4 SFU units, 4 INT units,
4 INT units, 4 TC (tensor core) units

L1 D-cache 128 KB per SM, 128 B line, 32 B sector @ 1695 MHz
L2 cache 6 MB per GPU, 128 B line, 32 B sector @ 1695 MHz
NoC 82x48 crossbar (32B flit)
DRAM (GDDR6) 24 channels, 4 bankgroups/channel,
organization and 4 banks/bankgroup, tRC=78, tRCD=24,
timing param. in clk tCL=24, tRP=24, tCCDs=4, tCCDl=6, Freq=3500 MHz

CPU
Parameter Value
Cores 64 OoO cores @ 3.2 GHz
Caches 64 KB L1 (8-way, 4-cycle; 64 B line, LRU),

1 MB L2 (8-way, 12-cycle, 64 B line, LRU),
96 MB L3 (16-way, 74-cycle, 64 B line, LRU)

DRAM (timing DDR5-6400 with 409.6 GB/s (8 channels)
parameters in clk) tRC=149, tRCD=46, tCL=46, tRP=46

CXL Memory Expander
Parameter Value
CXL 64 GB/s (in each dir.) from CXL 3.0 (PCIe 6.0) x8, 256 B flit

Load-to-use latency: 150 ns, 300 ns, 600 ns
NoC Four 32x32 crossbars (32B flit)
Memory-side 4 MB (128 KB per memory channel,
L2 cache 16-way, 7-cycle, 128 B line, 32 B sector, LRU)
DRAM (timing LPDDR5 with 409.6 GB/s BW (32 channels similar to [132]),
parameters in clk) tRC=48, tRCD=15, tCL=20, tRP=15

NDP in CXL Memory
Type Configuration
M2NDP 32 NDP units @ 2 GHz, 4 SCs per NDP unit,
(SC: sub-core) 48 KB register file, 512 B L0 I-cache per SC,

2 KB L1 I-cache, 128 KB scratchpad/L1D cache,
(16-way, 4-cycle, 128 B line, 32 B sector),
256-entry I-TLB, 256-entry D-TLB (8-way),
Scalar units: 2 ALUs, 1 SFU, and 1 LSU per SC,
256-bit vector units: 1 vALU, 1 vSFU, and 1 vLSU per SC
16 µthread slots per SC, Max. concurrent kernels: 48

GPU-NDP EqPerf(8SMs), 4×Perf(32SMs), 16×Perf(128SMs) @2 GHz,
SM organization: same as the above GPU SM without TC,

8

we assume for M2NDP. Note that M2NDP has substantially
lower cost than this CPU with OoO pipeline and large caches.

The GPU-NDP(EqFLOPS) uses eight Ampere GA102 SMs
that provide equivalent peak FLOPS as the 32 NDP units
in CXL-M2NDP. GPU-NDP(4×FLOPS) and GPU-NDP(16×FLOPS)
are also evaluated to show the impact of 4x and 16x higher
SM counts (i.e., 32 and 128 SMs). All configurations except
for M2NDP use CXL.io for kernel launch. The direct MMIO
scheme (Fig. 4b), which uses dedicated device registers with
a 3 µs latency overhead, is the default for CXL.io and is
indicated with the DR suffix. The RB suffix indicates the ring
buffer scheme with a 7.5 µs latency overhead (Fig. 4a). The
M2NDP configuration uses CXL.mem-based M2func for kernel
launches with CXL.mem latency according to Table IV.

In the CXL memory, we assume fine-grained 256 B-
granularity hashed interleaving across memory channels. For
multiple CXL memories, we assume each page (2 MB) is
mapped to a single CXL memory as in current NUMA or
multi-GPU systems [110]. We assume the DRAM-TLB is
warmed up for the CXL memory-resident data.

The CPU energy is modeled with McPAT [90] and for GPU
and NDP units, we use AccelWattch [72], CACTI 6.5 [2],
[99] (SRAM), and DSENT [122] (NoC). During NDP, we do
include the energy of the idle host. We assumed an off-chip
link energy of 8 pJ/bit [38].

B. Workloads

We use workloads from important domains – such as in-
memory OLAP, No SQL, graph analytics, and deep learning
– in Table V that require large memory capacity and exhibits
little cache locality. We assume that the NDP kernel regis-
tration is done when the data are loaded in CXL memory.
Because accelerators (e.g., GPUs) are not cache-coherent with
most hosts (e.g., x86), we assumed that the host does not
have dirty cachelines for the NDP kernel data unless otherwise
mentioned, but show dirty host cache’s impact in §IV-D.
In-memory OLAP. Filtering operations are commonly used
in OLAP, but executing them from the host processor can
make the CXL link a bottleneck. Thus, using NDP, we offload
the Evaluate phase of the filtering operation, which sweeps
column data to check the filtering condition and generates
a boolean mask in the CXL memory because this phase is
memory-intensive. For baseline, we use Polars [5], a high-
performance columnar in-memory query engine based on
Apache Arrow [1]. A subsequent Filter phase (creating a
resulting filtered column) and other parts of query execution
(e.g., query planning) can be efficiently executed on the host
due to small memory footprints. We select queries from TPC-
H [10] and SSB (Star Schema Benchmark) [103] that spend
non-negligible time on filtering operations. To filter multiple
columns, multiple NDP kernels are launched. The address
range of the column data is used as the µthread pool region.
KVStore. For large KVStores, the CXL memory can store
hash tables and key-value pairs [33], [44], [125]. Serving a
KVStore request in such systems can require memory access
through the CXL link for hash table lookup, key comparison,

TABLE V
WORKLOADS USED FOR EVALUATION.

Baseline Workload Input problem

CPU OLAP [10], [103] TPC-H (Q6, Q14), SSB (Q1.1, Q1.2, Q1.3)
KVStore [33] 24B key, 64B value, 10M KV items

GPU

SPMV [55] 28924 nodes, 1036208 edges
PGRANK [34] 299067 nodes, 1955352 edges
SSSP [34] 264346 nodes, 733846 edges

DLRM(SLS) [101] 1000000 256-dimension vectors, 256 req.
OPT [80] OPT-30B, OPT-2.7B

(Generation phase) with context length 1024

and linked list traversal (for hash collisions). Thus, the tail
response latency can be increased for the baseline, but NDP
can minimize data movement over CXL by offloading hash
table lookup, reducing tail latency. We model a simplified Re-
dis and offload GET/SET operations with NDP after compute-
intensive hash function on the host. Request traces are obtained
using YCSB [37] and have 10K requests for varying GET:SET
ratios (G50:S50 for KVS_A and G95:S5 for KVS_B).
Graph analytics. Large graph analytics require high memory
capacity [4] and can exploit CXL memory. As for the µthread
pool region, we use the address range of the row pointers from
the graph’s CSR format. Each NDP kernel corresponds to a
kernel in CUDA benchmarks [35], [55], [121].
DLRM. Recommendation models can account for over 79%
of inference cycles in datacenters [54]. The CXL memory
can be used to cost-effectively store their TB-scale embedding
tables [133]. However, the CXL link can be a bottleneck when
the host accesses the embedding tables for the Sparse Length
Sum (SLS) operations, which can account for up to 80%
of runtime [101]. Thus, we offload it with NDP, using the
output vector of SLS as µthread pool region. We use Criteo
Dataset [40] for input with 80 embedding lookup operations
per request [75] and use batch sizes of 4, 32, and 128.
LLM inference. Generative LLMs require large memory
capacity from weight matrices and the key-value cache that
grows linearly with the context length during the generation
phase [104]. In addition, as GPUs are not efficiently utilized
during the long generation phase [71], recent work proposed
running this phase separately on GPUs with lower cost [104].
Thus, we evaluate NDP for a token generation with Meta’s
OPT-2.7B and OPT-30B models [139] assuming a batch size
of 1 and KV cache of 1024 tokens. For the GPU baseline, we
use the highly optimized inference kernels from vLLM [83]
and NDP kernels are implemented similarly.

C. Performance

CPU workloads. Compared to the CPU baseline, our M2NDP
achieved significant speedups (Fig. 8a-b). For evaluate phase
of OLAP, M2NDP achieved significant speedups of up to 128×
(73.4× on average) with a high 90.7% CXL memory’s internal
DRAM BW utilization on average (Fig. 8a). Even compared
to M2NDP even reached performance of an Ideal NDP with
100% DRAM BW utilization within 10.3%. Our NDP units
also outperformed the CPU-NDP equipped with 32 aggressive
out-of-order cores with large caches [12] by 33.7% on average.

For the KVStore, M2µthr without M2func exhibits slow-
downs as hash table access kernels can be very short with

9

1

96
128

1

56
74

1

51
68

1

42
56

1

44
59

1

55
73

0

40

80

120

160

0
0.2
0.4
0.6
0.8

1

B
as

el
in

e
C

P
U

-N
D

P
M

2
N

D
P

B
as

el
in

e
C

P
U

-N
D

P
M

2
N

D
P

B
as

el
in

e
C

P
U

-N
D

P
M

2
N

D
P

B
as

el
in

e
C

P
U

-N
D

P
M

2
N

D
P

B
as

el
in

e
C

P
U

-N
D

P
M

2
N

D
P

B
as

el
in

e
C

P
U

-N
D

P
M

2
N

D
P

Q14 Q6 Q1_1 Q1_2 Q1_3 GMEAN
TPC-H SSB-flat

Evaluate Filter Etc GMEAN "Evaluate" speedup

0.0

1.0
0.8
0.6
0.4
0.2

0

160

120

80

40

R
u

n
ti

m
e

n
o

rm
al

iz
ed

 t
o

 b
as

el
in

e
 (

b
ar

 c
h

ar
t)

Sp
eed

u
p

 fo
r “Evalu

ate” kern
el

(lin
e ch

art) 0
.3

6

0
.3

7

0
.1

7

0
.1

7

1
.3

9

1
.3

8

0.0

0.5

1.0

1.5

2.0

KVS_A KVS_B9
5

th
 p

er
ce

n
ti

le
 la

te
n

cy

im
p

ro
ve

m
en

t

Baseline
M2uthr (CXL.io_DR)
M2uthr (CXL.io_RB)
M2NDP

1.5

1.0

0.5

0.0

3.
4 4.

8
4.

3
5.

1 6.
1

0
2
4
6
8

10

SP
M

V

PG
RA

N
K

SS
SP

D
LR

M
(S

LS
)-

B4

D
LR

M
(S

LS
)-

B3
2

D
LR

M
(S

LS
)-

B2
56

O
PT

-2
.7

B
(G

en
)

O
PT

-3
0B

(G
en

)

G
M

EA
N

Sp
ee

du
p

Baseline GPU-NDP(EqFLOPS) GPU-NDP(4xFLOPS)
GPU-NDP(16xFLOPS) M2uthr (CXL.io_DR) M2NDP

(a) (b) (c)
Fig. 8. Speedup over the baseline CPU or GPU with passive CXL memory for (a) OLAP workloads, (b) KVStore workloads, and (c) GPU workloads

95th percentile (p95) latency of 0.77µs, considering the long
CXL.io latency of ∼2µs. In contrast, M2func effectively
addresses the communication overhead and reduces the p95
latency of requests by 38.2% on average (Fig. 8b).

GPU workloads. M2NDP achieved significant speedups of
up to 9.71× (6.14× on average) compared to the baseline
GPU by avoiding the CXL link BW bottleneck (Fig. 8c). By
combining different techniques, our 32 NDP units (M2NDP)
even outperformed 128-SM GPU-NDP(16×FLOPS) by 1.42× by
better utilizing the resources and reducing host communication
overhead. The M2µthr alone outperformed 128-SM by 16.6%.
through efficient resource utilization. In addition, our NDP
units (M2µthr) significantly outperformed GPU-NDP(EqFLOPS)
by up to 2.91× and 1.48× on average. The relative perfor-
mance of graph workloads depended on the characteristics
of the graph data. While our NDP unit uses four separate
256-bit SIMD units, a GPU SM issues instructions in 32-
thread warp granularity, which is equivalent to 1024-bit SIMD
width for 32-bit data. Thus, for the irregular graph workloads,
the SMs suffer more from memory divergence depending
on the graph data structure. DLRM requires frequent memory
address calculations for different indices to the embedding
table, resulting in a higher number of integer instructions
across threads in a warp for the SIMT-only SMs, while M2µthr
is less affected by effectively using low-cost scalar units. For
smaller batches with shorter kernel runtime, M2NDP achieves
a 91.5% performance improvement over GPU-NDP(EqFLOPS)
by reducing kernel launch overhead. For the generation phase
of OPTs, GEMV operations dominates the kernel runtime making
them sensitive to the memory bandwidth. The speedup for OPTs
approaches the ratio between the CXL’s internal DRAM band-
width and CXL link bandwidth (∼ 6.4×) for all GPU-NDPs,
M2µthr, and M2NDP except for GPU-NDP(16×FLOPS); having
more SMs can reduce performance as excessive memory
accesses from more threadblocks reduce DRAM row buffer
locality.

Impact of M2func. By using low-overhead M2func for host
communication, M2NDP achieved an additional speedup of up
to 3.9× (34% overall) for CPU and GPU workloads compared
to M2µthr that uses CXL.io. It was particularly effective
for fine-grained NDP kernels. In addition, compared to the
device register-based offloading (§II-C) that cannot support
concurrent NDP kernels, M2func increased the throughput by
38.1× when requests were concurrently served (Fig. 9a).

105 106 107

Reqs/s
0

5

10

15

95
th

 p
er

ce
nt

ile
 la

te
nc

y
(

s)

M2NDP
M2uthr(CXL.io_DR)
M2uthr(CXL.io_RB)

0

2

4

6

8

1 2 4 8

S
p

e
e

d
u

p

The number of CXL-M2NDPs

DLRM(SLS)-B256 OPT-2.7B(Gen)

OPT-30B(Gen) Linear Speedup

(a) (b)
Fig. 9. (a) p95 latency of KVS_A with varying request rates using M2func and
CXL.io-based offloading schemes. (b) Scalability of CXL-M2NDP.

1
.4

7
.4

9
.7

5
.4

3
.2

 6
.4

6
.7

 1
1

.5

1
.1

7
.1

7
.4

4
.0

2
.4

 6
.1

6
.7

 1
0

.4

1
.5

7
.6

1
0

.1

5
.4

3
.6

 6
.4

6
.8

 1
1

.8

124

1
.7

7
.4

9
.8

5
.4

3
.4

 6
.3

6
.8

 1
4

.1

227

1
.9

1
1

.2

1
4

.8

7
.8

4
.1

6
.4

1
0

.3
 2

0
.8

1.0

10.0

100.0

Default 1GHz 3GHz 2xLtU 4xLtU

Sp
ee

d
u

p

100

10

1

0
.9

6
6

0

.8
6

5

0
.8

1
7

0

0.2

0.4

0.6

0.8

1

Dirty20% Dirty40% Dirty80%

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

1.0
0.8
0.6
0.4
0.2
0.0

(a) (b)
Fig. 10. (a) Speedup over the baseline by CXL-M2NDP across differ-
ent NDP unit frequencies and Load-to-Use (LtU) CXL memory latencies
(2xLtU=300 ns, 4xLtU=600 ns). (b) Normalized runtime with dirty cacheline
ratios over clean host cache. OLAP(Eval) is the average from all queries’
Evaluate part. For KVStore, we show p95 latency improvement.

D. Scalability and Sensitivity Study

Scalability. To evaluate the scalability of M2NDP for OPT
and DLRM, we partition the weight matrix or embedding table
across different CXL-M2NDPs using model parallelism [116].
As shown in Fig. 9b, we achieved near-linear speedups of
7.84× (7.69×) for DLRM (OPT-30B) with eight CXL-M2NDPs.
OPT-2.7B scaled less well with 6.45× speedup for 8 devices
because the all-reduce took longer portion for smaller models.
Sensitivity study. Reducing the frequency of NDP units to
1 GHz degraded performance by 9.6% overall compared to the
default 2 GHz (Fig. 10a). However, increasing the frequency
to 3 GHz resulted in additional speedup of only 2.5% as the
default frequency already utilized the memory BW well.

When load-to-use latency for CXL memory (from the host)
was increased by 2-4× (2xLtU and 4xLtU), the speedups by
M2NDP further increased to 14.1× and 20.8× on average,
respectively, because the baseline suffered even more from the
longer latency whereas M2NDP kernels do not use the CXL
link during execution and are unaffected by its latency.

In addition, when it is assumed that the host cache has a
significant amount of dirty cachelines (between 20-80%) for
the data accessed by NDP kernels, M2NDP still provided good
performance (Fig. 10b). Note that for our target workloads that
require CXL memory expansion, the data size significantly

10

0
20
40
60
80
100
120

0
0.2
0.4
0.6
0.8
1

1.2
1.4

Ba
se
lin
e

M
2N

DP
Ba
se
lin
e

M
2N

DP
Ba
se
lin
e

G
PU

-N
DP

(E
qF
LO

PS
)

G
PU

-N
DP

(4
xF
LO

PS
)

G
PU

-N
DP

(1
6x
FL
O
PS

)
M
2N

DP
Ba
se
lin
e

G
PU

-N
DP

(E
qF
LO

PS
)

G
PU

-N
DP

(4
xF
LO

PS
)

G
PU

-N
DP

(1
6x
FL
O
PS

)
M
2N

DP
Ba
se
lin
e

G
PU

-N
DP

(E
qF
LO

PS
)

G
PU

-N
DP

(4
xF
LO

PS
)

G
PU

-N
DP

(1
6x
FL
O
PS

)
M
2N

DP
Ba
se
lin
e

G
PU

-N
DP

(E
qF
LO

PS
)

G
PU

-N
DP

(4
xF
LO

PS
)

G
PU

-N
DP

(1
6x
FL
O
PS

)
M
2N

DP
Ba
se
lin
e

G
PU

-N
DP

(E
qF
LO

PS
)

G
PU

-N
DP

(4
xF
LO

PS
)

G
PU

-N
DP

(1
6x
FL
O
PS

)
M
2N

DP
Ba
se
lin
e

G
PU

-N
DP

(E
qF
LO

PS
)

G
PU

-N
DP

(4
xF
LO

PS
)

G
PU

-N
DP

(1
6x
FL
O
PS

)
M
2N

DP
Ba
se
lin
e

G
PU

-N
DP

(E
qF
LO

PS
)

G
PU

-N
DP

(4
xF
LO

PS
)

G
PU

-N
DP

(1
6x
FL
O
PS

)
M
2N

DP

T6 S1_3 SPMV PGRANK SSSP DLRM
(SLS)-B4

DLRM
(SLS)-B256

OPT-30B
(Gen)

GMEAN

N
orm

alized Perf/Energy

N
or

m
al

iz
ed

 E
ne

rg
y

Normalized Energy Perf/Energy

Fig. 11. Energy and performance per energy normalized to baseline CPU
and GPU for OLAP and GPU workloads respectively. T6 and S1_3 represent
TPC-H Q6, and SSB Q1.3 respectively. GMEAN is calculated using all OLAP
and GPU workload benchmarks.

exceeds the host’s cache size and these scenarios are very
unlikely given that the kernel data (e.g., LLM weights and
DLRM embedding table during inference) are not supposed to
be modified during the kernel, but we present the results as a
limit study. The performance impact was not significant, since
even when BI is done by a µthread during NDP, other µthreads
can continue execution and hide the latency. In addition, when
the CXL memory BW is saturated, fetching some data from
the host’s cache through the CXL port can provide additional
BW for moderate dirty cacheline ratios, countering the BI
latency impact. For 20-80% dirty cacheline ratios, the NDP
kernel runtime was affected by only 3.4-18.3% overall.
E. Energy

Compared to the baselines, M2NDP significantly improved
the performance per energy up to 106× and 32.0× on average
(Fig. 11). For OLAP, M2NDP substantially reduced energy
consumption by up to 87.9% (83.9% on average) compared to
the CPU baseline without NDP by reducing data movement
over the CXL link and static/constant energy with lower run-
time. Similarly, for GPU workloads, M2NDP also significantly
reduced energy compared to the baseline 77.6% on average.
Compared to the GPU-NDP(EqFLOPS), we reduced energy by
up to 61.9% (37.4% on average).
F. Hardware Cost

We estimated the areas of caches and TLBs in the NDP unit
using CACTI 6.5 and scaled them to 7 nm by using the node-
scaling factor from [61] and obtained 0.47 mm2 per NDP
unit. The area of register files (integer, float, and vector) is
estimated to be 0.11 mm2. Each NDP unit has a unified L1
and scratchpad memory of 0.45 mm2. With each µthread slot
occupying 0.002 mm2, a single NDP unit with compute units
from [95] occupies 0.61 mm2. Thus, the 32 NDP units that
we assumed in the evaluation are estimated to incur an area
overhead of only 19.4 mm2.

V. RELATED WORK

A. CXL Memory Expander

Several works studied the performance impact of CXL
memory on cloud workloads and proposed memory placement
schemes [79], [97], [125] as well as memory pooling [50],
[89]. DirectCXL [51] also demonstrated the performance
benefits of CXL.mem over RDMA. D. D. Sharma [113], [114]
analyzed the CXL architecture and its performance.

B. Near-Data Processing and Processing-In-Memory

NDP in memory expanders. NDP logic in a memory ex-
pander. Several recent works proposed application-specific
NDP in a memory expander or disaggregated memory for
genome analysis [66], recommendation model [57], [84], [85],
nearest neighbor [70], [118], and DNN parameter server [131].
In contrast, we propose a general-purpose NDP architecture
for CXL memory to overcome their limited flexibility.
PIM. Recent DRAM-PIM designs implemented PIM units
in DRAM to exploit the high DRAM-internal BW across
all banks, targeting DNNs [59], [86], [87] or data-parallel
workloads in general [39]. They have different trade-offs,
including memory-bandwidth available, flexibility (e.g., in-
structions supported), communication between PIM units, and
virtual memory support within PIM kernel. However, PIM re-
duces memory capacity [59] and is not suitable for workloads
with huge memory footprints [4], [10], [32], [133]. PIM can
also be combined with NDP in the same CXL memory for
computation that cannot be localized in a single DRAM chip.
NDP in SSD. Several works explored NDP in SSD using CPU
cores [52], [130], [137] or FPGA [91], [119], [124], [130] to
exploit the high bandwidth and low latency available internally.
However, there are significant gaps between DRAM and flash
in terms of BW (e.g., 10 GB/s within SSD vs. 100s GB/s in
CXL memory) and latency (10s of µs for flash vs. 10s of ns
for DRAM). Still, for workloads with low BW demand (e.g.,
cold KV stores), NDP in SSD can be useful. Since our NDP
units are memory device-agnostic and can saturate DRAM BW
while being more cost-effective than CPU or GPU cores, they
can be employed in the SSD for efficient general-purpose NDP.
If CXL is used for the SSD’s interface, our M2func can also
enable low-overhead kernel offloading. The speedup by NDP
in SSD would be largely determined by its internal BW.
Other NDP approaches. Application-specific NDP in HMCs
has been proposed for DNNs [48], [63], [93], linked-lists [62],
[65], and graph workloads [22]. For programmable NDP,
FPGA/CGRA has been proposed [28], [43], [47], [75], [76],
[112], but they pose programmability challenges of mapping
application algorithms to HW logic. Several works proposed
placing simple NDP logic for very fine-grained NDP [23],
[64], [78], but they do not support coarse-grained NDP and are
not suitable for data-intensive NDP because the large number
of offload command packets required can create a link BW
bottleneck. Furthermore, they require modifying the memory
protocol. These approaches also cannot work independently
of the host CPU/GPU and are tightly coupled with the thread
on the host – e.g., they require the host to send input data
for each NDP thread. Thus, they are not suitable for scalable
NDP in CXL memories. Some prior works introduced CPU
or GPU cores in HMCs [41], [93], [107], [138], but our pro-
posed M2µthr can achieve higher efficiency with lightweight
µthreads and flexible utilization resources (§III-D and IV-C).
Several works explored offloading NDP operations to buffer
chips of DIMMs [24], [25], [123], [141]. They are orthogonal
to M2NDP and can be used in the DIMMs of CXL memory.

11

VI. CONCLUSION

In this work, we propose memory-mapped NDP (M2NDP)
which enables a cost-effective, general-purpose NDP in CXL
memory expanders by combining memory-mapped function
(M2func) and memory-mapped µthreading (M2µthr). M2func
leverages the unmodified CXL.mem protocol for lightweight
communication between the host and CXL device for NDP
kernel launch and management, avoiding the high overhead
of traditional PCIe/CXL.io-based schemes. M2µthr introduces
µthread, a lightweight thread with minimal register allocation,
allowing a sufficient number of µthreads to be concurrently
executed on a low-cost NDP unit. Allocation/deallocation
of NDP unit’s resources including µthread slots are also
done more flexibly compared to GPU SMs, achieving higher
resource utilization. Directly mapping µthreads to memory and
providing scalar units also address the overhead of SIMT-
only GPU warps. Compared to the baseline host processor
with a passive CXL memory expander, M2NDP can achieve
significant speedups (up to 128×) for various applications that
require large memory capacity, including in-memory OLAP,
KVStore, LLM, DLRM, and graph analytics.

REFERENCES

[1] “Apache Arrow.” [Online]. Available: https://arrow.apache.org/docs/
[2] “Cacti: An integrated cache and memory access time, cycle time,

area, leakage, and dynamic power model.” [Online]. Available:
https://www.hpl.hp.com/research/cacti/

[3] “Genoa - cores - amd,” WikiChip. [Online]. Available: https:
//en.wikichip.org/wiki/amd/cores/genoa

[4] “Graph500 Benchmark specification.” [Online]. Available: https:
//graph500.org/?page id=12

[5] “Polars: Lightning-fast DataFrame library for Rust and Python.”
[Online]. Available: https://www.pola.rs/

[6] “RISC-V ”V” Vector Extension.” [Online]. Available: https://github.
com/riscv/riscv-v-spec/blob/master/v-spec.adoc

[7] “Thread management,” Threading Programming Guide, Apple.
[Online]. Available: https://developer.apple.com/library/archive/
documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/
CreatingThreads.html

[8] “Vector amo extension,” RISC-V Vector extension specification, May.
[Online]. Available: https://github.com/riscv/riscv-v-spec/blob/master/
v-amo.adoc

[9] “Address translation services revision 1.1.” Peripheral Component
Interconnect Special Interest Group (PCI-SIG)., 2009. [Online].
Available: https://www.pcisig.com/specifications/iov/ats/

[10] “TPC BENCHMARK™ H (Decision Support) Standard Specification
Revision 2.17.1,” Transaction Processing Performance Council
(TPC), November 2014. [Online]. Available: https://www.tpc.org/
tpc documents current versions/pdf/tpc-h v2.17.1.pdf

[11] “RISC-V in NVIDIA,” 6th RISC-V Workshop, May 2017. [Online].
Available: https://riscv.org/wp-content/uploads/2017/05/Tue1345pm-
NVIDIA-Sijstermans.pdf

[12] “AMD EPYC™ 75F3,” March 2021. [Online]. Available: https:
//www.amd.com/ko/products/cpu/amd-epyc-75f3

[13] “Hardware-based cache flush engine,” Arm CoreLink™ CI-700
Coherent Interconnect Technical Reference Manual, May 2021.
[Online]. Available: https://developer.arm.com/documentation/101569/
0300/SLC-memory-system/SLC-memory-system-components-and-
configuration/Hardware-based-cache-flush-engine?lang=en

[14] “NVIDIA AMPERE GA102 GPU ARCHITECTURE,” 2021.
[Online]. Available: https://www.nvidia.com/content/PDF/nvidia-
ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

[15] “Compute Express Link Specification 3.1,” CXL Consortium, August
2023.

[16] “Compute Express Link Specification 3.1,” CXL Consortium, August
2023, section 3.3.2.1 “Direct P2P CXL.mem for Accelerators”.

[17] “Intel® Advanced Vector Extensions 10 Architecture Specification,”
July 2023. [Online]. Available: https://cdrdv2.intel.com/v1/dl/
getContent/784267

[18] “Intel® fpga compute express link (cxl) ip,” May 2023. [Online].
Available: https://www.intel.com/content/www/us/en/products/details/
fpga/intellectual-property/interface-protocols/cxl-ip.html

[19] “NVIDIA H100 Tensor Core GPU Architecture,” 2023. [On-
line]. Available: https://resources.nvidia.com/en-us-tensor-core/gtc22-
whitepaper-hopper

[20] “CUDA C++ Best Practices Guide,” March 2024, sec-
tion 1.4. “Recommendations and Best Practices”. [Online].
Available: https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
#recommendations-and-best-practices

[21] M. Adnan, Y. E. Maboud, D. Mahajan, and P. J. Nair, “Accelerating
recommendation system training by leveraging popular choices,” Proc.
VLDB Endow., vol. 15, no. 1, p. 127–140, sep 2021. [Online].
Available: https://doi.org/10.14778/3485450.3485462

[22] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable
processing-in-memory accelerator for parallel graph processing,” p.
105–117, 2015. [Online]. Available: https://doi.org/10.1145/2749469.
2750386

[23] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, New York, NY, USA, 2015, p. 336–348.

[24] M. Alian and N. S. Kim, “Netdimm: Low-latency near-memory
network interface architecture,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’52. New York, NY, USA: Association for Computing
Machinery, 2019, p. 699–711. [Online]. Available: https://doi.org/10.
1145/3352460.3358278

[25] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K.
Wang, T. Roewer, A. McPadden, O. O’Halloran, D. Chen, J. Xiong,
D. Kim, W.-m. Hwu, and N. S. Kim, “Application-transparent
near-memory processing architecture with memory channel network,”
in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018, pp. 802–814. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00070

[26] Amazon. Configure instance tenancy with a launch configuration.
[Online]. Available: https://docs.aws.amazon.com/autoscaling/ec2/
userguide/auto-scaling-dedicated-instances.html

[27] R. Armstrong, “S41793 - optimizing gpu utilization: Understanding
mig and mps,” NVIDIA GTC 2022. [Online]. Available: https:
//www.nvidia.com/en-us/on-demand/session/gtcspring22-s41793/

[28] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
“Chameleon: Versatile and practical near-dram acceleration architecture
for large memory systems,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016, pp. 1–
13. [Online]. Available: https://doi.org/10.1109/MICRO.2016.7783753

[29] D. Bacon, R. Rabbah, and S. Shukla, “Fpga programming for the
masses: The programmability of fpgas must improve if they are to be
part of mainstream computing.” Queue, vol. 11, no. 2, p. 40–52, feb
2013. [Online]. Available: https://doi.org/10.1145/2436696.2443836

[30] A. Biswas, “Sapphire rapids,” in 2021 IEEE Hot Chips 33 Symposium
(HCS), 2021, pp. 1–22.

[31] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and
O. Mutlu, “Google workloads for consumer devices: Mitigating data
movement bottlenecks,” in Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2018, p. 316–331.

[32] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learn-
ers,” in Advances in Neural Information Processing Systems, vol. 33.
Curran Associates, Inc., 2020, pp. 1877–1901.

[33] J. Carlson, Redis in action. Simon and Schuster, 2013.
[34] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron,

“Pannotia: Understanding irregular GPGPU graph applications,” in
Proceedings of the IEEE International Symposium on Workload
Characterization, IISWC 2013, Portland, OR, USA, September 22-

12

https://arrow.apache.org/docs/
https://www.hpl.hp.com/research/cacti/
https://en.wikichip.org/wiki/amd/cores/genoa
https://en.wikichip.org/wiki/amd/cores/genoa
https://graph500.org/?page_id=12
https://graph500.org/?page_id=12
https://www.pola.rs/
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/CreatingThreads.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/CreatingThreads.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/CreatingThreads.html
https://github.com/riscv/riscv-v-spec/blob/master/v-amo.adoc
https://github.com/riscv/riscv-v-spec/blob/master/v-amo.adoc
https://www.pcisig.com/specifications/iov/ats/
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://riscv.org/wp-content/uploads/2017/05/Tue1345pm-NVIDIA-Sijstermans.pdf
https://riscv.org/wp-content/uploads/2017/05/Tue1345pm-NVIDIA-Sijstermans.pdf
https://www.amd.com/ko/products/cpu/amd-epyc-75f3
https://www.amd.com/ko/products/cpu/amd-epyc-75f3
https://developer.arm.com/documentation/101569/0300/SLC-memory-system/SLC-memory-system-components-and-configuration/Hardware-based-cache-flush-engine?lang=en
https://developer.arm.com/documentation/101569/0300/SLC-memory-system/SLC-memory-system-components-and-configuration/Hardware-based-cache-flush-engine?lang=en
https://developer.arm.com/documentation/101569/0300/SLC-memory-system/SLC-memory-system-components-and-configuration/Hardware-based-cache-flush-engine?lang=en
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://cdrdv2.intel.com/v1/dl/getContent/784267
https://cdrdv2.intel.com/v1/dl/getContent/784267
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#recommendations-and-best-practices
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#recommendations-and-best-practices
https://doi.org/10.14778/3485450.3485462
https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/3352460.3358278
https://doi.org/10.1145/3352460.3358278
https://doi.org/10.1109/MICRO.2018.00070
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-dedicated-instances.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-dedicated-instances.html
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41793/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41793/
https://doi.org/10.1109/MICRO.2016.7783753
https://doi.org/10.1145/2436696.2443836

24, 2013. IEEE Computer Society, 2013, pp. 185–195. [Online].
Available: https://doi.org/10.1109/IISWC.2013.6704684

[35] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in 2009 IEEE International Symposium on Workload
Characterization (IISWC), 2009, pp. 44–54. [Online]. Available:
https://doi.org/10.1109/IISWC.2009.5306797

[36] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,
“Nvidia a100 tensor core gpu: Performance and innovation,” IEEE
Micro, vol. 41, no. 2, pp. 29–35, 2021.

[37] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM Symposium on Cloud Computing, ser. SoCC ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 143–154.
[Online]. Available: https://doi.org/10.1145/1807128.1807152

[38] B. Dally, “Gtc china 2020 keynote,” https://investor.nvidia.com/events-
and-presentations/events-and-presentations/event-details/2020/GTC-
China-2020-Keynote-Bill-Dally/default.aspx, 2020, [Online; accessed
18-February-2022].

[39] F. Devaux, “The true processing in memory accelerator,” in 2019 IEEE
Hot Chips 31 Symposium (HCS), 2019, pp. 1–24.

[40] Diemert Eustache, Meynet Julien, P. Galland, and D. Lefortier, “Attri-
bution modeling increases efficiency of bidding in display advertising,”
in Proceedings of the AdKDD and TargetAd Workshop, KDD, Halifax,
NS, Canada, August, 14, 2017. ACM, 2017, p. To appear.

[41] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel,
B. Falsafi, B. Grot, and D. Pnevmatikatos, “The mondrian data
engine,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), 2017, pp. 639–651. [Online].
Available: https://doi.org/10.1145/3079856.3080233

[42] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun,
Y. Zhou, A. W. Yu, O. Firat, B. Zoph, L. Fedus, M. P. Bosma, Z. Zhou,
T. Wang, E. Wang, K. Webster, M. Pellat, K. Robinson, K. Meier-
Hellstern, T. Duke, L. Dixon, K. Zhang, Q. Le, Y. Wu, Z. Chen, and
C. Cui, “GLaM: Efficient scaling of language models with mixture-
of-experts,” in Proceedings of the 39th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and
S. Sabato, Eds., vol. 162. PMLR, 17–23 Jul 2022, pp. 5547–5569.
[Online]. Available: https://proceedings.mlr.press/v162/du22c.html

[43] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “Nda:
Near-dram acceleration architecture leveraging commodity dram de-
vices and standard memory modules,” in 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA),
2015, pp. 283–295.

[44] B. Fitzpatrick, “Distributed caching with memcached,” Linux J., vol.
2004, no. 124, p. 5, aug 2004.

[45] M. Flajslik and M. Rosenblum, “Network interface design for
low latency Request-Response protocols,” in 2013 USENIX Annual
Technical Conference (USENIX ATC 13). San Jose, CA: USENIX
Association, Jun. 2013, pp. 333–346. [Online]. Available: https://www.
usenix.org/conference/atc13/technical-sessions/presentation/flajslik

[46] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing for
in-memory analytics frameworks,” in 2015 International Conference on
Parallel Architecture and Compilation (PACT), 2015, pp. 113–124.

[47] M. Gao and C. Kozyrakis, “Hrl: Efficient and flexible reconfigurable
logic for near-data processing,” in 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2016, pp. 126–
137. [Online]. Available: https://doi.org/10.1109/HPCA.2016.7446059

[48] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
in Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 751–764. [Online]. Available:
https://doi.org/10.1145/3037697.3037702

[49] A. Ghiti, “Virtual memory layout on risc-v linux,” February 2021.
[Online]. Available: https://docs.kernel.org/riscv/vm-layout.html

[50] D. Gouk, M. Kwon, H. Bae, S. Lee, and M. Jung, “Memory pooling
with cxl,” IEEE Micro, vol. 43, no. 2, pp. 48–57, 2023. [Online].
Available: https://doi.org/10.1109/MM.2023.3237491

[51] D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct access,
High-Performance memory disaggregation with DirectCXL,” in 2022
USENIX Annual Technical Conference (USENIX ATC 22). Carlsbad,

CA: USENIX Association, Jul. 2022, pp. 287–294. [Online]. Available:
https://www.usenix.org/conference/atc22/presentation/gouk

[52] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U.
Kang, M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang,
“Biscuit: A framework for near-data processing of big data
workloads,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), 2016, pp. 153–165. [Online].
Available: https://doi.org/10.1109/ISCA.2016.23

[53] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie,
T. Millstein, and M. Kim, “Bigdebug: Debugging primitives for
interactive big data processing in spark,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: Association for Computing Machinery, 2016,
p. 784–795. [Online]. Available: https://doi.org/10.1145/2884781.
2884813

[54] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. S. Lee,
A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang,
“The architectural implications of facebook’s dnn-based personalized
recommendation,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020, pp. 488–501.

[55] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a new paradigm: Experimental analysis
and characterization of a real processing-in-memory system,” IEEE
Access, vol. 10, pp. 52 565–52 608, 2022.

[56] D. Ha, Y. Oh, and W. W. Ro, “R2d2: Removing redundancy utilizing
linearity of address generation in gpus,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, ser. ISCA
’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3579371.3589039

[57] M. Ha, J. Sim, D. Moon, M. Rhee, J. Choi, B. Koh, E. Lim,
and K. Park, “Cms: A computational memory solution for high-
performance and power-efficient recommendation system,” in 2022
IEEE 4th International Conference on Artificial Intelligence Circuits
and Systems (AICAS), 2022, pp. 491–494. [Online]. Available:
https://doi.org/10.1109/AICAS54282.2022.9869851

[58] B. Harris and N. Altiparmak, “When poll is more energy efficient
than interrupt,” in Proceedings of the 14th ACM Workshop on Hot
Topics in Storage and File Systems, ser. HotStorage ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 59–64.
[Online]. Available: https://doi.org/10.1145/3538643.3539747

[59] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and
T. N. Vijaykumar, “Newton: A dram-maker’s accelerator-in-memory
(aim) architecture for machine learning,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture. [Online].
Available: https://doi.org/10.1109/MICRO50266.2020.00040

[60] B. Herzog, L. Gerhorst, B. Heinloth, S. Reif, T. Hönig, and
W. Schröder-Preikschat, “Intspect: Interrupt latencies in the linux
kernel,” in 2018 VIII Brazilian Symposium on Computing Systems
Engineering (SBESC), 2018, pp. 83–90. [Online]. Available: https:
//doi.org/10.1109/SBESC.2018.00021

[61] M. Hibben, “Tsmc, not intel, has the lead in semiconductor pro-
cesses,” https://seekingalpha.com/article/4151376-tsmc-not-intel-lead-
in-semiconductor-processes, 2018.

[62] B. Hong, G. Kim, J. H. Ahn, Y. Kwon, H. Kim, and J. Kim,
“Accelerating linked-list traversal through near-data processing,”
in 2016 International Conference on Parallel Architecture and
Compilation Techniques (PACT), 2016, pp. 113–124. [Online].
Available: https://doi.org/10.1145/2967938.2967958

[63] B. Hong, Y. Ro, and J. Kim, “Multi-dimensional parallel training of
winograd layer on memory-centric architecture,” in Proceedings
of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-51. IEEE Press, 2018, p. 682–695.
[Online]. Available: https://doi.org/10.1109/MICRO.2018.00061

[64] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor,
N. Vijaykumar, O. Mutlu, and S. W. Keckler, “Transparent offloading
and mapping (tom): Enabling programmer-transparent near-data
processing in gpu systems,” in Proceedings of the 43rd International
Symposium on Computer Architecture, 2016. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.27

[65] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand,
S. Ghose, and O. Mutlu, “Accelerating pointer chasing in 3d-stacked
memory: Challenges, mechanisms, evaluation,” in 2016 IEEE 34th

13

https://doi.org/10.1109/IISWC.2013.6704684
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/1807128.1807152
https://investor.nvidia.com/events-and-presentations/events-and-presentations/event-details/2020/GTC-China-2020-Keynote-Bill-Dally/default.aspx
https://investor.nvidia.com/events-and-presentations/events-and-presentations/event-details/2020/GTC-China-2020-Keynote-Bill-Dally/default.aspx
https://investor.nvidia.com/events-and-presentations/events-and-presentations/event-details/2020/GTC-China-2020-Keynote-Bill-Dally/default.aspx
https://doi.org/10.1145/3079856.3080233
https://proceedings.mlr.press/v162/du22c.html
https://www.usenix.org/conference/atc13/technical-sessions/presentation/flajslik
https://www.usenix.org/conference/atc13/technical-sessions/presentation/flajslik
https://doi.org/10.1109/HPCA.2016.7446059
https://doi.org/10.1145/3037697.3037702
https://docs.kernel.org/riscv/vm-layout.html
https://doi.org/10.1109/MM.2023.3237491
https://www.usenix.org/conference/atc22/presentation/gouk
https://doi.org/10.1109/ISCA.2016.23
https://doi.org/10.1145/2884781.2884813
https://doi.org/10.1145/2884781.2884813
https://doi.org/10.1145/3579371.3589039
https://doi.org/10.1109/AICAS54282.2022.9869851
https://doi.org/10.1145/3538643.3539747
https://doi.org/10.1109/MICRO50266.2020.00040
https://doi.org/10.1109/SBESC.2018.00021
https://doi.org/10.1109/SBESC.2018.00021
https://seekingalpha.com/article/4151376-tsmc-not-intel-lead-in-semiconductor-processes
https://seekingalpha.com/article/4151376-tsmc-not-intel-lead-in-semiconductor-processes
https://doi.org/10.1145/2967938.2967958
https://doi.org/10.1109/MICRO.2018.00061
https://doi.org/10.1109/ISCA.2016.27

International Conference on Computer Design (ICCD), 2016, pp. 25–
32. [Online]. Available: https://doi.org/10.1109/ICCD.2016.7753257

[66] W. Huangfu, K. T. Malladi, A. Chang, and Y. Xie, “Beacon: Scalable
near-data-processing accelerators for genome analysis near memory
pool with the cxl support,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2022, pp. 727–743.
[Online]. Available: https://doi.org/10.1109/MICRO56248.2022.00057

[67] C. Hwang, K. Park, R. Shu, X. Qu, P. Cheng, and Y. Xiong,
“ARK: GPU-driven code execution for distributed deep learning,”
in 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). Boston, MA: USENIX Association,
Apr. 2023, pp. 87–101. [Online]. Available: https://www.usenix.org/
conference/nsdi23/presentation/hwang

[68] Intel 64 and IA-32 Architectures Optimization Reference Manual, Intel
Corporation, May 2023, chapter 9.4.7 ”CLFLUSHOPT Instruction”.

[69] A. Jaleel, E. Ebrahimi, and S. Duncan, “Ducati: High-performance
address translation by extending tlb reach of gpu-accelerated systems,”
ACM Trans. Archit. Code Optim., vol. 16, no. 1, mar 2019. [Online].
Available: https://doi.org/10.1145/3309710

[70] J. Jang, H. Choi, H. Bae, S. Lee, M. Kwon, and M. Jung, “CXL-
ANNS: Software-Hardware collaborative memory disaggregation and
computation for Billion-Scale approximate nearest neighbor search,”
in 2023 USENIX Annual Technical Conference (USENIX ATC 23).
Boston, MA: USENIX Association, Jul. 2023, pp. 585–600. [Online].
Available: https://www.usenix.org/conference/atc23/presentation/jang

[71] Y. Jin, C.-F. Wu, D. Brooks, and G.-Y. Wei, “S3: Increasing gpu
utilization during generative inference for higher throughput,” 2023.

[72] V. Kandiah, S. Peverelle, M. Khairy, J. Pan, A. Manjunath, T. G.
Rogers, T. M. Aamodt, and N. Hardavellas, “Accelwattch: A power
modeling framework for modern gpus,” in 54th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’21.
[Online]. Available: https://doi.org/10.1145/3466752.3480063

[73] U. Kang, “Adding new value to memory subsystems through cxl,” Flash
Memory Summit, August 2022. [Online]. Available: https://memverge.
com/wp-content/uploads/2022/08/CXL-Forum SKhynix.pdf

[74] Karl Freund, “Will AMD’s MI300 Beat NVIDIA In AI?”
[Online]. Available: https://www.forbes.com/sites/karlfreund/2023/01/
09/will-amds-mi300-beat-nvidia-in-ai/

[75] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, M. Li, B. Maher,
D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy, X. Wang,
B. Reagen, C.-J. Wu, M. Hempstead, and X. Zhang, “Recnmp: Accel-
erating personalized recommendation with near-memory processing,”
in Proceedings of the ACM/IEEE 47th Annual International Symposium
on Computer Architecture, ser. ISCA ’20, 2020, p. 790–803.

[76] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han,
Y. Cho, J. H. Kim, Y. Kwon, K. Kim, J. Jung, I. Yun, S. J.
Park, H. Park, J. Song, J. Cho, K. Sohn, N. S. Kim, and H.-H. S.
Lee, “Near-memory processing in action: Accelerating personalized
recommendation with axdimm,” IEEE Micro, pp. 1–1, 2021. [Online].
Available: https://doi.org/10.1109/MM.2021.3097700

[77] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:
An extensible simulation framework for validated gpu modeling,”
in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 2020, pp. 473–486. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00047

[78] G. Kim, N. Chatterjee, M. O’Connor, and K. Hsieh, “Toward
standardized near-data processing with unrestricted data placement
for gpus,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’17. [Online]. Available: https://doi.org/10.1145/3126908.3126965

[79] K. Kim, H. Kim, J. So, W. Lee, J. Im, S. Park, J. Cho, and
H. Song, “Smt: Software-defined memory tiering for heterogeneous
computing systems with cxl memory expander,” IEEE Micro,
vol. 43, no. 2, pp. 20–29, 2023. [Online]. Available: https:
//doi.org/10.1109/MM.2023.3240774

[80] S. Kim, C. Hooper, T. Wattanawong, M. Kang, R. Yan, H. Genc,
G. Dinh, Q. Huang, K. Keutzer, M. W. Mahoney, Y. S. Shao, and
A. Gholami, “Full stack optimization of transformer inference: a
survey,” 2023.

[81] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1,
pp. 45–49, 2016.

[82] R. Kuper, I. Jeong, Y. Yuan, J. Hu, R. Wang, N. Ranganathan, and
N. S. Kim, “A quantitative analysis and guideline of data streaming
accelerator in intel 4th gen xeon scalable processors,” CoRR, vol.
abs/2305.02480, 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2305.02480

[83] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management for
large language model serving with pagedattention,” in Proceedings of
the ACM SIGOPS 29th Symposium on Operating Systems Principles,
2023.

[84] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, p. 740–753.

[85] Y. Kwon, Y. Lee, and M. Rhu, “Tensor casting: Co-designing
algorithm-architecture for personalized recommendation training,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021, pp. 235–248. [Online]. Available:
https://doi.org/10.1109/HPCA51647.2021.00029

[86] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim, J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin,
J. Won, M. Lee, H. Joo, H. Choi, J. Lee, D. Ko, Y. Jun, K. Cho, I. Kim,
C. Song, C. Jeong, D. Kwon, J. Jang, I. Park, J. Chun, and J. Cho,
“A 1ynm 1.25v 8gb, 16gb/s/pin gddr6-based accelerator-in-memory
supporting 1tflops mac operation and various activation functions
for deep-learning applications,” in 2022 IEEE International Solid-
State Circuits Conference (ISSCC), vol. 65, 2022, pp. 1–3. [Online].
Available: https://doi.org/10.1109/ISSCC42614.2022.9731711

[87] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon,
S. Lee, K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang,
K. Sohn, and N. S. Kim, “Hardware architecture and software
stack for pim based on commercial dram technology : Industrial
product,” in 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), 2021, pp. 43–56. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00013

[88] D. Lemire, “Cost of a thread in c++ under linux.” [Online]. Available:
https://lemire.me/blog/2020/01/30/cost-of-a-thread-in-c-under-linux/

[89] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura,
and R. Bianchini, “Pond: Cxl-based memory pooling systems for
cloud platforms,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ser. ASPLOS 2023. New York,
NY, USA: Association for Computing Machinery, 2023, p. 574–587.
[Online]. Available: https://doi.org/10.1145/3575693.3578835

[90] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: An integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2009, pp. 469–480.

[91] S. Liang, Y. Wang, C. Liu, H. Li, and X. Li, “Ins-dla: An in-ssd
deep learning accelerator for near-data processing,” in 2019 29th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2019, pp. 173–179.

[92] M. LILJESON. GPU submission strategies. AMD. [On-
line]. Available: https://gpuopen.com/presentations/2022/gpuopen-
gpu submission-reboot blue 2022.pdf

[93] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A heterogeneous
approach,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2018, pp. 655–668. [Online].
Available: https://doi.org/10.1109/MICRO.2018.00059

[94] D. Lustig and M. Martonosi, “Reducing gpu offload latency via fine-
grained cpu-gpu synchronization,” in 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA),
2013, pp. 354–365. [Online]. Available: https://doi.org/10.1109/HPCA.
2013.6522332

[95] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “Fpnew: An open-source
multiformat floating-point unit architecture for energy-proportional
transprecision computing,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 04, pp. 774–787, apr 2021.

[96] I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor, “Asic
clouds: Specializing the datacenter,” in 2016 ACM/IEEE 43rd Annual

14

https://doi.org/10.1109/ICCD.2016.7753257
https://doi.org/10.1109/MICRO56248.2022.00057
https://www.usenix.org/conference/nsdi23/presentation/hwang
https://www.usenix.org/conference/nsdi23/presentation/hwang
https://doi.org/10.1145/3309710
https://www.usenix.org/conference/atc23/presentation/jang
https://doi.org/10.1145/3466752.3480063
https://memverge.com/wp-content/uploads/2022/08/CXL-Forum_SKhynix.pdf
https://memverge.com/wp-content/uploads/2022/08/CXL-Forum_SKhynix.pdf
https://www.forbes.com/sites/karlfreund/2023/01/09/will-amds-mi300-beat-nvidia-in-ai/
https://www.forbes.com/sites/karlfreund/2023/01/09/will-amds-mi300-beat-nvidia-in-ai/
https://doi.org/10.1109/MM.2021.3097700
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1145/3126908.3126965
https://doi.org/10.1109/MM.2023.3240774
https://doi.org/10.1109/MM.2023.3240774
https://doi.org/10.48550/arXiv.2305.02480
https://doi.org/10.48550/arXiv.2305.02480
https://doi.org/10.1109/HPCA51647.2021.00029
https://doi.org/10.1109/ISSCC42614.2022.9731711
https://doi.org/10.1109/ISCA52012.2021.00013
https://lemire.me/blog/2020/01/30/cost-of-a-thread-in-c-under-linux/
https://doi.org/10.1145/3575693.3578835
https://gpuopen.com/presentations/2022/gpuopen-gpu_submission-reboot_blue_2022.pdf
https://gpuopen.com/presentations/2022/gpuopen-gpu_submission-reboot_blue_2022.pdf
https://doi.org/10.1109/MICRO.2018.00059
https://doi.org/10.1109/HPCA.2013.6522332
https://doi.org/10.1109/HPCA.2013.6522332

International Symposium on Computer Architecture (ISCA), 2016, pp.
178–190. [Online]. Available: https://doi.org/10.1109/ISCA.2016.25

[97] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal,
P. Bhattacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and
P. Chauhan, “Tpp: Transparent page placement for cxl-enabled tiered-
memory,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 742–755. [Online].
Available: https://doi.org/10.1145/3582016.3582063

[98] P. Micikevicius, “Performance optimization: Programming
guidelines and gpu architecture reasons behind them,”
NVIDIA GPU Technology Conference, 2013. [Online].
Available: https://on-demand.gputechconf.com/gtc/2013/presentations/
S3466-Programming-Guidelines-GPU-Architecture.pdf

[99] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP laboratories, vol. 27, April 2009.

[100] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 2139–2153. [Online].
Available: https://doi.org/10.1145/3243734.3243831

[101] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation model
for personalization and recommendation systems,” 2019.

[102] NVIDIA. Multi-process service. [Online]. Available: https://docs.
nvidia.com/deploy/mps/index.html

[103] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak, “The star schema
benchmark and augmented fact table indexing,” in Performance Eval-
uation and Benchmarking, R. Nambiar and M. Poess, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 237–252.

[104] P. Patel, E. Choukse, C. Zhang, Íñigo Goiri, A. Shah, S. Maleki, and
R. Bianchini, “Splitwise: Efficient generative llm inference using phase
splitting,” 2023.

[105] A. Pattnaik, X. Tang, O. Kayiran, A. Jog, A. Mishra, M. T. Kandemir,
A. Sivasubramaniam, and C. R. Das, “Opportunistic computing in gpu
architectures,” in Proceedings of the 46th International Symposium on
Computer Architecture, ser. ISCA ’19, 2019, p. 210–223.

[106] J. Prout, “Expanding Beyond Limits With CXL™-based
Memory,” Flash Memory Summit, August 2022. [Online].
Available: https://memverge.com/wp-content/uploads/2022/08/CXL-
Forum Samsung.pdf

[107] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “Ndc: Analyzing the impact
of 3d-stacked memory+logic devices on mapreduce workloads,”
in 2014 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2014, pp. 190–200. [Online].
Available: https://doi.org/10.1109/ISPASS.2014.6844483

[108] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter, “Hemem:
Scalable tiered memory management for big data applications and
real nvm,” in Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, ser. SOSP ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 392–407. [Online].
Available: https://doi.org/10.1145/3477132.3483550

[109] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking tlb
designs in virtualized environments: A very large part-of-memory
tlb,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), 2017, pp. 469–480. [Online].
Available: https://doi.org/10.1145/3079856.3080210

[110] N. Sakharnykh, “Everything you need to know about unified memory,”
NVIDIA GPU Technology Conference, 2018.

[111] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems,” SIGARCH
Comput. Archit. News, vol. 41, no. 3, p. 475–486, jun 2013. [Online].
Available: https://doi.org/10.1145/2508148.2485963

[112] B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann, “Täkō: A
polymorphic cache hierarchy for general-purpose optimization of data
movement,” in Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture. New York, NY, USA: Association
for Computing Machinery, 2022, p. 42–58.

[113] D. D. Sharma, “Compute express link (cxl): Enabling heterogeneous
data-centric computing with heterogeneous memory hierarchy,” IEEE
Micro, vol. 43, no. 2, pp. 99–109, 2023.

[114] D. D. Sharma, “Novel composable and scaleout architectures using
compute express link,” IEEE Micro, vol. 43, no. 2, pp. 9–19, 2023.

[115] D. D. Sharma, R. Blankenship, and D. S. Berger, “An introduction
to the compute express link (CXL) interconnect,” CoRR, vol.
abs/2306.11227, 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2306.11227

[116] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” 2020.

[117] A. Shrivastava, V. Lakshman, T. Medini, N. Meisburger, J. Engels,
D. Torres Ramos, B. Geordie, P. Pranav, S. Gupta, Y. Adunukota,
and S. Jain, “From research to production: Towards scalable
and sustainable neural recommendation models on commodity
cpu hardware,” in Proceedings of the 17th ACM Conference on
Recommender Systems, ser. RecSys ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 1071–1074. [Online].
Available: https://doi.org/10.1145/3604915.3610249

[118] J. Sim, S. Ahn, T. Ahn, S. Lee, M. Rhee, J. Kim, K. Shin,
D. Moon, E. Kim, and K. Park, “Computational cxl-memory solution
for accelerating memory-intensive applications,” IEEE Computer
Architecture Letters, vol. 22, no. 1, pp. 5–8, 2023. [Online]. Available:
https://doi.org/110.1109/LCA.2022.3226482

[119] M. Soltaniyeh, V. L. Moutinho Dos Reis, M. Bryson, R. Martin,
and S. Nagarakatte, “Near-storage acceleration of database query
processing with smartssds,” in 2021 IEEE 29th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2021, pp. 265–265. [Online]. Available: https://doi.org/10.
1109/FCCM51124.2021.00052

[120] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid,
A. Rico, and P. Walker, “The arm scalable vector extension,”
IEEE Micro, vol. 37, no. 2, pp. 26–39, 2017. [Online]. Available:
https://doi.org/10.1109/MM.2017.35

[121] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, 2012.

[122] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S.
Peh, and V. Stojanovic, “Dsent - a tool connecting emerging photonics
with electronics for opto-electronic networks-on-chip modeling,” in
Proceedings of the 2012 IEEE/ACM Sixth International Symposium
on Networks-on-Chip, ser. NOCS ’12. USA: IEEE Computer Society,
2012, p. 201–210.

[123] W. Sun, Z. Li, S. Yin, S. Wei, and L. Liu, “Abc-dimm: Alleviating
the bottleneck of communication in dimm-based near-memory
processing with inter-dimm broadcast,” in Proceedings of the 48th
Annual International Symposium on Computer Architecture, ser.
ISCA ’21. IEEE Press, 2021, p. 237–250. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00027

[124] X. Sun, H. Wan, Q. Li, C.-L. Yang, T.-W. Kuo, and C. J. Xue, “Rm-ssd:
In-storage computing for large-scale recommendation inference,” in
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2022, pp. 1056–1070.

[125] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, C. Song, J. Huang, H. J. S.
Agarwal, J. Lou, I. Jeong, R. Wang, J. H. Ahn, T. Xu, and N. S.
Kim, “Demystifying CXL memory with genuine cxl-ready systems
and devices,” in MICRO-56: 56th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’23, 2023.

[126] S. Tamimi, F. Stock, A. Koch, A. Bernhardt, and I. Petrov, “An
evaluation of using ccix for cache-coherent host-fpga interfacing,”
in 2022 IEEE 30th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2022, pp.
1–9. [Online]. Available: https://doi.org/10.1109/FCCM53951.2022.
9786103

[127] G. Thomas-Collignon and V. Mehta, “Optimizing cuda applications
for nvidia a100 gpu,” NVIDIA GTC, 2020. [Online]. Available:
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/
presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-
architecture.pdf

[128] B. Tian, Q. Chen, and M. Gao, “Abndp: Co-optimizing data access and
load balance in near-data processing,” in Proceedings of the 28th ACM

15

https://doi.org/10.1109/ISCA.2016.25
https://doi.org/10.1145/3582016.3582063
https://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
https://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
https://doi.org/10.1145/3243734.3243831
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://memverge.com/wp-content/uploads/2022/08/CXL-Forum_Samsung.pdf
https://memverge.com/wp-content/uploads/2022/08/CXL-Forum_Samsung.pdf
https://doi.org/10.1109/ISPASS.2014.6844483
https://doi.org/10.1145/3477132.3483550
https://doi.org/10.1145/3079856.3080210
https://doi.org/10.1145/2508148.2485963
https://doi.org/10.48550/arXiv.2306.11227
https://doi.org/10.48550/arXiv.2306.11227
https://doi.org/10.1145/3604915.3610249
https://doi.org/110.1109/LCA.2022.3226482
https://doi.org/10.1109/FCCM51124.2021.00052
https://doi.org/10.1109/FCCM51124.2021.00052
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/ISCA52012.2021.00027
https://doi.org/10.1109/FCCM53951.2022.9786103
https://doi.org/10.1109/FCCM53951.2022.9786103
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf

International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ser. ASPLOS 2023.
New York, NY, USA: Association for Computing Machinery, 2023, p.
3–17. [Online]. Available: https://doi.org/10.1145/3582016.3582026

[129] K. Tian, Y. Dong, and D. Cowperthwaite, “A full GPU virtualization
solution with mediated Pass-Through,” in 2014 USENIX Annual
Technical Conference (USENIX ATC 14). Philadelphia, PA: USENIX
Association, Jun. 2014, pp. 121–132. [Online]. Available: https:
//www.usenix.org/conference/atc14/technical-sessions/presentation/tian

[130] T. Vinçon, L. Weber, A. Bernhardt, A. Koch, I. Petrov, C. Knödler,
S. Hardock, S. Tamimi, and C. Riegger, “nkv in action: Accelerating
kv-stores on nativecomputational storage with near-data processing,”
Proc. VLDB Endow., vol. 13, no. 12, pp. 2981–2984, 2020. [Online].
Available: http://www.vldb.org/pvldb/vol13/p2981-vincon.pdf

[131] Z. Wang, J. Sim, E. Lim, and J. Zhao, “Enabling efficient large-
scale deep learning training with cache coherent disaggregated memory
systems,” in 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2022.

[132] Wikipedia. Apple m3. [Online]. Available: https://en.wikipedia.org/
wiki/Apple M3

[133] M. Wilkening, U. Gupta, S. Hsia, C. Trippel, C.-J. Wu, D. Brooks,
and G.-Y. Wei, “Recssd: Near data processing for solid state drive
based recommendation inference,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS 2021, p. 717–729.

[134] H. Wu and M. Becchi, “Evaluating thread coarsening and low-cost
synchronization on intel xeon phi,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2020, pp. 1018–1029.
[Online]. Available: https://doi.org/10.1109/IPDPS47924.2020.0010

[135] P. Xiang, Y. Yang, and H. Zhou, “Warp-level divergence in gpus: Char-
acterization, impact, and mitigation,” in 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA),

2014, pp. 284–295.
[136] J. Yang, D. B. Minturn, and F. Hady, “When poll is better than

interrupt,” in Proceedings of the 10th USENIX Conference on File and
Storage Technologies, ser. FAST’12. USA: USENIX Association,
2012, p. 3.

[137] Z. Yang, Y. Lu, X. Liao, Y. Chen, J. Li, S. He, and J. Shu,
“λ-IO: A unified IO stack for computational storage,” in 21st
USENIX Conference on File and Storage Technologies (FAST 23).
Santa Clara, CA: USENIX Association, Feb. 2023, pp. 347–
362. [Online]. Available: https://www.usenix.org/conference/fast23/
presentation/yang-zhe

[138] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “Top-pim: Throughput-oriented programmable process-
ing in memory,” in Proceedings of the 23rd International Symposium
on High-Performance Parallel and Distributed Computing, ser. HPDC
’14, 2014, p. 85–98.

[139] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen,
C. Dewan, M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer,
K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettle-
moyer, “Opt: Open pre-trained transformer language models,” 2022.

[140] W. Zhang, Q. Chen, K. Fu, N. Zheng, Z. Huang, J. Leng, and M. Guo,
“Astraea: Towards qos-aware and resource-efficient multi-stage gpu
services,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 570–582. [Online]. Available:
https://doi.org/10.1145/3503222.3507721

[141] Z. Zhou, C. Li, F. Yang, and G. Sun, “Dimm-link: Enabling
efficient inter-dimm communication for near-memory processing,” in
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2023, pp. 302–316. [Online]. Available:
https://doi.org/10.1109/HPCA56546.2023.10071005

16

https://doi.org/10.1145/3582016.3582026
https://www.usenix.org/conference/atc14/technical-sessions/presentation/tian
https://www.usenix.org/conference/atc14/technical-sessions/presentation/tian
http://www.vldb.org/pvldb/vol13/p2981-vincon.pdf
https://en.wikipedia.org/wiki/Apple_M3
https://en.wikipedia.org/wiki/Apple_M3
https://doi.org/10.1109/IPDPS47924.2020.0010
https://www.usenix.org/conference/fast23/presentation/yang-zhe
https://www.usenix.org/conference/fast23/presentation/yang-zhe
https://doi.org/10.1145/3503222.3507721
https://doi.org/10.1109/HPCA56546.2023.10071005

	Introduction
	Background and Motivation
	Considerations in Architecting NDP in CXL Memory
	Compute Express Link Interconnect
	Communication Overhead with CXL.io/PCIe
	NDP Support with Unmodified CXL.mem

	Memory-Mapped Near-data Processing
	Overview
	Memory-mapped NDP Management Function (M2func)
	NDP Kernel Launch
	Memory-mapped threading (M2thr)
	NDP Unit Microarchitecture
	Caches Hierarchy
	NDP Kernel Structure
	Virtual Memory Support
	Scaling with Multiple Memory Expanders
	Concurrent NDP Kernel Execution

	Evaluation
	Methodology
	Workloads
	Performance
	Scalability and Sensitivity Study
	Energy
	Hardware Cost

	Related Work
	CXL Memory Expander
	Near-Data Processing and Processing-In-Memory

	Conclusion
	References

